
No Internal Regret via Neighborhood Watch

Dean Foster
Department of Statistics
University of Pennsylvania

Alexander Rakhlin
Department of Statistics
University of Pennsylvania

August 30, 2011

Abstract

We present an algorithm which attains O(
√
T) internal (and thus external) regret for finite games

with partial monitoring under the local observability condition. Recently, this condition has been shown
by Bartók, Pál, and Szepesvári [4] to imply the O(

√
T) rate for partial monitoring games against an i.i.d.

opponent, and the authors conjectured that the same holds for non-stochastic adversaries. Our result
is in the affirmative, and it completes the characterization of possible rates for finite partial-monitoring
games, an open question stated by Cesa-Bianchi, Lugosi, and Stoltz [6]. Our regret guarantees also hold
for the more general model of partial monitoring with random signals.

1 Introduction

Imagine playing a repeated zero-sum game against an opponent (column player) where the loss is defined by
a given matrix L ∈ RN×M . Unlike the classical full-information scenario, however, we (the row player) do not
observe the moves of the opponent and instead receive some signal given by the known matrix H ∈ ΣN×M

defined over some alphabet Σ. Specifically, for the choices i and j of the row and column players, the row
player observes the signal Hi,j . Neither the move of the opponent nor the incurred loss Li,j is observed by
the row player. In this paper, we are concerned with rates for external and internal regret achievable in this
scenario.

The question of characterizing such rates in terms of the matrices L and H has been raised by Cesa-
Bianchi, Lugosi, and Stoltz [6]. Under a linear dependence between the matrices L and H, the authors
proved O(T 2/3) rates for external regret, yet noted that there exist games with the Θ(

√
T) behavior (e.g.

the so-called bandit feedback games where L = H). Similar distinction in available rates also appears to hold
for internal regret: an O(T 2/3) upper bound was shown in [6], while the rate of O(

√
T) is achievable for

bandit feedback by the result of Blum and Mansour [5].
Recently, Bartók, Pál, and Szepesvári in [3, 4] made key insights into the problem of partial monitoring. In

particular, [4] characterized the rates for external regret against an i.i.d. (stochastic) opponent. The authors
showed that rates can only be one of Θ(1),Θ(

√
T),Θ(T 2/3) and Θ(T), and that a so-called local observability

condition plays a key role in determining this growth behavior. In the non-stochastic (adversarial) case,
however, no general characterization is available to date, with the notable exception of games with two
adversarial actions [3]. As suggested by [4], to provide a complete characterization for external regret
against non-stochastic opponents, it would be enough to show an upper bound of O(

√
T) under the local

observability condition. The characterization would follow because [4] proves a Ω(T 2/3) lower bound when
local observability does not hold (yet the game is not hopeless with Ω(T) regret) and the upper bound of
O(T 2/3) is achieved by the algorithm of Piccolboni and Schindelhauer [10] through the analysis of [6].

This paper presents an algorithm, Neighborhood Watch, with an upper bound of O(
√
T) for both internal

and external regret against a non-stochastic opponent under the local observability condition. Together with
the results mentioned above, this completes the characterization for both internal and external regret. It is

1

ar
X

iv
:s

ub
m

it/
03

08
56

0
 [

cs
.L

G
]

 3
0

A
ug

 2
01

1

remarkable that the condition of local observability that characterizes games against a stochastic environment
also characterizes games against non-stochastic opponents.

We now summarize our approach. First, we define a notion of local internal regret which postulates that
the player does not benefit by switching any of its actions to a neighboring action. The neighbor relation is
defined by the neighborhood graph of best responses to mixed strategies of the opponent. Second, we show
that small local internal regret implies small (global) internal regret. We then present an algorithm which
randomly chooses a neighborhood and then chooses an action in the neighborhood. A key property satisfied
by the two-level procedure is a certain flow condition. Under this condition, external regret of sub-algorithms
on local neighborhoods can be turned into a statement about local internal regret (and, hence, global internal
regret). External regret of the sub-algorithms, in turn, can be upper bounded because local observability
condition allows us to estimate relative losses of neighboring actions.

2 Notation and definitions

We follow the notation of [4]. Let `i denote the ith row of L. Without loss of generality, assume that each
row of H contains unique sets of symbols. Let σ1, . . . , σsi be the list of symbols in the ith row of H. The
signal matrix Si ∈ {0, 1}si×M is defined by Si(k, j) = I {Hi,j = σk} where I {} is the indicator function. For
a pair i, k of actions define S(i,k) ∈ {0, 1}(si+sk)×M by stacking Si on top of Sk. Note that, upon playing
action i, the signal Hi,j arising from the unobserved action j is equivalent to the feedback Siej .

Let C = {C1, . . . , CN} be a partition of the simplex ∆M according to the best response (action) of the
player to the mixed strategy of the adversary:

Ci = {q ∈ ∆M : i is best response for q}.
We assume that no action is completely dominated by others; that is, each Ci is non-empty. Further, for
simplicity we assume that C is indeed a partition and there are no degeneracies (we can modify the argument
by defining neighborhood action sets as in [4]). Neighboring actions are naturally defined as those that share
a boundary in the partition. Let G be the graph obtained by connecting the neighboring cells of the partition
C. The vertex set of G is precisely the set {1, . . . , N} of player’s actions. For each action i, let the set of
its neighbors Ni be called the neighbor set. By convention, any vertex is its own neighbor: i ∈ Ni. We will
often use the terms action and vertex interchangeably, thanks to the one-to-one correspondence.

