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Abstract

We analyze the problem of sequential probability assignment for binary outcomes with side information and

logarithmic loss, where regret—or, redundancy—is measured with respect to a (possibly infinite) class of experts.

We provide upper and lower bounds for minimax regret in terms of sequential complexities of the class, intro-

duced in [14, 13]. These complexities were recently shown to give matching (up to logarithmic factors) upper

and lower bounds for sequential prediction with general convex Lipschitz loss functions [11, 12]. To deal with

unbounded gradients of the logarithmic loss, we present a new analysis that employs a sequential chaining tech-

nique with a Bernstein-type bound. The introduced complexities are intrinsic to the problem of sequential prob-

ability assignment, as illustrated by our lower bound.

We also consider an example of a large class of experts parametrized by vectors in a high-dimensional Eu-

clidean ball (or a Hilbert ball). The typical discretization approach fails, while our techniques give a non-trivial

bound. For this problem we also present an algorithm based on regularization with a self-concordant barrier.

This algorithm is of an independent interest, as it requires a bound on the function values rather than gradients.

1 Introduction

In this paper we study the problem of sequential prediction of a string of bits (y1, . . . , yn ) , y1:n ∈ {0,1}n . At each

round t = 1, . . . ,n, the forecaster observes side information xt ∈ Xt , decides on the probability ŷt ∈ [0,1] of the

event yt = 1, observes the outcome yt ∈ {0,1}, and pays according to the logarithmic (or, self-information) loss

function

ℓ(ŷt , yt ) =−1
{

y = 1
}

log ŷt −1
{

yt = 0
}

log(1− ŷt ).

At each time instance t , the side-information set Xt is a subset of an abstract set X . The subset Xt is allowed to

depend on the history h1:t−1 , (x1:t−1, y1:t−1), and the functions Xt : (X ×Y )t−1 → 2X are assumed to be known

to the forecaster.

The goal of the forecaster is to predict as well as a benchmark set F of functions—sometimes called “experts”—

mapping X to [0,1]. More specifically, the goal is to keep regret

n∑

t=1

ℓ(ŷt , yt )− inf
f ∈F

n∑

t=1

ℓ( f (xt ), yt )

as small as possible for all sequences y1, . . . , yn and x1, . . . , xn (satisfying xt ∈Xt (h1:t−1)).

To illustrate the setting, consider a few examples. We may take Xt (h1:t−1) =
{
(y1, . . . , yt−1)

}
⊂ {0,1}t−1 to be

a singleton set containing the exact realization of the sequence so far. In this case, the choice xt = (y1, . . . , yt−1)

is enforced and f (xt ) = p f (1|y1, . . . , yt−1) may be viewed as a conditional distribution; the normalized maximum

likelihood forecaster is known to be minimax optimal in this extensively studied scenario (e.g. [4, Ch. 9]). Alterna-

tively, we may define Xt (h1:t−1) =
{

y ′ ∈ {0,1}t−1 : dH (y1:t−1, y ′) ≤ r
}

to be a set that contains histories with up to r

flips of the bits. In this case, the forecaster is facing a situation where history can be slightly altered in an adversar-

ial fashion. As another example, we may take Xt (h1:t−1) =
{
(yt−k , . . . , yt−1)

}
, in which case the forecaster competes
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with a set of kth-order stationary Markov experts. The set Xt may also be time-invariant, in which case f is a

memoryless expert that acts on side information. In short, the formulation we presented subsumes a wide range

of interesting problems. Our goal in this paper is to understand how “complexity” of F affects minimax rates of

regret.

The minimax regret for the problem of sequential probability assignment can be written as

Vn(F )=⟪ sup
xt∈Xt (x1:t−1 ,y1:t−1)

inf
ŷt∈[0,1]

sup
pt∈[0,1]

Eyt∼pt⟫
n

t=1

{
n∑

t=1

ℓ(ŷt , yt )− inf
f ∈F

n∑

t=1

ℓ( f (xt ), yt )

}

(1)

where Eyt∼pt is a shorthand for the expectation with respect to Bernoulli yt with bias pt . Following [10], the nota-

tion ⟪. . .⟫n
t=1 represents a repeated application of the operators inside the brackets and corresponds to the unrolled

minimax value of the associated game between the forecaster and Nature. Any upper bound on Vn(F ) guarantees

existence of a strategy that attains regret of at most that amount. In the last few years, new techniques with roots in

empirical process theory have emerged for analyzing minimax values of the form (1). We bring these techniques

to bear on the problem of sequential probability assignment with self-information loss.

Our point of comparison will be the study of rich classes in [4, Section 9.10]. Following [4], we employ the

truncation method to deal with the unbounded loss function. To this end, fix δ ∈ (0,1/2), to be chosen later. For

a ∈ [0,1], let τδ(a) denote the thresholded value

τδ(a) =






δ if a < δ

a if a ∈ [δ,1−δ]

1−δ if a > 1−δ.

For a class F , let F
δ = {τδ( f ) : f ∈ F } denote the class of truncated functions. It is easy to check (see [4, Lemma

9.5]) that

Vn(F ) ≤Vn(F δ)+2nδ, (2)

and we can, therefore, focus on the minimax regret with respect to F
δ. We show that Vn(F δ) can be upper

bounded via a modified (offset) sequential Rademacher complexity, which in turn can be controlled via sequen-

tial chaining in the spirit of [11, 12]. Unlike the latter two papers, however, we do not employ symmetrization

and instead use the self-information property of the loss function. We are able to mitigate the adverse depen-

dence of Vn(F δ) on δ by introducing chaining with Bernstein-style terms that control the sub-Gaussian and sub-

exponential tail behaviors. As an example, we recover the n3/5 rate for monotonically increasing experts presented

in [4, Sec 9.10-9.11]. However, our technique goes well beyond such examples of “static” experts. In particular,

we can obtain non-trivial rates even in the setting where discretization in the style of [4, Sec 9.10-9.11],[3] leads

to vacuous bounds. One such example is when experts are indexed by a unit ball in a Hilbert space (or, a high-

dimensional Euclidean space) and expert’s prediction depends linearly on side information. A discretization in

the supremum norm of this set of experts is not finite, and thus the typical approaches to this problem fail. In

contrast, we employ the ideas from empirical process theory and its sequential generalization in [14] in order to

define “data-dependent” notions of complexity.

Despite the improvement over the technique of [4], the rates attained in this paper are not always minimax op-

timal, as we demonstrate in Section 6. This is in contrast to other loss functions (such as absolute, square, q-power,

and logistic) for which matching upper and lower bounds (to within logarithmic factors) have been established re-

cently in [12]. As mentioned in [4], the truncation method is crude, and we leave it as an open question whether a

different technique can be employed to attain optimal rates.

We finish this introduction with a brief mention that sequential probability assignment is extensively studied

in Information Theory, where regret is known as redundancy with respect to a set of codes. The vast literature

mostly investigates the case of parametric classes (see [17, 18, 5, 15, 16] and the references in [4, Ch. 9]), with exact

constants available in certain cases. We refer to [7] for a discussion of approaches to dealing with large comparator

classes. Given the well-known connection to compression, it would be interesting to employ the relaxation-based

algorithmic recipe of [9, 12, 10] to come up with novel data compression methods.
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2 Complexity of Large Classes of Experts

We focus on the minimax value for the thresholded class F
δ. To state the first technical lemma, we need the

definition of a tree. For an abstract set Z , a Z -valued complete binary tree z of depth n is a collection of labeling

functions zt : {0,1}t−1 →Z for t ∈ {1, . . . ,n}. For a sequence y = (y1, . . . , yn ) ∈ {0,1}n (which we call a path), we write

zt (y) for zt (y1, . . . , yt−1). Once we take y1, . . . , yn to be random variables, we may view {zt } as a predictable process

with respect to the filtration given by σ(y1, . . . , yt−1). 1

We will say that an x tree is consistent with respect to the side information set mappings h1:t−1 7→Xt (h1:t−1) if

for any y ∈ {0,1}n , it holds that for all t ,

xt (y) ∈Xt (x1(y), . . . ,xt−1(y), y1, . . . , yt−1).

