
Multitask Learning with Expert Advice

Jacob Abernethy1, Peter Bartlett1,2, and Alexander Rakhlin1

1 Department of Computer Science, UC Berkeley
2 Department of Statistics, UC Berkeley

{jake,bartlett,rakhlin}@cs.berkeley.edu

Abstract. We consider the problem of prediction with expert advice in
the setting where a forecaster is presented with several online prediction
tasks. Instead of competing against the best expert separately on each
task, we assume the tasks are related, and thus we expect that a few
experts will perform well on the entire set of tasks. That is, our forecaster
would like, on each task, to compete against the best expert chosen
from a small set of experts. While we describe the “ideal” algorithm and
its performance bound, we show that the computation required for this
algorithm is as hard as computation of a matrix permanent. We present
an efficient algorithm based on mixing priors, and prove a bound that is
nearly as good for the sequential task presentation case. We also consider
a harder case where the task may change arbitrarily from round to round,
and we develop an efficient approximate randomized algorithm based on
Markov chain Monte Carlo techniques.

1 Introduction

A general model of sequential prediction with expert advice is the following. A
forecaster is given the following task: make a sequence of predictions given access
to a number of experts, where each expert makes its own prediction at every
round. The forecaster combines the predictions of the experts to form its own
prediction, taking into account each expert’s past performance. He then learns
the true outcome and suffers some loss based on the difference between the true
outcome and its prediction. The goal of the forecaster, in the cumulative sense, is
to predict not much worse than the single best expert. This sequence prediction
problem has been widely studied in recent years. We refer the reader to the
excellent book of Cesa-Bianchi and Lugosi [1] for a comprehensive treatment of
the subject.

We consider an extension of this framework where a forecaster is presented
with several prediction tasks. The most basic formulation, which we call the
sequential multitask problem is the following: the forecaster is asked to make a
sequence of predictions for task one, then another sequence of predictions for
task two, and so on, and receives predictions from a constant set of experts on
every round. A more general formulation, which we consider later in the paper,
is the shifting multitask problem: on every round, the forecaster is asked to make
a prediction for some task, and while the task is known to the forecaster, it may
change arbitrarily from round to round.

2 Multitask Learning with Expert Advice

The multitask learning problem is fundamentally a sequence prediction prob-
lem, yet we provide the forecaster with extra information for each prediction,
namely the task to which this round belongs. This extra knowledge could be
quite valuable. In particular, the forecaster may have observed that certain ex-
perts have performed well on this task while poorly on others. Consider, for
example, an investor that, on each day, would like to make a sequence of trades
for a particular stock, and has a selection of trading strategies available to him.
We may consider each day a separate prediction task. The behavior of the stock
will be quite related from one day to the next, even though the optimal trading
strategy may change. How can the investor perform as well as possible on each
day, while still leveraging information from previous days?

As the above example suggests, we would like to take advantage of task relat-
edness. This idea is quite general and in the literature several such frameworks
have been explored [2–7]. In this paper, we attempt to capture the following
intuitive notion of relatedness: experts that perform well on one task are more
likely to perform well on others. Of course, if the same best expert is shared
across several tasks, then we should not expect to find so many best experts.
We thus consider the following problem: given a “small” m, design a multitask
forecaster that performs well relative to the best m-sized subset of experts.

The contribution of this paper is the following. We first introduce a novel
multitask learning framework within the “prediction with expert advice” model.
We then show how techniques developed by Bousquet and Warmuth [8] can
be applied in this new setting. Finally, we develop a randomized prediction
algorithm, based on an approximate Markov chain Monte Carlo method, that
overcomes the hardness of the corresponding exact problem, and demonstrate
empirically that the Markov chain mixes rapidly.

We begin in Section 2 by defining the online multitask prediction problem
and notation. In Section 3 we provide a reduction from the multitask setting
to the single task setting, yet we also show that computing the prediction is as
hard as computing a matrix permanent. In Section 4, however, we provide an
efficient solution for the sequential multitask problem. We attack the more general
shifting multitask problem in Section 5, and we present the MCMC algorithm
and its analysis.

2 Formal Setting

First, we describe the “prediction with expert advice” setting. A forecaster must
make a sequence of predictions for every round t = 1, 2, 3, . . . , T . This forecaster
is given access to a set of N “experts”. At every round t, expert i makes pre-
diction f t

i ∈ [0, 1]. The forecaster is given access to f t := (f t
1, . . . , f

t
N) and then

makes a prediction p̂t ∈ [0, 1]. Finally, the outcome yt ∈ {0, 1} is revealed, ex-
pert i suffers `t

i := `(f t
i , y

t), and the forecaster suffers `(p̂t, yt), where ` is a loss
function that is convex in its first argument. We consider the cumulative loss
of the forecaster, L̂T :=

∑
t≤T `(p̂t, yt), relative to the cumulative loss of each

expert, LT
i :=

∑
t≤T `(f t

i , y
t).