Definition 2.1 (Bartók, Pál, Szepesvári [4]). The game is called locally observable if `i − `j ∈ Im ST

(i,j) for
all neighboring actions i, j.

Under the local observability condition, for each pair of local actions i, j there exists a vector v(i,j) such
that `j− `i = ST

(i,j)v(i,j). Since L and H are known, we can compute vectors v(i,j) and use them to construct
unbiased estimates of true loss differences.

Notation Let [N] denote the set {1, . . . , N}. For a subset S ⊂ [N] we use 1S ∈ {0, 1}N to denote the
vector with ones on the coordinates in S and zeros outside. A vector a ∈ RN indexed by j is sometimes
denoted by [aj]j∈[N]. The scalar product between two vectors a and b will be variously written as aTb or
a · b. Standard basis vectors are denoted by {ei}.

3 Internal Regret in the Neighborhood

Let φ : {1, . . . , N} 7→ {1, . . . , N} be a departure function [6], and let it and jt denote the moves at time t
of the player and the opponent, respectively. At the end of the game, regret with respect to φ is calculated
as the difference of the incurred cumulative cost and the cost that would have been incurred had we played
action φ(it) instead of it, for all t. Let Φ be a set of departure functions. Φ-regret is defined as

1

T

T∑
t=1

c(it, jt)− inf
φ∈Φ

1

T

T∑
t=1

c(φ(it), jt)

2

where the cost function considered in this paper is simply c(i, j) = eTiLej . If Φ = {φk : k ∈ [N]} consists of
constant mappings φk(i) = k, the regret is called external. For (global) internal regret, the set Φ consists of
all departure functions φi→j such that φi→j(i) = j and φi→j(h) = h for h 6= i.

Definition 3.1. A departure function φi→j is called local departure function if j is a neighbor of i in the
neighborhood graph G. Regret defined with respect to the set of all local departure functions is called local
internal regret.

Under the local observability condition, we can estimate the differences in performance between the
action and its neighbors in a way similar to non-stochastic bandit methods. We can, therefore, ensure that
any time we chose an action, its loss was not much more than that of any of its neighbors. That is, local
observability condition leads to an algorithm with no external regret and, under the flow condition detailed
later, no local internal regret. A key observation is that no local internal regret implies no global internal
regret. Intuitively, this stems from the fact that the second-best-response action must be a neighbor of the
best-response action. Hence, ensuring small internal regret against the neighbors is enough to guarantee
small internal regret.

fi1

fi2

fi3

q p

a
b

r

Figure 1: Illustration of the argument in Lemma 3.1: A second-best action must either be a neighbor, or it
must be dominated everywhere by other actions.

Lemma 3.1. Local internal regret is equal to internal regret.

Proof. It is enough to show that, for any distribution q ∈ ∆M , any best response i1 and any second-best
response i2 are neighbors in the graph G. By the way of contradiction, we assume that actions i1 and i2
are not neighbors (that is, Ci1 and Ci2 do not share a face). We will then arrive at the conclusion that i2
must be dominated by other actions, which is a contradiction because of our assumption that no action is
completely dominated (that is minorized) by others.

Let g(s) = mini∈[N] e
T
iLs be the minimum loss against the mixed strategy s. Since g is a minimum of N

linear functions {fk(s) , (eTkL) ·s}Nk=1, it is concave and piece-wise linear. The linear parts of g correspond to
the elements of the partition C. By our assumption, fi1(q) < fi2(q) and there is no hyperplane fi3 achieving
at q a value in the interval (fi1(q), fi2(q)). Let

S = {(s, t) ∈ RM+1 : t = fi1(s) = fi2(s) for some s ∈ ∆M},

the intersection of two hyperplanes over the simplex. Note that projection of S onto the simplex would
be precisely the boundary separating Ci1 and Ci2 if these were the only two actions. This set cannot be
empty, for otherwise action i2 is dominated by i1. Now, pick any p ∈ ∆M such that fi1(p) = fi2(p), and
let a = (p, fi1(p)) (see Figure 3). We will now work with the one-dimensional problem along the line in the
simplex defined by (q, p). The fact that i1 and i2 are not neighbors along the direction (q, p) means that
there is another action i3 such that fi3(p) < fi1(p) = fi2(p). Since fi3(q) ≥ fi2(q) > fi1(q), there must be a
point b = (r, fi3(r)) = (r, fi2(r)) of intersection of fi3 and fi2 for some r ∈ [q, p]. It is easy to see that i2 is

3

ij

G

Figure 2: To each vertex i in the graph G we associate an algorithm Ai. The algorithm plays an action
from the distribution qti over its neighborhood set Ni and receives partial information about relative loss
between the node i and its neighbor. The other piece of the partial information comes from the times when
a neighboring algorithm Aj is run and the action i is picked.

