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CHAPTER

ONE

INTRODUCTION

The past two decades witnessed a surge of activity on prediction and learning methods in adversarial
environments. Progress on this topic has been made in various fields, with many methods independently
discovered and rediscovered. In their recent book, Nicolò Cesa-Bianchi and Gábor Lugosi [5] collected and
organized many of these results under a common umbrella. We are indebted to this book for our own
interest in the field, which seemed very fragmented before Nicolò and Gábor’s effort. That being said, we
feel that it might be beneficial to organize the ideas in a manner different from [5]. The purpose of these
lecture notes is to stress the role of regularization as a common umbrella for some of the known online
learning methods. While many of the results mentioned here are not novel, we hope to give the reader a
fresh perspective through a very natural formulation.

We start with the time-varying potential method of Chapter 11.6 of [5], which, we feel, is one of the
most general results of the book. The versatility of the method is diminished by the fact that it is hidden
in the middle of a chapter on “linear pattern recognition”. In contrast, we would like to bring out this
result in a generic setting of convex loss functions and show how various other algorithms arise from this
formulation.

Another motivation for this note is the realization that the time-varying potential method is nothing
more than a sequence of regularized empirical error minimizations. The latter is the basis for most of
the batch machine learning methods, such as SVM, Lasso, etc. It is, therefore, very natural to start with
an algorithm which minimizes the regularized empirical loss at every step of the online interaction with
the environment. This provides a connection between online and batch learning which is conceptually
important.

We also point the reader to the recent thesis of Shai Shalev-Shwartz [9, 10]. The primal-dual view of
online updates is illuminating and leads to new algorithms; however, the focus of these notes is slightly
different.
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The General Setting

Let K ⊆ Rn, the set of moves of the player, be a closed convex set. Let F , the set of moves of the
adversary, contain convex functions from Rn to R. The following repeated game is the object of study of
these notes.

Online Convex Optimization (OCO) Game

At each time step t = 1 to T ,
• Player chooses wt ∈ K
• Adversary chooses `t ∈ F
• Player suffers loss `t(wt) and observes feedback =

The goal of the Player (our online learning algorithm) is to minimize the regret, a notion studied in
decision theory:

RT :=
T∑

t=1

`t(wt)−min
u∈K

T∑
t=1

`t(u). (1.1)

That is, regret is the cost accumulated throughout the game minus the hypothetical cumulative cost of the
best fixed decision. Having settled on the notion of regret, we can ask the following questions.

• What kind of feedback can one use for minimizing regret?
• How does one design algorithms which enjoy RT → 0 as T →∞ (called Hannan consistency)?
• What are the best rates of convergence, in terms of T , for the given sets K,F and a certain type of

feedback?
• How does the dimension n enter into the bounds?
• What are the minimax-optimal algorithms and lower bounds on RT ?
• Which algorithms are more efficient? Is there a trade-off between regret and efficiency?

Some of these questions will be addressed in these notes.
We remark that our notation “`t(wt)” for the cost of the player’s and adversary’s moves is slightly more

general than “`(wt,γt)” for a fixed loss function `, where γt is a move of the adversary in some parameter
set Γ. Our notation, which allows the loss function to change, is motivated by the optimization literature,
whereas the fixed-loss-function notation is more natural for game theory, statistics, and machine learning.
For the most part of the notes, however, one can think of `t(wt) := `(wt,γt).

We distinguish the full-information and bandit versions of OCO. In the full-information version, con-
sidered in Section 2, the Player may observe the entire function `t as his feedback = and can exploit this in
making his decisions (i.e. using first-order or second-order optimization methods). In the bandit setting,
considered in Section 4, the feedback = provided to the player on round t is only the scalar value `t(wt)
(i.e. only the zeroth-order method can be used).

Without any assumptions on F , we cannot hope to say anything meaningful about the regret. One
thing is certain: we can hope to attain smaller regret as the adversary restricts F more and more. Just
as in optimization, curvature of functions in F plays a crucial role. As we will observe, the worst convex
functions are linear, and much of the focus of these notes is indeed on F being a set of linear functions
with a bounded norm.

We also remark that the requirement K ⊂ Rn can be easily relaxed to, for example, fields. In fact, in
Section 7 we consider OCO on matrices.

As a warm-up, let us consider the following standard example.

Example 1. Suppose Player’s moves come from the set K = [−1, 1] and F = {` : `(x) = αx, α = [−1, 1]}.
In other words, the player chooses points in the interval [−1, 1] and the adversary responds with cost
functions with a slope in the same interval. Suppose we use the following näıve algorithm for choosing wt:
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Algorithm 1: Follow the Leader (FTL)
On the first round output any w1 ∈ K. On a round t > 1 output

wt+1 = arg min
w∈K

t∑
s=1

`s(w).

Suppose the adversary chooses the following sequence of cost functions: 0.5x,−x, x,−x, x, . . .. On this
sequence, for t > 1, FTL outputs wt = 1 if t is odd and wt = −1 if even. The cumulative cost grows as T ,
whereas the cost of a fixed decision w = 0 is 0. Hence, FTL fails to achieve non-trivial regret guarantees
(Hannan consistency).

We start these lectures with a philosophical point. Recent notes by Olivier Bousquet [3] present a
simplified, yet interesting point of view on successful batch algorithms in machine learning: they can be
roughly collected under the umbrella of “regularized loss minimization” (with the notable exception of
“random projection” methods). We would like to say the same about online learning; this is, at-large, the
motivation for these notes.

The idea of regularization is age-old. In their seminal work, Tikhonov and Arsenin [11, 12] develop
regularization methods for solving ill-posed problems. One can think of “learning” the underlying phe-
nomenon from the scarce observed data is an ill-posed inverse problem: out of many possible hypotheses
that explain the data, which one should we choose? To restore uniqueness1 and reinforce the choice of
simple models, regularization is the method that comes to mind. Support Vector Machines and many other
successful algorithms arise from these considerations.

On the surface, it is not obvious why regularization methods would have anything to do with online
learning. Indeed, the game described above does not aim at reconstructing some hidden phenomenon, as
in the batch learning case. However, it is becoming apparent that regularization is indeed very natural.
Just as regularization presents a cure to overfitting in the batch setting, so does regularization allow the
online algorithm to avoid being fooled by an adversary. Indeed, as we just saw in the above example,
blindly following the best decision given the past data implies, in some cases, playing into adversary’s
hands. Regularization is a way to choose “safe” decisions. Randomization is another way to regularize the
algorithm, and this technique will be discussed in Section 3.

1To be precise, we should distinguish regularization from penalization. The former refers to methods which restore
uniqueness of the solution, while the latter aims at reinforcing simpler models.
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CHAPTER

TWO

FULL-INFORMATION PROBLEMS: THE REGULARIZATION
APPROACH

In this section we study the full-information problem and develop regularization algorithms for attaining
low regret. To this end, let R be a regularizer, a strictly-convex differentiable function R. In line with
the Follow the Leader algorithm introduced above, we give the name Follow the Regularized Leader to the
following family of algorithms

Algorithm 2: Follow the Regularized Leader (FTRL)
Given η > 0 and R, compute

wt+1 = arg min
w∈K

[
η

t∑
s=1

`s(w) +R(w)

]
. (2.1)

Here the choices of the regularizer and the learning rate η are under our control. It is understood that
w1 = arg minw∈KR(w).

