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Abstract

A three-dimensional model with simplified geometry for the branched coronary artery is presented. The bifurcation is defined by

an analytical intersection of two cylindrical tubes lying on a sphere that represents an idealized heart surface. The model takes into

account the repetitive variation of curvature and motion to which the vessel is subject during each cardiac cycle, and also includes

the phase difference between arterial motion and blood flowrate, which may be nonzero for patients with pathologies such as aortic

regurgitation. An arbitrary Lagrangian Eulerian (ALE) formulation of the unsteady, incompressible, three-dimensional

Navier–Stokes equations is employed to solve for the flow field, and numerical simulations are performed using the spectral/hp

element method. The results indicate that the combined effect of pulsatile inflow and dynamic geometry depends strongly on

the aforementioned phase difference. Specifically, the main findings of this work show that the time-variation of flowrate ratio

between the two branches is minimal (less than 5%) for the simulation with phase difference angle equal to 90�; and maximal (51%)
for 270�: In two flow pulsatile simulation cases for fixed geometry and dynamic geometry with phase angle 270�; there is a local
minimum of the normalized wall shear rate amplitude in the vicinity of the bifurcation, while in other simulations a local maximum

is observed.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

It is widely believed that the development and
progression of atherosclerosis is related to the complex
flow field occurring in curvatures and bifurcations of
large and medium arteries (Caro et al., 1971; Ku et al.,
1985; Friedman et al., 1987). Numerical studies based
on rigid, idealized (Steinman et al., 2000; Bertolotti and
Deplano, 2000) as well as realistic geometries (Myers et
al., 2001; Steinman et al., 2002; Zeng et al., 2003) have
been useful in understanding the unique complex
features of these flows. Most of these investigations
e front matter r 2004 Elsevier Ltd. All rights reserved.
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focus on the effects of the geometry, pulsatile flow and
non-Newtonian behavior of blood in non-moving
vessels. Perktold and Rappitsch (1995) and Zhao et al.
(2000) analyzed the effect of distensible wall on the local
flow field. Some authors have suggested that the
flexibility and motion of coronary artery during each
contraction and expansion of the heart is important in
the study of the flow dynamics. Several investigations
used models in which the vessel was represented by a
single flexible tube (Schilt et al., 1996; Santamarina et
al., 1998; Zeng et al., 2003).
Comparatively less is known about the effects of vessel

movement on the blood flow patterns in coronary
arteries at bifurcations. Zeng et al. (2003) simulated a
realistic arterial motion based on biplane cineangiograms
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Fig. 1. Geometry of the bifurcation and coordinate system (dimen-
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in human right coronary arteries but did not consider
any branches. Weydahl and Moore (2001) were among
the first to consider the model of coronary artery at
bifurcation with time-varying geometry. They showed
that curvature variation is important in determining
temporal wall shear stress variations. However, they
considered only steady inflow.
The objective of the present work is to analyze the

combined effect of dynamic geometry and pulsatile
inflow on the flow dynamics and wall shear rate in a
simple model of a coronary artery at bifurcation. This
will allow us to take into account any phase difference

between the two unsteady phenomena that may arise in
cardiac disease.
Normal coronary flow velocities are characterized by

a small forward flow during systole and a large forward
flow during diastole (Guyton, 1986). In cardiac disease
other patterns can arise. For example, if there is an
infarcted region of myocardium, the cardiac muscle in
that region does not contract as healthy muscle.
Consequently, the epicardial blood flow variation and
the deformations of the ventricular wall masses may
both change. If the infarct is due to current thrombotic
obstruction, outflow resistance in the corresponding
intramural segments is not relieved in diastole. Matsuo
et al. (1988) have connected the change in phasing
information to aortic regurgitation. Using a bidirec-
tional Doppler flowmeter catheter to examine coronary
flow velocity in patients who had aortic valve disease,
they found a decreased diastolic and increased systolic
coronary flow. In some cases, the diastolic flow velocity
was less than the systolic. These flow velocity patterns
became notable with severe aortic regurgitation. Such
phenomena have a direct effect on the phase difference

between the arterial motion studied here and the
pulsatile inflow imposed in our models.
While approximate values for epicardial artery

curvature and its variation through a heartbeat are
known, precise values are problematic to obtain.
Biplane or multiplane angiograms taken in vivo are
useful for estimating the axes of vessel segments through
the cardiac cycle but do not register lumenal diameters
or details sufficiently accurately, and do not show artery
wall tissue characteristics. Intravascular ultrasound can
supply lumenal geometry and wall tissue information
but does not of itself find vessel curvature, takes some
time to generate in vivo, and is limited to larger-
diameter coronary vessels. MRI, while potentially
providing geometric information and wall structure
details for coronary arteries, is still not at a state-of-
art where spatial resolution is as good as desired for the
present study. Thus, to explore fluid dynamic features of
curvature variation as well as curvature and flow
pulsatility we have chosen to examine flow in a branched
vessel model with prescribed but representative para-
meter values.
2. Basic assumptions

