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Abstract.

We have developed spectral methods in the discontinous Galerkin frame-
work appropriate for simulations of high-speed flows in complex-geometry
domains. In this paper we present details of the stability of the method
and demonstrate the importance of over-integration for strongly nonlinear
problems. We then present results from the application of the method to
stability studies of supersonic and subsonic flows in a Chemical Oxygen
Iodine Laser (COIL) device.

1. Introduction

Finite volume methods have been very successful in simulating steady
high-speed flows but they are rather inefficient for unsteady flow simula-
tions, and especially for direct or large eddy simulations of turbulent and
transitional compressible flows. Discontinuous Galerkin Methods (DGM)
[1], when combined with high-order discretizations as in [2], offer some of
the advantages of finite volume methods and lead to numerical solutions
with significantly reduced numerical dispersion and dissipation. In sum-
mary, high-order DGM are:

− High-order finite volumes applied to structured or unstructured meshes.
− Flux-based, and thus maintain conservativity which is important for

correct shock location and long-time integration.
− L2-stable, and thus they do not require explicit flux limiters.
− Robust as they employ Riemann solvers.

The particular DGM implementation we have developed employs an
orthogonal polynomial basis of different order in each element. The discon-



tinuous basis is orthogonal, hierarchical, and maintains a tensor-product
property even for non-separable domains [3, 4].

Unlike pseudo-spectral (collocation) methods used often for incompress-
ible flow simulations, in our spectral DGM approach the number of quadra-
ture points and the number of degrees of freedom (i.e., modes) are decoupled
in each element. Specifically, it is a super-collocation method combined with
Galerkin projections in an element-wise fashion. This is very important for
the treatment of nonlinear terms as this approach offers the possibility of
dealiasing on arbitrarily non-uniform grids. We discuss this issue in detail
in the next section, where we show that simple quadrature-modes rules can
be derived by considering the long-term (asymptotic) stability of DGM.

In the last section, we apply DGM to three-dimensional supersonic and
subsonic flows in a Chemical Oxygen Iodine Laser (COIL) configuration.
The flow field of a COIL typically contains multi-phase flow (oxygen, io-
dine and helium) as well as chemical reactions [5], but here we consider the
stability of cold (helium) flow. Due to the importance of COILs in military
and industrial uses, there has been a lot of research focused on them during
the last decade [6, 7, 8]. Recent two-dimensional simulations have shown
that the supersonic COIL flow is unsteady although corresponding pre-
liminary simulations have shown substantially reduced temporal variations
[9]. In the current work, we consider both supersonic as well as subsonic
conditions on different grids and with p-refinement to address more sys-
tematically the question of unsteadiness. Our results show that the strong
compressibility and the symmetric crossflow stabilize the supersonic nozzle
flow, in contrast with the subsonic cases.

2. Discontinuous Galerkin Method - DGM

We consider the non-dimensional compressible Navier-Stokes equations,
which we write in compact form as

~Ut + ∇ · F = Re−1
∞ ∇ · Fν in Ω (1)

where F and Fν correspond to inviscid and viscous flux contributions, re-
spectively, and Re∞ is the reference Reynolds number. Here the vector
~U = [ρ, ρu1, ρu2, ρu3, ρe]t with u = (u1, u2, u3) the local fluid velocity, ρ
the fluid density, and e the total energy. Splitting the Navier-Stokes opera-
tor in this form allows for a separate treatment of the inviscid and viscous
contributions, which, in general, exhibit different mathematical properties.

To give an overview of the formulation we first apply DGM to the linear
two-dimensional equation for advection of a conserved quantity u

∂u

∂t
+ ∇·F(u) = 0, (2)



where F(u) = (f(u), g(u), h(u)) is the flux vector which defines the trans-
port of u(x, t). We start with the variational statement of the standard
Galerkin formulation of (2) by multiplying by a test function v and inte-
grating by parts∫

Ω

∂u

∂t
v dx +

∫
∂Ω

v n̂·F(u) ds −

∫
Ω

∇v·F(u) dx = 0. (3)

The solution u ∈ X (approximation space) satisfies this equation for all v ∈
V (test space), where X may contain discontinuous functions. The discrete
space X δ contains polynomials within each “element,” but zero outside
the element. Here the “element” is, for example, an individual triangular
region Ti in the computational mesh applied to the problem. Thus, the
computational domain Ω =

⋃
i Ti, and Ti, Tj overlap only on edges.
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Figure 1. Interface conditions between two adjacent triangles.