Algorithm 1 Neighborhood Watch Algorithm

1: For all i = {1, . . . , N}, initialize algorithm Ai with q1
i = x1

i = 1Ni/|Ni|
2: for t=1,. . . , T do
3: Let Qt = [qt1, . . . , q

t
N], where qti is furnished by Ai

4: Find pt satisfying pt = Qtpt

5: Draw kt from pt

6: Play It drawn from qtkt and obtain signal SItejt
7: Run local algorithm Akt with the received signal
8: For any i 6= kt, q

t+1
i ← qti

9: end for

completely minorized along the direction (q, p): on one side of r it is dominated by i1, while on the other —
by i3.

The argument above works for any direction from q towards the boundary between Ci1 and Ci2 if i1 and
i2 were the only actions. Hence, i2 is globally dominated by other actions, a contradiction.

4 Method

The method is a two-level procedure motivated by Foster and Vohra [7] and Blum and Mansour [5]. The
intuition stems from the following observation. Suppose for each vertex i we have a distribution qi ∈ ∆N

supported on the neighbor set Ni. Let p ∈ ∆N be defined by p = Qp where Q is the matrix [q1, . . . , qN].
Then there are two equivalent ways of sampling an action from p. First way is to directly sample the vertex
according to p. Second is to sample a vertex i according to p and then choose a vertex j within the neighbor
set Ni according to qi. Because of the stationarity (or flow) condition p = Qp, the two ways are equivalent.
This idea of finding a fixed point is implicit in [7], and Blum and Mansour [5] show how stationarity can be
used to convert external regret guarantees into an internal regret statement. We show here that, in fact, this
conversion can be done “locally” and only with “comparison” information between neighboring actions.

Our procedure is as follows. We run N different algorithms A1, . . . ,AN , each corresponding to a vertex
and its neighbor set. Within this neighbor set we obtain small regret because we can construct estimates of
loss differences among the actions, thanks to the local observability condition. Each algorithm Ai produces
a distribution qti ∈ ∆N at round t, reflecting the relative performance of the vertex i and its neighbors.
Since Ai is only concerned with its local neighborhood, we require that qti has support on Ni and is zero
everywhere else. The meta algorithm Neighborhood Watch combines the distributions Qt = [qt1, . . . , q

t
N] and

4

Algorithm 2 Local Algorithm Ai
1: If t = 1, initialize s = 1
2: For r ∈ {τi(s− 1) + 1, . . . , τi(s)} (i.e. for all r since the last time Ai was run) construct

br(i,j) = vT

i,j

[
I {Ir = i}Si

I {kr = i} I {Ir = j}Sj/qri (j)

]
ejr

for all j ∈ Ni
3: Define for all j ∈ Ni,

hs(i,j) =

τi(s)∑
r=τi(s−1)+1

br(i,j)

and let
f̃si =

[
hs(i,j) · I {j ∈ Ni}

]
j∈[N]

4: Pass the cost f̃si to a full-information online convex optimization algorithm over the simplex (e.g. Ex-
ponential Weights Algorithm) and receive the next distribution xs+1 supported on Ni

5: Define
qt+1
i ← (1− γ)xs+1 + (γ/|Ni|)1Ni

6: Increase the count s← s+ 1

computes pt as a fixed point

pt = Qtpt . (1)

How do we choose our actions? At each round, we draw kt ∼ pt and then It ∼ qtkt according to our
two-level scheme. The action It is the action we play in the partial monitoring game against the adversary.
Let the action played by the adversary at time t be denoted by jt. Then the feedback we obtain is SItejt .
This information is passed to Akt which updates the distributions qtkt . In Section 4.2 we detail how this is
done.

4.1 Main Result

The main result of the paper is the following internal regret guarantee.

Theorem 4.1. Local internal regret of Algorithm 1 is bounded as

sup
φ

E

{
T∑
t=1

(eIt − eφ(It))
TLejt

}
≤ 4Nv̄

√
6(logN)T

where v̄ = max(i,j) ‖v(i,j)‖∞ and supremum is taken over all local departure functions.

The next Corollary is immediate given Lemma 3.1:

Corollary 4.1. Internal regret of Algorithm 1 is also bounded as in Theorem 4.1.

We remark that high probability bounds can also be obtained in a rather straightforward manner, using,
for instance, the approach of [1]. Another extension, the case of random signals, is discussed in Section 5.

5

4.2 Estimating loss differences

The random variable kt drawn from pt at time t determines which algorithm is active on the given round.
Let

τi(s) = min{t : s =

t∑
r=1

I {kt = i}}

denote the (random) time when the algorithm Ai is invoked for the s-th time. By convention, τi(0) = 0.
Further, define

πi(t) = min{t′ ≥ t : kt′ = i}
to denote the next time the algorithm is run on or after time t. When invoked for the s-th time, the algorithm
Ai constructs estimates

br(i,j) , vT

i,j

[
I {Ir = i}Si

I {kr = i} I {Ir = j}Sj/qri (j)

]
ejr , ∀r ∈ {τi(s− 1) + 1, . . . , τi(s)}, ∀j ∈ Ni

for all the rounds after it has been run the last time, until (and including) the current time r = τi(s). We
can assume bt(i,j) = 0 for any j /∈ Ni. The estimates bt(i,j) can be constructed by the algorithm because SIrejr
is precisely the feedback given to the algorithm.