A consistent tree respects the sets of constraints Xt imposed by the problem. For the purposes of analyzing com-

plexity of F , it is important that the constraints are reflected in the tree x.

Theorem 1 below relates the minimax regret with respect to F
δ to the supremum of a stochastic process of

a form similar to offset Rademacher complexity introduced in [11]. The key difference with respect to [11] is that

the stochastic process is defined with potentially biased coin flips. To prove Theorem 1, we avoid symmetriza-

tion and instead exploit the fact that the logarithmic loss has the self-information property: in the maximin dual,

the optimal probability assignment is given precisely by the distribution of the yt variable. We note that the sym-

metrization approach of [11] appears to give worse rates for the logarithmic loss function.

Let

η(p, a),−1 {a = 1} p−1 +1 {a = 0} (1−p)−1 (3)

and observe that η is zero-mean if a is Bernoulli random variable with bias p.

Theorem 1. The following upper bound holds:

Vn(F δ) ≤ sup
x,µ,p

E sup
f ∈Fδ

[
∑

t :pt (y)∈[δ,1−δ]

η(pt (y), yt )
(
µt (y)− f (xt (y))

)
−

1

2

(
µt (y)− f (xt (y))

)2

]

+2nδ log(1/δ),

where p,µ range over all [0,1]-valued trees, x ranges over consistent trees, and the stochastic process y1, . . . , yn is

defined via yt |y1, . . . , yt−1 ∼Bernoulli(pt (y1, . . . , yt−1)).

To shorten the notation in Theorem 1, let Z =X × [0,1] and for every f ∈F
δ, write g f (z)= g f (x, a) = a − f (x).

The upper bound of Theorem 1 can be written more succinctly as

Vn(F δ) ≤ sup
z,p

E sup
f ∈Fδ

[
∑

t :pt (y)∈[δ,1−δ]

η(pt (y), yt )g f (zt (y))−
1

2
g f (zt (y))2

]

+2nδ log(1/δ). (4)

We keep in mind that the x part of z is a consistent tree. Observe that the expression above is a supremum of a

collection of random variables indexed by f ∈ F
δ, each with a nonpositive-mean. To analyze the supremum of

this stochastic process, we first consider the case when the indexing set is finite.

Lemma 2. For any set V consisting of [−1,1] valued trees, any [δ,1−δ]-valued tree p, and any c > 0,

Ey max
v∈V

[ n∑

t=1

η(pt (y), yt )vt (y)−cvt (y)2

]
≤

log |V |
δ log(1+ c

2 )

where yt |y1, . . . , yt−1 ∼Bernoulli(pt (y1, . . . , yt−1)). Furthermore, the same upper bound holds if p is any [0,1]-valued

tree but the summation is restricted to {t : pt (y) ∈ [δ,1−δ]}.

1We remark that in [14, 13, 10], the trees are defined with respect to {±1}-valued sequences, whereas here we use the {0,1}-valued variables.

The change is purely notational and all the definitions and results can be rephrased appropriately.
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The tight control of the expectation is possible because of the negative quadratic term that acts as a com-

pensator. On the downside, the upper bound displays the adverse 1/δ dependence. We now show a maximal

inequality when the quadratic term is not present. The bound is of a Bernstein type, with the sub-Gaussian and

sub-exponential behaviors. Crucially, the sub-Gaussian term scales with 1/
p
δ.

Lemma 3. For any set V consisting of [−1,1] valued trees, any [δ,1−δ]-valued tree p, and any c > 0,

Ey max
v∈V

[ n∑

t=1

η(pt (y), yt )vt (y)

]
≤ 5v̄

√
n log |V |

δ
+

2vmax log |V |
δ

where yt |y1, . . . , yt−1 ∼Bernoulli(pt (y1, . . . , yt−1)), v̄ = maxv∈V maxy ( 1
n

∑n
t=1 vt (y)2)1/2, and vmax = maxv∈V maxy |vt (y)|.

The same upper bound holds if p is any [0,1]-valued tree but the summation is restricted to {t : pt (y)∈ [δ,1−δ]}.

We now pass from a finite collection to an infinite one via the sequential chaining technique [14]. For this

purpose, we recall the definition of ℓp sequential covering numbers.

Definition 1 ([14]). A set V of R-valued trees of depth n is a (sequential) γ-cover (with respect to ℓp , p ≥ 1) of

G ⊆R
Z on a Z -valued tree z of depth n if

∀g ∈G , y ∈ {0,1}n , ∃v ∈V , s.t.

(
1

n

n∑

t=1

|vt (y)− g (zt (y))|p
)1/p

≤ γ. (5)

The size of the smallest γ-cover is denoted by Np (G ,γ,z). For p =∞, (5) becomes maxt |vt (y)− g (zt (y))| ≤ γ.

Theorem 4. Let G be a class of functions Z → [−1,1]. For any [0,1]-valued tree p, any Z -valued tree z, any K > 0,

and γ> 0,

Esup
g∈G

[
∑

t :pt (y)∈[δ,1−δ]

η(pt (y), yt )g (zt (y))−K g (zt (y))2

]

≤
1

δ

log N∞(G ,γ,z)

log(1+ K
8

)
+ inf

α(0,γ]

{
4nα

δ
+30

√
2n

δ

∫γ

α

√
logN∞(G ,ρ,z)dρ+

8

δ

∫γ

α
logN∞(G ,ρ,z)dρ

}

where the stochastic process y1, . . . , yn is defined via yt |y1, . . . , yt−1 ∼Bernoulli(pt (y1, . . . , yt−1)).

Theorem 4 is readily applied to the upper bound of Theorem 1 by identifying

G = {g f (z)= g f (x,µ) = µ− f (x) : f ∈F
δ,µ ∈R, x ∈X }

and zt (y) = (xt (y),µt (y)). It is immediate from the definition of a cover that for any µ, x, and z = (x,µ),

Np (F δ,x,α) =Np (G ,z,α). (6)

The lower bound of Lemma 10 (presented in Section 7) and the relation between the offset Rademacher com-

plexity and sequential fat-shattering dimension [14, 12] yield the next theorem.

Theorem 5. For the case of constant sets X1 =X2 = . . . =X , the following are equivalent:

• Minimax regret is sublinear: 1
n

Vn(F ) → 0 as n →∞

• Sequential dimension fatβ(F ,X ) is finite for all β> 0

Let us make a few remarks. First, the theorem can be easily extended to non-constant sets Xt , in which case

fatβ is defined with respect to consistent trees (as in the next section). Second, one may also phrase the equivalence

through sequential covering numbers, thanks to the relations outlined in [14, 12].