Multitask Learning with Expert Advice 3

In the multitask setting we have additional structure on the order of the
sequence. We now assume that the set of rounds is partitioned into K “tasks”
and the forecaster knows K in advance. On round t, in addition to learning
the predictions f t, the forecaster also learns the task number κ(t) ∈ [K] :=
{1, 2, . . . ,K}. For convenience, we also define τ(k) = {t ∈ [T] : κ(t) = k},
the set of rounds where the task number is k. After T rounds we record the
cumulative loss, LT

k,i of expert i for task k, defined as LT
k,i :=

∑
t∈τ(k) `t

i.
As described in the introduction, we are interested in the sequential multitask

problem, where we assume that the subsequences τ(k) are contiguous. We also
consider the more general case, the shifting multitask problem, where the task
may change arbitrarily from round to round. For the remainder of Section 2 and
section 3, however, we need not make any assumptions about the sequence of
tasks presented.

2.1 The Multitask Comparator Class

We now pose the following question: what should be the goal of the forecaster in
this multitask setting? Typically, in the single task expert setting, we compare
the performance of the forecaster relative to that of the best expert in our class.
This is quite natural: we should expect the forecaster to predict only as well
as the best information available. Thus, the forecaster’s goal is minimize regret,
L̂T −minN

i=1 LT
i . We will call the quantity LT

∗ := mini LT
i the comparator, since

it is with respect to this that we measure the performance of the forecaster.
Following this, we might propose the following as a multitask comparator,

which we will call the unrelated comparator: LT
∗ :=

∑K
k=1 mini LT

k,i. Here, the
forecaster’s goal is to minimize loss relative to the best expert on task one, plus
loss relative to the best expert on task two, and so on. However, by minimizing
the sum over tasks, the forecaster may as well minimize each separately, thus
considering every task as independent of the rest.

Alternatively, we might propose a second, which we will call the fully related
comparator: LT

∗ := mini

∑K
k=1 LT

k,i. Here, the forecaster competes against the
best expert on all tasks, that is, the single best expert. The forecaster can simply
ignore the task number and predict as though there were only one task.

These two potential definitions represent ends of a spectrum. By employing
the unrelated comparator, we are inherently expecting that each task will have
a different best expert. With the fully related comparator, we expect that one
expert should perform well on all tasks. In this paper, we would like to choose
a comparator which captures the more general notion of “partial relatedness”
across tasks. We propose the following: the goal of the forecaster is to perform
as well as the best choice of experts from a small set. More precisely, given a
positive integer m ≤ N as a parameter, letting Sm := {S ⊂ [N] : |S| = m} be
the set of m-sized subsets of experts, we define our comparator as

LT
∗ := min

S∈Sm

K∑
k=1

min
i∈S

LT
i,k. (1)

4 Multitask Learning with Expert Advice

Notice that, for the choice m = N , we obtain the unrelated comparator as
described above; for the choice m = 1, we obtain the fully related comparator.

2.2 Taking Advantage of Task Relatedness

There is a benefit in competing against the constrained comparator described in
(1). We are interested in the case when m is substantially smaller than K. By
searching for only the m best experts, rather than K, the forecaster may learn
faster by leveraging information from other tasks. For example, even when the
forecaster arrives at a task for which it has seen no examples, it already has
some knowledge about which experts are likely to be amongst the best S ∈ Sm.

In this paper, we are interested in designing forecasters whose performance
bound has the following form,

L̂T ≤ c1

(
min

S∈Sm

K∑
k=1

min
i∈S

LT
i,k

)
+ c2

(
K log m + m log

N

m

)
, (2)

where c1 and c2 are constants. This bound has two parts, the loss term on the
left and the complexity term on the right, and there is an inherent trade-off
between these two terms given a choice of m. Notice, for m = 1, the complexity
term is only c2 log N , although there may not be a single good expert. On the
other hand, when m = N , the loss term will be as small as possible, while we pay
c2K log N to find the best expert separately for each task. Intermediate choices
of m result in a better trade-off between the two terms whenever the tasks are
related, which implies a smaller bound.

3 A Reduction to the Single Task Setting

Perhaps the most well-known prediction algorithm in the single-task experts set-
ting, as described at the beginning of Section 2, is the (Exponentially) Weighted
Average Forecaster, also known as Randomized Weighted Majority. On round t,
the forecaster has a table of the cumulative losses of each expert, Lt

1, . . . , L
t
N , a

learning parameter η, and receives the predictions f t. The forecaster computes
a weight wt

i := e−ηLt
i for each i, and predicts p̂t :=

P
i wt

ift
iP

i wt
i

. He receives the

outcome yt, suffers loss `(p̂t, yt), and updates Lt+1
i ← Lt

i + `(f t
i , y

t) for each i.
This simple yet elegant algorithm has the following bound,

L̂t ≤ cη

(
min

i
Lt

i + η−1 log N
)

, (3)

where3 cη = η
1−e−η tends to 1 as η → 0. The curious reader can find more

details of the Weighted Average Forecaster and relative loss bounds in [1]. We
will appeal to this algorithm and its loss bound throughout the paper.

