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Abstract— This paper provides a reduced-order algorithm,
the Extended-Force-Propagator Algorithm (EFPA), for the
computation of operational-space inertia matrices in branched
kinematic trees. The algorithm accommodates an operational
space of multiple end-effectors, and is the lowest-order algo-
rithm published to date for this computation. The key feature
of this algorithm is the explicit calculation and use of matrices
that propagate a force across a span of several links in a single
operation. This approach allows the algorithm to achieve a
computational complexity of O(N +md+m2) where N is the
number of bodies, m is the number of end-effectors, and d is the
depth of the system’s connectivity tree. A detailed cost compar-
ison is provided to the propagation algorithms of Rodriguez et
al. (complexity O(N + dm2)) and to the sparse factorization
methods of Featherstone (complexity O(nd2 +md2 +m2d)).
For the majority of examples considered, our algorithm outper-
forms the previous best recursive algorithm, and demonstrates
efficiency gains over sparse methods for some topologies.

I. INTRODUCTION

Recursive dynamics algorithms for robotic mechanisms
have enjoyed a history of success due to their low com-
putational complexity. This class of algorithms has enabled
efficient solutions to problems in forward [1], [2], inverse
[3], and operational-space dynamics [4]. In this paper, we
present the lowest-order algorithm to date for computation
of the inverse of the operational-space matrix Λ−1, a key
component in the operational-space dynamics formulation.

The original operational-space formulation [5] has un-
locked a vast body of research over the past decades
that enables, in principle, decoupling of task and null-
space dynamics through operational-space control. While
the operational-space formalism was originally developed
to describe the dynamics of a single end-effector, it was
extended to accommodate general task spaces that depend
on the motion of more than one body in [6].

More recent work has also demonstrated the applicability
of the operational-space formalism to the control of con-
strained and underactuated systems (e.g. [7], [8], [9], [10]).
Sentis et al. extended the framework to provide operational
control of free floating systems [7]. Park et al. introduced
contact constrained operational dynamics for a humanoid
in [8] which was later extended to operational control of
contact force behavior in [9]. The work of Mistry and
Righetti [10] addressed these challenges as well, but through
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a substantially different approach. Through considering the
operational task within the framework of projected inverse
dynamics, their results provide simplified control laws in
comparison to previous work. This plethora of practical
applications motivates the need for efficient operational-
space dynamics algorithms to support these controllers.

Many algorithms have been developed to efficiently com-
pute operational-space dynamics quantities. The largest body
of work has concentrated on the operational-space inertia
matrix, with original algorithms in [11], [12], [13] for single
end-effector manipulators. The Force Propagation algorithm
of Lilly [11], [14] was independently formulated by Kreutz-
Delgado et al. [12] within their spatial operator algebra
framework. An alternate approach of Lilly and Orin [13]
approximates Λ through direct application of the articulated
body inertia recursions of [1].

These approaches have been extended to a more general
operational space that may include multiple end-effectors.
Chang and Khatib presented a recursive method that ex-
tended Lilly’s Force Propagation approach to this setting
[15]. A very similar method had been developed previously
by Rodriguez et al. [4]. An optimized version of the Ro-
driguez algorithm was provided in [16] and is used as a
benchmark for recursive algorithms here.

An alternative line of research has developed methods that
exploit sparsity in the structural components of the dynamic
equations of motion to compute forward and operational
dynamics [16], [17]. The kinematic branching that is found
in complex mechanisms leads to specific patterns of zero
elements in the system’s mass matrix and task Jacobian. The
exploitation of this sparsity pattern, referred to as branch-
induced sparsity, has led to algorithms that are competitive
with, and sometimes superior to, recursive approaches.

The algorithm presented in this paper, called the
Extended-Force-Propagator Algorithm (EFPA), calculates
Λ−1 highly efficiently, and achieves a computational com-
plexity of O(N + md + m2) where N is the number
of bodies, m is the number of end-effectors, and d is
the depth of the system’s connectivity tree. This beats the
previous best reported complexity of O(N +dm2) achieved
by the algorithm of Rodriguez et al. [4]. The key feature
of the EFPA, which is responsible for both its high effi-
ciency and low complexity, is the explicit calculation and
use of matrices that propagate a force applied at an end-
effector directly to an equivalent force at another body in
the mechanism that may be several joints away from the
end-effector. This approach substantially alters the structure
of the computation, so that the EFPA has relatively few



1354 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / September 2010

(1999, 2000, 2001), and the difference between these two al-
gorithms is explained in Appendix B.