In summary, the sequential complexities we study are intrinsic to the problem of sequential probability assign-

ment (unlike, for instance, covering numbers with respect to the supremum norm on X — see Section 4 for an
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example). Yet, the upper bounds we derive do not quite match the lower bounds, due to the hard thresholding

approach and the need to balance nδ with Vn(F δ) at the end of the day. It is an open problem to close the gap

between the upper and lower bounds.

The upper bound of Theorem 4 is quantified as soon as we have control of sequential covering numbers. While

covering numbers could be computed directly in many situations, it is often simpler to upper bound a “scale-

sensitive dimension” of the class, defined in the next section. In Section 5 we present an example of such a simple

calculation.

3 Covering Numbers and Combinatorial Parameters

Suppose we can define a preorder ¹ on the set X (that is, a binary relation that is reflexive and transitive). We

say that an X -valued tree x of depth n is ordered if for any path y ∈ {0,1}n , it holds that xt (y) ¹ xt+1(y) for all

t = 1, . . . ,n −1. In this section we show that the combinatorial dimensions, covering numbers, and the associated

upper bounds in [14] can be extended to “respect” the preorder (of course, one can always define a vacuous relation

¹ and recover prior results).

Definition 2. A class F ⊂R
X shatters (at scaleβ > 0) an ordered X

′-valued tree of depth d if there exists aR-valued

witness tree s of depth d such that

∀y ∈ {0,1}d , ∃ f ∈F , s.t. (2yt −1)( f (xt (y))−st (y)) ≥β/2.

The largest depth of an ordered X
′-valued tree is denoted by fato

β(F ,X ′), where the superscript o stands for “or-

dered”.

The notion of the Littlestone’s dimension Ldim(F ,X ′) for {0, . . . ,k}-valued function classes extends in exactly

the same way to the case of ordered trees.

The main step in obtaining upper bounds on sequential covering numbers is the analogue of the Vapnik-

Chervonenkis-Sauer-Shelah lemma, proved in [14, 13]. We now show that if we ask for a β-cover on an ordered

tree x, the sequential covering numbers are controlled via the ordered version fato
β(F , Img(x)) of the fat-shattering

dimension in Definition 2.

Theorem 6 (Extension of Theorem 4 in [14]). Let F ⊆ {0, . . . ,k}X be a class of functions with fato
2(F ,X ) = d. Then

for any n > d and any ordered X -valued tree x,

N∞(F ,1/2,x) ≤
d∑

i=0

(
n

i

)

ki .

Hence, for a class G ⊆ [−1,1]X , for any β> 0,

N∞(G ,β,x) ≤
(

2en

β

)fato
β

(G ,X )

.

The following three sections are devoted to particular examples. We start by exhibiting a simple class for which

sequential covering numbers are small, yet the discretization with respect to the supremum norm (typically per-

formed to appeal to a finite-experts method) gives vacuous bounds.

4 Example: Consistent History

We would like to illustrate that sequential covering number can be much smaller than covering numbers with

respect to the supremum norm over X . Consider the particular case of Xt (h1:t−1) = {(y1, . . . , yt−1)}. Clearly, there

is only one consistent tree, namely the one defined by xt (y) = (y1, . . . , yt−1) for any t . In this case, the requirement

(5) in Definition 1 with class F
δ, consistent tree x, and p =∞ reads as

∀ f ∈F
δ, y ∈ {0,1}n , ∃v ∈V , s.t. |vt (y1:t−1)− f (y1:t−1)| ≤ γ. (7)

5



We contrast this with the definition in [4, Sec. 9.10], where the covering of F is done with respect to the following

pointwise metric (which we normalized by
p

n for uniformity):

d( f , g ) =

√
1

n

n∑

t=1

sup
y1:t

(
ℓ( f (y1:t−1), yt )−ℓ(g (y1:t−1), yt )

)2
. (8)

To illustrate a gap in the two covering-number approaches, construct a particular class F as follows. For each

element b ∈ {0,1}n , define fb by

fb(y1:t−1) =
1

4
1

{
b1:t−1 = y1:t−1

}
+

1

4

and take F = { fb : b ∈ {0,1}n }. In other words, on round t , expert fb predicts probability 1/2 if history coincides

with b1:t−1, and 1/4 otherwise. For two elements fb , fb′ ∈F , let κ(b,b′) = max{t : bt = b′
t } be the last time the two

sequences agree (defined as 0 if b1 6= b′
1). Then

n∑

t=1

sup
y1:t

(
ℓ( fb(y1:t−1), yt )−ℓ( fb′ (y1:t−1), yt )

)2 ≥
n∑

t=1

(
ℓ( fb(b1:t−1),1)−ℓ( fb′ (b1:t−1),1)

)2 ≥ (n−κ(b,b′)) log(2)2

and thus there are at least 2n/2 functions at a constant distance d( f , g ) ≥ c.

In contrast, consider sequential covering in the sense of (7) (and Definition 1). Take any y ∈ {0,1}n and fb ∈
F . The sequence of n values ( fb(;), fb(y1), . . . , fb (y1:t−1), . . . , fb (y1:n−1)) is equal to 1/2 until t = κ(b, y) and 1/4

afterwards. Let V be a set of n trees v1, . . . ,vn labeled by {1/4,1/2}. Each vi is defined as

∀y ∈ {0,1}n , t ∈ {1, . . . ,n}, vi
t (y) = (1/4)1 {t ≤ i −1}+1/4.

It is immediate that this set of n trees provides an exact cover of F (at scale 0) in the sense of Definition 1. This

leads to O(log(n)/n) bounds on minimax regret, while the discretization with respect to the supremum norm (8)

fails.

The above failure is endemic to approaches that attempt to discretize the set of experts before the prediction

process even started. In contrast, sequential complexities can be viewed as an analogue of “data-based” discretiza-

tion, which is known in statistical learning since the work of Vapnik and Chervonenkis in the 60’s.

5 Example: Monotonically Nondecreasing Experts

We consider an example of a nonparametric class analyzed in [4, p. 270]. Let f ∈ F be a set of experts such that

the forecasted probability does not decrease in time. To model this scenario in a general manner, we suppose that

the side information xt = (t , x′
t ) ∈N×X

′
t (x1:t−1, y1::t−1) contains the time stamp, and f (t +1, x′

t ) ≥ f (t , x′′
t ) for any

f ∈F . The particular case of static experts—with prediction depending only on t and no other side information—

has been considered in [4].

To invoke the results of the previous section, define a preorder on (t , x) ∈ X = N×X
′ according to the time

stamp: (t ,u) ¹ (s, v) for any t < s and u, v ∈ X
′. Suppose an ordered X -valued tree x of depth d is shattered,

according to Definition 2, with a witness tree s. We claim that the values of the witness tree must be increasing by

at least β along the path y = (1,1,1, . . .). Indeed, consider any t ≥ 1, and let y ′ = (y1:t ,0, yt+2:d ). By the definition

of shattering, there must be a function that satisfies f (xt (y ′)) ≥ st (y ′)+β/2 and f (xt+1(y ′)) ≤ st+1(y ′)−β/2. Since

f (xt (y ′)) ≤ f (xt+1(y ′)), we conclude that st (y) = st (y ′) ≤ st+1(y ′)−β= st+1(y)−β. Hence, st increases by at least β

along the path (1, . . . ,1) and thus d ≤ 1/β. This quick calculation gives fato
β(F ,X ) ≤ 1/β.