The key question is: given K and F , the sets of moves of the player and the adversary, how do we
choose R and η to achieve low regret, if this is at all possible? We will see that FTRL-type algorithms enjoy
nontrivial regret guarantees under very general assumptions on K and F . As a bibliographic remark, we
note that in the classification setting, Shalev-Shwartz and Singer [10] analyze the above family of algorithms
from the dual perspective.

We also remark that η can depend on t, and a general FTRL algorithm can be written as

wt+1 = arg min
w∈K

[
t∑

s=1

ηs`s(w) +R(w)

]
. (2.2)

However, we shall first consider the case of a fixed ηt = η, as it greatly simplifies the exposition. Time-
varying ηt will be considered in Section 2.8.

FTRL can be written in a form which is more familiar to the statistical learning audience,

wt+1 = arg min
w∈K

[
1
t

t∑
s=1

`s(w) + (tη)−1R(w)

]
.

To make the connection to regularization methods in statistical learning theory, the role of wt is that of a
function (or parameter) to be learned or estimated, while the role of `t is that of the data-dependent loss
in the batch case.1

1For instance, `t(w) = (yt − xt
Tw)2 for the input-output pair (xt, yt).
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For convenience, we define Φ0(w) = R(w) and Φt = Φt−1+η`t. Hence, FTRL can be succinctly written
as wt+1 = arg minw∈K Φt(w). The batch solution to the problem is simply wT+1 = arg minw∈K ΦT (w),
the minimizer based on the complete sequence of data.

The case K = Rn plays a special role in these notes. We denote the unconstrained minimizer of Φt by

w̃t+1 = arg min
w∈Rn

Φt(w) (2.3)

and call this procedure unconstrained-FTRL.
We try to separate results for constrained and unconstrained minimization: this is precisely the reason

for using different symbols wt and w̃t. The unconstrained problem is typically easier to analyze, and,
if predicting in a particular K is essential, it makes sense to define R to go to infinity for any sequence
approaching the boundary of K (and infinite outside of K). This way we sidestep the possibility of the
minimizer (2.1) falling outside of the set by defining the regularizer appropriate for the geometry of K.
Such an assumption is employed in Chapter 11 of [5] to avoid the issue of projections. However, we do not
impose such a requirement on R at the moment, as it allows us to unify some known methods which rely
on projections. For instance, the method of Zinkevich [13] employs a quadratic regularizer for any convex
set and, therefore, requires projections.

A central notion throughout these notes is that of Bregman Divergences. Recall that, given a strictly
convex function F , the Bregman Divergence is defined by

DF (w,y) := F (w)− F (y)−∇F (y)T(w − y).

In other words, it is the tail of F beyond the first-order Taylor expansion at y. We invite the reader to
think of Bregman Divergences as a “shorthand”. Properties of Bregman Divergences are typically easy to
verify, and we briefly list some important ones. The proofs can be found in [5], for instance.

• Divergences are non-negative.

• DA+B(x, y) = DA(x, y) + DB(x, y) (if both A and B are convex and differentiable)

• The “three-point equality” follows directly from the definition:

DR(u, v) + DR(v, w) = DR(u, w) + (u− v)(∇R(w)−∇R(v))

• The Bregman projection onto a convex set K exists and is unique: w′ = arg minv∈K DR(v, w)

• Generalized Pythagorean Theorem: for all u ∈ K,

DR(u, w) ≥ DR(u, w′) + DR(w′, w)

where w′ is the Bregman projection above.

• Denoting by R∗ the dual of R, it holds that ∇R∗ = (∇R)−1, i.e. the gradient of the dual is the
inverse function of the gradient.

• DR(u, v) = DR∗(∇R(v),∇R(u))

• DR+f (x, y) = DR(x, y) if f is linear.

• ∇xDR(x, y) = ∇R(x)−∇R(y)

We warn the reader that the next three sections contain very general statements, which, on the surface,
do not imply Hannan consistency of the regularization approach. We urge patience and promise that such
statements are coming in a few pages.
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2.1 Unconstrained Minimization: The (Rare) Case of Equality

The following result, being an equality, is the most general one for unconstrained-FTRL.

Lemma 1. Suppose K = Rn. Then the regret of unconstrained-FTRL (2.3) against any u ∈ K,

η
T∑

t=1

`t(w̃t)− `t(u) = DR(u, w̃1)−DΦT
(u, w̃T+1) +

T∑
t=1

DΦt
(w̃t, w̃t+1).

Proof. For the unconstrained minimum, ∇Φt(w̃t+1) = 0 and

DΦt
(u, w̃t+1) = Φt(u)− Φt(w̃t+1) = Φt−1(u) + η`t(u)− Φt(w̃t+1)

for any u ∈ K. Hence,
η`t(u) = DΦt

(u, w̃t+1) + Φt(w̃t+1)− Φt−1(u)

and
η`t(wt) = DΦt

(w̃t, w̃t+1) + Φt(w̃t+1)− Φt−1(w̃t).

Combining,

η(`t(w̃t)− `t(u)) = DΦt
(w̃t, w̃t+1) + Φt(w̃t+1)− Φt−1(w̃t)−DΦt

(u, w̃t+1)− Φt(w̃t+1) + Φt−1(u)
= DΦt

(w̃t, w̃t+1) + DΦt−1(u, w̃t)−DΦt
(u, w̃t+1)

Summing over t = 1 . . . T ,

η
T∑

t=1

`t(w̃t)− `t(u) = DR(u, w̃1)−DΦT
(u, w̃T+1) +

T∑
t=1

DΦt
(w̃t, w̃t+1).

As with any equality, one can argue that nothing is gained by representing the regret in this form.
The following simple result gives a handle on the terms on the right-hand side, justifying the particular
decomposition. Note that ∇Φt(w̃t+1) = 0 and ∇Φt(w̃t) = ∇Φt−1(w̃t) + η∇`t(w̃t) = η∇`t(w̃t). From the
properties of divergences,

DΦt
(w̃t, w̃t+1) = DΦ∗t

(∇Φt(w̃t+1),∇Φt(w̃t)) = DΦ∗t
(0, η∇`t(w̃t)) (2.4)

If we are able to calculate the dual of Φt, the above equality tells us that size of the “steps” η∇`t(w̃t)
(as measured with respect to Φ∗

t ) precisely amounts to the regret.
A reader might encounter an algorithm different from (2.1) while reading most of the original papers

on the topic from 90’s and more recently, including [5]. This algorithm motivates the updates by the idea
of balancing loss minimization and staying close to the previous decision. We now show that, under a mild
condition on R, this algorithm is equivalent to unconstrained-FTRL.