The approach taken in this paper is to accelerate the cal-
culation of JH!1JT by exploiting the sparsity in H and J.
The computational complexity of the new method is O!nd2 "
md2 " m2d", which is better than the basic method but worse
than Rodriguez’s algorithm. Thus, Rodriguez’s algorithm will
inevitably be faster for sufficiently large values of d. Never-
theless, the new method is easily the fastest on the ASIMO
example, and also on several more examples considered at the
end of Section 9. These results show that the new method is
likely to be the best choice for most humanoids and similar
robots.

The rest of this paper is organized as follows. Sections 2
and 3 explain how connectivity is described, and how branches
cause branch-induced sparsity. Section 4 presents a brief sum-
mary of operational-space dynamics, sufficient to define the
matrices ###, #J and N. Section 5 describes the sparsity pattern
in the task Jacobian. Section 6 shows how###!1 can be factor-
ized as ###!1 $Y YT or ###!1 $YD YT

d , where Y, Yd and YD

all have the same sparsity pattern as J. Section 7 explains the
close connections between Section 6 and the innovations fac-
torization of Rodriguez et al. Finally, Section 8 presents the
new sparse-matrix algorithms! and Section 9 presents a table
of computational cost formulae, an analysis of computational
complexity, and the actual costs incurred in the ASIMO exam-
ple.

2. Describing Connectivity

A rigid-body system can be regarded as a collection of rigid
bodies connected together by joints. The connectivity of such
a system can be described by means of a graph in which the
nodes represent the bodies and the arcs represent the joints. We
use the term kinematic tree to describe any rigid-body system
for which the connectivity graph is a tree. In practical terms, a
kinematic tree is a mechanical system without kinematic loops.
An example of a kinematic tree is shown in Figure 1(a), and
its connectivity graph is shown in Figure 1(b).

In general, a kinematic tree will consist of N bodies, N
joints and a fixed base. We treat the fixed base as a special
body, so the connectivity graph will contain N arcs and N " 1
nodes. If the kinematic tree describes a mobile robot, then one
body in the robot is identified as the floating base, and a six-
degree-of-freedom (6-DoF) joint is inserted between the fixed
and floating bases. This joint is not physically a part of the
robot, but the six joint variables associated with it are neces-
sary for describing the robot’s location. If the kinematic tree
describes a collection of mobile robots, then each one has its
own floating base and 6-DoF joint.

The bodies, joints, nodes and arcs are numbered according
to the following standard numbering scheme. First, the node

Fig. 1. (a) A kinematic tree and (b) its connectivity graph.

representing the fixed base is assigned the number 0, and is re-
garded as the root node of the tree. Next, the remaining nodes
are numbered consecutively from 1 in any order such that each
node has a higher number than its parent. The arcs are then
numbered such that arc i connects between node i and its par-
ent. Finally, the bodies and joints are given the same numbers
as their corresponding nodes and arcs.

Once the bodies have been numbered, the connectivity of a
kinematic tree can be described by its parent array, $. This is
an N -element array such that $!i" is the body number of the
parent of body i . The parent array for the example in Figure 1
is $ $ [0% 1% 1% 2% 2% 3% 3], meaning that $!1" $ 0, $!2" $ 1,
and so on. The node-numbering rules ensure that $ has the
property 0 % $!i" & i , which is exploited in many algorithms.

Given $, the following sets can be defined, which describe
various properties of the connectivity graph:

'!i": the set of children of body i , defined by '!i" $ &j '
$! j" $ i(!

(!i": the set of joints that support body i , defined by (!i" $
&i( ) (!$!i"" and (!0" $ * (the empty set)! and

)!i": the set of bodies supported by joint i , defined by )!i" $
&j ' i + (! j"(.