In view of Theorem 6,

logN∞(F δ,β,x) ≤ (1/β) log
(
2en/β

)

In view of (6), the same covering number estimate holds for G . Then Theorem 4 with α= 1/n and γ= n−a (with a

to be determined later) implies that ∫γ

α
logN∞(G ,ρ,z)dρ ≤C log2 n

6



is a lower order term, with C being an absolute constant. We also have

∫γ

α

√
logN∞(G ,ρ,z)dρ ≤C ′

√
logn ·γ1/2.

Now, ignoring constants and logarithmic terms, this gives the overall rate of

O
∗
(

1

δγ
+

√
nγ

δ

)
=O

∗ (
n1/3δ−2/3

)

for the minimax regret with respect to F
δ. The terms are balanced by choosing γ = n−1/3δ−1/3. The rate with

respect to F is then

O
∗ (

nδ+n1/3δ−2/3
)
=O

∗ (
n3/5

)

by choosing δ= n−2/5. This corresponds to the rate obtained by [4].

6 Example: Linear Prediction

In this section we consider the special case of X1 = . . . =Xn =X = B2 and

F = { f (x) = (〈w, x〉+1)/2 : w ∈ B2} (9)

where B2 is a unit Euclidean (or Hilbert) ball. Written as a function of w , the loss at time t is (up to an additive

constant log(2))

gt (w) =−1
{

yt = 1
}

log(1+〈w, xt 〉)−1
{

yt = 0
}

log(1−〈w, xt 〉). (10)

It is possible to estimate the sequential fatβ dimension of a unit Hilbert ball as fatβ = O
∗(1/β2), where the O

∗

notation ignores logarithmic factors. Then Theorem 4 gives an upper bound of

Vn(F δ) =O
∗ (

n1/2δ−1
)

,

and thus

Vn(F )=O
∗ (

n3/4
)

.

Below, we exhibit an algorithm that attains regret of O
∗ (

n1/2
)
, implying that the upper bounds obtained with our

technique are not always tight.

6.1 Algorithm: Regularization with Self-Concordant Barrier

To develop an algorithm for the problem, we turn to the field of online convex optimization. We observe that

functions gt defined in (10) are convex, but not strongly convex. Moreover, the gradients of gt (w) are not bounded.

We may consider a restricted set to mitigate the exploding gradient; however, a δ-shrinkage of the ball B2 still leaves

the gradient to be of size O(1/δ). A direct gradient descent method will give the suboptimal O(n3/4) upper bound

derived above in a non-constructive way. We also mention that while the functions are exp-concave, the upper

bounds for the Online Newton Step method [6] scale with the dimension of the space, which we assume to be large

or infinite.

We now present an algorithm based on self-concordant barrier regularization, which appears to be of an inde-

pendent interest. The algorithm answers the following question: can one obtain regret bounds for online convex

optimization in terms of the maximum of function values rather than gradients?

Consider the Follow-the-Regularized-Leader method

wt+1 = argmin
w∈B2

t∑

s=1

〈
∇gs(ws), w

〉
+η−1R(w) (11)

7



with the self-concordant barrier R(w) =− log(1−‖w‖2). In accordance with the protocol of the probability assign-

ment problem, we predict 〈wt , xt 〉 at round t after observing xt . It is shown in [2] that regret of (11) against any

w∗ ∈ B2 is

n∑

t=1

gt (wt )− gt (w∗) ≤ 2η
n∑

t=1

‖∇gt (wt )‖∗2
wt

+η−1R(w∗) (12)

as long as η satisfies η‖∇gt (wt )‖∗wt
≤ 1/4. Here, the local norm is defined as

‖h‖∗w =
√

hT(∇2R(w))−1h.

According to the lemma below, the local norm is bounded by a constant that is independent of the dimension:

Lemma 7. For any t, the local norm of ∇gt (wt ) is upper bounded by a constant:

‖∇gt (wt )‖∗wt
≤ 3.

Together with (12), Lemma 7 implies a regret bound of 18ηn+η−1R(w∗). Instead of taking w∗ at the boundary

of the ball where R(w∗) is infinite, we can evaluate regret against w = (1−1/n)w∗. For such a comparator, R(w) =
O(log n). By choosing η appropriately and using an argument similar to (2), we conclude that regret against any

w∗ ∈ B2 is upper bounded by

C
√

n log n.

Importantly, C is an absolute constant that does not depend on the dimension of the problem. This rate is opti-

mal up to polylogarithmic factors. The optimality follows from Lemma 10 below and an estimate on sequential

covering number of a Hilbert ball [11, 12].

Lemma 8. For the linear class in (9),

Vn(F ) =Θ
∗(n1/2).

The proof of Lemma 7 relied heavily on the ability to calculate the gradient of the loss function and match

it to the inverse Hessian of the self-concordant barrier. We now give an alternative proof based on a simple and

charming, yet unexpected lemma due to Nesterov (see Appendix for the short proof):

Lemma 9 (Lemma 4 in [8]). Let ψ be concave and positive on int K . Then for any x ∈ int K we have

‖∇ψ(x)‖∗x ≤ψ(x).

The lemma allows us to upper bound regret in an online convex optimization problem if we only know that

the values of the functions (and not the gradients) are bounded. Consider the FTRL algorithm (11), but over the

shrunk ball (1−1/n)B2 . Suppose we can ensure 0 < gt < A. Then A − gt is concave and positive. Hence, by above

lemma

‖∇gt (wt )‖∗wt
= ‖∇(A− gt (wt ))‖∗wt

≤ A− gt (wt ) ≤ A

which provides an alternative to the bound of Lemma 7. Regret is then upper bounded by

n∑

t=1

gt (wt )−
n∑

t=1

gt (w∗) ≤ 2ηn A2 +η−1R(w∗)

Crucially, by employing self-concordant regularization, we avoid paying for a large gradient of cost functions at the

boundary of the set. Over the shrunk set (1−1/n)B2 , we ensure that the values of functions gt are upper bounded

by A = O(logn) even if the gradients blow up linearly with n. This surprising observations leads to a dimension-

independent O(
p

n logn) regret bound for the Euclidean ball, and can also be used for other convex bodies and

non-logarithmic loss functions when the closed-form analysis of Lemma 7 is not available.
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7 A Lower Bound

In this section, we show that the offset sequential Rademacher complexity serves as a lower bound on the minimax

regret. Hence, the complexities of the class F of experts are intrinsic to the problem. We refer to [12] for further

lower bounds on the offset Rademacher complexity via the scale-sensitive dimension and sequential covering

numbers.

Lemma 10. The following lower bound holds:

Vn(F )+1≥ sup
x

Ey

[

sup
f ∈F 1/n

{ n∑

t=1

2(2yt −1)( f (xt (y))−1/2)−4(log n)( f (xt (y))−1/2)2

}]

where y1, . . . , yn are independent with distribution Bernoulli(1/2) and the supremum is taken over consistent trees

with respect to constraints Xt .

Proof of Lemma 10. To prove the lower bound, we proceed as in [12]. First, we observe that (2) holds in the other

direction too:

Vn(F δ) ≤Vn(F )+nδ. (13)

To see this, note that any f only loses from thresholding when either f (xt ) > 1−δ and yt = 1, or when f (xt ) < δ

and yt = 0. In both cases, the difference in logarithmic loss is at most − log(1−δ) ≤ δ for δ< 1/2. For the purposes

of a lower bound, we take δ= 1/n and turn to lower-bounding Vn(F 1/n).

