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Abstract

We study an equivalence of (i) deterministic pathwise statements appearing in the online
learning literature (termed regret bounds), (ii) high-probability tail bounds for the supre-
mum of a collection of martingales (of a specific form arising from uniform laws of large
numbers), and (iii) in-expectation bounds for the supremum. By virtue of the equivalence,
we prove exponential tail bounds for norms of Banach space valued martingales via deter-
ministic regret bounds for the online mirror descent algorithm with an adaptive step size.
We show that the phenomenon extends beyond the setting of online linear optimization
and present the equivalence for the supervised online learning setting.

Keywords: martingale inequalities; online learning

1. Introduction

The paper investigates equivalence of regret inequalities that hold for all sequences and
probabilistic inequalities for martingales. In recent years, it was shown that existence
of regret-minimization strategies can be certified non-algorithmically by studying certain
stochastic processes. In this paper, we make the connection in the opposite direction and
show a certain equivalence. We present several new deviation inequalities that follow with
surprising ease from pathwise regret inequalities, while it is far from clear how to prove
them with other methods.

Arguably the simplest example of the equivalence between prediction of individual se-
quences and probabilistic inequalities can be found in the work of Cover (1965). Consider
the task of predicting a binary sequence y = (y1, . . . , yn) ∈ {±1}n in an online manner. Let
φ ∶ {±1}n → [0,1] be 1/n-Lipschitz with respect to the Hamming distance. Then there
exists a randomized strategy such that

∀y, E [ 1

n

n

∑
t=1

1{ŷt ≠ yt}] ≤ φ(y) (1)

if and only if Eφ(ε) ≥ 1/2. The expectation in (1) is with respect to the randomized
predictions ŷt = ŷt(y1, . . . , yt−1) ∈ {±1} made by the algorithm, ε = (ε1, . . . , εn) is a sequence
of independent Rademacher random variables, and 1{} is the indicator loss function. While
this result is not difficult to prove by backward induction (see e.g. (Rakhlin and Sridharan,
2016)), the message is rather intriguing: existence of a prediction strategy with a given

© 2017 A. Rakhlin & K. Sridharan.



Rakhlin Sridharan

mistake bound φ is equivalent to a simple statement about the expected value of φ with
respect to the uniform distribution. Furthermore, the Lipschitz condition on φ implies a
high-probability bound for the deviation of φ from Eφ via McDiarmid’s inequality.

Our second example of the equivalence is in the setting of online linear optimization.
Consider the unit Euclidean ball B in Rd. Let z1, . . . , zn ∈ B and define, recursively, the
Euclidean projections

ŷt+1 = ŷt+1(z1, . . . , zt) = ProjB (ŷt − n−1/2zt) (2)

for each t = 1, . . . , n, with the initial value ŷ1 = 0. Elementary algebra1 shows that for
any f ∈ B, the regret inequality ∑nt=1 ⟨ŷt − f, zt⟩ ≤

√
n holds deterministically for any se-

quence z1, . . . , zn ∈ B. By optimally choosing f in the direction of the sum, we re-write this
statement equivalently as

∥
n

∑
t=1
zt∥ −

√
n ≤

n

∑
t=1

⟨ŷt,−zt⟩ . (3)

Since the inequality holds pathwise, by applying it to a B-valued martingale difference
sequence −Z1, . . . ,−Zn, we conclude that

P (∥
n

∑
t=1
Zt∥ −

√
n > u) ≤ P (

n

∑
t=1

⟨ŷt, Zt⟩ > u) ≤ exp{−u
2

2n
} . (4)

The latter upper bound is an application of the Azuma-Hoeffding’s inequality. Indeed, the
process (ŷt) is predictable with respect to σ(Z1, . . . , Zt−1), and thus (⟨ŷt, Zt⟩) is a [−1,1]-
valued martingale difference sequence. It is worth emphasizing the conclusion: one-sided
deviation tail bounds for a norm of a vector-valued martingale can be deduced from tail
bounds for real-valued martingales with the help of a deterministic regret inequality.

Next, integrating the tail bound in (4) yields a seemingly weaker in-expectation state-
ment

E∥
n

∑
t=1
Zt∥ ≤ c

√
n (5)

for an appropriate constant c. The twist in this uncomplicated story comes next: with the
help of the minimax theorem, (Abernethy et al., 2009; Rakhlin et al., 2010) established
existence of strategies (ŷt) such that

∀z1, . . . , zn, f ∈ B,
n

∑
t=1

⟨ŷt − f, zt⟩ ≤ supE∥
n

∑
t=1
Zt∥ , (6)

with the supremum taken over all 2B-valued martingale difference sequences. In view of
(5), this bound is c

√
n.

What have we achieved? Let us summarize. The deterministic inequality (3), which
holds for all sequences, implies a tail bound (4). The latter, in turn, implies an in-
expectation bound (5), which implies (3) (with a worse constant) through a minimax argu-
ment, thus closing the loop. The equivalence—studied in depth in this paper—is informally
stated below:

1. See the two-line proof in the Appendix, Lemma 12.
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Informal: The following bounds imply each other: (a) an inequality that holds for all
sequences; (b) a deviation tail probability for the size of a martingale; (c) an in-expectation
bound on the size of a martingale.

The equivalence, in particular, allows us to amplify the in-expectation bounds to appro-
priate high-probability tail bounds.

While writing the paper, we learned of the trajectorial approach, extensively studied
in recent years. In particular, it has been shown that Doob’s maximal inequalities and
Burkholder-Davis-Gundy inequalities have deterministic counterparts (Acciaio et al., 2013;
Beiglböck and Nutz, 2014; Gushchin, 2014; Beiglböck and Siorpaes, 2015). The online
learning literature contains a trove of pathwise inequalities, and further synthesis with
the trajectorial approach (and the applications in mathematical finance) appears to be a
promising direction.

This paper is organized as follows. In the next section, we extend the Euclidean result
to martingales with values in Banach spaces and improve it by replacing

√
n with square

root of variation. In particular, we conclude a high probability self-normalized tail bound,
a statement that appears to be difficult to obtain with other methods (see (Bercu et al.,
2015; de la Peña et al., 2008) for a survey of techniques in this area). Section 3 is devoted
to the analysis of equivalence for supervised learning. Finally, Section 4 shows that it is
enough to consider dyadic martingales if one is interested in general martingale inequalities
of a certain form.