3 Depending on the loss function, tighter bounds can be obtained.

Multitask Learning with Expert Advice 5

3.1 Weighted Average Forecaster on “Hyperexperts”

We now define a reduction from the multitask experts problem to the single task
setting and we immediately get an algorithm and a bound. Unfortunately, as we
will see, this reduction gives rise to a computationally infeasible algorithm, and
in later sections we will discuss ways of overcoming this difficulty.

We will now be more precise about how we define our comparator class. In
Section 2.1, we described our comparator by choosing the best subset S ∈ Sm

and then, for each task, choosing the best expert in this subset. However, this is
equivalent to assigning the set of tasks to the set of experts such that at most
m experts are used. In particular, we are interested in maps π : [K]→ [N] such
that img(π) := {π(k) : k ∈ [K]} has size ≤ m. Define

Hm := {π : [K]→ [N] s.t. img(π) ≤ m}.

Given this new definition, we can now rewrite our comparator,

LT
∗ = min

S∈Sm

K∑
k=1

min
i∈S

LT
i,k = min

π∈Hm

K∑
k=1

LT
k,π(k). (4)

More importantly, this new set Hm can now be realized as itself a set of
experts. For each π ∈ Hm, we can associate a “hyperexpert” to π. So as not to
be confused, we now also use the term “base expert” for our original class of
experts. On round t, we define the prediction of hyperexpert π to be f t

π(κ(t)), and
thus the loss of this hyperexpert is exactly `t

π(κ(t)). We can define the cumulative
loss of this hyperexpert in the natural way,

LT
π :=

T∑
t=1

`t
π(κ(t)) =

K∑
k=1

LT
k,π(k).

We may now apply the Weighted Average Forecaster using, as our set of
experts, the class Hm. Assume we are given a learning parameter η > 0. We
maintain a K ×N matrix of weights [wt

k,i] for each base expert and each task.
For i ∈ [N] and k ∈ [K], let wt

k,i := exp(−ηLt
k,i). We now define weight vt

π of a
hyperexpert π at time t to be vt

π := exp(−ηLt
π) =

∏K
k=1 wt

k,π(k) . This gives an
explicit formula for the prediction of the algorithm at time t,

p̂t =

∑
π∈Hm

vt
πf t

π(κ(t))∑
π∈Hm

vt
π

=

∑
π∈Hm

(∏K
k=1 wt

k,π(k)

)
f t

π(κ(t))∑
π∈Hm

∏K
k′=1 wt

k′,π(k′)

. (5)

The prediction f t
i will be repeated many times, and thus we can factor out

the terms where π(κ(t)) = i. Let Hk,i
m ⊂ Hm be the assignments π such that

π(k) = i, and note that, for any k,
⋃N

i=1Hk,i
m = Hm. Letting

ut
k,i :=

∑
π∈Hk,i

m

∏K
k′=1 wt

k′,π(k′)∑
π∈Hm

∏K
k′=1 wt

k′,π(k′)

gives p̂t =
N∑

i=1

uκ(t),i · f t
i .

6 Multitask Learning with Expert Advice

We now have an exponentially weighted average forecaster that predicts given
the set of hyperexperts Hm. In order to obtain a bound on this algorithm we
still need to determine the size of Hm. The proof of the next lemma is omitted.

Lemma 1. Given m < K, it holds that
(
N
m

)
mK−mm! ≤ |Hm| ≤

(
N
m

)
mK , and

therefore log|Hm| = Θ
(
log
(
N
m

)
+ K log m

)
= Θ

(
m log N

m + K log m
)
.

We now have the following bound for our forecaster, which follows from (3).

Theorem 1. Given a convex loss function `, for any sequence of predictions f t

and outcomes yt, where t = 1, 2, . . . , T ,

L̂T

cη
≤ min

π∈Hm

LT
π +

log |Hm|
η

≤ min
S∈Sm

K∑
k=1

min
i∈S

LT
k,i +

m log N
m + K log m

η
.

3.2 An Alternative Set of Hyperexperts

We now consider a slightly different description of a hyperexpert. This alternative
representation, while not as natural as that described above, will be useful in
Section 5. Formally, we define the class

H̄m := {(S, φ) for every S ∈ Sm and φ : [K]→ [m]}.

Notice, the pair (S, φ) induces a map π ∈ Hm in the natural way: if S =
{i1, . . . , im}, with i1 < . . . < im, then π is defined as the mapping k 7→ iφ(k).
For convenience, write Ψ(S, φ, k) := iφ(k) = π(k). Then the prediction of the
hyperexpert (S, φ) on round t is exactly the prediction of π, that is f t

i where
i = Ψ(S, φ, κ(t)). Similarly, we define the weight of a hyperexpert (S, φ) ∈ H̄m

simply as vt
S,φ :=

∏K
k=1 wt

k,Ψ(S,φ,k) = vt
π. Thus, the prediction of the Weighted

Average Forecaster with access to the set of hyperexperts H̄m is

q̂t =

∑
(S,φ)∈H̄m

vt
S,φf t

Ψ(S,φ,κ(t))∑
(S′,φ′)∈H̄m

vt
S′,φ′

. (6)

We note that any π ∈ Hm can be described by some (S, φ), and so we have
a surjection H̄m → Hm, yet this is not an injection. Indeed, maps π for which
img(π) < m will be represented by more than one pair (S, φ). In other words, we
have “overcounted” our comparators a bit, and so the prediction q̂t will differ
from p̂t. However, Theorem 1 will also hold for the weighted average forecaster
given access to the expert class H̄m. Notice, the set H̄m has size exactly

(
N
m

)
mK ,

and thus Lemma 1 tells us that log |Hm| and log |H̄m| are of the same order.