Algorithm 3: Equivalent form of unconstrained-FTRL.
Choose w1 s.t. ∇R(w1) = 0. Otherwise,

w̃t+1 = arg min
w∈Rn

[
η`t(w) + DΦt−1(w, w̃t)

]
(2.5)
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Lemma 2. The definition in (2.3) is equivalent to (2.5), i.e.

arg min
w∈Rn

[
η`t(w) + DΦt−1(w, w̃t)

]
= arg min

w∈Rn

[
η

t∑
s=1

`s(w) +R(w)

]

Proof. Note that
η`t(w) = Φt(w)− Φt−1(w)

and thus
η`t(w) + DΦt−1(w, w̃t) = Φt(w)− Φt−1(w) + DΦt−1(w, w̃t).

Recall that
∇wDΦt−1(w, w̃t) = ∇wΦt−1(w)−∇wΦt−1(w̃t).

Then, setting the gradient of the objective to zero, we observe that w̃t+1 defined as (2.5) satisfies the
zero-gradient equation

∇Φt(w̃t+1) = ∇Φt−1(w̃t)

Thus, ∇Φt(w̃t+1) = ∇Φ0(w̃1) = ∇R(w1) = 0. We conclude that w̃t+1 minimizes Φt and thus it is
equivalent to (2.3).

We mention that the requirement ∇R(w1) = 0 is not restrictive, as we can always subtract w ·∇R(w1)
from the objective, effectively shifting R by a linear function.

Remark 3. It is instructive to write regret bounds, such as that of Lemma 1, in the following form:

T∑
t=1

`t(w̃t) ≤ inf
u∈K

[
T∑

t=1

`t(u) + η−1DR(u, w̃1)

]
+ η−1

T∑
t=1

DΦt(w̃t, w̃t+1).

This has the form of Oracle inequalities, where the performance of the procedure is related to the performance
of any comparator penalized by its complexity.

2.2 Constrained Minimization with Bregman Projections

First, we show that the constrained minimization problem is equivalent to the unconstrained one followed
by a projection. This implies that if K 6= Rn, we can keep track and update the unconstrained solutions
w̃t while predicting with the projected versions wt. This has also been termed the “Lazy Projection
Algorithm”. Define the projection function as

ΠΦt,K(w̃t+1) = arg min
w∈K

DΦt
(w, w̃t+1).

Algorithm 4: Equivalent form of FTRL.
Given the unconstrained-FTRL solutions w̃t, define

wt = ΠΦt,K(w̃t).
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Lemma 4. Algorithm 4 is equivalent to Algorithm 2, i.e.

ΠΦt,K

(
arg min

w∈Rn

[
η

t∑
s=1

`s(w) +R(w)

])
= arg min

w∈K

[
η

t∑
s=1

`s(w) +R(w)

]
.

Hence, also

ΠΦt,K

(
arg min

w∈Rn

[
η`t(w) + DΦt−1(w, w̃t)

])
= arg min

w∈K

[
η

t∑
s=1

`s(w) +R(w)

]
.

Proof. Let w′
t+1 = ΠΦt,K(w̃t+1). By definition,

Φt(wt+1) ≤ Φt(w′
t+1).

On the other hand, w̃t+1 is the unconstrained minimum of a convex function and thus the gradient
of Φt is zero at w̃t+1. Hence, DΦt

(w, w̃t+1) = Φt(w) − Φt(w̃t+1). By definition, DΦt
(w′

t+1, w̃t+1) ≤
DΦt

(wt+1, w̃t+1). Thus,
Φt(w′

t+1) ≤ Φt(wt+1).

Since R is strictly convex and `t’s are convex, wt+1 = w′
t+1.

It is only a small modification of the proof of Lemma 1 for the unprojected case, but we provide the
proof of a guarantee for Algorithm 2 for completeness. Note that the bound is no longer an equality
(although the equality is kept until the end when the negative terms are dropped). We admit that this
guarantee is very loose and not practical for actually obtaining meaningful bounds. In later sections, we
will prove better bounds.

Lemma 5. Suppose wt is defined as in (2.1) and w̃t as in (2.3). For any u ∈ K,

η
T∑

t=1

`t(wt)− `t(u) ≤ DΦ0(u,w1)−DΦT
(u, w̃T+1) +

T∑
t=1

DΦt
(wt, w̃t+1)

Proof. For the unconstrained minimum, ∇Φt(w̃t+1) = 0 and

DΦt
(u, w̃t+1) = Φt(u)− Φt(w̃t+1).

Moreover,
Φt(u) = Φt−1(u) + η`t(u).

Combining the above,
η`t(u) = DΦt(u, w̃t+1) + Φt(w̃t+1)− Φt−1(u)

and
η`t(wt) = DΦt

(wt, w̃t+1) + Φt(w̃t+1)− Φt−1(wt).

Thus,

η(`t(wt)− `t(u)) = DΦt(wt, w̃t+1) + Φt(w̃t+1)− Φt−1(wt)−DΦt(u, w̃t+1)− Φt(w̃t+1) + Φt−1(u)
= DΦt(wt, w̃t+1)− Φt−1(wt)−DΦt(u, w̃t+1) + Φt−1(u)
= DΦt(wt, w̃t+1) + DΦt−1(u, w̃t)−DΦt(u, w̃t+1) + (Φt−1(w̃t)− Φt−1(wt))
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Summing over t = 1 . . . T and using w1 = w̃1,

η
T∑

t=1

`t(wt)− `t(u) = DΦ0(u,w1)−DΦT
(u, w̃T+1) +

T∑
t=1

DΦt(wt, w̃t+1) +
T∑

t=1

(Φt−1(w̃t)− Φt−1(wt))

≤ DΦ0(u,w1)−DΦT
(u, w̃T+1) +

T∑
t=1

DΦt
(wt, w̃t+1)

2.3 The Joy of Knowing the Future

Suppose we actually knew the function `t that is to be played by the adversary on round t. Can we devise
a strategy to achieve a low regret? The answer is quite simple: one can just use the FTL algorithm with
the “extra” cost function. Moreover, FTRL with the extra information also achieves a low regret, as we
show now. We start with a simple observation that, by definition of FTRL,

t∑
s=1

`s(wt+1) + η−1R(wt+1) ≤
t∑

s=1

`s(wt) + η−1R(wt)

and
t−1∑
s=1

`s(wt) + η−1R(wt) ≤
t−1∑
s=1

`s(wt+1) + η−1R(wt+1).

Adding the two equations and canceling the terms, we obtain

`t(wt+1) ≤ `t(wt). (2.6)

In other words, including `t in the minimization objective immediately implies a lower loss on this function.
This, in fact, leads to a dramatic decrease in regret. We formally state the following “hypothetical”
algorithm, although the only difference from FTRL is the (illegal) inclusion of the function to be played
by the adversary.

Algorithm 5: Hypothetical Be-The-Regularized-Leader or Be-The-Leader

wt = arg min
w∈K

[
η

t∑
s=1

`s(w) +R(w)

]
(2.7)

The following lemma says that the regret is constant (does not depend on T ) if we know the future
and play wt+1 instead of wt on round t. Again, keep in mind that such algorithm is only hypothetical,
as it does not adhere to the protocol of the OCO game. We also remark that in the following lemma, R
is not necessarily strictly convex, and, therefore, can be set to zero to recover the so-called Be-The-Leader
algorithm.