2. Adaptive Bounds and Probabilistic Inequalities in Banach Spaces

For the case of the Euclidean (or Hilbertian) norm, it is easy to see that the
√
n bound

of (5) can be improved to a distribution-dependent quantity (∑nt=1E ∥Zt∥2)
1/2

. Given the
equivalence sketched earlier, one may wonder whether this upper bound is also equivalent
to a gradient-descent-like online method with a sequence-dependent variation governing the
rate of convergence. Below, we indeed present such an equivalence for 2-smooth Banach
spaces. Furthermore, the probabilistic tail bounds obtained this way appear to be novel.

Suppose that we have a norm ∥⋅∥ on some vector space such that ∥⋅∥2 is a smooth
function:

∥x + y∥2 ≤ ∥x∥2 + ⟨∇∥x∥2 , y⟩ +C ′ ∥y∥2 (7)

for some C ′ > 0. Repeatedly using smoothness of the norm, we conclude that

E∥
n

∑
t=1
Zt∥

2

≤ C ′
n

∑
t=1

E ∥Zt∥2 (8)

for any martingale difference sequence taking values in that vector space, since the cross-
terms vanish. Instead of (8), we will work with the tighter inequality

E∥
n

∑
t=1
Zt∥ ≤ CE

¿
ÁÁÀ

n

∑
t=1

∥Zt∥2. (9)

Let (B, ∥⋅∥) be a reflexive Banach space with dual space (B∗, ∥⋅∥∗). Assume that (B, ∥⋅∥)
is 2-smooth (that is, ρ(δ) ≜ sup{1

2(∥x + y∥ + ∥x − y∥) − 1 ∶ ∥x∥ = 1, ∥y∥ = δ}, the modulus of
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smoothness, behaves as cδ2). Then there exists an equivalent norm ∥⋅∥B (in the sense that
c1 ∥⋅∥B ≤ ∥⋅∥ ≤ c2 ∥⋅∥B for some possibly dimension-dependent c1, c2) that is smooth. In this
case, we can expect that (9) holds for martingale difference sequences taking values in B.

Let us now argue this more formally, and also show equivalence to the existence of
deterministic prediction strategies.

2.1. From regret inequality to expected value and back

Lemma 1 Existence of a (deterministic) prediction strategy (ŷt)nt=1, with values ŷt(z1, . . . , zt−1)
in the unit ball B∗ of B∗ such that

∀z1, . . . , zn ∈B, f ∈ B∗,
n

∑
t=1

⟨ŷt − f, zt⟩ ≤ C

¿
ÁÁÀ

n

∑
t=1

∥zt∥2 (10)

for some C is equivalent to (9) (with a possibly different constant C) holding for all mar-
tingale difference sequences with values in B.

Proof By rearranging (10) as in (3), choosing a unit vector f , and taking an expectation
on both sides implies (9) with the same constant C as in (10). We now argue the reverse
direction: (9) implies existence of a strategy with a regret bound (10). First, consider an
arbitrary collection (X1, . . . ,Xn) of random variables taking values in an R-radius centered
ball of B and define the conditional expectations Et−1[⋅] = E[⋅ ∣ X1, . . . ,Xt−1]. Observe that
the collection (Xt − Et−1Xt), t = 1, . . . , n, is a martingale difference sequence. Hence, by
triangle inequality and our assumption,

E∥
n

∑
t=1
Xt∥ −E

n

∑
t=1

∥Et−1Xt∥ ≤ E∥
n

∑
t=1

(Xt −Et−1Xt)∥ ≤ CE

¿
ÁÁÀ

n

∑
t=1

∥Xt −Et−1Xt∥2. (11)

The right-most expression in (11) can be upper bounded by

√
2CE

⎛
⎝

¿
ÁÁÀ

n

∑
t=1

∥Xt∥2 +

¿
ÁÁÀ

n

∑
t=1

∥Et−1Xt∥2
⎞
⎠
≤
√

8CE

¿
ÁÁÀ

n

∑
t=1

∥Xt∥2. (12)

To justify the last inequality, first observe that ∥Et−1Xt∥ ≤ Et−1 ∥Xt∥ . Second, the function
x↦

√
A + x2 is convex, and (12) follows by Jensen’s inequality.

Combining (11) and (12), for any finite R and any collection (X1, . . . ,Xn) with values
in R ⋅ B,

E
⎧⎪⎪⎨⎪⎪⎩
∥
n

∑
t=1
Xt∥ −

n

∑
t=1

∥Et−1Xt∥ −C ′
¿
ÁÁÀ

n

∑
t=1

∥Xt∥2
⎫⎪⎪⎬⎪⎪⎭
≤ 0 (13)

with C ′ =
√

8C. Writing
−∥Et−1Xt∥ = inf

∥ŷt∥∗≤1
⟨ŷt,Et−1Xt⟩ ,

we conclude that

supE
⎧⎪⎪⎨⎪⎪⎩

n

∑
t=1

inf
∥ŷt∥∗≤1

⟨ŷt,Et−1Xt⟩ − inf
∥f∥

∗
≤1

⟨f,
n

∑
t=1
Xt⟩ −C ′

¿
ÁÁÀ

n

∑
t=1

∥Xt∥2
⎫⎪⎪⎬⎪⎪⎭
≤ 0 (14)
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where the supremum is over the distributions of (X1, . . . ,Xn) with values in R ⋅ B. The rest
of the argument can be seen as running the proof of (Abernethy et al., 2009) backwards.
The minimax theorem holds because of finiteness of R, the radius of the support of the
Xt’s, via arguments in (Rakhlin et al., 2014, Appendix A).