3.3 Hardness results

Unfortunately, the algorithm for computing either p̂t or q̂t described above re-
quires performing a computation in which we sum over an exponentially large
number of subsets. One might hope for a simplification but, as the following
lemmas suggest, we cannot hope for such a result. For this section, we let W t :=
[wt

k,i]k,i, an arbitrary nonnegative matrix, and φm(W t) :=
∑

π∈Hm

∏K
k=1 wt

k,π(k).

Multitask Learning with Expert Advice 7

Lemma 2. Computing p̂t as in (5) for an arbitrary matrix nonnegative W t and
arbitrary prediction vector f t is as hard as computing φm(W t).

Proof. Because f t is arbitrary, computing p̂t is equivalent to computing the
weights uk,i = 1

φm(W t)

∑
π∈Hk,i

m

∏K
k′=1 wt

k′,π(k′). However, this also implies that

we could compute φm−1(W
t)

φm(W t) . To see this, augment W t as follows. Let Ŵ t :=[
W t 0

1 ··· 1

]
. If we could compute the weights uk,i for this larger matrix Ŵ t then,

in particular, we could compute uK+1,N+1. However, it can be checked that
uK+1,N+1 = φm−1(W

t)
φm(W t) given the construction of Ŵ t.

Furthermore, if we compute φm−1(W
t)

φm(W t) for each m, then we could compute∏m−1
l=1

φl(W
t)

φl+1(W t) = φ1(W
t)

φm(W t) . But the quantity φ1(W t) =
∑N

i=1

∏K
k=1 wt

k,i can be

computed efficiently, giving us φm(W t) = φ1(W t)
(

φ1(W
t)

φm(W t)

)−1

.

Lemma 3. Assuming K = N , computing φm(W t) for any nonnegative W t and
any m is as hard as computing Perm(W t), the permanent of a nonnegative
matrix W t.

Proof. The permanent Perm(W) is defined as
∑

π∈SymN

∏
wt

k,π(k). This ex-
pression is similar to φN (W), yet this sum is taken over only permutations
π ∈ SymN , the symmetric group on N , rather than all functions from [N]→ [N].
However, the set of permutations on [N] is exactly the set of all functions on
[N] minus those functions π for which |img(π)| ≤ N − 1. Thus, we see that
Perm(W) = φN (W)− φN−1(W).

Theorem 2. Computing either p̂t or q̂t, as in (5) or (6) respectively, is hard.

Proof. Combining Lemmas 2 and 3, we see that computing the prediction p̂t is
at least as hard as computing the permanent of any matrix with positive entries,
which is known to be a hard problem. While we omit it, the same analysis can
be used for computing q̂t, i.e. when our expert class is H̄m.

As an aside, it is tempting to consider utilizing the Follow the Perturbed
Leader algorithm of Kalai and Vempala [9]. However, the curious reader can
also check that not only is it hard to compute the prediction, it is even hard to
find the best hyperexpert and thus the perturbed leader.

4 Deterministic Mixing Algorithm

While the reduction to a single-task setting, discussed in the previous section,
is natural, computing the predictions p̂t or q̂t directly proves to be infeasible.
Somewhat surprisingly, we can solve the sequential multitask problem without
computing the predictions explicitly.

The problem of multitask learning, as presented in this paper, can be viewed
as a problem of competing against comparators which shift within a pool of

8 Multitask Learning with Expert Advice

size m, a problem analyzed extensively in Bousquet and Warmuth [8]. However,
there are a few important differences. On the positive side, we have the extra
information that no shifting of comparators occurs when staying within the same
task. First, this allows us to design a truly online algorithm which has to keep
only K weight vectors, instead of a complete history (or its approximation) as
for the Decaying Past scheme in [8]. Second, the extra information allows us to
obtain a bound which is independent of time: it only depends on the number
of switches between the tasks. On the down side, in the case of the shifting
multitask problem, tasks and comparators can change at every time step.

In this section, we show how the mixing algorithm of [8] can be adapted to
our setting. We design the mixing scheme to obtain the bounds of Theorem 1 for
the sequential multitask problem, and prove a bound for the shifting multitask
problem in terms of the number of shifts, but independent of the time horizon.