A joint is said to support a body if it lies on the path between
that body and the root node. Thus, (!i" is the set of all joints on
the path between body i and the root, and )!i" is the set of all
bodies in the subtree starting at body i . These sets have various
properties that follow from their definitions. For example, j +
(!i" implies i + )! j" and vice versa, and (!i" , )! j" -$ *
if and only if j + (!i". For the connectivity tree in Figure 1,
we have '!1" $ &2% 3(, )!2" $ &2% 4% 5(, (!4" $ &1% 2% 4(,
'!5" $ *, and so on. A kinematic tree is branched if at least
one set '!i" contains more than one element.

Most mainstream dynamics algorithms can be couched in
terms that use only $. Nevertheless, '!i", )!i" and (!i" can
be useful in the mathematical descriptions of these algorithms,
and in the analysis of their properties.

Fig. 1. (a) A kinematic tree and (b) its connectivity graph from [16].

intermediate results in common with previous algorithms.
The rest of this paper will be organized as follows.

Section II reviews the conventions and notation that will
be used to describe the dynamic properties and topology
of a branched kinematic tree. Section III briefly reviews
the operational-space dynamic equations of motion. Section
IV introduces and derives the EFPA. Section V compares
the algorithm’s computational performance to the leading
recursive and sparse techniques previously mentioned, and
Section VI summarizes our work.

II. KINEMATIC TREES - CONVENTIONS AND NOTATION

This section will outline the conventions and notation that
will be used to describe the topology and dynamic properties
of a rigid-body system. The conventions adopted in [18] will
be employed. 6D spatial vector algebra will be used to enable
compact notation for algorithm development and efficient
spatial vector arithmetic for implementation. Tutorials on
spatial vectors and their specific use in dynamics algorithms
can be found in [19], [20].

A. Describing Connectivity

A rigid-body system can be modeled as a set of N bodies
connected together by a set of joints, each with up to 6
degrees of freedom. The connectivity of such a system
can generally be described by a graph, wherein each node
represents a body, and each arc represents a joint. In this
paper, we restrict our attention to those rigid-body systems
which fall into the class of kinematic trees. The connectivity
graph of such systems forms a tree, while physically, these
systems are free of kinematic loops. An example of a
kinematic tree is shown in Fig. 1(a) and its connectivity
graph is shown in Fig. 1(b) [16].

Systems which fall into the class of kinematic trees can
be modeled as a set of N bodies, a fixed base, and N joints.
In the case of a mobile robot, one of the bodies is assigned
as a floating base, and a six-degree-of-freedom (DoF) virtual
joint is inserted between the fixed and floating base. The
fixed base is labeled 0, while the other bodies are labeled 1
through N . Numbering may be done in any order such that
the label of body i’s parent, denoted p(i), is less than i. The
joints, represented by the arcs in the connectivity tree, are
then numbered such that joint i connects bodies i and p(i).
Given these conventions, we make the following definitions:

c(i): the set of children of body i, defined by
c(i) = {j | p(j) = i}

κ(i) : the set of joints that support body i, defined
by κ(i) = {i} ∪ κ(p(i)) and κ(0) = ∅

Here, a joint is said to support body i precisely when
it lies on the path between body i and the fixed base.
Additionally, we use the support sets to define the nearest
common ancestor for a pair of bodies as follows:

ancest(i, j) = max(κ(i) ∩ κ(j)). (1)

For example, in Fig. 1, ancest(2, 6)=1 and ancest(4, 5)=2.
In this work we consider a set of m end-effectors, each

of which is rigidly attached to a single body in the tree.
We extend the connectivity tree to accommodate the end-
effectors, which are numbered from N + 1 to N +m. As
a result, p(k) denotes the body to which end-effector k is
rigidly attached. Letting κ(k) be similarly defined as before,
we define the following sets to describe the end-effectors
supported (ES) by each joint in the tree:

ES(i) = {k | N < k and i ∈ κ(k)}. (2)

B. Spatial Notation

We briefly review some of the basic spatial quantities [18]
that will be employed in the algorithm. A coordinate frame
will be attached to each body in the tree to describe spatial
quantities with respect to a local basis. The general joint
notation of Roberson and Schwertassek [21] will be adopted
to describe the relationship between connected links. With
this notation, the spatial velocity vi of link i is related to its
parent through the following equation:

vi =

[
ωi

vi

]
= iXp(i)vp(i) + Φiq̇i

where ωi and vi are the angular and linear velocities of
body i (as referenced to the local coordinate frame). The
matrix iXp(i) provides a transformation of spatial motion
vectors from p(i) to i coordinates, and the matrix Φi is a
full-rank matrix that encodes joint i’s free modes of motion.
This matrix is dependent on the type of joint, but takes the
simplified form Φi = [0, 0, 1, 0, 0, 0]T for revolute joints
following the Denavit-Hartenberg convention.