Thankfully, the strategy that guarantees (10) is already known: it is an adaptive version
of Mirror Descent. For completeness, the proof is provided in the Appendix. To define the
strategy, we need the following fact: if B is a 2-smooth Banach space, then there is a
function R on the dual space B∗ which is strongly convex with respect to the norm ∥⋅∥∗.
In fact, one can take the squared dual norm corresponding to the smooth equivalent norm
on B (Borwein et al., 2009). To avoid extra constants, let us simply assume that R is 1-
strongly convex on the unit ball B∗ of B∗. The function R induces the Bregman divergence
DR ∶B∗ ×B∗ → R, defined as DR(f, g) = R(f) −R(g) − ⟨∇R(g), f − g⟩.

Lemma 2 Let F ⊂B∗ be a convex set. Define, recursively,

ŷt+1 = ŷt+1(z1, . . . , zt) = argmin
f∈F

ηt ⟨f, zt⟩ +DR(f, ŷt) (15)

with ŷ1 = 0, ηt ≜ Rmax (∑ts=1 ∥zs∥
2)−1/2, and R2

max ≜ supf,g∈F DR(f, g). Then for any f ∈ F
and any z1, . . . , zn ∈B,

∑nt=1 ⟨ŷt − f, zt⟩ ≤ 2Rmax

√
∑nt=1 ∥zt∥

2.

Lemma 2 is complementary to Lemma 1, as it gives the algorithm whose existence was
guaranteed by Lemma 1. In Section 3, we will not have the luxury of producing an explicit
algorithm, yet the equivalence will still be established.

2.2. From regret inequalities to tail bounds and back

We now start from a regret-minimization strategy and deduce a new probabilistic inequality
for martingales. We then conclude the in-expectation bound and use the equivalence of
Lemma 1 to close the loop.

The adaptive Mirror Descent algorithm of the previous section implies the following
theorem:

Theorem 3 Let Z1, . . . , Zn be a B-valued martingale difference sequence, and let Et stand
for the conditional expectation given Z1, . . . , Zt. Define

Vn =
n

∑
t=1

2 ∥Zt∥2 and Wn = 2
n

∑
t=1

Et−1 ∥Zt∥2 , (16)

which are assumed to have a finite expected value. For any u > 0, it holds that

P
⎛
⎜
⎝

∥∑nt=1Zt∥ − 2Rmax

√
Vn√

Vn +Wn + (E
√
Vn +Wn)

2
> u

⎞
⎟
⎠
≤
√

2 exp{−u2/16} , (17)
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and for any u ≥
√

2, it holds that

P
⎛
⎜
⎝

∥∑nt=1Zt∥ − 2Rmax

√
Vn√

(Vn +Wn + 1) (1 + 1
2 log (Vn +Wn + 1))

≥ u
⎞
⎟
⎠
≤ exp{−u2/2} . (18)

Furthermore, both bounds also hold with Wn ≡ 0 and Vn = ∑nt=1 ∥Zt∥
2 if the martingale

differences are conditionally symmetric.2

In addition to extending the Euclidean result of the previous section to Banach spaces, (17)
and (18) offer several advantages. First, the bounds are n-independent. The deviations
in (17) and (18) are self-normalized (that is, scaled by root-variation terms) and all the
terms are either distribution-dependent or data-dependent, as in the case of the Student’s t-
statistic (de la Peña et al., 2008). The advantage of (18), especially in the case of conditional
symmetry, is that all the terms, modulo the additive constants 1, are data-dependent. We
are not aware of similar bounds for norms of random vectors in the literature, and we wish
to stress that the proof of the result is almost immediate, given the regret inequality. We
would also like to stress that Theorem 3 holds without any assumption on the martingale
difference sequence beyond square integrability.

Proof [Theorem 3] We take F in Lemma 2 to be the unit ball in B∗, ensuring ∥ŷt∥∗ ≤ 1.
For any martingale difference sequence (Zt) with values in B, the above lemma implies, by
the definition of the norm,

∥∑nt=1Zt∥ − 2Rmax

√
Vn ≤ ∑nt=1 ⟨ŷt, Zt⟩ (19)

deterministically for all sample paths. Dividing both sides by
√
Vn +Wn + (E

√
Vn +Wn)

2
,

we conclude that the left-hand side in (17) is upper bounded by

P
⎛
⎜
⎝

∑nt=1 ⟨ŷt, Zt⟩√
Vn +Wn + (E

√
Vn +Wn)

2
> u

⎞
⎟
⎠
. (20)

To control this probability, we recall the following results (de la Peña et al., 2008,
Theorem 12.4, Corollary 12.5):

Theorem 4 ((de la Peña et al., 2008)) For a pair of random variables A,B, with B >
0, such that

E exp{λA − λ2B2/2} ≤ 1 ∀λ ∈ R, (21)

it holds that for any u > 0,

P
⎛
⎝

∣A∣√
B2 + (EB)2

> u
⎞
⎠
≤
√

2 exp{−u2/4}

2. A martingale difference sequence Z1, . . . , Zn is conditionally symmetric if the law L(Zt ∣ Z1, . . . , Zt−1) =

L(−Zt ∣ Z1, . . . , Zt−1).
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and for any y > 0 and u ≥
√

2,

P
⎛
⎜
⎝

∣A∣
√

(B2 + y) (1 + 1
2 log (B2/y + 1))

≥ u
⎞
⎟
⎠
≤ exp{−u2/2} .

To apply this theorem, we verify assumption (21):

Lemma 5 The random variables A = ∑nt=1 ⟨ŷt, Zt⟩ and B2 = 2∑nt=1(∥Zt∥
2 + Et−1 ∥Zt∥2)

satisfy (21). Furthermore, if Zt’s are conditionally symmetric, then A = ∑nt=1 ⟨ŷt, Zt⟩ and
B2 = ∑nt=1 ∥Zt∥

2 satisfy (21).

The simple proof of the Lemma is postponed to the Appendix. Putting together (20)
with Lemma 5 and Theorem 4 concludes the proof of Theorem 3.