Algorithm 1 Multitask Mixing Algorithm
1: Input: η
2: Initialize w̃0

k = 1
N

1 for all k ∈ [K]
3: for t = 1 to T do
4: Let k = κ(t), the current task
5: Choose a distribution βt over tasks
6: Set z̃t =

PK
k′=1 βt(k

′)w̃t−1
k′

7: Predict p̂t = z̃t · f t

8: Update w̃t
k,i =

“
z̃t

ie
−η`t

i

”
/
“PN

i=1 z̃t
ie
−η`t

i

”
for all i ∈ [N]

9: Set w̃t
k′ = w̃t−1

k′ for any k′ 6= k.
10: end for

The above algorithm keeps normalized weights w̃t
k ∈ RN over experts for each

task k ∈ [K] and mixes w̃t
k’s together with an appropriate mixing distribution

βt over tasks to form a prediction. It is precisely by choosing βt correctly that
one can pass information from one task to another through sharing of weights.
The mixture of weights across tasks is then updated according to the usual
exponential weighted average update. The new normalized distribution becomes
the new weight vector for the current task. It is important to note that w̃t

k

is updated only when k = κ(t). 4 The following per-step bound holds for our
algorithm, similarly to Lemma 4 in [8]. For any ũt and k′ ∈ [K],

ˆ̀t ≤ cη

(
ũt · `t +

1
η
4
(
ũt, w̃t−1

k′

)
− 1

η
4
(
ũt, w̃t

κ(t)

)
+

1
η

ln
1

βt(k′)

)
(7)

4 Referring to w̃q
k, where q is the last time the task k was performed, is somewhat

cumbersome. Hence, we set w̃t
k′ = w̃t−1

k′ for any k′ 6= k and avoid referring to time
steps before t− 1.

Multitask Learning with Expert Advice 9

where the relative entropy is 4 (u,v) =
∑N

i=1 ui ln ui

vi
for normalized u,v ∈ RN

(see Appendix A for the proof). If the loss function ` is η-exp-concave (see [1]),
the constant cη disappears from the bound.

We first show that a simple choice of βt leads to the trivial case of unrelated
tasks. Intuitively, if no mixing occurs, i.e. βt puts all the weight on the current
task at the previous step, the tasks are uncoupled. This is exhibited by the next
proposition, whose proof is straightforward, and is omitted.

Proposition 1. If we choose βt(k) = 1 if k = κ(t) and 0 otherwise, then Algo-
rithm 1 yields

L̂t ≤ cη min
S∈Sm

K∑
k=1

min
i∈S

Lt
k,i +

cη

η
K lnN.

Of course, if we are to gain information from the other tasks, we should mix
the weights instead of concentrating on the current task. The next definition is
needed to quantify which tasks appeared more recently: they will be given more
weight by our algorithm.

Definition 1. If, at time t, tasks are ordered according to the most recent ap-
pearance, we let the rank ρt(k) ∈ [K] ∪ {∞} be the position of task k in this
ordered list. If k has not appeared yet, set ρt(k) =∞.

Theorem 3. Suppose the tasks are presented in an arbitrary order, but nec-
essarily switching at every time step. If we choose βt(κ(t)) = α and for any
k 6= κ(t) set βt(k) = (1− α) · 1

ρt(k)2
1

Zt
then Algorithm 1 yields

L̂t ≤ cη min
S∈Sm

K∑
k=1

min
i∈S

Lt
k,i +

cη

η

(
m ln

N

m− 2
+ 3T lnm

)
.

Here, Zt =
∑

k∈[K],k 6=κ(t)
1

ρt(k)2 < 2, α = 1 − 2
m , and m > 2. It is understood

that we set βt(k) = 0 when ρt(k) =∞.

In the theorem above, the number of switches n between the tasks is T − 1.
Now, consider an arbitrary sequence of task presentations. The proof of the above
theorem, given in the appendix, reveals that the complexity term in the bound
only depends on the number n of switches between the tasks, and not on the
time horizon T . Indeed, when continuously performing the same task, we exploit
the information that the comparator does not change and put all the weight βt

on the current task, losing nothing in the complexity term. This improves the
bound of [8] by removing the lnT term, as the next corollary shows.

Corollary 1. Let βt(k) be defined as in Theorem 3 whenever a switch between
tasks occurs and let βt(κ(t)) = 1 whenever no switch occurs. Then for the shifting
multitask problem, Algorithm 1 yields

L̂t ≤ cη min
S∈Sm

K∑
k=1

min
i∈S

Lt
k,i +

cη

η

(
m ln

N

m− 2
+ 3n lnm

)
.

where n is the number of switches between the tasks.

10 Multitask Learning with Expert Advice

Corollary 2. With the same choice of βt as in Corollary 1, for the sequential
multitask problem, Algorithm 1 yields

L̂t ≤ cη min
S∈Sm

K∑
k=1

min
i∈S

Lt
k,i +

cη

η

(
m ln

N

m− 2
+ 3K lnm

)
.

Up to a constant factor, this is the bound of Theorem 1. Additionally to removing
the lnT term, we obtained a space and time-efficient algorithm. Indeed, the
storage requirement is only KN , which does not depend on T .

5 Predicting with a Random Walk

In the previous section we exhibited an efficient algorithm which attains the
bound of Theorem 1 for the sequential multitask problem. Unfortunately, for the
more general case of the shifting multitask problem, the bound degrades with the
number of switches between the tasks. Encouraged by the fact that it is possible
to design online algorithms even if the prediction is provably hard to compute,
we look for a different algorithm for the shifting multitask problem.