Each element (E) is treated separately, giving a variational statement
(after integrating by parts once more):

∂

∂t
(u, v)E +

∫
∂TE

v(f̃(ui, ue) − F (ui))·n ds + (∇ · F (u), v)E = 0, (4)

where F (ui) is the flux of the interior values. Computations on each el-
ement are performed separately, and the connection between elements is
a result of the way boundary conditions are applied. Here, boundary con-
ditions are enforced via the numerical surface flux f̃(ui, ue) that appears
in equation (4). Because this value is computed at the boundary between
adjacent elements, it may be computed from the value of u given at either
element. These two possible values are denoted here as ui in the interior of
the element under consideration and and ue in the exterior (see figure 1).
Upwinding considerations dictate how this flux is computed.

In the more complicated case of a hyperbolic system of equations, an
approximate Riemann solver should be used to compute a value of f, g, h
(in three-dimensions) based on ui and ue. Specifically, we compute the flux
f̃(ui, ue) using upwinding, i.e.

f̃(u) = RΛ+Lui + RΛ−Lue



where A (the Jacobian matrix of F ) is written in terms of the left and right
eigenvectors, i.e. A = RΛL with Λ containing the corresponding eigenvalues
in the diagonal; also, Λ± = (Λ±|Λ|)/2. Alternatively, we can use a standard
Lax-Friedrichs flux

f̃(u) =
1

2
(f(ue) + f(ui)) −

1

2
R|Λ|L(ue − ui).

In order to solve the compressible Navier-Stokes equations we also need
to treat the second-order terms. This is done similarly by introducing aux-
iliary fluxes and constructing a system of first-order equations that we treat
similarly as the advection equation above. The difference is in the choice
of the numerical fluxes at the interface, which we have taken here to be
the arithmetic mean of the fluxes from adjoint elements. However, other
choices are possible that can affect the computational complexity and the
accuracy [1].

With regard to the trial basis we employ Jacobi polynomials with vari-
able weights as reported in [2]. The degree of polynomial can be varied
from one element to the other but interpolation along edges or elemental
faces should involve the higher order polynomial in order to maintain con-
servativity. The DGM method is L2-stable but in practice instabilities may
arise in under-resolved or marginally resolved simulations. Such instabili-
ties were first reported in [2] where a slight over-integration seem to provide
long-time integration stability. In the next section, we revisit this issue and
provide more details on over-integration for both quadratic as well as cubic
nonlinearities.

2.1. STABILITY AND OVER-INTEGRATION

To understand the ramifications of under-integration of nonlinear terms,
we performed the following test:

1. Initialize a single element spanning [−1, 1] and containing 16 modes.
2. Initialize all the modal coefficients to one.
3. Evaluate the modal representation on a set of quadrature points q.
4. Pointwise square the values at the quadrature points.
5. Pre-multiply the set of points (as a vector) by the collocation derivative

matrix of the appropriate size (rank q × q).
6. Project back to modal coefficients by discrete inner products using

Gaussian integration.

The procedure above mimicks the “physical space” or pseudo-spectral

evaluation of the term ∂u2

∂x
commonly used in spectral methods for evaluat-

ing nonlinear terms. This test was chosen because even in its simplicity it



models the order of nonlinearity that occurs in the solution of the incom-
pressible Navier-Stokes equations. All modes are set to one to mimick a case
in which an element has under-resolved or marginally resolved the solution
within the element. In the test above, the only unspecified parameter is the
number of quadrature points q to be used. In using Gauss-Lobattto points,
the value of q is taken to be one more than the number of modes M (in
this case then M = 16 and q = 17) [2], but this value is appropriate for
the inner products corresponding to linear terms. For a quadratic or cu-
bic nonlinearities more quadrature points are required. The ramifications
of under-integration of this form are shown in figure 2. The figure on the
left was obtained for quadratic nonlinearity ( ∂

∂x
u2) and the figure on the

right was obtained for a cubic nonlinearity ( ∂
∂x

u3). The difference in the
modal coefficients at the conclusion of the algorithm above for different val-
ues of q is provided. We observe that for the quadratic nonlinearity, once
3
2
M quadrature points are used, the difference in the modal values do not

change. Similarly for the cubic nonlinearity, once 2M quadrature points are
used, the difference in the modal values do not change.
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Figure 2. Comparison of the difference in modal coefficients when different numbers of
quadrature points are used. Quadratic nonlinearity on the left and cubic nonlinearity on
the right.