Lemma 6. For any u ∈ K,

T∑
t=1

`t(wt+1)−
T∑

t=1

`t(u) ≤ η−1 (R(u)−R(w1)) . (2.8)

Here w1 = arg minw∈KR(w).
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Proof. The proof proceeds by induction. The base case of T = 0 holds by the definition of w1. Now,
suppose the statement holds for T − 1, i.e.

T−1∑
t=1

`t(wt+1) + η−1R(w1) ≤
T−1∑
t=1

`t(u) + η−1R(u).

Since it holds for any u ∈ K, it holds for u = wT+1:

T−1∑
t=1

`t(wt+1) + η−1R(w1) ≤
T−1∑
t=1

`t(wT+1) + η−1R(wT+1).

Adding `T (wT+1) to both sides,

T∑
t=1

`t(wt+1) + η−1R(w1) ≤
T∑

t=1

`t(wT+1) + η−1R(wT+1).

The induction step follows because wT+1 is defined as the minimizer of the right-hand side.

An immediate consequence of this simple lemma is the following corollary:

Corollary 7. FTRL enjoys, for any u ∈ K,

T∑
t=1

`t(wt)− `t(u) ≤
T∑

t=1

(`t(wt)− `t(wt+1)) + η−1 (R(u)−R(w1)) . (2.9)

By this point, the reader is probably wondering if any of the statements in the past three sections are
useful. After all, we have not proved a single statement, which one could eye-ball and confidently say “Yes,
for so-and-so sets K,F , the FTRL algorithm is Hannan consistent.” We now specialize the very general
results of previous sections to the case of linear cost functions F and arrive at some satisfying results.

2.4 Linear Losses: FTRL Algorithm

There are good reasons for studying linear losses. First, the regret is easy to analyze. Second, if non-linear
(convex) functions are played by the adversary, we can construct linear approximations to these functions
at the point we play and pretend as if the functions were indeed linear. As we show in the next section, the
regret of playing against convex functions can be upper-bounded by the regret of the linearized versions.
Hence, in some sense, the linear losses are hardest to play against. If no curvature restriction is provided
for the choice of moves F , the adversary will, in general, play linear functions. If F contains only “curved”
functions, the fact can be exploited by the player to achieve smaller regret, as will be shown in later
sections.

Now, let us write the linear costs as `t(u) = f T
t u. Going back to statements in the previous sections,

we observe that the divergence terms simplify. Indeed, divergence with respect to a function R is not
changed by adding linear functions, i.e. DΦt = DΦ0 = DR. We, therefore, have the following statements
corresponding to Lemma 1 and Lemma 5.

Corollary 8. Suppose K = Rn, i.e. the problem is unconstrained. Then unconstrained-FTRL satisfies,
for any u ∈ K,

η
T∑

t=1

f T

t (w̃t − u) = DR(u, w̃1)−DR(u, w̃T+1) +
T∑

t=1

DR(w̃t, w̃t+1).
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Corollary 9. Suppose wt is defined as in (2.1) and w̃t as in (2.3). Then FTRL satisfies, for any u ∈ K,

η
T∑

t=1

f T

t (wt − u) ≤ DR(u,w1)−DR(u, w̃T+1) +
T∑

t=1

DR(wt, w̃t+1)

The statement of the following Lemma is almost identical to that of Corollary 7 (since ∇R(w̃1) = 0,
we have DR(u, w̃1) = R(u)−R(w̃t)) in the unconstrained case. The proof, however, reveals the looseness
of Corollary 7 as compared to the best possible guarantee of Corollary 8.

Lemma 10. Suppose the losses are linear, `t(u) = f T
t u and K = Rn. Then for any u ∈ K,

η
T∑

t=1

f T

t (w̃t − u) ≤ DR(u, w̃1)−DR(u, w̃T+1) + η
T∑

t=1

f T

t (w̃t − w̃t+1).

Proof. By definition, w̃t satisfies η
∑t−1

s=1 fs + ∇R(w̃t) = 0 and w̃t+1 satisfies η
∑t

s=1 fs + ∇R(w̃t) = 0.
Subtracting,

∇R(w̃t)−∇R(w̃t+1) = ηft. (2.10)

We observe that equation (2.10) implies

DΦt
(w̃t, w̃t+1) = DR(w̃t, w̃t+1)

≤ DR(w̃t, w̃t+1) + DR(w̃t+1, w̃t) (introducing looseness)
= −∇R(w̃t+1)(w̃t − w̃t+1)−∇R(w̃t)(w̃t+1 − w̃t)
= ηf T

t (w̃t − w̃t+1).

We can expect that the bound of Lemma 10 is off by a multiplicative constant from the actual regret.
Nevertheless, we will take it (as well as Corollary 7 for the constrained case) as a starting point for specific
bounds on the regret under various assumptions on F ,K.

From Eq. (2.10), we observe that solutions w̃t+1 (defined in (2.3)) have a closed form

w̃t+1 = ∇R∗(∇R(w̃t)− ηft), (2.11)

and, by Lemma 4, wt (defined in (2.1)) has the form

wt+1 = ΠR,K(∇R∗(∇R(w̃t)− ηft)). (2.12)

Here R∗ is the dual function. This procedure is called Mirror Descent and goes back to the work of Yudin
an Nemirovskii.

Figure 2.1: Mirror Descent as a gradient descent in the dual.

We are now ready to prove some specific guarantees for FTRL under natural assumptions on F (see
[9]).
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Proposition 11. Fix a norm ‖ · ‖ and choose an R which is strongly convex with respect to this norm.
Then FTRL satisfies

T∑
t=1

f T

t (wt − u) ≤ η
T∑

t=1

(‖ft‖∗)2 + η−1(R(u)−R(w1)).

In particular, if F ⊆ B‖·‖∗ , the ball under the dual norm, and η =
√
R(u)/T , then

T∑
t=1

f T

t (wt − u) ≤
√

TR(u).

Proof. The definition of strong convexity with respect to ‖ · ‖ implies that

R(wt) ≥ R(wt+1) + 〈∇R(wt+1),wt −wt+1〉+
1
2
‖wt −wt+1‖2.

Repeating the statement for an expansion around wt and adding the two, we obtain

‖wt −wt+1‖2 ≤ 〈∇R(wt)−∇R(wt+1),wt −wt+1〉.

Let w̃t and w̃t+1 be the unconstrained minimizers, as defined in (2.3). By Lemma 4, wt and wt+1

are projections of these two points, respectively. Hence, by the Kolmogorov’s criterion for generalized
projections (see [4]),

〈∇R(wt)−∇R(wt+1),wt −wt+1〉 ≤ 〈∇R(w̃t)−∇R(w̃t+1),wt −wt+1〉.