To close the loop of equivalences, we need to deduce (9) from the tail bound inequality.
Let us use the first part of Theorem 3. Denote the random variable in the numerator of
the fraction in (17) as Y and the denominator as a random variable U . Then (17) implies
that (Y /U) is a subgaussian random variable. Hence, its second moment is bounded by a
constant: E(Y /U)2 ≤ c. However, by Cauchy-Schwartz inequality,

EY = E(U ⋅ Y
U

) ≤ (EU2)1/2 (EY
2

U2
)
1/2

≤
√
cEU2,

implying

E∥
n

∑
t=1
Zt∥ ≤ 2RmaxE

√
Vn + 2

√
cEVn. (22)

This almost closes the loop, except the last term in (22) has the expectation inside the
square root rather than outside, and thus presents a weaker upper bound (in the sense of
(8) rather than (9)). We conjecture that there is a way to prove the upper bound with the
expectation outside the square root. Nonetheless, to keep the promise of closing the loop,
we observe that the upper bound of (8) implies that the Banach space has martingale type
2, which implies, via (Srebro et al., 2011), existence of a strongly convex function on the
dual space, and, hence, existence of a strategy that guarantees (10) with a constant C that
may depend at most logarithmically on n.

2.3. Remarks

We compare our result to that of Pinelis (1994). Let Z1, . . . , Zn be a martingale difference
sequence taking values in a separable (2,D)-smooth Banach space (B, ∥ ⋅ ∥). Pinelis (1994)
proved, through a significantly more difficult analysis, that for any u > 0,

P (sup
n≥1

∥
n

∑
t=1
Zt∥ ≥ σu) ≤ 2 exp{− u2

2D2
} , (23)

where σ is a constant satisfying ∑∞t=1 ∥Zt∥
2
∞ ≤ σ2. In comparison to Theorem 3, this result

involves a distribution-independent variation σ as a worst-case pointwise upper bound.

7



Rakhlin Sridharan

The reader will notice that the pathwise inequality (19) does not depend on n and the
construction of ŷt is also oblivious to this value. A simple argument then allows us to lift
the real-valued Burkholder-Davis-Gundy inequality (with the constant from (Burkholder,
2002)) to the Banach space valued martingales:

Lemma 6 With the notation of Theorem 3,

E max
s=1,...,n

∥
s

∑
t=1
Zt∥ ≤ (2Rmax +

√
3)E

√
Vn .

Remarkably, the constant in the resulting BDG inequality is, up to an additive constant,
proportional to Rmax. Once again, we have not seen such results in the literature, yet they
follow with ease from regret inequalities.

We also remark that Theorem 3 can be naturally extended to p-smooth Banach spaces
B. This is accomplished in a straightforward manner by extending Lemma 2.

3. Probabilistic Inequalities and Supervised Learning

We now look beyond linear prediction and analyze supervised learning problems with side
information. Here again we establish a strong connection between existence of prediction
strategies, the in-expectation inequalities for martingales, and high-probability tail bounds.
In contrast to Section 2, we will not present any algorithms. Note that the simplest example
of the equivalence (for binary prediction and in the absence of side information) was already
stated in the very beginning of this paper.

3.1. Supervised learning with side information

We let y1, . . . , yn ∈ {±1} and x1, . . . , xn ∈ X for some abstract measurable set X . Let F
be a class of [−1,1]-valued functions on X . Fix a cost function ` ∶ R × R → R, convex
in the first argument. For a given function B ∶ F × X n → R, we aim to construct ŷt =
ŷt(x1, . . . , xt, y1, . . . , yt−1) ∈ [−1,1] such that the following adaptive bound holds:

∀ (xt, yt)nt=1,
n

∑
t=1

`(ŷt, yt) ≤ inf
f∈F

{
n

∑
t=1

`(f(xt), yt) +B(f ;x1, . . . , xn)} . (24)

We may view ŷt as a prediction of the next value yt having observed xt and all the data
thus far. In this paper, we focus on the linear loss `(a, b) = −ab (equivalently, absolute loss
∣a− b∣ = 1− ab when a ∈ [−1,1] and b ∈ {±1}) and the square loss `(a, b) = (a− b)2. We write
(24) for the linear cost function as

sup
f∈F

{
n

∑
t=1
ytf(xt) −B(f ;x1, . . . , xn)} ≤

n

∑
t=1
ytŷt (25)

while for the square loss it becomes

sup
f∈F

{
n

∑
t=1

2ytf(xt) − f(xt)2 −B(f ;x1, . . . , xn)} ≤
n

∑
t=1

2ytŷt − ŷ2
t . (26)

8
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Given a function B and a class F , there are two goals we may consider: (a) certify the
existence of (ŷt) ≜ (ŷ1, . . . , ŷn) satisfying the pathwise inequality (24) for all sequences
(xt, yt)nt=1; or (b) give an explicit construction of (ŷt). Both questions have been studied
in the online learning literature, but the non-constructive approach will play an especially
important role. Indeed, explicit constructions—such as the simple gradient descent update
(2) — might not be available in more complex situations, yet it is the existence of (ŷt) that
yields the sought-after tail bounds.

To certify the existence of a strategy (ŷt), consider the following object:

A(F ,B) = ⟪sup
xt

inf
ŷt

max
yt

⟫
n

t=1
{
n

∑
t=1

`(ŷt, yt) − inf
f∈F

{
n

∑
t=1

`(f(xt), yt) +B(f ;x1, . . . , xn)}} (27)

where the notation ⟪⋯⟫nt=1 stands for the repeated application of the operators (the outer
operators corresponding to t = 1). The variable xt ranges over X , yt is in the set {±1}, and
ŷt ranges in [−1,1]. It follows that

A(F ,B) ≤ 0 is a necessary and sufficient condition for the existence of (ŷt) such
that (24) holds.

Indeed, the optimal choice for ŷ1 is made given x1; the optimal choice for ŷ2 is made given
x1, y1, x2, and so on. This choice defines the optimal strategy (ŷt).3 The other direction is
immediate.

Suppose we can find an upper bound on A(F ,B) and then prove that this upper bound
is non-positive. This would serve as a sufficient condition for the existence of (ŷt). Next,
we present such an upper bound for the case when the cost function is linear. More general
results for convex Lipschitz cost functions can be found in (Foster et al., 2015).