Similarly, the matrix iXT
p(i) provides a spatial transforma-

tion of forces from i coordinates to p(i) coordinates. Body
i’s rigid-body inertia tensor will be denoted Ii, while the
articulated body inertia of the subtree rooted at i will be
denoted IAi [18]. Intuitively, IAi is the apparent inertia that
would be “felt” by a force acting at the base of the subtree
rooted at i if the subsystem were at rest and no joint torques
were applied.

III. OPERATIONAL SPACE DYNAMICS

This section briefly introduces the various quantities that
are used to describe operational-space dynamics [5]. Given



a rigid-body system, with end-effectors as described previ-
ously, we first consider the standard dynamic equations of
motion:

H(q)q̈ +C(q, q̇) +G(q) = τ + J(q)TF (3)

where H , C , and G are the familiar mass matrix, velocity
product terms, and gravitational terms respectively. Here F
collects end-effector forces and J is a combined end-effector
Jacobian that relates joint rates to end-effector velocities as,

ẋ = J(q)q̇ . (4)

Premultiplication of (3) by JH−1 and incorporation of the
time derivative of (4) provides:

ẍ = JH−1τ + Λ−1F + β, (5)

where

β(q, q̇) = J̇ q̇ − JH−1 (C +G) , and

Λ−1(q) = JH−1JT .

Efficient computation of Λ−1 is required for any operational-
space control application. The following section provides a
recursive algorithm to compute this matrix which is then
compared to existing approaches. Zero joint rates, zero joint
torques, and no gravity are assumed for the algorithm, as
they have no effect on Λ−1. Methods to efficiently compute
JH−1τ + β can be found in [18], Section 2.5.4.

IV. THE EXTENDED-FORCE-PROPAGATOR ALGORITHM

Recursive algorithms for articulated structures have been
shown to be very efficient, for example, in the calculation
of forward dynamics with the articulated body algorithm
(ABA) [18]. The ABA proceeds with three recursions. The
first, outward from base-to-tips, calculates joint velocities
and associated velocity dependent terms. The second re-
cursion, inward from tips-to-base, then computes articulated
body inertias and bias forces. The final recursion, once again
outward, calculates body accelerations. In this paper, we
extend the ABA to isolate the effects of the end-effector
forces that are needed in operational-space dynamics.

The EFPA stems from the final two recursions of the
articulated body algorithm. Its main feature is the recursive
calculation and re-use of the extended force propagator
matrices kX T

i , in which body i may be arbitrarily far
away from end-effector k. While the standard spatial force
transform kXT

i provides a transformation of spatial forces
from k to i as if the bodies are locked at the joints, the
matrix kX T

i provides an articulated transformation as if the
joints are free to move. As a result, kX T

i fk describes the
force that is felt at i due to a force fk at k.

Analogous to the relationship between kXT
i and kXi, kX i

is an extended acceleration propagator that transforms an
acceleration at body i to body k given that the system is
free at the joints. As such, kX i and kX T

i can be referred to
as articulated transforms as in [14] to convey their operation.

The concept of an articulated transform is not new.
For example, kX T

i appears in [15] as i
kL
∗ and in [4] as

f i

fe
k

f i(a) (b)

fe
k

aiai kX T
i

kX T
i f

e
k
k

Fig. 2. (a) Spatial quantities used to describe the dynamics of body i in
the subtree rooted at i. (b) Recursive relationships obtained by the inward
recursion of the EFPA. An articulated inertia is used to describe the effective
inertia of all outlined bodies. The force propagator kXT

i transforms the
dynamic effect of the end-effector force fe

k through bodies k to i to describe
the force effect on the i-th body.

ψ(i, k). However, the EFPA is the first algorithm to explicitly
compute and use these matrices for efficiency gains.