Combining, applying Hölder’s Inequality, and canceling ‖wt −wt+1‖, we obtain

‖wt −wt+1‖ ≤ ‖∇R(w̃t)−∇R(w̃t+1)‖∗,

where ‖ · ‖∗ is the norm dual to ‖ · ‖. Hence, strong convexity of R implies, by (2.10), that ‖w̃t − w̃t+1‖ ≤
η‖ft‖, and with the help of Corollary 7 we arrive at the bound

T∑
t=1

f T

t (w̃t − u) ≤ η
T∑

t=1

(‖ft‖∗)2 + η−1(R(u)−R(w1)).

2.5 Linear Losses: A Tweaked FTRL

Now, let us switch gears a bit. Recall that FTRL can be equivalently written as a projection of the
unconstrained minimizer of η`t(w) + DΦt−1(w, w̃t) (see Algorithm 3). What if we put wt instead of w̃t

in the above divergence? Specializing this to the linear case, we get the following algorithm, which is not
FTRL, but is derived from it (see Zinkevich [13]).

A word of caution: as the following algorithm departs from the FTRL framework, wt and w̃t have a
different meaning. We might even want to introduce a different notation for this purpose...

Again, one can show that the above definition is equivalent to

wt+1 = arg min
w∈K

[ηf T

t w + DR(w,wt)] ,

but the intermediate solutions w̃t+1 are needed for the analysis.
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Algorithm 6: Mirror Descent-style Algorithm
Choose w̃1 s.t. ∇R(w̃1) = 0. Otherwise,

w̃t+1 = arg min
w∈R

[ηf T

t w + DR(w,wt)] ,

followed by projection
wt+1 = ΠR,Kw̃t+1.

Unlike the unprojected version w̃t of FTRL, which can be quite far from the set K (indeed, w̃t =
∇R∗(−η

∑t−1
s=1 fs)), the unprojected version w̃t of Algorithm 6 is close by. Setting the derivative to zero,

∇R(w̃t+1)−∇R(wt) = −ηft,

which suggests that the points w̃t+1 and wt are O(η) away from each other.
We can equivalently write

w̃t+1 = ∇R∗(∇R(wt)− ηft)

and
wt+1 = ΠR,K∇R∗(∇R(wt)− ηft).

We observe that this is a Mirror Descent -style algorithm, with a form very similar to FTRL (see Eq. (2.12)).
We start by observing that

ηf T

t wt+1 + DR(wt+1,wt) ≤ ηf T

t wt + DR(wt,wt) = ηf T

t wt.

Just as FTRL (see Eq. (2.6)), Algorithm 6 enjoys f T
t wt+1 ≤ f T

t wt. The question is, again, how much is
gained by knowing the future?

Lemma 12 (e.g. [2]). The analogues of Lemma 6 and Corollary 7 hold for Algorithm 6:

T∑
t=1

f T

t (wt+1 − u) ≤ η−1(R(u)−R(w1))

for any u ∈ K. Thus,
T∑

t=1

f T

t (wt − u) ≤
T∑

t=1

f T

t (wt −wt+1) + η−1(R(u)−R(w1)).

Proof. Observe that wt+1 is the constrained minimizer of the objective ηf T
t w + DR(w,wt). Thus, any

direction pointing away from wt+1 and into the set should have a positive product with the gradient of
the objective at wt+1 (for otherwise one could decrease the objective further):

〈u−wt+1, ηft +∇R(wt+1)−∇R(wt)〉 ≥ 0.

Rearranging,
ηf T

t (wt+1 − u) ≤ 〈u−wt+1,∇R(wt+1)−∇R(wt)〉.
Using the three-point inequality,

ηf T

t (wt+1 − u) ≤ DR(u,wt)−DR(u,wt)−DR(wt+1,wt).

Adding over time,

η
T∑

t=1

f T

t (wt+1 − u) ≤ DR(u,w1)−DR(u,wT+1)−
T∑

t=1

DR(wt+1,wt). (2.13)
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We mention another bound, which will become useful in Chapter 4.

Lemma 13. Algorithm 6 enjoys, for any u ∈ K,

η
T∑

t=1

f T

t (wt − u) ≤ DR(u, w̃1) +
T∑

t=1

DR(wt, w̃t+1) ≤ (R(u)−R(w̃1)) + η
T∑

t=1

f T

t (wt − w̃t+1)

Proof. Noting that ηft = ∇R(wt)−∇R(w̃t+1), we can rewrite

ηf T

t (wt − u) = 〈∇R(wt)−∇R(w̃t+1),wt − u〉
= DR(u,wt)−DR(u, w̃t+1) + DR(wt, w̃t+1)
≤ DR(u, w̃t)−DR(u, w̃t+1) + DR(wt, w̃t+1).

Furthermore,

DR(wt, w̃t+1) ≤ DR(wt, w̃t+1) + DR(w̃t+1,wt) = 〈∇R(wt)−∇R(w̃t+1),wt − w̃t+1〉 = ηf T

t (wt − w̃t+1).

Summing over t results in the bound.

Just like for FTRL, we can prove specific bounds on the regret for Algorithm 6.

Proposition 14. Fix a norm ‖ · ‖ and choose an R which is strongly convex with respect to this norm.
Then Algorithm 6 satisfies

T∑
t=1

f T

t (wt − u) ≤ η

T∑
t=1

(‖ft‖∗)2 + η−1(R(u)−R(w̃1)).

In particular, if F ⊆ B‖·‖∗ , the ball under the dual norm, and η =
√
R(u)/T , then

T∑
t=1

f T

t (wt − u) ≤
√

TR(u).

Proof. As in the proof of Lemma 11, strong convexity implies

‖wt −wt+1‖2 ≤ 〈∇R(wt)−∇R(wt+1),wt −wt+1〉.

By the Kolmogorov’s criterion,

〈∇R(wt)−∇R(wt+1),wt −wt+1〉 ≤ 〈∇R(wt)−∇R(w̃t+1),wt −wt+1〉.

Hence,
‖wt −wt+1‖ ≤ ‖R(wt)−∇R(w̃t+1)‖∗ = η‖ft‖∗.

Substituting into Lemma 12, we obtain

T∑
t=1

f T

t (wt − u) ≤ η
T∑

t=1

(‖ft‖∗)2 + η−1(R(u)−R(w̃1)).

We note that a more careful analysis can yield a factor 1
2 in front of η

∑T
t=1(‖ft‖∗)2. This is achieved by

taking into account the negative terms in Eq. (2.13).

Note that the upper bounds of Propositions 11 and 14 are identical. It is an interesting question of
whether one algorithm can be shown to outperform the other.
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2.6 Approximate solutions for convex losses via linearization

If F consists of convex functions, we can linearize the costs we observe and pretend the world is flat. This
allows us to lift any results of the previous section to the case of general convex functions; however, the
resulting bounds might be loose. Observe that by convexity

`t(wt)− `t(u) ≤ ∇`t(wt)T(wt − u).

Feeding the linear functions ft := ∇`t(wt) into any algorithm of the previous section completes the reduc-
tion.

Below we state algorithms that result from the linearization, along with the guarantees.

Lemma 15. Suppose that instead of (2.5), we solve an approximate problem

w̃t+1 = arg min
w∈Rn

[η∇`t(wt)Tw + DR(w, w̃t)] (2.14)

followed by
wt+1 = ΠR,Kw̃t+1.