A three-dimensional bifurcating model is defined by
an analytical intersection of two cylindrical tubes lying
on a sphere that represents an idealized heart surface
(Fig. 1). Due to the sharp edge at the junction of arterial
branches the solution has a numerical singularity that is
localized in a small region close to the junction and does
not seem to affect the results in other parts of the
domain. The heart motion is simulated by changing the
sphere radius, R; the center of the sphere is fixed at the
coordinate origin. Gross and Friedman (1998) obtained
the dynamics of coronary artery curvature from biplane
cineangiograms. The results of this study suggest
significant harmonic content up to 6Hz in curvature
variation, and this was taken into account in the
numerical studies of Weydahl and Moore (2001) and
Moore et al. (2001). Here we have adopted the same
range of parameters as in Weydahl and Moore (2001)
and Moore et al. (2001), i.e. we take the frequency of the
sphere radius variation to be 5Hz, so that the period
T ¼ 0:2 s:More specifically, R is specified as a sinusoidal
function

RðtÞ ¼ R0ð1þ d sinð2pt=TÞÞ;

where the mean sphere radius R0 is set to 56.25mm.
Three different values of the parameter d were used in
simulations, 0.0, 0.1 and 0.3. In addition, two cases were
considered with d ¼ 0:0 and R equal to 50.625 and
61.875mm, i.e., minimum and maximum radii for the
dynamic case with d ¼ 0:1:
The tubes have a circular cross section with constant

diameters D1 ¼ 3mm and D2 ¼ 1:5mm: At time t ¼ 0;
the length of the segments AB;BC and BD are equal to
10.125, 24.0 and 12.375mm, respectively. The lengths of
arterial segments are fixed in time so that the total
volume of the model remains constant. The junction
angle y is 45�; which is different from the bifurcation
modeled in Weydahl and Moore (2001). The axis of
the large tube is located in the xy-coordinate plane
while the small tube is in the z40 half-space. The point
of intersection of the tube axes B lies on the
x-coordinate axis during the entire cardiac cycle. The
blood is assumed to be an incompressible, Newtonian
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and homogeneous fluid. The flow is three-dimensional
and unsteady, and the Reynolds number defined by
Re ¼ D1U0=n is 300, where U0 is the mean inflow
velocity (Weydahl and Moore, 2001).
3. Methods and verification

The three-dimensional, unsteady, incompressible Na-
vier–Stokes equations are cast in an arbitrary Lagran-
gian Eulerian (ALE) frame and solved using the parallel
solver NEKTAR that employs the new generation of
spectral/hp element methods (Karniadakis and Sherwin,
1999). The mesh, constructed using the commercially
available mesh generator Gridgen (Pointwise, Inc.), has
6649 tetrahedral elements (Fig. 2). The initial domain
corresponds to the model geometry with sphere radius
Fig. 2. Upper: wall shear rate versus polynomial order (p-refinement)

for the reference case ðd ¼ 0:0; � ¼ 0:0Þ: The wall shear rate is extracted
along the myocardial wall and normalized by the magnitude of the wall

shear rate in a straight pipe with the same diameter and Reynolds

number. The distance is measured from the inter-section point of the

tube axes (point B in Fig. 1) and normalized by the large tube diameter

D1: Lower: the normalized wall shear rate extracted along selected lines
on the myocardial and epicardial walls of the main branch, and the

inner and outer walls of the side branch: sharp edge geometry at

junction with side branch (triangles), smoothed edge geometry at the

same location (circles).
R ¼ R0: The advantage of the ALE formulation in
conjunction with the high-order interpolants employed
in the spectral/hp element method is that the simulation
can be run without remeshing.
To characterize the coronary blood flow velocities, we

use a simple time-dependent sinusoidal function with
frequency matching the geometry variation frequency.
More specifically, at the inflow the pulsatile flat velocity
profile is specified as

UðtÞ ¼ U0 1þ � sin 2pt=T þ
ap
180

� �� �
:

The mean inflow velocity U0 is 400mm/s (Weydahl
and Moore, 2001). Note that here, we allow for a phase
difference a degrees between the flowrate and the
arterial motion; we will systematically investigate this
difference for four different values of a in the next
section. The parameter � is set to 0 for simulations with
constant inflow velocity; in pulsatile cases, � is set to 0.1
or 0.3 (Folkow and Neil, 1971). At the two outflow

sections (main and side branch) a constant (equal)
pressure and zero normal derivatives of velocity are
imposed; no-slip conditions are used at the vessel walls.
To ensure mesh independence of the computational

results, several resolution studies were performed. The
mesh was fixed at a position with the sphere radius R ¼