A. Inward Recursion

The first pass of the EFPA proceeds from tip to base. It
seeks to propagate the following equation:

f i = I
A
i ai −

∑
k∈ES(i)

kX T
i f

e
k , (6)

which provides a force-acceleration relationship for body i
of the articulated subtree rooted at joint i. Here fe

k repre-
sents a force which acts at end-effector k. The articulated
transforms kX T

i are extended force propagators as described
previously and illustrated in Fig. 2. This inward recursion
is more complex in comparison to previous algorithms [4],
[15], but enables computational savings in the outward
recursion. Initialization of (6) at the end-effector bodies
seeds this recursion with kX p(k) =

kXp(k).
The assumptions of zero joint torques and zero velocities

provide the following relationships at each joint:

ΦT
i f i = 0, (7)

ai =
iXp(i) ap(i) + Φi q̈i, and (8)

fp(i) = Ip(i) ap(i) +
∑

j∈c(p(i))

jXT
p(i) f j . (9)

Similar to the ABA derivation [22], relationships (6)-(8) can
be combined to relate the acceleration of the i-th subtree
to the predecessor acceleration and end-effector forces. This
relationship can then be combined with (9) to provide:

fp(i) =

Ip(i) + ∑
j∈c(p(i))

jXT
p(i)L

T
j I

A
j

jXp(i)

ap(i)

−
∑

j∈c(p(i))

∑
k∈ES(j)

jXT
p(i)L

T
j

kX T
j f

e
k, (10)

where each LT
i is a force propagator across the i-th joint

and takes the form:

LT
i = 16×6 − IAi Ki



where Ki = Φi (Φ
T
i I

A
i Φi)

−1 ΦT
i . While the quantity in

parenthesis in (10) provides the familiar recursive relation-
ship for the articulated body inertia, the remaining portion
provides the following recursive relationships for each kX i:

kX p(i) :=
kX iLi

iXp(i). (11)

We note that the product Li
iXp(i) used here is an articulated

acceleration transform (an acceleration propagator) across
a single joint. This recursion is required no more than d
times for each end-effector. This leads to a computational
complexity of O(md) to calculate all required articulated
transforms. The articulated inertia computation has complex-
ity O(N), providing a overall complexity of O(N+md) for
this pass of the algorithm.

B. Outward Recursion

The final goal of the outward recursion is to produce
the combined force-acceleration relationship a = Λ−1f for
the end-effectors. This relationship is arrived at recursively,
from base to tips, through the solution for accelerations
at intermediate links along the tree. This is accomplished
through propagation of the following equation:

ai =

N+m∑
k=N+1

Λ−1ik f
e
k , (12)

where each Λ−1ik describes the acceleration at link i caused
by end-effector force fe

k. We note that Λ−1ik is not a block
of Λ−1 when i refers to a body. The assumption that the
fixed base is stationary seeds this recursion with:

Λ−10k = 06×6.

To propagate (12) to body i from its predecessor, the
combination of (12) at p(i) along with (6)-(8) leads to:

ai =
∑

k/∈ES(i)

Li
iXp(i) Λ−1p(i) k f

e
k

+
∑

k∈ES(i)

(
Li

iXp(i) Λ−1p(i) k +Ki
kX T

i

)
fe
k .

That is, the recursive relationship between Λ−1i k and Λ−1p(i) k
is dependent on whether or not joint i supports end-effector
k. For each k ∈ ES(i) we have the recursion:

Λ−1i k := Li
iXp(i) Λ−1p(i) k +Ki

kX T
i , (13)

while
Λ−1i k := Li

iXp(i) Λ−1p(i) k

for each k /∈ ES(i). Thus, if i does not support end-effector
k2, the acceleration influence of fe

k2
propagates from p(i)

to i according to an articulated acceleration transform (as
if the joint i were free to move). As a result, for any other
end-effector k1 in the subtree at i we have the following:

Λ−1k1 k2
:= k1X p(i) Λ−1p(i) k2

. (14)