Fortunately, the hardness of computing the weights exactly, as shown in
Section 3.3, does not immediately imply that sampling according to these weights
is necessarily difficult. In this section we provide a randomized algorithm based
on a Markov chain Monte Carlo method. In particular, we show how to sample
a random variable Xt ∈ [0, 1] such that EXt = q̂t, where q̂t is the prediction
defined in (6).

Algorithm 2 Randomized prediction
1: Input: Round t; Number R1 of iterations; Parameter m < N ; K ×N matrix [wt

k,i]
2: for j = 1 to R1 do

3: Sample S ∈ Sm according to P (S) =

KY

k=1

X
i∈S

wt
k,i

!.0@ X
S′∈Sm

KY
k=1

X
i∈S′

wt
k,i

1A
4: Order S = {i1, . . . , im}

5: Sample φ : [K]→ [m] according to P (φ|S) =

KY

k=1

wt
k,iφ(k)

!. KY
k=1

X
i∈S

wt
k,i

!
6: Set Xt

j = f t
Ψ(S,φ,κ(t))

7: end for
8: Predict with X̄t = 1

R1

PR1
j=1 Xt

j

Algorithm 2 samples a subset of m experts S = {i1, . . . , im}, and then sam-
ples a map φ from the set of tasks to this subset of experts. If the current task
is k, the algorithm returns the prediction of expert iφ(k) = Ψ(S, φ, k). We have,

P (S, φ) = P (S)P (φ|S) =

∏K
k=1 wt

k,Ψ(S,φ,k)∑
S′∈Sm

∏K
k=1

∑
i∈S′ w

t
k,i

=
vS,φ∑

(S′,φ′) vS′,φ′
.

Multitask Learning with Expert Advice 11

Note that q̂t =
∑

(S,φ)∈H̄m
P (S, φ)f t

Ψ(S,φ,k), and it follows that EXt = q̂t.
Notice that, in the above algorithm, every step can be computed efficiently

except for step 3. Indeed, sampling φ given a set S can be done by independently
sampling assignments φ(k) for all k. In step 3, however, we must sample a sub-
set S whose weight we define as

∏K
k=1

∑
i∈S wt

k,i. Computing the weights for all
subsets is implausible, but it turns out that we can apply a Markov Chain Monte
Carlo technique known as the Metropolis-Hastings algorithm. This process be-
gins with subset S of size m and swaps experts in and out of S according to a
random process. At the end of R2 rounds, we will have an induced distribution
QR2 on the collection of m-subsets Sm which will approximate the distribution
P defined in step 3 of Algorithm 2.

More formally, the process of sampling S is as follows.

Algorithm 3 Sampling a set of m experts
1: Input: Matrix of wt

k,i, i ∈ [N], k ∈ [K], and number of rounds R2

2: Start with some S0 ∈ Sm, an initial set of m experts
3: for r = 0 to R2 − 1 do
4: Uniformly at random, choose i ∈ [N] \ Sr and j ∈ Sr. Let S′r = Sr ∪ i \ j.
5: Calculate ω(Sr) =

QK
k=1

P
i∈Sr

wt
k,i and ω(S′r) =

QK
k=1

P
i∈S′r

wt
k,i

6: With probability min
n

1,
ω(S′r)

ω(Sr)

o
, set Sr+1 ← S′r, otherwise Sr+1 ← Sr

7: end for
8: Output: SR2

Definition 2. Given two probability distributions P1 and P2 on a space X, we
define the total variation distance ||P1 − P2|| = 1

2

∑
x∈X |P1(x)− P2(x)|.

It can be shown that the distance ||QR2 − P || → 0 as R2 → ∞. While we omit
the details of this argument, it follow from the fact that P is the stationary
distribution of the Markov chain described in Algorithm 3. More information
can be found in any introduction to the Metropolis-Hastings algorithm.

Theorem 4. If a forecaster predicts according to algorithm 2 with the sampling
step 3 approximated by Algorithm 3, then with probability at least 1− δ,

L̂T ≤ cη min
π∈Hm

K∑
k=1

LT
k,π(k) +

cη

η

(
m log

N

m
+ K log m

)
+ CTε + CT

√
ln 2T

δ

2R1
,

where R1 is the number of times we sample the predictions, C is the Lipschitz
constant of `, and R2 is chosen such that ‖QR2 − P‖ ≤ ε/2. The last two terms
can be made arbitrarily small by choosing large enough R1 and R2.

A key ingredient of this theorem is our ability to choose R2 such that ‖QR2−
P‖ < ε. In general, since ε must depend on T , we would hope that R2 =
poly(1/ε). In other words, we would like to show that our Markov chain has

12 Multitask Learning with Expert Advice

a fast mixing time. In some special cases, one can prove a useful bound on the
mixing time, yet such results are scarce and typically quite difficult to prove. On
the other hand, this does not imply that the mixing time is prohibitively large. In
the next section, we provide empirical evidence that, in fact, our Markov chain
mixes extremely quickly.

5.1 Experiments

For small K and N and some matrix [wt
k,i]k,i we can compute the true distri-

bution P on Sm, and we can compare that to the distribution QR2 induced by
the random walk described in Algorithm 3. The graphs in Figure 1 show that,
in fact, QR2 approaches P very quickly even after only a few rounds R2.