If figure 3 we plot the difference between using the 3
2
M rule and 2M

rule (left and right figures, respectively) versus M + 2 rule for chosing the
number of quadrature points q. Observe that for small number of modes
the two regions overlap or may be sufficiently close that using M + 2 will
not lead to aliasing instabilities. This may be an explanation of the results
shown in [2] in which over-integration by one point was sufficient to stabilize
the flow simulation.

To further test the integration of the nonlinear terms, we chose to solve
viscous Burgers equation with ν = 10−5. Five equally spaced elements
spanning [−1, 1] were used, each one having 16 modes. We have found
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Figure 3. Difference between using the 3

2
M rule and 2M rule (left and right figures,

respectively) versus (M + 2) rule for chosing the number of quadrature points q.

that when using 17, 19 and 21 quadrature points, the solution is unstable
(measured by the L2 norm). Once the number of quadrature points reaches
24 (3

2
M , where M is the number of modes), the L2 norm of the solution

does not change.

3. Simulation of COIL Flows

The chemical oxygen iodine laser (COIL) is a very powerful laser, capable of
producing megawatts of continuous power at short wavelengths (1315nm).
There are two distinct types of COIL configurations, depending on the
characteristic flow velocity of the constituent gases. In the first one, the
supersonic lasers, the velocities are of the order of 400m/s or higher while
in the second type, the subsonic lasers, the characteristic velocities are
an order of magnitude lower. There has been some uncertainty regarding
the stability of the COIL flows, especially in the supersonic regime. Two-
dimensional computations show that the flow is unstable to small perturba-
tions and becomes oscillatory with frequency of about 40Khz [9]. On the
other hand, preliminary three-dimensional simulations reported recently in
[9] show only extremely small time variations in amplitude. Unfortunately,
there are not enough experimental measurements or flow visualizations to
document the stability of the COIL flows, especially in the supersonic noz-
zle (the so-called RADICL nozzle). In this work, we study the stability of
COIL flows via direct numerical simulations based on the DGM spectral/hp
element method and the code NEKTAR described in the previous section;
see also [1, 4].

An overview of the supersonic flow in the central part of the nozzle is
shown in figure 4. There is a strong intercation between the incoming al-
most uniform flow and the crossflow emanating from the six nozzles. The



SUPERSONIC (CASE A)

Inflow Pipes Outflow

Density 0.013066498 Density 0.039323356 Density 0.001355714

U-velo 153.3355557 U-velo 442.6130539 U-velo 1208.084843

V-velo 0 V-velo 0 V-velo 0

W-velo 0 W-velo 0 W-velo 0

Energy 12209.51111 Energy 53746.82174 Energy 1158.745548

Mach 0.152511337 Mach 0.38 Mach 3.264908

SUBSONIC (NO PIPES) (CASE B)

Inflow Pipes Outflow

Density 0.013066498 Density 0 Density 0.0130896

U-velo 153.3355557 U-velo 0 U-velo 121.480094

V-velo 0 V-velo 0 V-velo 0

W-velo 0 W-velo 0 W-velo 0

Energy 29697.27213 Energy 0 Energy 29727.77876

Mach 0.097424 Mach 0 Mach 0.077138

SUBSONIC (PIPES) (CASE C)

Inflow Pipes Outflow

Density 0.013066498 Density 0.039323356 Density 0.013445426

U-velo 153.3355557 U-velo 0 U-velo 121.480094

V-velo 0 W-velo 50.95079845 V-velo 0

W-velo 0 W-velo 0 W-velo 0

Energy 29697.27213 Energy 119387.5174 Energy 30553.32435

Mach 0.097424 Mach 0.2427434 Mach 0.077138

INCOMPRESSIBLE (CASE D)

Inflow Pipes Outflow

U-velo 2.003558732 U-velo 0 U-velo 0

V-velo 0 V-velo 17.40503091 V-velo 0

W-velo 0 W-velo 0 W-velo 0

geometry and dimensions of the entire device are shown in figure 5. This
three-dimensional “slice” is repeated twenty times (in the direction per-
pendicular to the page) in order to make the entire device, so there are
20 large diameter nozzles and 40 small diameter nozzles in the COIL de-
vice. We simulate only one slice, as shown in the figure, and apply periodic
boundary conditions along the third direction. A typical mesh employed
in the supersonic case is shown in figure 6. It consists of 10,224 hexahedra



elements with 8 layers in the z- (periodic) direction of variable order as
shown in the figure. The subsonic cases were simulated with similar meshes
but with 7,312 hexahedra of constant polynomial order p = 3. The incom-
pressible case was simulated on a mesh consisted of 3, 066 tetrahedra with
polynomial order p = 6.