As in the development leading to (25) in the proof of the upper bound, the minimax value Vn(F 1/n) is equal to

⟪sup
xt

sup
pt∈[0,1]

Eyt⟫
n

t=1

[

sup
f ∈F 1/n

{
n∑

t=1

inf
ŷt∈[0,1]

Eyt

[
ℓ(ŷt , yt )

]
−

n∑

t=1

ℓ( f (xt ), yt )

}]

(14)

which, by the self-information property of the loss equal to

⟪sup
xt

sup
pt∈[0,1]

Eyt⟫
n

t=1

[

sup
f ∈F 1/n

{ n∑

t=1

Eyt

[
ℓ(pt , yt )

]
−

n∑

t=1

ℓ( f (xt ), yt )

}]

(15)

By the linearity of expectation (and since the terms Eyt

[
ℓ(pt , yt )

]
do not involve f ), we have

Vn(F 1/n) =⟪sup
xt

sup
pt∈[0,1]

Eyt⟫
n

t=1

[

sup
f ∈F 1/n

{ n∑

t=1

ℓ(pt , yt )−
n∑

t=1

ℓ( f (xt ), yt )

}]

. (16)

We now pass to the first lower bound by choosing pt = 1/2 for all t .

Consider the case yt = 1 and expand the loss function around pt = 1/2 for z ∈ [1/n,1]:

ℓ(1/2,1)−ℓ(z,1) =− log(1/2)− (− log(z))= 2(z −1/2)−R(z) (17)

where R(z) is the remainder. We claim that the remainder can be upper bounded by a quadratic over the interval

[1/n,1]. To this end, consider the function

g (z)=−2z + (1+ log(2))+4(logn)(z −1/2)2

and note that the derivative and the value of this function at 1/2 coincide with the derivative and the value of

− log(z) at the same point. We claim that g (z) dominates − log(z) on [1/n,1]. For z > 1/2, this follows from

g ′ > (− log)′. The same argument holds for the interval [1/log(n),1/2]. Now, at z = 1/n, g (z) > − log(z) and

|g ′(z)| < | log(z)′|. The derivative relation continues to hold on the interval [1/n,c/log(n)] for large enough c, es-

tablishing g >− log on this interval too. The remaining interval [c/log(n),1/log(n)] is easily checked by the direct

computation of function value. In sum, the remainder in (17) can be upper bounded by R(z) ≤ 4(log n)(z −1/2)2.

9



The case of yt = 0 is exactly analogous, and we obtain

ℓ(pt , yt )−
n∑

t=1

ℓ( f (xt ), yt ) ≥ 2
[

1
{

yt = 1
}

( f (xt )−1/2)+1
{

yt = 0
}

(− f (xt )+1/2)
]
−4(log n)( f (xt )−1/2)2 (18)

= 2
[

yt ( f (xt )−1/2)+ (1− yt )(− f (xt )+1/2)
]
−4(log n)( f (xt )−1/2)2 (19)

= 2(2yt −1)( f (xt )−1/2)−4(log n)( f (xt )−1/2)2. (20)

The lower bound in (21) then becomes

Vn (F 1/n) ≥⟪ sup
xt∈Xt (x1:t−1 ,y1:t−1)

Eyt⟫
n

t=1

[

sup
f ∈F 1/n

{ n∑

t=1

2(2yt −1)( f (xt )−1/2)−4(log n)( f (xt )−1/2)2

}]

(21)

= sup
x

Ey

[

sup
f ∈F 1/n

{ n∑

t=1

2(2yt −1)( f (xt (y))−1/2)−4(log n)( f (xt (y))−1/2)2

}]

(22)

where y1, . . . , yn are independent with distribution Bernoulli(1/2).

8 Discussion and Open Questions

At the very first step, the analysis in this paper thresholds the class F to avoid dealing with the exploding gradient

of the loss function. The authors believe that this “hard thresholding” approach is the source of sub-optimality, and

that “smooth” approaches should be possible. When the class of functions has a specific structure, such as in the

example of Section 6, the exploding gradient can be mitigated in a “smooth way” by a regularization technique. It is

not clear to the authors how to perform the “smooth thresholding” analysis when such a structure is not available.

Another interesting venue of investigation is the development of algorithms. It has been shown that the mini-

max analysis, of the type performed in this paper, can be made constructive [9, 12, 10]. It appears that the relaxation

approach may yield new (and possibly computationally efficient) methods for sequential probability assignment

and data compression.

A Proofs

Proof of Theorem 1. Let us use the shorthand D = [δ,1−δ]. The value Vn(F δ) can be upper bounded by

⟪sup
xt

inf
ŷt∈D

sup
pt∈[0,1]

Eyt∼pt⟫
n

t=1

{
n∑

t=1

ℓ(ŷt , yt )− inf
f ∈Fδ

n∑

t=1

ℓ( f (xt ), yt )

}

(23)

simply because each infimum is taken over a smaller set. Henceforth, it will be understood that xt ranges over

Xt (x1:t−1, y1:t−1). The expression in (23) is equal to

⟪sup
xt

sup
pt∈[0,1]

Eyt⟫
n

t=1

{
n∑

t=1

inf
ŷt∈D

Eyt

[
ℓ(ŷt , yt )

]
− inf

f ∈Fδ

n∑

t=1

ℓ( f (xt ), yt )

}

(24)

by an argument that can be found in [1, 13]. Here, it is understood that yt is a Bernoulli random variable with

distribution pt . Taking the infimum outside the negative sign, the above quantity is equal to

⟪sup
xt

sup
pt ∈[0,1]

Eyt⟫
n

t=1

[

sup
f ∈Fδ

{
n∑

t=1

inf
ŷt∈D

Eyt

[
ℓ(ŷt , yt )

]
−

n∑

t=1

ℓ( f (xt ), yt )

}]

(25)

We now claim that each infimum in (25) is achieved at ŷt = τδ(pt ). Indeed, this follows because the unconstrained

minimizer over [0,1] is pt by the well-known property of entropy:

argmin
ŷt∈[0,1]

Eyt

[
ℓ(ŷt , yt )

]
= argmin

ŷt∈[0,1]

{
−pt log(ŷt )− (1−pt ) log(1− ŷt )

}
= pt .
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We conclude that (25) is equal to

⟪sup
xt

sup
pt∈[0,1]

Eyt⟫
n

t=1

[

sup
f ∈Fδ

{ n∑

t=1

Eyt

[
ℓ(τδ(pt ), yt )

]
−

n∑

t=1

ℓ( f (xt ), yt )

}]

. (26)

Now, the terms in the first sum do not depend on f ∈ F , and thus can pass through the multiple infima and

suprema. By linearity of expectation, (26) is equal to

⟪sup
xt

sup
pt ∈[0,1]

Eyt⟫
n

t=1

[

sup
f ∈Fδ

{ n∑

t=1

ℓ(τδ(pt ), yt )−
n∑

t=1

ℓ( f (xt ), yt )

}]

(27)

We now separately deal with the case that pt ∉D. To this end, observe that

1
{

pt < δ
}

(ℓ(τδ(pt ), yt )−ℓ( f (xt ), yt )) = 1
{

pt < δ, yt = 0
}

(ℓ(δ, yt )−ℓ( f (xt ), yt ))

+1
{

pt < δ, yt = 1
}

(ℓ(δ, yt )−ℓ( f (xt ), yt ))

≤ 1
{

pt < δ, yt = 1
}

(ℓ(δ,1)−ℓ( f (xt ),1))