Then

η
T∑

t=1

`t(wt)− `t(u) ≤ DR(u,w1) +
T∑

t=1

DR(wt, w̃t+1).

The approximate problem enjoys a closed-form solution

wt+1 = ΠR,K∇R∗(∇R(w̃t)− η∇`t(wt)).

Lemma 16. Define the following update

w̃t+1 = arg min
w∈Rn

[η∇`t(wt)Tw + DR(w,wt)] (2.15)

followed by
wt+1 = ΠR,Kw̃t+1.

Then

η

T∑
t=1

`t(wt)− `t(u) ≤ DR(u,w1) +
T∑

t=1

DR(wt,wt+1).

The approximate problem enjoys a closed-form solution

wt+1 = ΠR,K∇R∗(∇R(wt)− η∇`t(wt)).

2.7 Examples

2.7.1 Online Gradient Descent

Suppose R(w) = 1
2‖w‖

2, half the Euclidean norm, and WLOG suppose that w1 = 0 ∈ K. Since R is
strongly convex with respect to the Euclidean norm, we can use either FTRL or Algorithm 6 along with
Propositions 11 and 14 to obtain the following guarantee:

T∑
t=1

`t(wt)− `t(u) ≤ 1
2
η−1‖u‖2 +

1
2
η

T∑
t=1

(‖∇`t(wt)‖∗)2 = DG
√

T

where D is an upper bound on the radius of the set, G is an upper bound on the largest norm of the
gradients of `t’s, and we set η = G

√
T

D .
Note that

wt+1 = ΠK(wt − η∇`t(wt)),

the algorithm of Zinkevich [13].
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2.7.2 EG and Weighted Majority

Let K be the n-simplex. Define R(w) =
∑n

i=1(wi log wi−wi). One can verify that ∇R(w) = lnw (where
we take ln element-wise) and

DR(w,y) =
n∑

i=1

wi ln
wi

yi
+ (yi −wi).

Over the simplex, this divergence corresponds to the KL divergence. We claim that in this rare case, FTRL
and Algorithm 6 coincide. Indeed, the update of FTRL (2.12) corresponds to

wt+1 = ΠR,Kw̃t+1 = ΠR,K(∇R∗(ln(w̃t)− ln exp(η∇`t(wt)))),

In particular, w̃t+1(i) = w̃t(i) exp(−ηft(i)) (again, we abused notation by applying ln and exp to vectors
element-wise.) It is easy to verify that the projection with respect to the relative entropy onto the simplex
is equivalent to normalization. Equivalence of FTRL and Algorithm 6 come from the fact that updates are
multiplicative and update-normalize-update-normalize is equivalent to update-update-normalize.

It is possible to verify that R is strongly convex with respect to ‖ · ‖1 over the simplex. Hence, we
conclude

T∑
t=1

`t(wt)− `t(u) ≤ η
T∑

t=1

‖ft‖2∞ + η−1(R(u)−R(w̃1)).

Noting that R(u) ≤ 0 and R(w̃1) = − log n, we arrive at 2
√

T log n as the bound on the regret. Here, we
used w̃1 = 1, as ∇R(1) = 0. A constant better than 2 can be achieved by a more careful analysis.

2.8 Time-varying learning rate

Suppose the learning rate ηt is varied throughout the game. Can this give us interesting guarantees that
cannot be obtained with fixed η? In this section we will give a regret guarantee and a situation where such
a method is strictly more powerful than fixing η ahead of time.

For simplicity, suppose that the problem is unconstrained, i.e. K = Rn. Let w̃t be defined as in (2.2):

wt+1 = arg min
w∈K

[
t∑

s=1

ηs`s(w) +R(w)

]
.

The following lemma is an easy generalization of Lemma 1.

Lemma 17. Suppose K = Rn, i.e. the problem is unconstrained. For any u ∈ K,

T∑
t=1

`t(w̃t)− `t(u) ≤
T∑

t=1

η−1
t

(
DΦt

(w̃t, w̃t+1) + DΦt−1(u, w̃t)−DΦt
(u, w̃t+1)

)

The results of the previous sections are easily extended to varying ηt. For instance, as in Lemma 15
linearizing the functions `t by ˜̀

t(w) = `t(wt) +∇`t(wt)T(w −wt), we observe that

T∑
t=1

˜̀
t(w̃t)− ˜̀

t(u) ≤
T∑

t=1

η−1
t (DR(w̃t, w̃t+1) + DR(u, w̃t)−DR(u, w̃t+1)) (2.16)
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Example: logarithmic regret for strongly-convex functions

Let us define a notion of strong convexity with respect to R.

Definition 18. A function g over a convex set K is called σ-strongly convex with respect to R if

∀w,y ∈ K , g(w) ≥ g(y) +∇g(y)T(w − y) +
σ

2
DR(w,y).

It is clear that if `t is σt-strongly convex, then

`t(w̃t)− `t(u) ≤ ˜̀
t(w̃t)− ˜̀

t(u)− σt

2
DR(u, w̃t).

Plugging into equation (2.16),

T∑
t=1

`t(w̃t)− `t(u) ≤
T∑

t=1

(
˜̀
t(w̃t)− ˜̀

t(u)− σt

2
DR(u, w̃t)

)
≤

T∑
t=1

(
η−1

t DR(w̃t, w̃t+1) + η−1
t DR(u, w̃t)− η−1

t DR(u, w̃t+1)−
σt

2
DR(u, w̃t)

)
=

T∑
t=1

η−1
t DR(w̃t, w̃t+1) +

T∑
t=1

(
(η−1

t − σt

2
)DR(u, w̃t)− η−1

t DR(u, w̃t+1)
)

≤
T∑

t=1

η−1
t DR(w̃t, w̃t+1) +

T∑
t=2

(η−1
t − σt

2
− η−1

t−1)DR(u, w̃t) + (η−1
1 − σ1

2
)DR(u, w̃1)

Defining ηt =
(

1
2

∑t
s=1 σs

)−1

, we obtain

T∑
t=1

`t(w̃t)− `t(u) ≤
T∑

t=1

η−1
t DR(w̃t, w̃t+1)

If R(w) = 1
2‖w‖

2,

T∑
t=1

`t(w̃t)− `t(u) ≤ 1
2

T∑
t=1

η−1
t ‖ηt∇`t‖2 ≤

T∑
t=1

G2
t∑t

s=1 σs

,

which is O(log T ) if all σt and Gt are constant. This recovers a lemma in Bartlett et al 2007.

2.9 Optimization versus Regret Minimization

In standard optimization, one is interested in finding w such that

g(w) ≤ min
u∈K

g(u) + ε,

for a convex function g. Efficiency of a particular optimization procedure is often measured as the number
of calls to the oracle (e.g gradient information) required to find w to within ε.

