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Sensitivity of tropical precipitation extremes to
climate change
Paul A. O’Gorman

Precipitation extremes increase in intensity over many regions
of the globe in simulations of a warming climate1–3. The
rate of increase of precipitation extremes in the extratropics
is consistent across global climate models, but the rate of
increase in the tropics varies widely, depending on the model
used3. The behaviour of tropical precipitation can, however, be
constrained by observations of interannual variability in the
current climate4–6. Here I show that, across state-of-the-art
climate models, the response of tropical precipitation extremes
to interannual climate variability is strongly correlated with
their response to longer-term climate change, although these
responses are different. I then use satellite observations to
estimate the response of tropical precipitation extremes to the
interannual variability. Applying this observational constraint
to the climate simulations and exploiting the relationship
between the simulated responses to interannual variability and
climate change, I estimate a sensitivity of the 99.9th percentile
of daily tropical precipitation to climate change at 10% per
K of surface warming, with a 90% confidence interval of
6–14% K−1. This tropical sensitivity is higher than expectations
for the extratropics3 of about 5% K−1. The inferred percentage
increase in tropical precipitation extremes is similar when
considering only land regions, where the impacts of extreme
precipitation can be severe.

Increases in precipitation extremes (defined here as high per-
centiles of daily precipitation) associatedwith climate changewould
have important impacts, such as on flooding, soil erosion, and
landslides7,8. Changes in the distribution of precipitation are ex-
pected in a warmer climate because of the dependence of the satu-
ration vapour pressure of water on temperature3,9,10. Observations
suggest that precipitation extremes may have increased in intensity
as the climate warmed in recent decades, at least regionally11,12.
Extratropical precipitation extremes consistently increase at close
to the ‘thermodynamic’ rate (∼6%K−1) in simulations with global
climate models, corresponding to little change in the magnitude of
vertical winds associated with the extremes3. The thermodynamic
rate is similar in the tropics, but the simulated rate of increase of
tropical precipitation extremesmay be substantially lower or higher
depending on the model used, with close to no change in some
models and rates of increase of up to 30%K−1 in others3. This
inter-model scatter probably results from the strong dependence of
tropical precipitation on moist-convective processes that must be
represented by subgrid parameterizations in global climate-change
simulations13. Recent idealized studies of radiative-convective equi-
librium using models that resolve convective-scale dynamics found
that intense precipitation increases with warming at close to the
thermodynamic rate14,15, but a different response could occur in the
tropics because of convective organization and large-scale dynamics
that were not included in the idealized studies.

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. *e-mail: pog@mit.edu.

Given that climate models simulate robust large-scale patterns
of temperature change in the tropics16 but have difficulty in
reliably simulating tropical precipitation extremes, it is reasonable
to ask whether observations of temperature and precipitation
may be used to help constrain the expected response of tropical
precipitation extremes to climate change. Studies of observed
variability within the current climate suggest stronger increases in
certain types of precipitation extremes with warming than given
by the thermodynamic rate4,5,17. But the sensitivity of precipitation
extremes to temperature changes within a given climate cannot be
assumed to be the same as the sensitivity under climate change.
For example, interannual variability in tropical precipitation
extremes is largely related to El Niño-SouthernOscillation (ENSO),
which has distinct temperature patterns and dynamics compared
with global warming18,19.

Here, I show that the sensitivity of tropical precipitation
extremes to temperature changes associated with variability is
in fact strongly correlated across models with the sensitivity for
global warming (although the sensitivities are not the same). I use
this relationship between sensitivities for variability and climate
change, together with observations of variability, to constrain
the climate-change sensitivity of tropical precipitation extremes.
Similar approaches have previously been used to constrain snow-
albedo feedback20 and climate sensitivity21 using the observed
seasonal cycle. An important feature of the approach presented
here is that it is physically plausible that the same subgrid
parameterizations responsible for moist convection (and the
division between convective and stratiform rainfall) cause the inter-
model scatter in the response of tropical precipitation extremes to
both variability and climate change.