≤−1
{

pt < δ, yt = 1
}

logδ

The first inequality is obtained by dropping the non-positive term. Indeed, pt < δ gives higher odds to the outcome

yt = 0 than f (xt ) ≥ δ. Positivity of ℓ gives the second inequality. A similar calculation gives

1
{

pt > 1−δ
}

(ℓ([pt ], yt )−ℓ( f (xt ), yt )) ≤−1
{

pt > 1−δ, yt = 0
}

logδ

Substituting into (27), we obtain an upper bound of

⟪sup
xt

sup
pt∈[0,1]

Eyt⟫
n

t=1

[

sup
f ∈Fδ

{ n∑

t=1

1
{

pt ∈D
}

(ℓ(τδ(pt ), yt )−ℓ( f (xt ), yt ))−1
{

pt < δ, yt = 1
}

logδ−1
{

pt > 1−δ, yt = 0
}

logδ

}]

Since

Eyt∼pt 1
{

pt < δ, yt = 1
}

log(1/δ) ≤ δ log(1/δ),

and since 1
{

pt ∈D
}

(ℓ(τδ(pt ), yt ) = 1
{

pt ∈D
}

(ℓ(pt , yt ), we conclude that the minimax value Vn(F δ) is upper

bounded by

⟪sup
xt

sup
pt ∈[0,1]

Eyt⟫
n

t=1

[

sup
f ∈Fδ

{ n∑

t=1

1
{

pt ∈D
}

(ℓ(pt , yt )−ℓ( f (xt ), yt ))

}]

+2nδ log(1/δ). (28)

We now linearize the terms ℓ(pt , yt )−ℓ( f (xt ), yt ). The derivative of ℓ(·, yt ) at pt is

ℓ′(pt , yt ) =−1
{

yt = 1
} 1

pt
+1

{
yt = 0

} 1

1−pt
.

Observe that the second derivative ℓ′′(·, yt ) ≥ 1, and hence ℓ(·, yt ) is strongly convex, for either value of yt . Strong

convexity implies that

ℓ(pt , yt )−ℓ( f (xt ), yt ) ≤ℓ′(pt , yt ) · (pt − f (xt ))−
1

2
(pt − f (xt ))2

and thus (28) is upper bounded by

⟪sup
xt

sup
pt∈[0,1]

Eyt⟫
n

t=1

[

sup
f ∈Fδ

∑

t :pt ∈D

ℓ′(pt , yt ) ·
(
pt − f (xt )

)
−

1

2
(pt − f (xt ))2

]

+2nδ log(1/δ). (29)
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Observe that the derivatives are mean-zero:

Eyt∼pt ℓ
′(pt , yt ) = E

[
−1

{
yt = 1

} 1

pt
+1

{
yt = 0

} 1

1−pt

]
= 0, (30)

which suggests that we can symmetrize these terms as in [11, 12]. The key observation is that tighter control on

the supremum over F will be obtained if we keep the derivatives to have a non-uniform distribution given by pt .

Let us drop the term 2nδ log(1/δ) in (29) and concentrate on the first term. Consider the following upper

bound:

⟪sup
xt

sup
pt∈[0,1]

Eyt⟫
n

t=1

[

sup
f ∈Fδ

∑

t :pt ∈D

ℓ′(pt , yt ) ·
(
pt − f (xt )

)
−

1

2
(pt − f (xt ))2

]

≤⟪sup
xt

sup
pt ,p′

t∈[0,1]

Eyt∼p′
t
⟫n

t=1

[

sup
f ∈Fδ

∑

t :pt ∈D

ℓ′(pt , yt ) ·
(
p ′

t − f (xt )
)
−

1

2
(pt − f (xt ))2

]

(31)

This upper bound holds because the supremum allows the choice pt = p ′
t in addition to distinct choices for the

two distributions.

We now pass to the tree notation. Observe that the optimal choice of xt , pt , p ′
t depends on (y1, . . . , yt−1) ∈

{0,1}t−1. In the functional form, let x be a sequence of mappings x1 , . . . ,xn with the consistency property xt (y1, . . . , yt−1) ∈
Xt (x1(y), . . . ,xt−1(y), y1:t−1) for all y1:t−1. Similarly, let µ and p be sequences of mappings with µt ,pt : {0,1}t−1 →
[0,1]. With the same reasoning as in [13], we can write (31) as

sup
x,µ,p

E sup
f ∈Fδ

[
∑

t :pt (y)∈D

ℓ′(pt (y), yt )
(
µt (y)− f (xt (y))

)
−

1

2

(
µt (y)− f (xt (y))

)2

]

where yt ’s in {0,1} are drawn from p. More specifically, y1 ∼ p1 and subsequently yt ∼ pt (y1:t−1).

Proof of Lemma 2.

Esup
v∈V

[ n∑

t=1

η(pt (y), yt )vt (y)−cvt (y)2

]
= E inf

λ>0

1

λ
log

(
∑

v∈V

exp

(
λ

n∑

t=1

η(pt (y), yt )vt (y)−cvt (y)2

))

≤ inf
λ>0

1

λ
log

(
∑

v∈V

E

n∏

t=1

exp
(
λ

(
η(pt (y), yt )vt (y)−cvt (y)2

))
)

. (32)

Let X be a zero-mean random variable taking on a value −v/p with probability p and v/(1− p) with probability

(1−p), where δ< p < 1/2 and |v | ≤ 1. From the fact that (ex − x −1)/x2 is a non-decreasing function and |X | < 1/δ

almost surely, it follows that

eλX −λX −1 ≤ δ2X 2
(
eλ/δ−λ/δ−1

)
.

Taking expectation over X and upper bounding the variance EX 2 ≤ 2p(v/p)2 ≤ 2v2/δ,

EeλX −1 ≤ 2v2δ
(
eλ/δ−λ/δ−1

)
.

Using 1+ x ≤ ex ,

EeλX ≤ exp
{

2v2δ
(
eλ/δ−λ/δ−1

)}
.

Applying the above derivation,

E
[
exp

(
λ

(
η(pt (y), yt )vt (y)−cvt (y)2

)) ∣∣ y1, . . . , yt−1

]
= exp

(
−λcvt (y)2

)
×E

[
exp

(
λη(pt (y), yt )vt (y)

) ∣∣ y1, . . . , yt−1

]

≤ exp
(
−λcvt (y)2

)
×exp

{
2vt (y)2δ

(
eλ/δ−λ/δ−1

)}

= exp

(
2δ vt (y)2

(
e

λ
δ −1−

(
1+

c

2

) λ
δ

))
.
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Choosing λ= log(1+ c
2 )δ we ensure that

(
e

λ
δ −1− (2+c)λ

2δ

)
< 0 and

E
[
exp

(
λ

(
η(pt (y), yt )vt (y)−cvt (y)2

)) ∣∣ y1, . . . , yt−1

]
≤ 1.

Iterating the argument from t = n down to t = 1 in (32), we obtain

Esup
v∈V

[ n∑

t=1

η(pt (y), yt )vt (y)−cvt (y)2

]
≤

log |V |
δ log(1+ c

2
)

.

The case when p is [0,1]-valued, but the summation is taken only over {t : pt (y) ∈ [δ,1−δ]}, follows immediately

through the same argument.