It is natural to ask about the relation between optimization and regret minimization. One can view
the latter as optimization of a changing objective, where the measure of success is calculated with respect
to the whole interaction, not just the end objective. So far we showed that availability of a black-box for
minimizing a regularized objective (FTRL) implies non-trivial bounds on the regret under some natural
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assumptions. What about the other way around? Can one construct an optimization procedure given a
regret-minimization black-box?

Suppose we have a procedure such that regret RT grows sublinearly. Suppose we are interested in
minimizing a function g(u). To do so, we simply feed g(·) repeatedly to the regret-minimization black-box
and obtain the following guaratee:

T∑
t=1

g(wt)−min
u∈K

T∑
t=1

g(u) ≤ RT .

Using convexity of g and denoting w? = 1
T

∑T
t=1 wt we see that

g(w?) ≤ 1
T

T∑
t=1

g(wt) ≤ min
u∈K

g(u) +
RT

T
.

To find out time complexity of the procedure, we set RT /T = ε and solve for T . Thus, O(
√

T )-type regret
guarantees imply O(1/ε2) convergence for the optimization procedure.

At a high level, we conclude that ability to optimize a function implies ability to achieve sublinear
regret under some natural assumptions. Conversely, sublinear regret allows one to perform optimization.
Of course, the rates of convergence, dependence on the dimension, and many other questions are not
addressed in this simplistic reduction.
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CHAPTER

THREE

FULL-INFORMATION: THE RANDOMIZATION APPROACH

The family of algorithms described in this section is called Follow the Perturbed Leader, as opposed to
Follow the Regularized Leader of the previous section. Most of results of this section are adapted from [5]
and the paper of Kalai & Vempala [7]. As a bibliographic remark we note that the randomization approach
goes back to Hannan [6].

Recall Lemma 6, which holds for a convex R (not necessarily strictly convex). It says that the regret
is constant if we know the future and play wt+1 instead of wt on round t. While such algorithm is only
hypothetical, the results of this section have the flavor of “showing that the randomized strategy is close
to this hypothetical algorithm”.

In the rest of the section, we will assume that the losses `t() are linear. Furthermore, we will take
R(wt) to be linear and random: R(wt) = rTwt. Suppose r is drawn at the beginning of the game from
the distribution f . In this section we study algorithms of the form Here, we aim to bound expected regret.

Algorithm 7: Follow the Perturbed Leader

wt+1 = arg min
w∈K

[
η

t∑
s=1

f T

t w + rTw

]
(3.1)

The above family of algorithms is called Follow the Perturbed Leader. In some sense, in expectation, the
linear penalty rTw acts as a convex regularizer.

Note that we cannot use the divergence techniques of the previous section because R is no longer strictly
convex. However, we will exploit Eq. (2.9), which is derived without any convexity assumptions.

In the realm of randomized repeated games, we need to distinguish two types of adversaries. The first
type is an oblivious adversary who fixes his moves before the game and does not see the instantiation of
r. The second type is an adaptive adversary, who can base his choices on our moves, making his decisions
dependent on r. For simplicity, we consider the first type throughout these lectures.

Theorem 19. Suppose ft ∈ Rn
+, K ∈ Rn

+, and f(r) has support in Rn
+. Then, for any u ∈ K,

E

[
T∑

t=1

f T

t wt −
T∑

t=1

f T

t u

]
≤

T∑
t=1

f T

t

[∫
{r:f(r)≥f(r−ηft)}

wtf(r)dr

]
+ η−1E sup

w∈K
rTw
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Proof. Let w∗ = arg minw∈K
∑T

t=1 f T
t w. By Eq. (2.9),

T∑
t=1

f T

t wt −
T∑

t=1

f T

t w∗ ≤
T∑

t=1

f T

t (wt −wt+1) + η−1(rTw∗ − rTw1).

Taking expectations and dropping the negative term,

E

[
T∑

t=1

f T

t wt −
T∑

t=1

f T

t w∗

]
≤ E

[
T∑

t=1

f T

t (wt −wt+1)

]
+ η−1E sup

w∈K
rTw.

Now,

Ef T

t wt =
∫

f T

t arg min
w∈K

[
(η

t−1∑
s=1

fs + r)Tw

]
f(r)dr

and

Ef T

t wt+1 =
∫

f T

t arg min
w∈K

[
(η

t∑
s=1

fs + r)Tw

]
f(r)dr

=
∫

f T

t arg min
w∈K

[
(η

t−1∑
s=1

fs + r′)Tw

]
f(r′ − ηft)dr′

where we made a substitution of variables r′ = r + ft. Combining,

Ef T

t (wt −wt+1) =
∫

f T

t arg min
w∈K

[
(η

t−1∑
s=1

fs + r)Tw

]
[f(r)− f(r− ηft)] dr

=
∫

f T

t wt [f(r)− f(r− ηft)] dr

= f T

t

∫
wt [f(r)− f(r− ηft)] dr

≤ f T

t

∫
{r:f(r)≥f(r−ηft)}

wtf(r)dr

where the last inequality follows by the positivity assumption on the vectors.

Next, we prove an analogous theorem where we relax the restriction to the positive orthant.

Theorem 20. For any u ∈ K,

E
T∑

t=1

f T

t wt ≤ sup
r,t

f(r)
f(r− ηft)

[
T∑

t=1

f T

t u + η−1E sup
w∈K

rTw + η−1E sup
w∈K

−rTw

]
.

Proof.

Ef T

t wt =
∫

f T

t arg min
w∈K

[(
η

t−1∑
s=1

fs + r

)T

w

]
f(r)dr

≤ sup
r,t

f(r)
f(r− ηft)

∫
f T

t arg min
w∈K

[(
η

t∑
s=1

fs + r

)T

w

]
f(r)dr

= sup
r,t

f(r)
f(r− ηft)

Ef T

t wt+1

The result follows from Eq. (2.9) similarly to the previous theorem.
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3.1 Example: Experts Setting (application of Theorem 19)

Suppose K is the N -simplex. Draw r ∼ Unif([0, 1]N ). Suppose ft ∈ [0, 1]N are the losses of experts at time
t. Applying Theorem 19,

ERT ≤
T∑

t=1

f T

t

[∫
{r:f(r)≥f(r−ηft)}

wtf(r)dr

]
+ η−1E sup

w∈K
rtrw

≤
T∑

t=1

∫
{r:f(r)≥f(r−ηft)}

f(r)dr + η−1

≤
T∑

t=1

Vol({r : ∃i s.t. r[i]− ηft[i] < 0}) + η−1

≤
T∑

t=1

η
N∑

i=1

ft[i] + η−1

≤ TηN + η−1

= 2
√

TN

if we set η = 1√
TN

. The upper bounds on the volume above hold because the set Vol({r : ∃i s.t. r[i]−ηft[i] <

0}) can be covered by N slabs with dimensions ηft[i]× 1× 1 . . .× 1.
Note that the optimal dependence on N is logarithmic and achieved by exponential weights (regular-

ization with entropy). In fact, using Theorem 20 achieves the optimal dependence. This is exhibited in
the next Example.

3.2 Example: Experts setting (application of Theorem 20)

As in the previous example, suppose K is the N -simplex and ft ∈ [0, 1]N are the losses of experts at time
t. However, we now set the distribution of r to be a two-sided exponential: f(r) = (1/2)N exp(−‖r‖1).