The default simulations used involve 18 climate models
from the World Climate Research Programme’s Coupled Model
Intercomparison Project phase 3 (CMIP3) archive. Simulated
variability is analysed over the period 1981–2000 in the 20C3M
simulation, and climate change is calculated as the difference
between this period and 2081–2100 in the SRES-A1B scenario
(slightly different time periods are used for some models; see
Supplementary Information). The analysis was also repeated for a
subset of ‘good-ENSO’ climate models that have been identified
as having ENSO temperature variability similar to that found
in observations22, and for simulations drawn from the recently
available CMIP5 archive. The default precipitation observations are
taken from the Special SensorMicrowave Imager (SSM/I) using the
dataset from Remote Sensing Systems (RSS) over the period 1991–
2008 (ref. 23), and four other observational precipitation datasets
are used for comparison. Surface temperatures are taken from the
National Oceanic and Atmospheric Administration Merged Land–
Ocean Surface TemperatureAnalysis24. Climate change is calculated
over the whole tropics or over tropical land, whereas variability is
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Figure 1 | Time series of precipitation extremes and surface temperature
over the tropical oceans in observations and simulations (GFDL-CM2.0
and ECHAM5/MPI). Anomalies in the 99.9th percentile of precipitation
(blue) and surface temperature rescaled by the sensitivity (% K−1) for
variability in each case (green) are shown. Also shown (red) for the models
are surface temperature anomalies rescaled by the sensitivity for variability
implied by the sensitivity for climate change (over the whole tropics) and
the regression relationship between sensitivities for variability and climate
change for all the CMIP3 models (Supplementary Table S1). Time series are
filtered with a 6-month running average.

generally analysed over the tropical oceans because this is found
to give the strongest constraint on sensitivities for climate change.
Results are also reported using variability over thewhole tropics.

Time series are first constructed of precipitation extremes and
mean surface temperature over the tropical oceans between 30◦ S
and 30◦N (Methods). The influence of ENSO on precipitation
extremes over the tropical oceans is clearly evident in observations,
as shown in Fig. 1 for the 99.9th percentile of daily precipitation and
consistent with results from previous studies4–6. Positive anomalies
in surface temperature tend to be associatedwith positive anomalies
in precipitation extremes; the calculated sensitivity to surface
temperature (Methods) is 25%K−1 with a 90% confidence interval
of 16–36%K−1. A similar behaviour is found in the climate-model
simulations, but with different time series of surface temperature
because coupled models are considered, and with very different
sensitivities depending on the climate model used (Fig. 1 and
Supplementary Fig. S1).

Sensitivities for climate change are calculated over the whole
tropics in the climate model simulations and are normalized
by changes in mean surface temperature (Methods). For the
99.9th percentile of precipitation, the sensitivities for climate
change are strongly correlated across models with the sensitivities
for variability (Fig. 2), with a correlation coefficient of 0.866.
The relationship between sensitivities is further quantified using
ordinary-least-squares regression (Supplementary Table S1). The
regression line passes close to the origin, and the sensitivity for
variability is greater than the sensitivity for climate change by
roughly a factor of 2.5.

The relationship between the sensitivities for variability and
climate change, together with the observed sensitivity for variability,
yields an inferred sensitivity for climate change. For the 99.9th
percentile of precipitation, the inferred sensitivity for climate
change is 10%K−1, which is higher than what most of the models
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Figure 2 | Sensitivities (% K−1) of the 99.9th percentile of precipitation
for variability versus climate change in the CMIP3 simulations. The solid
line shows the ordinary-least-squares best fit. Histograms show estimates
(with uncertainty) of the observed sensitivity for variability and the inferred
sensitivity for climate change. Sensitivities for variability are over the
tropical oceans and sensitivities for climate change are over the
whole tropics.

simulate (Fig. 2). Uncertainty is estimated by a bootstrapping
procedure involving resampling of the models used and 12-month
blocks in the observed and simulated time series (Methods). The
resulting 90% confidence interval of 6–14%K−1 is substantially
narrower than the inter-model scatter of 2–23%K−1, clearly
illustrating the value of the observational constraint.

The inferred sensitivity for climate change increases with
percentile from the 98th to the 99.9th percentile and decreases
slightly to the 99.95th percentile (Fig. 3a); it generally exceeds
the multimodel-median sensitivity (and by as much as 68%),
although it maximizes at the 99.9th percentile whereas the
multimodel median continues to increase with percentile. Both
intermodel scatter and the strength of the relationship between
sensitivities for variability and climate change increase with
percentile (Supplementary Table S1), such that the observational
constraint ismore useful for higher percentiles of precipitation.