Let Ft be the σ-algebra generated by the random variables {k1, I1, . . . , kt, It}. For any t, the (conditional)
expectation,

E
[
bt(i,j)|Ft−1

]
=

N∑
k=1

ptkq
t
k(i) · vT

i,j

[
Si
0

]
ejt + ptiq

t
i(j) · vT

i,j

[
0

Sj/q
t
i(j))

]
ejt

= ptiv
T

i,jS(i,j)ejt

= pti(`j − `i)Tejt

= pti(ej − ei)TLejt (2)

where in the second equality we used the fact that
∑N
k=1 p

t
kq
t
k(i) = pti by stationarity (1). Thus each

algorithm Ai, on average, has access to unbiased estimates of the loss differences within its neighborhood
set.

Recall that algorithm Ai is only aware of its neighborhood, and therefore we peg coordinates of qti to
zero outside of Ni. However, for convenience, our notation below still employs full N -dimensional vectors,
and we keep in mind that only coordinates indexed by Ni are considered and modified by Ai.

When invoked for the s-th time (that is, t = τi(s)), Ai constructs linear functions (cost estimates)
f̃si ∈ RN defined by

f̃si =
[
hs(i,j) · I {j ∈ Ni}

]
j∈[N]

,

where

hs(i,j) =

τi(s)∑
r=τi(s−1)+1

br(i,j) .

We now show that f̃si ·q
τ(s)
i has the same conditional expectation as the actual loss of the meta algorithm

Neighborhood Watch at time t = τi(s). That is, by bounding expected regret of the black-box algorithm
operating on {f̃si }, we bound the actual regret suffered by the meta algorithm on the rounds when Ai was
invoked.

Lemma 4.1. Consider algorithm Ai. It holds that

E
{

(q
τi(s+1)
i − eu)TLejτi(s+1)

∣∣∣ Fτi(s)} = E
{
f̃s+1
i · (qτi(s+1)

i − eu)
∣∣∣ Fτi(s)}

for any u ∈ Ni.

6

Proof. Throughout the proof, we drop the subscript i on τi to ease the notation. Note that q
τ(s+1)
i = q

τ(s)+1
i

since the distribution is not updated when algorithm Ai is not invoked. Hence, conditioned on Fτ(s), the

variable (q
τ(s+1)
i − eu) can be taken out of the expectation. We therefore need to show that

(q
τ(s+1)
i − eu) · E

{
Lejτ(s+1)

|Fτ(s)

}
= (q

τ(s+1)
i − eu) · E

{
f̃s+1
i |Fτ(s)

}
(3)

First, we can write

E
{
hs+1

(i,j)

∣∣∣ Fτ(s)

}
= E

τ(s+1)∑
t=τ(s)+1

bt(i,j)

∣∣∣∣∣∣ Fτ(s)

= E

∞∑

t=τ(s)+1

bt(i,j)I {t ≤ τ(s+ 1)}

∣∣∣∣∣∣ Fτ(s)

=

∞∑
t=τ(s)+1

E
{
E
[
bt(i,j)I {t ≤ τ(s+ 1)}

∣∣∣ Ft−1

] ∣∣∣ Fτ(s)

}

=

∞∑
t=τ(s)+1

E
{

I {t ≤ τ(s+ 1)}E
[
bt(i,j)

∣∣∣ Ft−1

] ∣∣∣ Fτ(s)

}
.

The last step follows because the event {t ≤ τ(s + 1)} is Ft−1-measurable (that is, variables k1, . . . , kt−1

determine the value of the indicator). By Eq. (2), we conclude

E
{
hs+1

(i,j)

∣∣∣ Fτ(s)

}
=

∞∑
t=τ(s)+1

E
{
I {t ≤ τ(s+ 1)} pti(ej − ei)TLejt

∣∣ Fτ(s)

}
. (4)

Since I {t = τ(s+ 1)} = I {kt = i} I {t ≤ τ(s+ 1)}, we have

E
{
I {t = τ(s+ 1)} ejt

∣∣ Fτ(s)

}
= E

{
E {I {kt = i} I {t ≤ τ(s+ 1)} ejt | Ft−1}

∣∣ Fτ(s)

}
= E

{
I {t ≤ τ(s+ 1)} ejtE {I {kt = i} | Ft−1}

∣∣ Fτ(s)

}
= E

{
I {t ≤ τ(s+ 1)}P(kt = i

∣∣ Ft−1)ejt
∣∣ Fτ(s)

}
= E

{
I {t ≤ τ(s+ 1)} ptiejt

∣∣ Fτ(s)

}
.