3.2. Linear loss

As in the introduction, let ε = (ε1, . . . , εn) be a sequence of independent Rademacher random
variables. Let x = (x1, . . . ,xn) and y = (y1, . . . ,yn) be predictable processes with respect
to the dyadic filtration (σ(ε1, . . . , εt))nt=0, with values in X and {±1}, respectively. In other
words, xt = xt(ε1, . . . , εt−1) ∈ X and yt = yt(ε1, . . . , εt−1) ∈ {±1} for each t = 1, . . . , n. One
can think of the collections (xt) and (yt) as trees labeled, respectively, by elements of X
and {±1}.

Lemma 7 For the case of the linear cost function,

A(F ,B) = sup
x

E [sup
f∈F

n

∑
t=1
εtf(xt) −B(f ;x1, . . . ,xn)] . (28)

Therefore, the following are equivalent:

• For any predictable process x = (x1, . . . ,xn)

E [sup
f∈F

n

∑
t=1
εtf(xt) −B(f ;x1, . . . ,xn)] ≤ 0 , (29)

3. If the infima are not achieved, a limiting argument can be employed.

9
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• There exists a strategy (ŷt) such that the pathwise inequality (25) holds.

Furthermore, the strategy can be assumed to satisfy

∣ŷt∣ ≤ supf∈F ∣f(xt)∣. (30)

The in-expectation bound of (29) is a necessary and sufficient condition for the existence
of a strategy with the per-sequence bound (25). This latter bound, however, implies a high-
probability statement, in the spirit of the other results in the paper. Below, we detail this
amplification.

Take any X -valued predictable process x = (x1, . . . ,xn) with respect to the dyadic
filtration. The deterministic inequality (25) applied to xt = xt(ε1, . . . , εt−1) and yt = εt
becomes

sup
f∈F

{
n

∑
t=1
εtf(xt) −B(f ;x1, . . . ,xn)} ≤

n

∑
t=1
εtŷt (31)

for any sample path (ε1, . . . , εn), and thus we have the comparison of tails

P (sup
f∈F

{
n

∑
t=1
εtf(xt) −B(f ;x1, . . . ,xn)} > u) ≤ P (

n

∑
t=1
εtŷt > u) . (32)

Given the boundedness of the increments εtŷt, the tail bounds follow immediately from
the Azuma-Hoeffding’s inequality or from Freedman’s inequality (Freedman, 1975). More
precisely, we use the fact that the martingale differences are bounded by ∣ŷt∣ ≤ supf∈F ∣f(xt)∣,
and conclude:

Lemma 8 If there exists a prediction strategy (ŷt) that satisfies (25) and (30), then for
any predictable process x, the Azuma-Hoeffding inequality implies that

P (sup
f∈F

{
n

∑
t=1
εtf(xt) −B(f ;x1, . . . ,xn)} > u) ≤ exp(− u2

4 maxε∑nt=1 supf∈F f(xt(ε))2
) , (33)

Freedman’s inequality implies

P (sup
f∈F

{
n

∑
t=1
εtf(xt) −B(f ;x1, . . . ,xn)} > u,

n

∑
t=1

sup
f∈F

f(xt)2 ≤ σ2) ≤ exp(− u2

2σ2 + 2uM/3
) ,

(34)

where M = n ⋅ supf∈F ,ε∈{±1}n,t≤n ∣f(xt)∣, and we also have that for any α > 0,

P (sup
f∈F

{
n

∑
t=1
εtf(xt) −B(f ;x1, . . . ,xn)} − α

n

∑
t=1

sup
f∈F

f(xt)2 > u) ≤ exp (−2αu) . (35)

In view of Lemma 7, a sufficient condition for these inequalities is that (29) holds for all x.

Let us emphasize the conclusion of the above lemma: the non-positivity of the expected
supremum of a collection of martingales, offset by a function B, implies existence of a
regret-minimization strategy, which implies a high-probability tail bound. To close the loop,

10
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we integrate out the tails, obtaining an in-expectation bound of the form (29), but possibly
with a somewhat larger B function (this depends on the particular form of B).

In addition to describing the equivalence, let us capitalize on it and prove a new tail
bound. The most basic B is a constant that depends on the complexity of F , but not on f
or the data. Define the worst-case sequential Rademacher averages as

Rn(F) ≜ sup
x

E sup
f∈F

n

∑
t=1
εtf(xt). (36)

Clearly, B = Rn(F) satisfies (29) and the following is immediate.

Corollary 9 For any F ⊆ RX and an X -valued predictable process x with respect to the
dyadic filtration,

P (sup
f∈F

n

∑
t=1
εtf(xt) > Rn(F) + u) ≤ exp(− u2

4 maxε∑nt=1 supf∈F f(xt(ε))2
) . (37)

Superficially, (37) looks like a one-sided version of a deviation bound for classical (i.i.d.)
Rademacher averages (Boucheron et al., 2013). However, sequential Rademacher averages
are not Lipschitz with respect to a flip of a sign, as all of the remaining path may change
after a flip. It is unclear to the authors how to prove (37) through other existing methods.

3.3. Square loss

Due to limited space, we will not state the analogue of Lemma 7 and simply outline the
implication from existence of regret minimization strategies to high probability tail bounds.

As for the case of the linear loss function, take any X -valued predictable process x =
(x1, . . . ,xn) with respect to the dyadic filtration. Fix α > 0. The deterministic inequality
(26) for xt = xt(ε1, . . . , εt−1) and yt = 1

αεt becomes

sup
f∈F

{
n

∑
t=1

( 2

α
εtf(xt) − f2(xt)) −B(f ;x1, . . . ,xn)} ≤

n

∑
t=1

2

α
εtŷt − ŷ2

t . (38)

As in the proof of (35), we obtain a tail comparison

P (sup
f∈F

{
n

∑
t=1

( 2

α
εtf(xt) − f2(xt)) −B(f ;x1, . . . ,xn)} > u

α
) (39)

≤ P (
n

∑
t=1

( 2

α
εtŷt − ŷ2

t) >
u

α
) ≤ exp{−αu

2
}

where the last inequality follows via a standard analysis of the moment generating function.
As an example, consider the Azoury-Vovk-Warmuth forecaster for linear regression (see

e.g. (Cesa-Bianchi and Lugosi, 2006, Sec. 11.8)). Take the class F to be the class of
functions F = {x ↦ ⟨f, x⟩ ∶ f ∈ Bd