This simplification is illustrated in Fig. 3 for a basic exam-
ple. We note that this simplification is first possible when
i is the child of ancest(k1, k2). In the example figure, an

fe
k2

Λ−1
1 k2

Λ−1
2 k2

Λ−1
3 k2

Λ−1
k1 k2

1

2

3

k1

k2

0

fe
k1

k1X 1

Fig. 3. Simplification to the outward recursion that is provided by the
acceleration propagator k1X 1. It’s transpose, the force propagator 1XT

k1
was calculated during the inward recursion. As a result, three recursive
steps for the calculation of Λ−1

k1 k2
are able to be replaced with one matrix

multiplication.

acceleration propagator may be applied to calculate Λ−1k1 k2

recursively through links 1, 2, and 3. Yet, computational
savings can occur when Λ−1k1 k2

is computed directly at the
common ancestor of k1 and k2 through the use of k1X 1.
With this insight we define the following set:

GCA(i) = {(k1, k2) | k1 < k2

and i = ancest(k1, k2)} (15)

which contains all end-effector pairs that have a greatest
common ancestor at i. The EFPA, uses this set to determine
the links at which the cross-terms of Λ−1 may be computed.

Through the use of these simplifications, the recursion
listed in (13) is required not more than d times for each end-
effector. This ultimately leads to the computation of each
Λ−1kk and has overall complexity of O(md). These quantities
represent the diagonal blocks of Λ−1. Each of the cross
terms in Λ−1 can then be calculated via an appropriate ver-
sion of (14), resulting in a cross-term calculation complexity
of O(m2). Thus, the overall complexity of this recursion
is O(md +m2). Including both passes of the algorithm, a
complexity of O(N +md+m2) is achieved.

The full EFP algorithm is listed in Table I. The second
and third loops provide implementations of the inward
and outward recursions respectively. We note that due to
the symmetry of Λ−1, only the upper triangle of Λ−1 is
computed by the algorithm. The final loop provides the
necessary transformation for each Λ−1k k into end-effector co-
ordinates. This additional transformation loop is not required
for off-diagonal terms, as the acceleration propagators kX i

transform accelerations directly to the end-effector frames.

V. ALGORITHM COMPARISON

This section will provide a comparison of the compu-
tational performance of the EFPA to the algorithms of
Rodriguez et al. [4] and Featherstone [16]. We first briefly
describe the operation of these algorithms.



Initialize: Λ−1
0k = 06×6, IAi = Ii

for k = N + 1 to N +m do
kXT

p(k) =
kXT

p(k)

end for k

for i = N to 1 do
Ki = Φi (Φ

T
i I

A
i Φi)

−1 ΦT
i

Li = 16×6 −KiI
A
i

if p(i) 6= 0 then
IAp(i) = I

A
p(i) +

iXT
p(i)L

T
i I

A
i

iXp(i)

for all k ∈ ES(i) do
kX p(i) = kX iLi

iXp(i)

end for k
end

end for i

for i = 1 to N do
for all k ∈ ES(i) do

Λ−1
ik = Li

iXp(i) Λ−1
p(i) k

+Ki
kXT

i

end for k
for all (k1, k2) ∈ GCA(i) do

Λ−1
k1k2

= k1X i Λ−1
i k2

end for k
end for i

for k = N + 1 to N +m do
Λ−1

kk = kXp(k) Λ−1
p(k) k

end for i

Λ−1 =


Λ−1

N+1,N+1 . . . Λ−1
N+1,N+m

...
. . .

...
Λ−T

N+1,N+m . . . Λ−1
N+m,N+m


TABLE I

EXTENDED-FORCE-PROPAGATOR ALGORITHM

A. RJK Algorithm

The algorithm of Rodriguez, Jain and Kreutz-Delgado
(RJKA) is described in [4] and a dramatically optimized
version can be found in [16]. The main differences between
the RJKA and EFPA can be summarized as follows.
• Only the EFPA calculates extended force propagators.
• The RJKA calculates Λ−1kk via a recursion that calcu-

lates Λ−1ii from Λ−1p(i)p(i), whereas the EFPA instead
calculates Λ−1ik from Λ−1p(i)k.

• The RJKA calculates Λ−1k1k2
recursively from a com-

mon ancestor using local articulated transforms only,
whereas the EFPA calculates these quantities in a single
step using (14).