Proof of Lemma 3. Both sides of the inequality in the statement of the Lemma are homogenous with respect to

vmax, and so we can assume vmax = 1 and rescale the problem. We have

Ey max
v∈V

[ n∑

t=1

η(pt (y), yt )vt (y)

]
≤ inf

λ>0

{
1

λ
log

∑

v∈V

Eexp

(
λ

n∑

t=1

η(pt (y), yt )vt (y)

)}

≤ inf
λ>0

{
log |V |

λ
+max

v∈V

1

λ
logEexp

(
λ

n∑

t=1

η(pt (y), yt )vt (y)

)}
. (33)

As shown in the proof of Lemma 2, if X is a zero-mean random variable taking on a value −v/p with probability p

and v/(1−p) with probability (1−p), where δ< p < 1/2 and |v | ≤ 1, then

logEeλX ≤ 2v2δφ(λ/δ)

where φ(x) = ex − x −1. Hence,

E

[
exp

(
λ

n∑

t=1

η(pt (y), yt )vt (y)

) ∣∣∣∣y1, . . . , yn−1

]
≤ exp

(

λ
n−1∑

t=1

η(pt (y), yt )vt (y)

)

×E
[
exp

(
λη(pn(y), yn)vn(y)

) ∣∣y1, . . . , yn−1

]

≤ exp

(

λ
n−1∑

t=1

η(pt (y), yt )vt (y)

)

×exp

{
2δφ(λ/δ)max

yn−1
vn(y)2

}

For yn−1, we proceed in a similar fashion:

E

[

exp

(

λ
n−1∑

t=1

η(pt (y), yt )vt (y)

)

×exp

{
2δφ(λ/δ)max

yn−1
vn(y)2

} ∣∣∣∣∣y1, . . . , yn−2

]

≤ exp

(

λ
n−2∑

t=1

η(pt (y), yt )vt (y)

)

×E

[
exp

{
λη(pn−1(y), yn−1)vn−1(y)+2δφ(λ/δ)max

yn−1
vn(y)2

} ∣∣∣∣y1, . . . , yn−2

]

≤ exp

(

λ
n−2∑

t=1

η(pt (y), yt )vt (y)

)

×exp

{
2δφ(λ/δ)vn−1(y)2 +2δφ(λ/δ)max

yn−1
vn(y)2

}

≤ exp

(

λ
n−2∑

t=1

η(pt (y), yt )vt (y)

)

×exp

{
2δφ(λ/δ) max

yn−2 ,yn−1

{
vn−1(y)2 +vn(y)2

}}

Unrolling the expression to t = 1 we obtain

logE

[
exp

(
λ

n∑

t=1

η(pt (y), yt )vt (y)

)]
≤ 2δφ(λ/δ)nv̄2

where v̄2 = maxv∈V maxy
1
n

∑n
t=1 vt (y)2. In view of (33), we get

Ey max
v∈V

[ n∑

t=1

η(pt (y), yt )vt (y)

]
≤ inf

λ>0

{
log |V |

λ
+

2δφ(λ/δ)nv̄2

λ

}
. (34)
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First, consider the case δ≥ log |V |
4nv̄2 . Then the choice λ= 1

2

√
δ log |V |

nv̄2 ensures λ≤ δ. In this case, φ(λ/δ) can be upper

bounded by a quadratic φ(λ/δ) ≤ (λ/δ)2 ·e. The upper bound in (34) becomes

log |V |
λ

+
2e(λ/δ)2δnv̄2

λ
≤ (2+e)

√
nv̄2 log |V |

δ
.

On the other hand, if δ< log |V |
4nv̄2 , the upper bound in (34) becomes

inf
λ>0

{
log |V |

λ
+

2log |V |φ(λ/δ)

4λ

}
.

Choosing λ = δ yields an upper bound of
2log |V |

δ . Combining the two cases, we arrive at the statement of the

Lemma.

Proof of Theorem 4. Let us use the shorthand D = [δ,1−δ]. Let V ′ be a sequential γ-cover of G on z in the ℓ∞
sense, i.e.

∀y ∈ {0,1}n , ∀g ∈G , ∃v ∈V ′ s.t. |g (zt (y))−vt (y)| ≤ γ.

Of course, an ℓ∞ cover is also an ℓ2 cover at the same scale. Let us augment V ′ to include the all-zero tree, and

denote the resulting set by V =V ′∪ {0}. Denote by v[ǫ, g ] a γ-close tree promised above. We have

Esup
g∈G

[
∑

t :pt (y)∈D

η(pt (y), yt )g (zt (y))−K g (zt (y))2

]

(35)

= Esup
g∈G

[
∑

t :pt (y)∈D

η(pt (y), yt )
(
g (zt (y))−v[y, g ]t (y)

)
−K

(
g (zt (y))2 −

1

4
v[y, g ]t (y)2

)
(36)

+
(
η(pt (y), yt )v[y, g ]t (y)−

K

4
v[y, g ]t (y)2

)]
(37)

≤ Esup
g∈G

[
∑

t :pt (y)∈D

η(pt (y), yt )
(
g (zt (y))−v[y, g ]t (y)

)
−K

(
g (zt (y))2 −

1

4
v[y, g ]t (y)2

)]

(38)

+Emax
v∈V ′

[
∑

t :pt (y)∈D

η(pt (y), yt )vt (y)−
K

4
vt (y)2

]

(39)

We now claim that for any y and g there exists an element v[y, g ] ∈V such that

n∑

t=1

g (zt (y))2 ≥
1

4

n∑

t=1

v[y, g ]t (y)2 (40)

and so we can drop the corresponding negative term in the supremum over G . First consider the easy case
1
n

∑n
t=1 g (zt (ǫ))2 ≤ γ2. Then we may choose 0 ∈V as a tree that provides a sequential γ-cover in the ℓ2 sense. Clearly,

(40) is then satisfied with this choice of v[ǫ, g ] = 0. Now, assume 1
n

∑n
t=1 g (zt (ǫ))2 > γ2. Fix any tree v[ǫ, g ] ∈V that

is γ-close in the ℓ2 sense to g on the path ǫ. Denote u = (v[ǫ, g ]1(ǫ), . . . ,v[ǫ, g ]n (ǫ)) and h = (g (z1(ǫ)), . . . , g (zn(ǫ))).

Thus, we have that ‖u−h‖ ≤ γ and ‖h‖ ≥ γ for the norm ‖h‖2 = 1
n

∑n
t=1 h2

t . Then

‖u‖ ≤ ‖u−h‖+‖h‖ ≤ γ+‖h‖ ≤ 2‖h‖

and thus ‖h‖ ≥ 1
2
‖u‖ as desired. We conclude that

Esup
g∈G

[
∑

t :pt (y)∈D

η(pt (y), yt )g (zt (y))−K g (zt (y))2

]

(41)

≤ Esup
g∈G

[
∑

t :pt (y)∈D

η(pt (y), yt )
(
g (zt (y))−v[y, g ]t (y)

)]

+Emax
v∈V ′

[
∑

t :pt (y)∈D

η(pt (y), yt )vt (y)−
K

4
vt (y)2

]
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By Lemma 2, the second term is upper bounded by

log N∞(G ,γ,z)

δ log(1+ K
8 )

As for the second term, we note that conditionally on y1, . . . , yt−1, the random variable η(pt (y), yt ) is zero-mean.

Let us proceed with the chaining technique. To this end, let v[g , y] j ∈V j be an element of a γ2− j -cover of g ∈G .