2}, where Bd
2 is the unit Euclidean ball in Rd. Assuming

X = Bd
2 , the regret bound for the forecaster is known to be

B(f ;x1, . . . ,xn) = ∥f∥2 + Y 2
n

∑
t=1

xT
t A

−1
t xt,

11
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where At = I + ∑ts=1 xtxT
t and Y = max ∣yt∣. However, when F is indexed by the unit ball,

the supremum in (39) has a closed form expression, and the overall probability inequality
takes on the form

P
⎛
⎝
∥
n

∑
t=1
εtxt∥

2

A−1n

≥ 1

2

n

∑
t=1

xT
t A

−1
t xt + u

⎞
⎠
≤ exp{−u} . (40)

We point out that, being functions of Rademacher random variables, xt’s are random vari-
ables themselves, and the terms in the above expression are dependent in a non-trivial
manner.

We would like to refer the reader to the full version of this paper (Rakhlin and Sridha-
ran, 2015) which contains further implications of the equivalence between the existence of
deterministic strategies and tail bounds. In particular, the amplification allows us to prove
a characterization of a notion of martingale type beyond the linear case.

4. Symmetrization: dyadic filtration is enough

In Section 3, we presented connections between deterministic regret inequalities in the
supervised setting and tail bounds for dyadic martingales. One may ask whether these tail
bounds can be used for more general martingales indexed by some set. The purpose of this
section is to prove that statements for the dyadic filtration can be lifted to general processes
via sequential symmetrization. Consider the martingale

Mg =
n

∑
t=1
g(Zt) −E[g(Zt)∣Z1, . . . , Zt−1]

indexed by g ∈ G. If (Zt) is adapted to a dyadic filtration At = σ(ε1, . . . , εt), each increment
g(Zt) −E[g(Zt)∣Z1, . . . , Zt−1] takes on the value

fg(xt(ε1∶t−1)) ≜ (g(Zt(ε1∶t−1,+1)) − g(Zt(ε1∶t−1,−1))) /2

or its negation, where xt is a predictable process with values in Z × Z and fg ∈ F defined
by (z, z′) ↦ g(z) − g(z′). In Section 3, we worked directly with martingales of the form
Mf = ∑nt=1 εtf(xt(ε)), indexed by an abstract class F ⊆ RX and an abstract X -valued
predictable process x.

We extend the symmetrization approach of Panchenko (Panchenko, 2003) to sequen-
tial symmetrization for the case of martingales. In contrast to the more frequently-used
Giné-Zinn symmetrization proof (via Chebyshev’s inequality) (Giné and Zinn, 1984; Van
Der Vaart and Wellner, 1996) that allows a direct tail comparison of the symmetrized and
the original processes, Panchenko’s approach allows for an “indirect” comparison. The fol-
lowing immediate extension of (Panchenko, 2003, Lemma 1) will imply that any exp{−µ(u)}
type tail behavior of the symmetrized process yields the same behavior for the original pro-
cess.

Lemma 10 Suppose ξ and ν are random variables and for some Γ ≥ 1 and for all u ≥ 0

P (ν ≥ u) ≤ Γ exp{−µ(u)}.

12
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Let µ ∶ R+ → R+ be an increasing differentiable function with µ(0) = 0 and µ(∞) = ∞.
Suppose for all a ∈ R and φ(x) ≜ µ([x − a]+) it holds that Eφ(ξ) ≤ Eφ(ν). Then for any
u ≥ 0,

P (ξ ≥ u) ≤ Γ exp{−µ(u − µ−1(1))}.

In particular, if µ(b) = cb, we have P (ξ ≥ u) ≤ Γ exp{1 − cu}; if µ(b) = cb2, then P (ξ ≥ u) ≤
Γ exp{1 − cu2/4}.

As in (Panchenko, 2003), the lemma will be used with ξ and ν as functions of a single
sample and the double sample, respectively. The expression for the double sample will be
symmetrized in order to pass to the dyadic filtration. However, unlike (Panchenko, 2003),
we are dealing with a dependent sequence Z1, . . . , Zn, and the meaning ascribed to the
“second sample” Z ′

1, . . . , Z
′
n is that of a conditionally independent tangent sequence. That

is, Zt, Z
′
t are independent and have the same distribution conditionally on Z1, . . . , Zt−1. Let

Et−1 stand for the conditional expectation given Z1, . . . , Zt−1.

Corollary 11 Let B̃ ∶ G × Z2n → R be a function that is symmetric with respect to the
swap of the i-th pair zi, z

′
i, for any i ∈ [n]:

B̃(g; z1, z
′
1, . . . , zi, z

′
i, . . . , zn, z

′
n) = B̃(g; z1, z

′
1, . . . , z

′
i, zi, . . . , zn, z

′
n) (41)

for all g ∈ G. Then, under the assumptions of Lemma 10 on µ, a tail behavior

∀(z,z′), P (sup
g∈G

n

∑
t=1
εt(g(zt) − g(z′t)) − B̃(g; (z1,z′1), . . . , (zn,z′n)) > u) ≤ Γ exp{−µ(u)}

for all u > 0 implies the tail bound

P (sup
g∈G

n

∑
t=1

(g(Zt) −Et−1g(Zt)) −EZ′1∶nB̃(g;Z1, Z
′
1, . . . , Zn, Z

′
n) > u) ≤ Γ exp{−µ(u − µ−1(1))}

for any sequence of random variables Z1, . . . , Zn and the corresponding tangent sequence
Z ′
1, . . . , Z

′
n. The supremum is taken over a pair of predictable processes z,z′ with respect to

the dyadic filtration. A direct comparison of the expected suprema also holds:

E sup
g∈G

n

∑
t=1

(g(Zt) −Et−1g(Zt)) −EZ′1∶nB̃(g;Z1, Z
′
1, . . . , Zn, Z

′
n) (42)

≤ sup
z,z′

E sup
g∈G

n

∑
t=1
εt(g(zt) − g(z′t)) − B̃(g; (z1,z′1), . . . , (zn,z′n)).