Combining with Eq. (4),

E
{
hs+1

(i,j)

∣∣∣ Fτ(s)

}
=

∞∑
t=τ(s)+1

E
{
I {t ≤ τ(s+ 1)} pti(ej − ei)TLejt

∣∣ Fτ(s)

}
=

∞∑
t=τ(s)+1

E
{
I {t = τ(s+ 1)} (ej − ei)TLejt

∣∣ Fτ(s)

}
Observe that coordinates of f̃s+1

i , q
τ(s+1)
i , and eu are zero outside of Ni. We then have that

E
{
f̃s+1
i

∣∣∣ Fτ(s)

}
=
[
I {j ∈ Ni}E

{
hs+1

(i,j)

∣∣∣ Fτ(s)

}]
j∈N

=

I {j ∈ Ni}
∞∑

t=τ(s)+1

E
{

(ej − ei)TLejtI {t = τ(s+ 1)}
∣∣ Fτ(s)

}
j∈N

=

I {j ∈ Ni}
∞∑

t=τ(s)+1

E
{
ejLejtI {t = τ(s+ 1)}

∣∣ Fτ(s)

}
j∈N

− c · 1Ni

7

where

c =

∞∑
t=τ(s)+1

E
{
eiLejtI {t = τ(s+ 1)}

∣∣ Fτ(s)

}
is a scalar. When multiplying the above expression by q

τ(s+1)
i −eu, the term c·1Ni vanishes. Thus, minimizing

regret with relative costs (with respect to the ith action) is the same as minimizing regret with the absolute
costs. We conclude that

(q
τ(s+1)
i − eu)E

{
f̃s+1
i

∣∣∣ Fτ(s)

}
= (q

τ(s+1)
i − eu) ·

 ∞∑
t=τ(s)+1

E
{
ejLejtI {t = τ(s+ 1)}

∣∣ Fτ(s)

}
j∈Ni

= (q
τ(s+1)
i − eu) ·

∞∑
t=τ(s)+1

E
{
LejtI {t = τ(s+ 1)}

∣∣ Fτ(s)

}
= (q

τ(s+1)
i − eu) · E

{
Lejτ(s+1)

∣∣ Fτ(s)

}

4.3 Regret Analysis

For each algorithm Ai, the estimates f̃si are passed to a full-information black box algorithm which works
only on the coordinates Ni. From the point of view of the full-information black box, the game has length
Ti = max{s : τi(s) ≤ T}, the (random) number of times action i has been played within T rounds.

We proceed similarly to [1]: we use a full-information online convex optimization procedure with an
entropy regularizer (also known as the Exponential Weights Algorithm) which receives the vector f̃si and
returns the next mixed strategy xs+1 ∈ ∆N (in fact, effectively in ∆|Ni|). We then define

qt+1
i = (1− γ)xs+1 + (γ/|Ni|)1Ni

where γ is to be specified later. Since Ai is run at time t, we have τi(s) = t by definition. The next time Ai
is active (that is, at time τi(s+ 1)), the action Iτi(s+1) will be played as a random draw from qt+1

i = q
τi(s+1)
i ;

that is, the distribution is not modified on the interval {τi(s) + 1, . . . , τi(s+ 1)}.
We prove Theorem 4.1 by a series of lemmas. The first one is a direct consequence of an external

regret bound for a Follow the Regularized Leader (FTRL) algorithm in terms of local norms [1]. For a
strictly convex “regularizer” F , the local norm ‖ · ‖x is defined by ‖z‖x =

√
zT∇2F (x)z and its dual is

‖z‖∗x =
√
zT∇2F (x)−1z.

Lemma 4.2. The full-information algorithm utilized by Ai has an upper bound

E

{
Ti∑
s=1

f̃si · (qτi(s)i − eφ(i))

}
≤ ηE

{
Ti∑
s=1

(‖f̃si ‖∗xs)2

}
+ η−1 logN + Tγ ¯̀

on its external regret, where φ(i) ∈ Ni is any neighbor of i, ¯̀= maxi,j Li,j, and η is a learning rate parameter
to be tuned later.

Proof. Since our decision space is a simplex, it is natural to use the (negative) entropy regularizer, in which
case FTRL is the same as the Exponential Weights Algorithm. From [1, Thm 2.1], for any comparator u
with zero support outside |Ni|, the following regret guarantee holds:

Ti∑
s=1

f̃si · (xs − u) ≤ η
Ti∑
s=1

(‖f̃si ‖∗xs)2 + η−1 log(|Ni|) .

8

An easy calculation shows that in the case of entropy regularizer F , the Hessian∇2F (x) = diag(x−1
1 , x−1

2 , . . . , x−1
N)

and ∇2F (x)−1 = diag(x1, x2, . . . , xN). We refer to [1] for more details.
Let φ : {1, . . . , N} 7→ {1, . . . , N} be a local departure function (see Definition 3.1). We can then write a

regret guarantee
Ti∑
s=1

f̃si · (xs − eφ(i)) ≤ η
Ti∑
s=1

(‖f̃si ‖∗xs)2 + η−1 log(|Ni|) .

Since, in fact, we play according to a slightly modified version q
τi(s)
i of xs, it holds that

Ti∑
s=1

f̃si · (qτi(s)i − eφ(i)) ≤ η
Ti∑
s=1

(‖f̃si ‖∗xs)2 + η−1 log(|Ni|) +

Ti∑
s=1

f̃si · (qτi(s)i − xs) .

Taking expectations of both sides and upper bounding |Ni| by N ,

E

{
Ti∑
s=1

f̃si · (qτi(s)i − eφ(i))

}
≤ ηE

{
Ti∑
s=1

(‖f̃si ‖∗xs)2

}
+ η−1 logN + E

{
Ti∑
s=1

f̃si · (qτi(s)i − xs)
}

.