The inferred sensitivities were also calculated for climate change
over land only, with variability over the ocean as before. A strong
relationship holds between climate change and variability for
the higher percentiles of precipitation considered (Supplementary
Fig. S2 and Table S2), and the inferred sensitivities for climate
change over land approach the sensitivities over the whole tropics
at these percentiles (Fig. 3b). This similar response over land and
the whole tropics occurs despite ∼60% greater surface warming
over land than ocean (all sensitivities for climate change are
normalized by temperature changes over the whole tropics for ease
of comparison). Indeed, the percentage changes in precipitation
extremes in the simulations of climate change are close to equal over
land and ocean across all themodels (Supplementary Fig. S3), which
is likely related to the importance of oceanic water vapour sources
for precipitation over land and to decreases in land surface-air
relative humidity under global warming25.

For the ‘good-ENSO’ subset of models (Supplementary Infor-
mation), the relationship between sensitivities for climate change
and variability is very tight for the 99.9th percentile of precipitation
(Supplementary Fig. S4), with a correlation coefficient of 0.997, and
the resulting inferred sensitivities for climate change are similar to
what is obtained using all the models (Supplementary Table S1).
This robustness suggests that the inferred response to climate
change is not strongly affected by the relatively poor quality of
simulated ENSO temperature variability in some of the model
simulations. Similar results are also obtained using the CMIP5
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Figure 3 | Inferred and simulated climate-change sensitivities (% K−1) for
high percentiles of precipitation. Black lines with circles show inferred
sensitivities, shading shows the associated 90% confidence intervals, solid
green lines show multimodel maxima and minima, and dashed green lines
shows multimodel medians. a, CMIP3 models and the whole tropics. b as in
a but for climate change over land only and normalized by temperature
changes over the whole tropics. c as in a but for CMIP5 models. Black
dashed lines in b,c reproduce the inferred sensitivities shown in a.

simulations; the relationship between sensitivities for variability and
climate change is less tight than in CMIP3 for the 99.9th percentile
of precipitation (Supplementary Fig. S5 and Table S3), but the
inferred sensitivities for climate change are only slightly higher, at
11%K−1 versus 10%K−1 (Fig. 3c).

To help assess uncertainties related to observational estimation
of precipitation (which are not included in the estimates of
uncertainty given above), the analysis was repeated for four
alternative observational precipitation datasets: the Goddard
Profiling Algorithm (GPROF; ref. 26) applied to SSM/I radiances,
a dataset from the Tropical Rainfall Measuring Mission (TRMM)
Microwave Imager (TMI), the 1-degree daily merged dataset
from the Global Precipitation Climatology Project (GPCP 1DD;
ref. 27), and the TRMM 3B42 merged daily dataset28. Most of
these alternative precipitation datasets cover a shorter time period
than the default precipitation dataset, but they all give similar
inferred sensitivities for climate change (Supplementary Table S4
and Fig. S6). Similar results are also obtained whether variability
is calculated over the whole tropics or over the tropical oceans
(using the SSM/I GPROF dataset because the default precipitation

dataset does not include values over land), despite different
relationships between variability and climate change in each case
(Supplementary Table S5).

The results presented show how the simulated response to
climate change of an important aspect of the tropical hydrological
cycle may be constrained using observed variability. The inferred
sensitivities of tropical precipitation extremes under climate change
have ranges of uncertainty that are considerably narrower than
the intermodel scatter. The inferred sensitivity of 10%K−1 (with a
90% confidence interval of 6–14%K−1) for the 99.9th percentile of
tropical precipitation is higher than what climate models simulate
for the same percentile of extratropical precipitation (3–6%K−1
across models and 5%K−1 in the multimodel median3). A higher
sensitivity in the tropics than the extratropics is physically possible
if, for example, the circulations associated with precipitation
extremes strengthen with warming in the tropics whereas they
remain roughly constant in the extratropics3. One caveat is that
other sensitivities may apply at hourly timescales for extratropical
convective storms17. The similarity of the inferred response when
the analysis is restricted to climate change over tropical land
regions only (for sufficiently high percentiles of precipitation)
is important for impacts of climate change, and it suggests
that precipitation extremes over land may be more strongly
tied to changes in surface temperatures over ocean rather than
land. The observational constraint provides additional motivation
for monitoring of tropical precipitation and efforts to better
understand the associated observational uncertainties. Consistent
estimates were obtained from only a decade of observations for
three of the datasets considered (Supplementary Table S4), which
suggests that the analysis could be applied reasonably quickly to
data from new observing platforms. Ongoing research continues to
lead to improvements in the parameterization of moist convection
in climate models, but precipitation extremes are particularly
challenging for convective parameterizations13 and observational
constraints are expected to continue to be useful.