The specific flow conditions we consider are described in table 3 (all
units in metric system). We have simulated in detail the following four
cases: (A) Supersonic flow corresponding to experimental case described as
“9257cf11” in experiments with helium; (B) Subsonic flow without trans-
verse (secondary) flow; (C) Subsonic flow; and (D) Incompressible flow. In
all cases, the geometry remains identical and so is the primary incoming
flow. Only the energy input and mass flowrate from the side pipes varies
in cases (2) and (3), corresponding to zero and approximately one-eighth
of the primary flow, respectively. In cases (A) and (D) the secondary flow
is approximately one-fourth of the primary flow.

Figure 4. Streamlines in the central portion of the RADICL supersonic nozzle.

Based on systematic direct numerical simulations, we have concluded
that unsteadiness is suppressed in the supersonic conditions similar to the
ones employed in the experiments. A typical plot of Mach contours is shown
in figure 7. Pressure distribution along the wall of the COIL as well as along
the centerline of the COIL are shown in figure 8. Clearly, there is very good
agreement of the high-order DGM results with available experimental data
for the wall pressure in contrast with corresponding finite volume simula-
tions performed here on the same mesh of figure 6 but with p = 1. These
results were obtained from converged (in-time) simulations of the super-
sonic nozzle. To further examine the stability of the supersonic flow we in-
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Figure 5. Geometry and dimensions of the COIL device.
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Figure 6. Mesh showing the macro-elements and corresponding polynomial order in the
central part of the COIL (supersonic case).

troduced an abrupt and rather large perturbation into the flow in the form
of forces in all three directions corresponding to −8, 322m/s2, 8, 322m/s2

and 8, 322m/s2 along the x-(streamwise), y-(crossflow) and z-(periodic)



Mach Number

2.6382
2.3483
2.0584
1.7685
1.4786
1.1887
0.8987
0.6088
0.3189
0.0290

Figure 7. Mach contours in the supersonic RADICL nozzle.
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Figure 8. Pressure distribution along the wall and along the centerline for the supersonic
case.

directions, respectively. This forcing was imposed for 2.39 × 10−4 ms and
subsequently it was removed while the simulation continued. A typical re-
sult of the response in the y-momentum is shown in figure 9. We see that
indeed the flow returns to steady state within a short time interval.

Unlike the supersonic case, both subsonic cases we simulated converged
to time-dependent flows while the incompressible flow transitioned to a tur-
bulent state. A typical result is shown in figure 10 that plots Mach contours
of the subsonic case with crossflow; a large scale unsteadiness is present.
This is shown more clearly in figure 11 where we plot the time-histories of
the y-momentum of both subsonic cases. The case without crossflow shows
a stationary time-periodic flow whereas the subsonic flow with crossflow
exhibits an additional modulation associated with the large scale unsteadi-
ness. Therefore, it seems that the effect of crossflow is to suppress unsteadi-
ness.
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Figure 9. Time history of y-momentum for the supersonic nozzle.
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Figure 10. Mach contours for the subsonic case with crossflow.
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Figure 11. Time-history of y-momentum for the two subsonic cases, with crossflow
(left), and without crossflow (right).



Finally, we conclude by commenting on the computational cost of the
simulations. All simulations were run using an MPI-based parallel version
of the method presented here with the partitioning based on a multi-level
graph approach provided by the METIS software [10]. Specifically, the su-
personic simulation was run on the IBM Power 3 with 0.6 seconds per time
step on 80 processors, the subsonic simulations were run on the IBM Power
3 with 0.2 seconds per time step on 80 processors, and the incompressible
simulation was run on the IBM SP 604e (silver nodes) with 10.7 seconds
per time step on 64 processors.
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