0 50 100 150 200

2

3

4

5

6

7

8

9

10

11

12
x 10

−3

True Distribution
Distribution After 1 Step
Distribution After 2 Steps
Distribution After 5 Steps

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Steps of Markov Chain

ℓ
1

d
is
ta

n
ce

Fig. 1. We generate a random K × N matrix [wt
k,i]k,i, where K = 5, N = 10, and

we consider the distribution on Sm described in algorithm 2. In the first graph we
compare this “true distribution” P , sorted by P (S), to the induced distribution QR2

for the values R2 = 1, 2, 5. In the second graph we see how quickly the total variation
distance ‖P −QR2‖ shrinks relative to the number of steps R2.

Figure 2 demonstrates the performance Algorithm 2, for various choices of
m, on the following problem. We used R1 = 5 and we employ Algorithm 3 to
sample S ∈ Sm with R2 = 700. On each round, we draw a random xt ∈ X = Rd,
where in this case d = 4, and this xt is used to generate the outcome and the
predictions of the experts. We have K = 60 tasks, where each task fk is a
linear classifier on X. If k = κ(t), the outcome for round t is I(fk · xt > 0).
We choose 70 “bad” experts, who predict randomly, and 30 “good” experts
which are, themselves, randomly chosen linear classifiers ei on X: on round t
expert i predicts I(ei · xt > 0) with 30% label noise. In the plots below, we
compare the performance of the algorithm for all values of m to the comparator∑

k mini Lt
k,i. It is quite interesting to see the tradeoff between short and long-

term performance for various values of m.

Multitask Learning with Expert Advice 13

Fig. 2. The performance of Algorithm 2 on a toy example. Large values of m have
good long-term performance yet are “slow” to find the best expert. On the other hand,
the algorithm learns very quickly with small values of m, but pays a price in the long
run. In this example, m = 10 appears to be a good choice.

6 Conclusion

We conclude by stating some open problems.
Recall that in Section 3.3 we show a crucial relationship between computing

the forecaster’s prediction and computing the permanent of a matrix. Interest-
ingly, in very recent work, Jerrum et al [10] exhibit a Markov chain, and a bound
on the mixing time, that can be used to efficiently approximate the permanent
of an arbitrary square matrix with nonnegative entries. Could such techniques
be employed to provide a randomized prediction algorithm with provably fast
convergence?

Is it possible to develop a version of the Multitask Mixing Algorithm for the
shifting multitask problem and prove that performance does not degrade with
the number of shifts between the tasks? Are there reasonable assumptions under
which Φ in the proof of Theorem 3 depends sublinearly on the number of shifts?

Acknowledgments. We would like to thank Manfred Warmuth for his knowl-
edge of prediction algorithms and helpful discussions on mixing priors. We would
like to thank Alistair Sinclair for his expertise on the MCMC methods. We grate-
fully acknowledge the support of DARPA under grant FA8750-05-20249.

References

1. Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, Learning, and Games. Cam-
bridge University Press, 2006.

2. Theodoros Evgeniou, Charles A. Micchelli, and Massimiliano Pontil. Learning
multiple tasks with kernel methods. JMLR, 6:615–637, 2005.

3. Rie K. Ando and Tong Zhang. A framework for learning predictive structures from
multiple tasks and unlabeled data. JMLR, 6:1817–1853, 2005.

4. R. Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.

14 Multitask Learning with Expert Advice

5. O. Dekel, Y. Singer, and P. Long. Online multitask learning. In COLT, 2006.
6. J. Baxter. A model of inductive bias learning. JAIR, 12:149–198, 2000.
7. S. Ben-David and R. Schuller. Exploiting task relatedness for mulitple task learn-

ing. In COLT, pages 567–580, 2003.
8. Olivier Bousquet and Manfred K. Warmuth. Tracking a small set of experts by

mixing past posteriors. JMLR, 3:363–396, 2002.
9. A. Kalai and S. Vempala. Efficient algorithms for online decision problems. J.

Comput. Syst. Sci., 71(3):291–307, 2005.
10. M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algo-

rithm for the permanent of a matrix with non-negative entries. In STOC ’01.

A Proofs

Proof (of Inequality (7)). The details of this proof can be found in [8, 1].