A proof identical to that of Lemma 4.1 gives

E
{
f̃si · (qτi(s)i − xs)

∣∣∣ Fτi(s−1)

}
= E

{
(q
τi(s)
i − xs)TLejτi(s) |Fτi(s−1)

}
≤ E

{
‖qτi(s)i − xs‖1 · ‖Lejτi(s)‖∞

∣∣∣ Fτi(s−1)

}
≤ γ ¯̀

for the last term, where ¯̀ is the upper bound on the magnitude of entries of L. Putting everything together,

E

{
Ti∑
s=1

f̃si · (qτi(s)i − eφ(i))

}
≤ ηE

{
Ti∑
s=1

(‖f̃si ‖∗xs)2

}
+ η−1 logN + Tγ ¯̀

where we have upper bounded Ti by T .

As with many bandit-type problems, effort is required to show that the variance term is controlled. This
is the subject of the next lemma.

Lemma 4.3. The variance term in the bound of Lemma 4.2 is upper bounded as

N∑
i=1

E

{
Ti∑
s=1

(‖f̃si ‖∗xs)2

}
≤ 24v̄2NT

Proof. First, fix an i ∈ [N] and consider the term E
{∑Ti

s=1(‖f̃si ‖∗xs)2
}

. Until the last step of the proof, we

will sometimes omit i from the notation.
We start by observing that f̃si is a sum of τ(s) − τ(s − 1) − 1 terms of the type vT

i,jSiejr (that is, of

constant magnitude) and one term of the type vT
i,jSjejr/q

r
i (j). In controlling ‖f̃si ‖∗xs , we therefore have two

difficulties: controlling the number of constant-size terms and making sure the last term does not explode
due to division by a small probability qri (j). The former is solved below by a careful argument below, while
the latter problem is solved according to usual bandit-style arguments.

More precisely, we can write f̃si = g
τi(s−1)
τi(s)

+ hτi(s) where the vectors g
τi(s−1)
τi(s)

, hτi(s) ∈ RN are defined as

g
τi(s−1)
τi(s)

(j) , gτi(s−1)(j) ,
τi(s)−1∑
r=τi(s−1)

I {Ir = i} vT

i,jSiejrI {j ∈ Ni}

9

and
hτi(s)(j) = I

{
Iτi(s) = j

}
vT

i,Iτi(s)
SIτi(s)ejτi(s)/q

τi(s)
i (Iτi(s)) .

Then
(‖f̃si ‖∗xs)2 = (‖gτi(s−1) + hτi(s)‖∗xs)2 ≤ 2(‖gτi(s−1)‖∗xs)2 + 2(‖hτi(s)‖∗xs)2

We will bound each of the two terms separately, in expectation. For the second term,

(‖hτi(s)‖∗xs)2 = xs(Iτ)(vT

i,IτSIτ ejτ /q
τ
i (Iτ))2 ≤ xs(Iτ)(v̄/qτi (Iτ))2

where τ = τi(s). Since q
τi(s)
i = (1− γ)xs + (γ/|Ni|)1Ni , it is easy to verify that xs(Iτ)/qτi (Iτ) ≤ 2 (whenever

γ < 1/2) and thus
(‖hτi(s)‖∗xs)2 ≤ 2v̄2/qτi (Iτ) .

The remaining division by the probability disappears under the expectation:

E
{

(‖hτi(s)‖∗xs)2
∣∣∣ σ(k1, I1, . . . , kτi(s))

}
≤ 2v̄2

N∑
j=1

q
τi(s)
i (j)/q

τi(s)
i (j) = 2Nv̄2 . (5)

Consider now the second term. As discussed in the proof of Lemma 4.2, the inverse Hessian of the entropy
function shrinks each coordinate i precisely by xs(i) ≤ 1, implying that the local norm is dominated by the
Euclidean norm :

‖gτi(s−1)‖∗xs ≤ ‖gτi(s−1)‖2.

It is therefore enough to upper bound E
{∑Ti

s=1 ‖gτi(s)‖22
}

. The idea of the proof is the following. Observe

that P(kt = i|Ft−1) = P(It = i|Ft−1). Conditioned on the event that either kt = i or It = i, each of the two
possibilities has probability 1/2 of occurring. Note that gτi(s−1) inflates every time kt 6= i, yet It = i occurs.
It is then easy to see that magnitude of gτi(s−1) is unlikely to get large before algorithm Ai is run again. We
now make this intuition precise.

The function gt is presently defined only for those time steps when t = τi(s) for some s (that is, when
the algorithm Ai is invoked). We extend this definition as follows. Let the jth coordinate of gt be defined as

gtπ(t+1)(j) , gt(j) ,
π(t+1)−1∑

r=t

I {Ir = i} v(i,j)Siejr

for j ∈ Ni and 0 otherwise. The function gt can be thought of as accumulating partial pieces on rounds
when It = i until kt = i occurs. Let us now define an analogue of τ and π for the event that either It = i or
kt = i:

γi(s) = min

{
t : s =

t∑
r=1

I {kt = i or It = i}
}

Further, for any t, let
νi(t) = min{t′ ≥ t : kt = i or It = i},

the next time occurrence of the event {kτ = i or Iτ = i} on or after t. Let

I = I {νi(t) 6= πi(t)}

be the indicator of the event that the first time after t that {kτ = i or Iτ = i} occurred it was also the case
that the algorithm was not run (i.e. kτ 6= i). Note that gt(j) can now be written recursively as

gt(j) = I ·
[
v(i,j)Siejν(t) + g

ν(t)+1
π(ν(t)+1)(j)

]
.