We conclude that it is enough to prove tail bounds for a supremum

supf∈F ∑nt=1 εtf(xt) −B(f ;x1, . . . ,xn)

of a martingale with respect to the dyadic filtration, offset by a function B(f ;x1, . . . ,xn),
as done in Section 3.
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Appendix A. Proofs

Lemma 12 The update in (2) satisfies

∀z1, . . . , zn ∈ B,
n

∑
t=1

⟨ŷt − f, zt⟩ ≤
√
n.

Proof [Lemma 12] The following two-line proof is standard. By the property of a projec-
tion,

∥ŷt+1 − f∥
2 = ∥ProjB(ŷt − n−1/2zt) − f∥

2
≤ ∥(ŷt − n−1/2zt) − f∥

2
(43)

= ∥ŷt − f∥
2 + 1

n
∥zt∥2 − 2n−1/2 ⟨ŷt − f, zt⟩ . (44)

Rearranging,

2n−1/2 ⟨ŷt − f, zt⟩ ≤ ∥ŷt − f∥
2 − ∥ŷt+1 − f∥

2 + 1

n
∥zt∥2 .

Summing over t = 1, . . . , n yields the desired statement.
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Proof [Lemma 6] Because of the “anytime” property of the regret bound and the strategy
definition, we can write (19) as

max
s=1,...,n

{∥
s

∑
t=1
Zt∥ −

s

∑
t=1

⟨ŷt, Zt⟩} ≤ 2Rmax

√
Vn (45)

simply because the right-hand side is largest for s = n. Sub-additivity of max implies

max
s=1,...,n

∥
s

∑
t=1
Zt∥ − 2Rmax

√
Vn ≤ max

s=1,...,n

s

∑
t=1

⟨ŷt, Zt⟩ . (46)

By the Burkholder-Davis-Gundy inequality (with the constant from Burkholder (2002)),

E max
s=1,...,n

s

∑
t=1

⟨ŷt, Zt⟩ ≤
√

3E(
n

∑
t=1

⟨ŷt, Zt⟩
2)

1/2
≤
√

3E
√
Vn . (47)

Proof [Lemma 2] Let ŷ′t+1 be the unrestricted minimum of (15). Because of the update
form,

∀f ∈ F , ⟨ŷ′t+1 − f, zt⟩ ≤
1

ηt
(DR(f, ŷt) −DR(f, ŷt+1) −DR(ŷ′t+1, ŷt)) .

Summing over t = 1, . . . , n,

n

∑
t=1

⟨ŷt+1 − f, zt⟩ ≤ η−11 DR(f, ŷ1) +
n

∑
t=2

(η−1t − η−1t−1)DR(f, ŷt) −
n

∑
t=1
η−1t DR(ŷ′t+1, ŷt)

≤ η−11 R2
max +

n

∑
t=2

(η−1t − η−1t−1)R2
max −

n

∑
t=1

η−1t
2

∥ŷ′t+1 − ŷt∥
2

∗

≤ R2
maxη

−1
n −

n

∑
t=1

η−1t
2

∥ŷ′t+1 − ŷt∥
2

∗ ,

where we used strong convexity of R and the fact that ηt is nonincreasing. Next, we write

n

∑
t=1

⟨ŷt − f, zt⟩ =
n

∑
t=1

⟨ŷ′t+1 − f, zt⟩ +
n

∑
t=1

⟨ŷt − ŷ′t+1, zt⟩

and upper bound the second term by noting that

⟨ŷt − ŷ′t+1, zt⟩ ≤ ∥ŷt − ŷ′t+1∥∗ ⋅ ∥zt∥ ≤
η−1t
2

∥ŷt − ŷ′t+1∥
2

∗ +
ηt
2

∥zt∥2 .

Combining the bounds,

n

∑
t=1

⟨ŷt − f, zt⟩ ≤ R2
maxη

−1
n +

n

∑
t=1

ηt
2

∥zt∥2 . (48)
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Using the fact (Cesa-Bianchi and Lugosi, 2006, Lemma 11.8) that ∑nt=1 αt√
∑t

s=1 αs

≤ 2
√
∑nt=1 αt

for nonnegative (αt) and the definition of ηt,

n

∑
t=1

⟨ŷt − f, zt⟩ ≤ 2Rmax

¿
ÁÁÀ

n

∑
t=1

∥zt∥2. (49)

Proof [Lemma 5] Let Et−1[⋅] = Et−1[⋅∣Z1∶t−1] denote conditional expectation. We have

Et−1 exp{λ ⟨ŷt, Zt −Et−1Z ′
t⟩ − λ2(∥Zt∥

2 +Et−1 ∥Z ′
t∥

2)}

≤ Et−1 exp{λ ⟨ŷt, Zt −Z ′
t⟩ − λ2(∥Zt∥

2 + ∥Z ′
t∥

2)}

≤ Et−1Eε exp{λε ⟨ŷt, Zt −Z ′
t⟩ − λ2(∥Zt∥

2 + ∥Z ′
t∥

2)} .

Since exp is a convex function, the expression is

Et−1Eε exp{1

2
(2λε ⟨ŷt, Zt⟩ − 2λ2 ∥Zt∥2) +

1

2
(2λε ⟨ŷt,−Z ′

t⟩ − 2λ2 ∥Z ′
t∥

2)}

≤ 1

2
Et−1Eε exp{2λε ⟨ŷt, Zt⟩ − 2λ2 ∥Zt∥2} +

1

2
Et−1Eε exp{2λε ⟨ŷt,−Z ′

t⟩ − 2λ2 ∥Z ′
t∥

2}

= Et−1Eε exp{2λε ⟨ŷt, Zt⟩ − 2λ2 ∥Zt∥2}

≤ Et−1 exp{2λ2∣ ⟨ŷt, Zt⟩ ∣2 − 2λ2 ∥Zt∥2} ≤ 1

since ∥ŷt∥∗ ≤ 1. Repeating this argument for t = n to t = 1 yields the statement.
If Zt are conditionally symmetric, then ⟨ŷt, Zt⟩ are also conditionally symmetric. Hence,

Et−1 exp{λ ⟨ŷt, Zt⟩ −
λ2

2
∥Zt∥2} = Et−1Eε exp{λε ⟨ŷt, Zt⟩ −

λ2

2
∥Zt∥2}

≤ Et−1 exp{λ
2

2
∣ ⟨ŷt, Zt⟩ ∣2 −

λ2

2
∥Zt∥2} ≤ 1.