Methods
Calculation of sensitivities. Details of the climate models and observational
datasets used are given in the Supplementary Information. All precipitation
datasets are first conservatively interpolated to an equal-area grid with constant
spacing in longitude of 3◦. The interpolation method is first order and weights data
according to the area of overlap between gridboxes in the original and coarse grid29,
consistent with the treatment of precipitation as a flux30. The use of a conservative
interpolation scheme and a relatively-coarse common grid helps to allow for a
fair comparison of precipitation extremes in observations and simulations with
different native resolutions30 and improves the robustness of the observational
estimates. For the SSM/I and TMI observational datasets, both ascending and
descending passes are given equal weight in the interpolationwhen available.

Time series of surface temperature and precipitation extremes are constructed
as follows. For each month, daily precipitation rates are aggregated in time over
the month and in space between 30◦ S and 30◦ N. Precipitation extremes are then
calculated as high percentiles of the aggregated precipitation rates (including
rates equal to zero) to yield one value per month for each percentile. Given a
balance between the desire to study extreme precipitation and a sample size of
roughly 70,000 precipitation rates per month or less, the 99.9th percentile is the
primary focus, but results for other percentiles are also reported. Monthly surface
temperature is spatially averaged between 30◦ S and 30◦ N (again giving one value
per month). Surface skin temperatures are consistently used throughout the paper,
with the exception of the results in Supplementary Table S5, for which the observed
temperatures over land are surface air temperatures.

In the case of sensitivities for variability, the time series of precipitation
extremes and surface temperature are calculated either over the whole tropics or
over the tropical oceans (30◦ S to 30◦ N). The time series are deseasonalized by
subtracting the mean seasonal cycle as estimated from the time series themselves.
The time series are then detrended and filtered with a 6-month running average,
followed by ordinary-least-squares regression of precipitation extremes against
surface temperature. The calculated sensitivities (%K−1) are expressed as a fraction
of the mean value of the precipitation extremes over the time period. This simple
sensitivity for variability is adequate, despite the spatially heterogeneous response
to ENSO, because it is used as an observable that is strongly correlated with
the sensitivity for climate change and not to fully characterize the response of
precipitation to ENSO.
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In the case of sensitivities for climate change, the time series for precipitation
and surface temperature described above are calculated either over the whole
tropics or over tropical land (30◦ S to 30◦ N). The time series are then averaged
over the twentieth and twenty-first century time periods, and the climate-change
sensitivity of precipitation extremes (%K−1) is expressed as the difference in
precipitation extremes normalized by their twentieth century value and the
difference in surface temperature.

Relatively strict land and ocean masks are used in this study. The masks
are specified such that grid boxes with less than 90% ocean are excluded when
considering ocean, and grid boxes with less than 90% land are excluded when
considering land. The masks are applied after interpolation to the common
grid in the case of precipitation. The use of a relatively strict mask is needed for
consistency between the observational datasets for ocean-only precipitation; the
SSM/I RSS dataset has missing values over land that would bias the sensitivities for
variability otherwise. The use of a relatively strict mask also helps to minimize the
contribution of ocean precipitation when calculating climate change over land in
the climate-model simulations.

Estimation of uncertainty. Uncertainty is estimated using a bootstrapping
method. A total of 2,000 bootstrap estimates of the inferred sensitivity for climate
change are generated by resampling both the models used and the time series
for models and observations. Time series are resampled using 12-month moving
blocks because of autocorrelation in the time series; use of shorter blocks results
in smaller error estimates. In the case of the model time series, resampled time
series are used in the calculation of the sensitivities for both variability and climate
change. The same block resampling of time series is used in the calculation of
confidence intervals of the sensitivities for variability.

It is important to note that the estimates of uncertainty do not account for
errors in the estimation of observed precipitation rates (see Supplementary Fig.
S6 and Table S4). Note also that the models used are not truly independent.
For example, models GFDL-CM2.0 and GFDL-CM2.1 are developed at the
same laboratory and share many of the same components. At a minimum, the
simulations from these models may be regarded as giving independent realizations
with a similar physical model.
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