10

As argued before, P(I = 1|Ft−1) = 1/2. We will now show that E {gt(j) | Ft−1} ≤ 2v̄ by the following
inductive argument, whose base case trivially holds for t = T :

E
{
gt(j)

∣∣ Ft−1

}
= E

{
E
{
I ·
[
v(i,j)Siejν(t) + gν(t)+1(j)

] ∣∣∣ Fν(t)

} ∣∣∣ Ft−1

}
= E

{
Iv(i,j)Siejν(t) + IE

{
gν(t)+1(j)

∣∣∣ Fν(t)

} ∣∣∣ Ft−1

}
≤ v̄ + E

{
Igν(t)+1(j)

∣∣∣ Ft−1

}
= v̄ + E

{
I E

[
gν(t)+1(j)

∣∣∣ Fν(t)

]
︸ ︷︷ ︸
≤ 2v̄ by induction

∣∣∣ Ft−1

}

≤ v̄ + E {I | Ft−1} 2v̄

≤ v̄ + (1/2)2v̄ = 2v̄

The expected value of (gt(j))2 can be controlled in a similar manner. To ease the notation, let z =
v(i,j)Siejν(t) . Using the upper bound for the conditional expectation of gt(j) calculated above,

E
{

(gt(j))2
∣∣ Ft−1

}
= E

{
I ·
(
z2 + (gν(t)+1(j))2 + 2zgν(t)+1(j)

) ∣∣∣ Ft−1

}
= E

{
Iz2 + IE

{
(gν(t)+1(j))2

∣∣∣ Fν(t)

}
+ 2IzE

{
gν(t)+1(j)

∣∣∣ Fν(t)

} ∣∣∣ Ft−1

}
≤ 5v̄2 + E

{
IE
{

(gν(t)+1(j))2
∣∣∣ Fν(t)

} ∣∣∣ Ft−1

}
The argument now proceeds with backward induction exactly as above. We conclude that

E
{

(gt(j))2
∣∣ Ft−1

}
≤ 10v̄2

and, hence,

E
{
‖gτi(s−1)‖22

}
≤ 10Nv̄2

Together with (5), we conclude that

E
{

(‖f̃si ‖∗xs)2
}
≤ 2(2Nv̄2 + 10Nv̄2) = 24v̄2N.

Summing over t = 1, . . . , T and observing that only one algorithm is run at any time t proves the statement.

Proof of Theorem 4.1. The flow condition pt = Qtpt comes in crucially in several places throughout the
proofs, and the next argument is one of them. Observe that

E
{
eφ(It)

∣∣Ft−1

}
=

N∑
k=1

N∑
i=1

ptkq
t
k(i)eφ(i) =

N∑
i=1

eφ(i)

N∑
k=1

ptkq
t
k(i) =

N∑
i=1

eφ(i)p
t
i = E

{
eφ(kt)

∣∣Ft−1

}
and thus

E

{
T∑
t=1

eTφ(It)
Lejt

}
= E

{
T∑
t=1

E
{
eφ(It)

∣∣Ft−1

}T
Lejt

}

= E

{
T∑
t=1

E
{
eφ(kt)

∣∣Ft−1

}T
Lejt

}

= E

{
T∑
t=1

eTφ(kt)
Lejt

}

11

It is because of this equality that external regret with respect to the local neighborhood can be turned into
local internal regret. We have that

E

{
T∑
t=1

(eIt − eφ(It))
TLejt

}
= E

{
T∑
t=1

(eIt − eφ(kt))
TLejt

}

= E

{
T∑
t=1

(qtkt − eφ(kt))
TLejt

}

=

N∑
i=1

E

{
T∑
t=1

I {kt = i} (qti − eφ(i))
TLejt

}

By Lemma 4.1,

E
{

(q
τi(s)
i − eφ(i))

TLejτi(s) |Fτi(s−1)

}
= E

{
f̃si · (qτi(s)i − eφ(i))

∣∣∣ Fτi(s−1)

}
and so by Lemma 4.2

E

{
T∑
t=1

(eIt − eφ(It))
TLejt

}
=

N∑
i=1

E

{
Ti∑
s=1

f̃si · (qτi(s)i − eφ(i))

}

≤ η
N∑
i=1

E

{
Ti∑
s=1

(‖f̃si ‖∗xs)2

}
+N(η−1 logN + Tγ ¯̀)

With the help of Lemma 4.3,

E

{
T∑
t=1

(eIt − eφ(It))
TLejt

}
≤ η24v̄2NT +N(η−1 logN + Tγ ¯̀) = 4Nv̄

√
6(logN)T + TNγ ¯̀

for the setting of η =
√

logN
24v̄2T .