Proof [Lemma 7] For binary outcomes y ∈ {±1} and either absolute loss or linear loss,

A(F ,B) = ⟪sup
xt

inf
ŷt

max
yt

⟫
n

t=1
{
n

∑
t=1

−ytŷt + sup
f∈F

{
n

∑
t=1
ytf(xt) −B(f ;x1, . . . , xn)}} ,

where we shall restrict ŷt to range over the interval ∣ŷt∣ ≤ supf∈F ∣f(xt)∣ and yt in {±1}.
Consider the last step t = n. Given x1∶n, ŷ1∶n−1, and y1∶n−1, we solve

inf
ŷn

max
yn

{−ŷnyn + φn(x1∶n, y1∶n)} (50)
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where

φn(x1∶n, y1∶n) ≜ sup
f∈F

{
n

∑
t=1
ytf(xt) −B(f ;x1, . . . , xn)} . (51)

Since there are two possibilities for yn, the closed form solution for ŷn is given by

ŷn =
1

2
(φn(x1∶n, y1∶n−1,1) − φn(x1∶n, y1∶n−1,−1)) . (52)

Importantly, this value satisfies ∣ŷn∣ ≤ supf∈F ∣f(xn)∣. With this optimal choice, (50) is equal
to Eεnφn(x1∶n, y1∶n−1, εn). We now include the supremum over xn in the definition of φn−1

φn−1(x1∶n−1, y1∶n−1) ≜ sup
xn

Eεnφn(x1∶n, y1∶n−1, εn)

and repeat the argument for t = n − 1. Since all the steps are equalities,

A(F ,B) = φ0(∅) = sup
x1

Eε1 . . . sup
xn

Eεn sup
f∈F

{
n

∑
t=1
εtf(xt) −B(f ;x1, . . . , xn)} ,

which can be written as (28).

Proof [Lemma 10] We have

P (ξ ≥ u) ≤ Eφ(ξ)
φ(u)

≤ Eφ(ν)
φ(u)

≤ 1

φ(u)
(φ(0) + ∫

∞

0
φ′(x)P (ν ≥ x)dx) .

Choose a = u − µ−1(1), where µ−1 is the inverse function. If a < 0, the conclusion of the
lemma is true since Γ ≥ 1. In the case of a ≥ 0, we have φ(0) = 0. The above upper bound
becomes

P (ξ ≥ u) ≤ Γ

φ(u) ∫
∞

0
φ′(x) exp{−µ(x)}dx = Γ

φ(u) ∫
∞

a
µ′(x) exp{−µ(x)}dx

= Γ

µ(u − a)
[− exp{−µ(x)}]∞a = Γ exp{−µ(a)} = Γ exp{−µ(u − µ−1(1))}.

If µ(b) = cb, we have

P (ξ ≥ u) ≤ Γ exp{−c(u − 1/c)} = Γ exp{1 − cu}.

If µ(b) = cb2, we have

P (ξ ≥ u) ≤ Γ exp{−c(u − 1/
√
c)2} ≤ Γ exp{−cu2/4}

whenever u ≥ 2/
√
c. If u ≤ 2/

√
c, the conclusion is valid since Γ ≥ 1.

Proof [Corollary 11] Let

ξ(Z1, . . . , Zn, Z
′
1, . . . , Z

′
n) = sup

g

n

∑
t=1

(g(Zt) − g(Z ′
t)) − B̃(g;Z1, Z

′
1, . . . , Zn, Z

′
n)

18
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and

ν(Z1, . . . , Zn) = sup
g

n

∑
t=1

(g(Zt) −Et−1g(Z ′
t)) −EZ′1∶nB̃(g;Z1, Z

′
1, . . . , Zn, Z

′
n).

Then for any convex φ ∶ R→ R,
Eφ(ν) ≤ Eφ(ξ)

using convexity of the supremum. The problem is now reduced to obtaining tail bounds for

P (sup
f

n

∑
t=1

(g(Zt) − g(Z ′
t)) − B̃(g;Z1, Z

′
1, . . . , Zn, Z

′
n) > u) .

Write the probability as

E1{ξ(Z1, . . . , Zn, Z
′
1, . . . , Z

′
n) > u} .

We now proceed to replace the random variables from n backwards with a dyadic filtration.
Let us start with the last index. Renaming Zn and Z ′

n we see that

E1{sup
g

n

∑
t=1

(g(Zt) − g(Z ′

t)) − B̃(g;Z1, Z
′

1, . . . , Zn, Z
′

n) > u}

= E1{sup
g

n−1

∑
t=1

(g(Zt) − g(Z ′

t)) + (g(Z ′

n) − g(Zn)) − B̃(g;Z1, Z
′

1, . . . , Zn, Z
′

n) > u}

= EEεn1{sup
g

n−1

∑
t=1

(g(Zt) − g(Z ′

t)) + εn(g(Zn) − g(Z ′

n)) − B̃(g;Z1, Z
′

1, . . . , Zn, Z
′

n) > u}

≤ E sup
zn,z′n

Eεn1{sup
g

n−1

∑
t=1

(g(Zt) − g(Z ′

t)) + εn(g(zn) − g(z′n)) − B̃(g;Z1, Z
′

1, . . . , Zn−1, Z
′

n−1, zn, z
′

n) > u} .

Proceeding in this manner for step n − 1 and back to t = 1, we obtain an upper bound of

sup
z1,z′1

Eε1 . . . sup
zn,z′n

Eεn1{sup
g

n

∑
t=1
εt(g(zt) − g(z′t)) − B̃(g; z1, z

′
1, . . . , zn, z

′
n) > u}

= sup
x

E1{sup
g

n

∑
t=1
εtfg(xt) −B(g;x1, . . . ,xn) > u} .
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