B. Sparse Factorization Algorithm (SFA)

Featherstone’s sparse factorization algorithm (SFA) [16] is
based on the exploitation of branch-induced sparsity in the
system mass matrix H and the rows of the task Jacobian J .
The algorithm first uses the factorization approach of [17] to
express the mass matrix as H = LTL, where L is a lower-
triangular matrix that enjoys the same sparsity pattern as the
lower triangle of H . The class of lower-triangular matrices
that possesses this branch-induced sparsity pattern is shown
to be a group, which implies the same sparsity pattern in

thumb
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Fig. 4. Connectivity graph of the ASIMO Next-Generation robot (modified
from [16]).
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Fig. 5. Cost comparison breakdown for the Hands and Feet operational-
space example for Fig. 4. Although the EFPA incurs additional cost on the
inward recursion to calculate each kX i, this enables savings to calculate the
off-diagonal terms of Λ−1

k1 k2
. Still, the sparsity from this topology provides

advantage to the SFA.

L−1, and thus in the rows of Y = JL−1. This definition
provides:

Λ−1 = JH−1JT = Y Y T .

The properties of branch-induced sparsity are then exploited
to greatly accelerate the computation of Y and Λ−1. The
final algorithm to compute Λ−1 can be shown to have
computational complexity O(nd2 +md2 +m2d) where n
represents the total number of degrees of freedom in the
system.

C. Computational Examples

To understand the comparative performance of the al-
gorithms, this section presents the floating point operation
counts (flops) for the calculation of Λ−1 in a number of
examples. We mainly consider the same examples as those
in [16] for the ASIMO Next-Generation humanoid robot and
derived mechanisms. This floating base humanoid consists
of N = 35 bodies, with connectivity shown in Fig. 4. All
joints aside from the floating base are modeled as revolutes.

We first consider an operational space consisting of the
position and orientation of the hands and feet (4 end-
effectors) for this system. Figure 5 provides a breakdown of
the cost to calculate Λ−1 for each algorithm. Further details
on the computational costs for the RJK and EFP algorithms
are provided in the Appendix.

This example highlights the advantages afforded by the
computation of the extended-force-propagators over previous
recursive algorithms. In comparison to the RJKA, the EFPA
incurs additional cost during the inward recursion to obtain
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each kX i. Yet, this enables significant savings in the com-
putation of the cross-terms of Λ−1, which is by far the most
expensive step in the RJKA. The sparsity of the system mass
matrix still allows the SFA to obtain Λ−1 with 78 percent
of the flops when compared to the EFPA. Approximately 67
percent of the elements of J and 56 percent of the elements
of H are zero in this case.

The next series of examples show the benefits of the
reduced order EFPA for higher DoF systems that lack
a high-degree of sparsity in their mass matrix. Figure 6
shows the computational costs for a series of alterations
to the ASIMO Next-Generation mechanism. We consider
additional DoFs in the appendages, additional appendages,
and the modification to 12-DoF four-fingered hands. The
EFPA provides advantages over the other recursive algorithm
(RJKA) in every case. This is largely the result of RJKA’s
high calculation cost for the cross-terms of Λ−1.

The modifications of additional DoFs in the arms, legs,
or hands adversely effect the sparsity of the system’s mass
matrix and thus provide advantages for the EFPA over the
SFA. The addition of extra DoFs in any of the appendages
lengthens the unbranched chains in the mechanism’s con-
nectivity tree. These unbranched chains lead to fully dense
blocks in the system mass matrix, reducing the benefits of
sparse techniques. Thus, the SFA exhibits a lower relative
efficiency in these cases.

The EFPA is outperformed when 2 arms and 2 legs are
added, an unexpected result for the low-order algorithm. This
is mainly a result of the high-degree of sparsity in the mass
matrix for this mechanism. The mass matrix has 73 percent
zero elements, providing advantages to the SFA. Despite this
sparsity increase, the cost ratio to the EFPA is nearly the
same as in the base example. This property is not shared by
the RJKA, whose cost ratio to the SFA increases over 50
percent in comparison to the base example.

The fore-fingers, thumbs, feet (FTF) operational-space
example does highlight a potential improvement for the
EFPA. Considering the fore-finger and thumb end-effectors
for the left hand, these end effectors have a long, common,

support chain (from the base to the left hand). As a result,
force propagators for these end-effectors have much common
structure. This fact is not currently exploited, and provides
opportunity for algorithmic improvements in similar cases.