First, one can argue (see [5], page 77) that it suffices to prove the result for ‖ft‖1 ≤ 1: it is advantageous
for the adversary to make only one expert incur loss at each round.

Now,

f(r)
f(r− ηft)

= exp(−‖r‖+ ‖r− ηft‖1) ≤ exp(η‖ft‖1) ≤ exp(η).

Furthermore,

E sup
w

rTw + E sup
w
−rTw ≤ 2E sup

w
rTw

= 2
∫ ∞

0

Pr
[

max
i=1...N

r[i] > u
]
du

≤ 2ν +
2N

η
e−ην for any ν > 0

=
2(1 + lnN)

η
for ν =

lnN

η
.

From Theorem 20 we obtain, for any u ∈ K

E
T∑

t=1

f T

t wt ≤ eη

(
T∑

t=1

f T

t u +
2(1 + lnN)

η

)
.
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Note that eη ≤ 1 + (e− 1)η for η ∈ [0, 1]. Hence,

E
T∑

t=1

f T

t wt ≤
T∑

t=1

f T

t u + (e− 1)η
T∑

t=1

f T

t u +
2(1 + lnN)

η
≤

T∑
t=1

f T

t u + (e− 1)ηT +
2(1 + lnN)

η
.

Optimization over η yields

E
T∑

t=1

f T

t wt ≤
T∑

t=1

f T

t u + 2
√

2(e− 1)(1 + lnN)T

for η =
√

2(1+ln N)
(e−1)T .

3.3 Example: Online Shortest Path

In this setting, there is a fixed DAG with source u and sink v. At each time step, the player picks a path
from u to v and the opponent reveals the cost of each edge. The loss is the cost of the chosen path.

This problem can be viewed as an instance of OCO. Indeed, we associate each path with some wt ∈
{0, 1}|E|, where |E| is the number of edges. Hence, the set of all valid paths is K ⊆ {0, 1}|E|. The adversary
picks delays ft ∈ R|E|

+ and the loss of the player is f T
t wt.

To use the Follow the Perturbed Leader methodology, we draw r ∼ Unif([0, 1]|E|). We suppose ft ∈
[0, 1]|E| and the length of the longest path (number of edges) is ξ. Then, applying Theorem 19,

ft

∫
{r:f(r)≥f(r−ηft)}

wtf(r)dr ≤ ‖ft‖∞‖
∫
{r:f(r)≥f(r−ηft)}

wtf(r)dr‖1

≤ ξ

∫
{r:f(r)≥f(r−ηft)}

f(r)dr

≤ ξ|E|η

Hence,
ERT ≤ η−1ξ + ξ|E|ηT = 2ξ

√
|E|T

with η = 1√
|E|T

. Again, logarithmic dependence on |E| can be achieved by applying Theorem 20.



CHAPTER

FOUR

BANDIT PROBLEMS

In the bandit setting, only partial feedback `t(wt) is observed at step t. The problem can be called “0th-
order sequential optimization”. At the moment of writing we do not have interesting results for general
losses `t beyond the linear ones. Hence, throughout this section we assume `t(u) = f T

t u. Most of the results
in this section are taken from the recent paper [1].

What can we do if we only observe f T
t wt as our feedback? We cannot appeal to FTRL or Algorithm 6,

as we do not have ft’s in our possession. A natural idea is to estimate ft; however, we have only one “poke”
at the adversary to do so. Can we indeed estimate ft from one sample? This turns out to be possible to
do with a randomized algorithm, but the variance of such estimate will be large. Moreover, the precise
manner in which we estimate the slope ft will depend on the local geometry of the set K at wt. As we
show, we can still use FTRL for bandit optimization, but it is necessary to prove a different bound on the
regret, one which involves “local” norms.

It can be shown that for bandit optimization, a special regularizer is required: its Hessian should
increase as 1/d or 1/d2 in terms of distance d to the boundary of the set (or anything in between these
regimes). Integrating the requirement, we observe that the first condition implies entropy-like behavior
while the second behaves like log of the distance to the boundary. While entropy can be easily defined
for the simplex, for general convex sets K we will opt for the second type. Indeed, the regularizer which
will work for our purposes is the self-concordant barrier, which exists for any convex set K and can be
efficiently computed for many natural bodies.

First, define the following local Euclidean norm

‖u‖z =
√

uT∇2R(z)u

with respect to a convex, twice-differentiable R. Recall that Φt = η
∑t

s=1 fs +R.
We start with some results from the theory of Interior Point Methods. The Newton decrement for Φt is

λ(w,Φt) := ‖∇Φt(w)‖∗w = ‖∇2Φt(w)−1∇Φt(w)‖w.

and note that since R is self-concordant then so is Φt. The above quantity is intended to measure roughly
how far your current point is from the global optimum:

Theorem 21 (From [8]). For any self-concordant function g with w∗ = arg min g, whenever λ(w, g) < 1/2,
we have

‖w −w∗‖w ≤ 2λ(w, g)

where the local norm ‖ · ‖w is defined with respect to g, i.e. ‖y‖w :=
√

yT(∇2g(w))y.

Let us introduce the following shorthand: ‖z‖t := ‖z‖wt
for the norm is defined with respect to wt. As

wt+1 minimizes Φt and ∇2Φt = ∇2R, we immediately obtain

‖wt −wt+1‖t ≤ 2λ(wt,Φt) = 2η‖ft‖∗t
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The last equality holds because, as is easy to check, ∇Φt(wt) = ηft. Applying Hölder’s Inequality to
Corollary 7, we have

Proposition 22. Suppose for all t ∈ {1 . . . T} we have η‖ft‖∗t ≤ 1
2 . Then FTRL with a self-concordant

barrier R satisfies

RT (u) ≤ 2η
T∑

t=1

[‖ft‖∗t ]
2 + η−1(R(u)−R(w1)).

The result should be compared to Propositions 11 and 14 in Chapter 2.
We can prove a similar result in terms of local norms for K being a simplex and R the entropy function.

First notice that ∇2R(w) = diag(w[1]−1, . . . ,w[n]−1), and that 1− e−x ≤ x for all real x. Next,

‖wt − w̃t+1‖t =

√√√√ n∑
i=1

(wt[i]− w̃t+1[i])2/wt[i] =

√√√√ n∑
i=1

wt[i](1− e−ηft[i])2 ≤ η

√√√√ n∑
i=1

wt[i]ft[i]2 = η‖ft‖∗t .

By Hölder’s Inequality, in conjunction with Lemma 13,

RT (u) ≤
T∑

t=1

‖ft‖∗t ‖wt − w̃t+1‖t + η−1R(u) ≤ η
T∑

t=1

(‖ft‖∗t )2 + η−1R(u).

Proposition 23. The exponential weights algorithm (i.e. FTRL with entropic regularization) enjoys the
following bound:

RT (u) ≤ η
T∑

t=1

[‖ft‖∗t ]
2 + η−1R(u).

[TO BE CONTINUED]
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