We remark that for the purposes of “in expectation” bounds, we can simply set γ = 0 and still get O(
√
T)

guarantees (see [1]). This point is obscured by the fact that the original algorithm of Auer et al [2] uses
the same parameter for the learning rate η and exploration γ. If these are separated, the “in expectation”
analysis of [2] can be also done with γ = 0. However, to prove high probability bounds on regret, a setting of
γ ∝ T−1/2 is required. Using the techniques in [1], the high-probability extension of results in this paper is
straightforward (tails for the terms ‖gτi(s−1)‖22 in Lemma 4.3 can be controlled without much difficulty).

5 Random Signals

We now briefly consider the setting of partial monitoring with random signals, studied by Rustichini [11],
Lugosi, Mannor, and Stoltz [8], and Perchet [9]. Without much modification of the above arguments, the
local observability condition yet again yields O(

√
T) internal regret.

Suppose that instead of receiving deterministic feedback Hi,j , the decision maker now receives a random
signal di,j drawn according to the distribution Hi,j ∈ ∆(Σ) over the signals. In the problem of deterministic
feedback studied in the paper so far, the signal Hi,j = σ was identified with the Dirac distribution δσ.

Given the matrix H of distributions on Σ, we can construct, for each row i, a matrix Ξi ∈ Rsi×M as

Ξi(k, j) , Hi,j(σk)

where the set σ1, . . . , σsi is the union of supports of Hi,1, . . . ,Hi,M . Columns of Ξi are now distributions over
signals. Given the actions It and jt of the player and the opponent, the feedback provided to the player can

12

be equivalently written as StItejt where each column r of the random matrix StIt ∈ Rsi×M is a standard unit
vector drawn independently according to the distribution given by the column r of Ξi. Hence, ESti = Ξi.

As before, the matrix Ξ(i,j) is constructed by stacking Ξi on top of Ξj . The local observability condition,
adapted to the case of random signals, can now be stated as:

`i − `j ∈ Im ΞT

(i,j)

for all neighboring actions i, j.
Let us specify the few places where the analysis slightly differs from the arguments of the paper. Since

we now have an extra (independent) source of randomness, we define Ft to be the σ-algebra generated by
the random variables {k1, I1, S

1 . . . , kt, It, S
t} where St is the random matrix obtained by stacking all Sti .

We now define the estimates

br(i,j) , vT

i,j

[
I {Ir = i}Sti

I {kr = i} I {Ir = j}Stj/qri (j)

]
ejr , ∀r ∈ {τi(s− 1) + 1, . . . , τi(s)}, ∀j ∈ Ni

with the only modification that Sti and Stj are now random variables. Equation (2) now reads

E
[
bt(i,j)|Ft−1

]
=

N∑
k=1

ptkq
t
k(i) · vT

i,j

[
Ξi
0

]
ejt + ptiq

t
i(j) · vT

i,j

[
0

Ξj/q
t
i(j))

]
ejt

= ptiv
T

i,jΞ(i,j)ejt

= pti(ej − ei)TLejt . (6)

The rest of the analysis follows as in Section 4.3, with Ξ in place of S.

Acknowledgements

We thank Vianney Perchet and Gilles Stoltz for their helpful comments on the first draft of this paper.

References

[1] J. Abernethy and A. Rakhlin. Beating the adaptive bandit with high probability. In COLT, 2009.

[2] P. Auer, N. Cesa-Bianchi, Y. Freund, and R.E. Schapire. The nonstochastic multiarmed bandit problem.
SIAM Journal on Computing, 32(1):48–77, 2003.

[3] G. Bartók, D. Pál, and C. Szepesvári. Toward a classification of finite partial-monitoring games. In
Algorithmic Learning Theory, pages 224–238. Springer, 2010.

[4] G. Bartók, D. Pál, and C. Szepesvári. Minimax regret of finite partial-monitoring games in stochastic
environments. In Conference on Learning Theory, 2011.

[5] A. Blum and Y. Mansour. From external to internal regret. Journal of Machine Learning Research,
8(1307-1324):3–8, 2007.

[6] N. Cesa-Bianchi, G. Lugosi, and G. Stoltz. Regret minimization under partial monitoring. Mathematics
of Operations Research, 31(3):562–580, 2006.

[7] D.P. Foster and R.V. Vohra. Calibrated learning and correlated equilibrium. Games and Economic
Behavior, 21(1-2):40–55, 1997.

[8] G. Lugosi, S. Mannor, and G. Stoltz. Strategies for prediction under imperfect monitoring. Math. Oper.
Res, 33:513–528, 2008.

13

[9] V. Perchet. Internal regret with partial monitoring: Calibration-based optimal algorithms. Journal of
Machine Learning Research, 12:1893–1921, 2011.

[10] A. Piccolboni and C. Schindelhauer. Discrete prediction games with arbitrary feedback and loss. In
Computational Learning Theory, pages 208–223. Springer, 2001.

[11] A. Rustichini. Minimizing regret: The general case. Games and Economic Behavior, 29(1-2):224–243,
1999.

14

	1 Introduction
	2 Notation and definitions
	3 Internal Regret in the Neighborhood
	4 Method
	4.1 Main Result
	4.2 Estimating loss differences
	4.3 Regret Analysis

	5 Random Signals