The final example is another case that would benefit from
this type of improvement. In this example, the humanoid is
balanced on one foot, which is treated as a fixed-base, with
the hands and free foot as the operational space. Here, the
links between the torso and grounded foot provide a common
support chain that could be exploited in the computation of
many of the extended-force-propagators. This current draw-
back of our algorithm, repeated propagation calculations
over common support chains, is not shared with the RJKA,
providing advantage to it in this and similar examples.

VI. CONCLUSIONS AND FUTURE WORK

This paper has detailed the Extended-Force-Propagator
Algorithm, the lowest-order algorithm to date for the com-
putation of Λ−1. The algorithm is shown to provide compu-
tational efficiency benefits over the optimized RJK algorithm
[4], [16], the previous benchmark for recursive Λ−1 algo-
rithms. The recursive approach is able to maintain efficient
computation for systems that lack sparsity, providing benefits
over the sparse techniques of Featherstone for some topolo-
gies. These computational benefits have been enabled by the
use of extended-force-propagators, which provide articulated
transformations of spatial quantities over spans of links. This
represents the first time these quantities have been explicitly
computed and used in recursive dynamics algorithms.

Aside from the potential algorithmic improvements noted
previously, future work will include the extension of the
extended-force-propagator approach to calculate other quan-
tities of interest in operation-space dynamics, such as the dy-
namically consistent Jacobian pseudo-inverse J . The sparse
matrix approach currently has a large computational advan-
tage over the EFPA if J is required in addition to Λ−1, as
the sparse factors of Λ−1 and H can be used to accelerate
computation of J . Preliminary work also shows promise for
the extension of our approach to the recursive computation of



closed-chain operational dynamics, a realm where sparsity-
based approaches have yet to show their applicability.
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APPENDIX

The computational costs of each of the algorithms follow
mainly from the results presented in [16] (Table 4, Appendix
B). Note that this table uses the notation of [4]. The
correspondence to notation in this paper is established below.
The correspondence in the last line is only approximate, as

[16], Table 4 EFPA

D−1
i (ΦT

i I
A
i Φi)

−1

τ i LT
i

φi
iXT

p(i)

P i IAi

Ωij Λ−1
ij

the RJKA computes Λ−1 from Ω in a post-processing step
to accommodate general end-effector coordinates.

Each of the spatial operations in the algorithms employ
various efficiency tricks that are enabled by each recursive
step taking place in local coordinates. For the RJKA, we
modify the assumptions in [16] as follows:
• As noted in [23], the floating-base coordinate system

can be located such that it is related by a pure rotation
about a fixed-axis to a privileged child. This provides
the following reduced costs for the privileged child:

Calculation Cost Flops
iXT

p(i) I
A
i Li

iXp(i) 22m + 25a 47

IAp(i) + (. . .) 15 a 15

iXp(i) Λ−1
p(i)k

48 m + 24 a 72

iXp(i) Λ−1
p(i)p(i)

iXT
p(i) 63 m + 54 a 117

Cost modifications for transformations that require iXp(i)

where i is the privileged child of the floating-base.

• The floating-base joint is not modeled as revolute. This

requires additional computation for K1 =
(
IA1

)−1
which is carried out through an LDLT factor and
invert. This amounts to a cost of 231 flops.

• We allow general end-effector coordinates, which re-
quires post processing of the matrix Ω found in [16]
to produce Λ−1. This requires a series of spatial trans-
forms with cost 137m + 137a to compute each Λ−1kk (a
spatial congruence in this case) and cost 288m + 216a
to compute each Λ−1k1k2

.
We employ the same efficiency tricks for the implementation
of the EFPA. Substantial cost is incurred by the application

of kX i across multiple links. That is, multiplications:

Λ−1k1k2
= k1X i Λ−1i k2

and Λ−11 k =K1
kX T

1

require dense matrix multiplications with cost 216m + 180a
in general. (This cost is reduced by 36m+36a for the second
operation if k is supported by the privileged child, since
kX T

1 has a zero row in this case.) Despite this high cost,
application of kX i is still cheaper than repeated application
of local transforms, even for relatively short chains.
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