ˆ̀t/cη ≤ `(z̃t · f t, yt)/cη ≤ c−1
η

N∑
i=1

z̃t
i`

t
i ≤ −

1
η

ln
N∑

i=1

z̃t
ie
−η`t

i

= ũt · `t +
1
η

N∑
i=1

ut,i ln e−η`t
i − 1

η
ln

N∑
i=1

z̃t
ie
−η`t

i

= ũt · `t +
1
η
4
(
ũt, z̃

t
)
− 1

η
4
(
ũt, w̃t

κ(t)

)
≤ ũt · `t +

1
η
4
(
ũt, w̃t−1

k′

)
− 1

η
4
(
ũt, w̃t

κ(t)

)
+

1
η

ln
1

βt(k′)

Proof (of Theorem 3). The proof is an adaptation of the proof of Corollary 9
in [8], taking into account the task information. Let ũ1, . . . , ũm be m arbitrary
comparators. For any π : [K] 7→ [m], ũπ(k) is the comparator used by the
environment for task k (known only in the hindsight). For any t,

ˆ̀t/cη ≤ ũπ(k) · `t +
1
η

(
4
(
ũπ(k), z̃

t
)
−4

(
ũπ(k), w̃t

k

))
,

where k = κ(t). There are m time points when a task k begins and it is the first
task being compared to the comparator ũπ(k). For these m time steps,

ˆ̀t/cη ≤ ũπ(k) · `t +
1
η

(
4
(
ũπ(k), w̃

t−1
k

)
−4

(
ũπ(k), w̃t

k

)
+ ln

1
α

)
,

where w̃t−1
k = w̃0

k, as it has not been modified yet. Otherwise,

ˆ̀t/cη ≤ ũπ(k) · `t +
1
η

(
4
(
ũπ(k), w̃

t−1
k′

)
−4

(
ũπ(k), w̃t

k

)
+ ln

ρt(k′)2Zt

1− α

)
,

where k′ is the most recent task played against the comparator ũπ(k) (this is still
true in the case k is the only task for the comparator ũπ(k) because α > 1−α

ρt(k)2Zt

with the choice of α below). We upper bound

ˆ̀t/cη ≤ ũπ(k)·`t+
1
η

(
4
(
ũπ(k), w̃

t−1
k′

)
−4

(
ũπ(k), w̃t

k

)
+ ln ρt(k′)2 + ln

2
1− α

)
.

Multitask Learning with Expert Advice 15

We note that for each comparator ũj , the relative entropy terms telescope.
Recall that w̃0

k = 1
N 1 and 4

(
ũj ,

1
N 1
)
≤ lnN . Summing over t = 1, . . . , T ,

L̂t/cη ≤
K∑

k=1

∑
t∈τ(k)

ũπ(k) · `t +
1
η

(
m lnN + m ln

1
α

+ (T −m) ln
2

1− α
+ 2Φ

)
,

where Φ =
∑T

t=1 ln ρt(k′) and k′ is the task previous to κ(t) which used the
same comparator. We now upper-bound Φ by noting that ρt(k′) is smaller than
the number of time steps δt that elapsed since task k′ was performed. Note
that

∑T
t=1 δt ≤ mT as there are m subsequences summing to at most T each.

Hence, ln
∏T

t=1 δt is maximized when all the terms δt are equal (i.e. at most m),
resulting in Φ ≤ T lnm. Note that Φ, which depends on the sequence of task
presentations, is potentially much smaller than T lnm.

Choosing, for instance, α = 1− 2
m whenever m > 2,

L̂t/cη ≤
K∑

k=1

∑
t∈τ(k)

ũπ(k) · `t +
1
η

(
m ln

N

m− 2
+ 3T lnm

)
.

The constant 3 can be optimized by choosing a non-quadratic power decay
for βt at the expense of having an extra T lnK term. Setting the compara-
tors ũ1, . . . , ũm to be unit vectors amounts to finding the best m-subset of N
experts. The minimum over the assignment π of tasks to experts then amounts
to choosing the best expert out of m possibilities for each task.

Proof (of Theorem 4). Let P̃ (S, φ) = QR2(S)P (φ|S), the induced distribution
on the (S, φ) pairs when the MCMC Algorithm 3 is used for sampling. Let Xt

now stand for the random choices f t
i according to this induced distribution P̃ ,

which is close to P . Then EXt =
∑

(S,φ)∈H̄m
f t

Ψ(S,φ,k)P̃ (S, φ). Hence,

|q̂t − EXt| =

∣∣∣∣∣∣
∑

(S,φ)∈H̄m

f t
Ψ(S,φ,k)

(
P (φ, S)− P̃ (φ, S)

)∣∣∣∣∣∣
≤

∑
(S,φ)∈H̄m

f t
Ψ(S,φ,k)P (φ|S) |P (S)−QR2(S)| ≤ 2‖QR2 − P‖ ≤ ε.

Since we sample Xt independently R1 times, standard concentration inequal-

ities ensure that P
(∣∣X̄t − EXt

∣∣ ≥√(ln 2T
δ

)
/(2R1)

)
≤ δ

T . Combining with the

above result, P
(∣∣X̄t − q̂t

∣∣ ≥ ε +
√(

ln 2T
δ

)
/ (2R1)

)
≤ δ

T . Since ` is Lipschitz,∣∣`(X̄t, yt)− `(q̂t, yt)
∣∣ ≤ Cε+C

√(
ln 2T

δ

)
/(2R1) with probability at least 1−δ/T .

By the union-bound, with probability at least 1− δ,∣∣∣∣∣
T∑

t=1

`(X̄t, yt)−
T∑

t=1

`(q̂t, yt)

∣∣∣∣∣ ≤ T · Cε + T · C

√
ln 2T

δ

2R1
.

Combining with the bound of Theorem 1 (for H̄m), we obtain the desired result.