Esup
g∈G

[
∑

t :pt (y)∈D

η(pt (y), yt )
(
g (zt (y))−v[y, g ]t (y)

)]

(42)

≤
N∑

j=1

Esup
g∈G

[
∑

t :pt (y)∈D

η(pt (y), yt )
(
v[y, g ]

j
t (y)−v[y, g ]

j−1
t (y)

)]

(43)

+Esup
g∈G

[
∑

t :pt (y)∈D

η(pt (y), yt )
(
g (zt (y))−v[y, g ]N

t (y)
)]

(44)

For the last term we use the Cauchy-Schwartz inequality: for any y and g ∈G ,

∑

t :pt (y)∈D

η(pt (y), yt )
(
g (zt (y))−v[y, g ]N

t (y)
)
≤

(
∑

t :pt (y)∈D

η(pt (y), yt )2

)1/2 (
∑

t :pt (y)∈D

(
g (zt (y))−v[y, g ]N

t (y)
)2

)1/2

(45)

≤
1

δ
nγ2−N (46)

Further, for any j = 1, . . . , N ,

Esup
g∈G

[
∑

t :pt (y)∈D

η(pt (y), yt )
(
v[y, g ]

j
t (y)−v[y, g ]

j−1
t (y)

)]

≤ E max
w∈W j

[
∑

t :pt (y)∈D

η(pt (y), yt )wt (y)

]

where W j is defined as the set of difference trees, defined as follows. For each pair v′ ∈ V j ,v′′ ∈ V j−1, let w be

defined for each path (y1, . . . , yn ) ∈ {0,1}n and t ∈ {1, . . . ,n} as

wt (y)=
{

v′t (y)−v′′t (y), if exists (y ′
t , . . . , y ′

n ) s.t. ∃g ∈G s.t. v′ = v[g , ȳ] j ,v′′ = v[g , ȳ] j−1, ȳ = (y1, . . . , yt−1, y ′
t , . . . , y ′

n )

0 otherwise
.

In other words, w is defined for each element of the tree as the difference between two trees if there is continuation

of the path on which the two trees are indeed covering elements for some g ∈ G , and 0 if no such continuation

exists. Then W j is defined as the collection of all such trees w obtained by pairing up all choices of trees from V j

and V j−1. Clearly, the size |W j | ≤ |V j |× |V j−1| ≤ |V j |2.

We now use the result of Lemma 3:

E max
w∈W j

[
∑

t :pt (y)∈D

η(pt (y), yt )wt (y)

]

≤ 5v̄

√
log |W j |

δ
+

2vmax log |W j |
δ

. (47)

with v̄ = maxw,y (
∑n

t=1 wt (y)2)1/2 and vmax = maxw,y |wt (y)|. We over-bound v̄ by vmax in the arguments below. By

construction of each w ∈ W j , the ℓ2 norm along any path is upper bounded by 3
p

nγ2− j (see [14]). We conclude

that

E max
w∈W j

[
∑

t :pt (y)∈D

η(pt (y), yt )wt (y)

]

≤ 15

√
2n

δ
(γ2− j )

√
log |V j |+

4(γ2− j ) log |V j |
δ

.

Observe that

N∑

j=1

γ2− j
√

log |V j | = 2
N∑

j=1

(γ2− j −γ2−( j+1))

√
logN∞(G ,γ2− j ,z) (48)

≤ 2

∫γ

γ2−(N+1)

√
logN∞(G ,ρ,z)dρ (49)
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and similarly

N∑

j=1

γ2− j log |V j | ≤ 2

∫γ

γ2−(N+1)
logN∞(G ,ρ,z)dρ. (50)

Fix α ∈ (0,γ) and let N = max{ j : γ2− j > 2α}. Then γ2−(N+1) ≤ 2α and γ2−N ≤ 4α. Combining all the bounds,

Esup
g∈G

[
∑

t :pt (y)∈D

η(pt (y), yt )
(
g (zt (y))−v[y, g ]t (y)

)]

(51)

≤ inf
α(0,γ]

{
4nα

δ
+30

√
2n

δ

∫γ

α

√
logN∞(G ,ρ,z)dρ+

8

δ

∫γ

α
logN∞(G ,ρ,z)dρ

}

(52)

The statement of the theorem follows by combining the two upper bounds for (41).

Proof of Theorem 6. The proof closely follows the one in [14, Thm. 4], and we refer to that paper for the missing

details. Define the function gk (d ,n) =
∑d

i=0

(n
i

)
ki for n ≥ 1 and d ≥ 0, and note the recursion

gk (d ,n−1)+kgk (d −1,n−1) = gk (d ,n).

We proceed by induction on (n,d). The base of the induction is the same as in the proof of [14, Thm. 4]. For

the induction step, fix an ordered X -valued tree x of depth n and suppose fato
2(F ,X ) = d . Define the parti-

tion F = ∪k
i=1

Fi according to Fi = { f : f (x1) = i }. For the sake of contradiction, suppose fato
2(Fi , Img(x)) =

fato
2 (F j , Img(x)) = d for some j − i ≥ 2. Then there exists two Img(x)-valued ordered trees w and v of depth

d that are 2-shattered by Fi and F j , respectively. Crucially, x1 cannot appear in either of these trees (that is,

x1 ∉ Img(w) ∪ Img(v)) because functions in Fi (resp., F j ) are constant on x1. Furthermore, x1 ¹ a for any a ∈
Img(w)∪ Img(v). Hence, by joining w and v with x1 at the root, we obtain an ordered tree which is now 2-shattered.

The witness of this shattering is constructed by joining the two witnesses (for w and v) and (i + j )/2 at the root.

This leads to a contradiction. The rest of the proof follows exactly as in [14, Thm. 4].

Proof of Lemma 7. The gradient of gt at wt is

∇gt (wt )=−1
{

yt = 1
} xt

1+〈wt , xt 〉
+1

{
yt = 0

} xt

1−〈wt , xt 〉

and the Hessian of the barrier as

∇2R(wt ) =
2

1−‖wt‖2
I +

4

(1−‖wt‖2)2
wt wT

t .

By rotational invariance, for the following calculation we may assume without loss of generality that wt = ae1 is in

the direction of the basis vector e1 and a > 0. We can then write the inverse (see [2]) as

∇2R(wt )−1 =
1

2
(1−a2)(I −e1eT

1 )+
(1−a2)2

2(1−a2)+4
e1eT

1 ¹ (1−a)(I −e1eT

1 )+
2

3
(1−a)2e1eT

1 .

Consider the case yt = 0 (the analysis for yt = 1 follows the same lines). Let us write xt = be1+y with
〈

y,e1

〉
= 0 and

‖y‖2 ≤ 1−b2. We have

∇gt (wt )=
xt

1−〈wt , xt 〉
=

be1 +y

1−ab
.

and

∇gt (wt )T∇2R(wt )−1∇gt (wt ) ≤
b2

(1−ab)2
· (1−a)2 +

1−b2

(1−ab)2
· (1−a)

If b ≤ 0, the above expression is upper bounded by 2, and for b > 0, the expression is upper bounded by 3 (we did

not optimize the constants).
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Proof of Lemma 9. We reproduce the proof from [8] for completeness. Let x ∈ int K and r ∈ [0,1). Let

y = x −
r

‖∇ψ(x)‖∗x
[∇2F (x)]−1∇ψ(x).

Then y ∈ intK because the Dikin ellipsoid is contained in the set. Hence,

0 ≤ψ(y) ≤ψ(x)+
〈
∇ψ(x), y − x

〉
=ψ(x)− r‖∇ψ(x)‖∗x .

Statement follows because r is arbitrary in [0,1).
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