R0: The resolution was then increased by increasing the
polynomial expansion order in each element, i.e. by p-
refinement (Fig. 2). In all simulations described below,
fifth-order ðp ¼ 5Þ polynomial expansion was used
uniformly for all elements.
To estimate the effect of the sharp edge at the junction

we have performed a simulation with the edge smoothed
using the following procedure. The side branch tube was
intersected with the tube that has the same axis as the
main tube and 10% larger radius. The irrelevant part of
the side branch tube was removed. Similar manipula-
tions were done with the main tube. The radius of the
intersecting tube in this case was 20% larger than side
branch tubes radius. The two disjoint tube segments
were connected with a smooth surface. The obtained
geometry at the junction is shown in Fig. 2. The results
of the simulations for the sharp and smooth edge models
with fixed geometry and steady inflow show that the
difference in wall shear rate in regions that are used for
analysis further in the paper is less than 5%; it is
maximum on the surface of the side branch (Fig. 2).
The time-step independence of the results was verified

for the case with dynamic curvature variation ðd ¼ 0:1Þ
and pulsatile inflow ð� ¼ 0:1Þ: The time step was divided
by two and the computational results were compared
against those with the original time step; no differences
were found. To obtain a time-periodic solution the
simulations were run for three time periods, 3T ; and the
last period taken.
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Fig. 3. Secondary flow structure (cross-flow streamlines) for two

simulation cases. Upper row: reference (steady) case, fixed geometry

and steady inflow ðd ¼ 0:0; � ¼ 0:0Þ: Lower row: unsteady case,

dynamic geometry and steady inflow ðd ¼ 0:3; � ¼ 0:0Þ: The cross-
sections are taken perpendicular to the tube axes at different times

during the periodic cycle and at certain distances from the inter-section

point of axes of main and side branches. The distance is normalized by

the large ðD1Þ tube diameter. The flow is out of the page and the

bifurcation point is at D=D1 ¼ 0:0: The cross-sections are plotted with
the epicardial wall on the top and the myocardial wall on the bottom;

the side branch wall is located on the right.

Table 1

Summary of cases simulated.

d 0.0 0.1 0.0 0.1 0.1 0.1 0.1 0.1 min� 0.1 max� 0.3 0.0 0.3 0.3

� 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.3 0.3 0.3

a (deg) 0 0 0 0 90 180 270 0 0 0 0 0 180

Here d corresponds to the normalized amplitude variation of the dynamic curvature radius and � to the inflow velocity variation.
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4. Results

We have summarized the cases we have simulated in
Table 1. In the two cases marked with �; the geometry
was fixed at the minimum and maximum radii for the
dynamic case with d ¼ 0:1; which correspond to R ¼

50:625 and 61.875mm, respectively. Next, we present
the main results for representative cases only.

4.1. Velocity field and secondary flow structure

In most simulations, the main flow features are quite
similar to the results with steady inflow and static
geometry (� ¼ 0:0 and d ¼ 0:0). The core of the flow in
the main branch is shifted towards the epicardial wall.
There is a Dean-type vortex structure in the main
branch, which is typically seen in flows in curved tubes
(Fig. 3, upper row). The fluid moves from the
myocardial wall to the epicardial along the diameter,
and then returns to the myocardial wall along the sides
of the tube, forming two counter-rotating vortices. The
vortical structures are symmetric before one large tube
diameter D1 from the point of intersection of tube axes.
The presence of a side branch results in vortex skewing
and loss of symmetry, that can be seen up to three large
tube diameters beyond the bifurcation. The shift of the
flow core towards the epicardial wall in the main branch
produces an overall rotating fluid motion in the side
branch beyond the bifurcation, that soon disappears due
to viscous forces (not shown here). Similar flow patterns
were observed by Sherwin et al. (2000) for the flow
within a distal end-to-side anastomosis with non-planar
geometry. The secondary flow is weak in the side branch
(about four small tube diameters from the bifurcation),
and counter-rotating vortices are hardly seen. The
dynamic geometry changes the secondary flow structure.
Here we show the results for the simulation case with
parameters d ¼ 0:3 and � ¼ 0:0 (Fig. 3, lower row). The
oscillation of the vortical structures in the main branch
during the simulation cycle is apparent in the figure.

4.2. Flowrate through the branches

The dynamic geometry and pulsatile inflow affect the
flow distribution between the two branches of the model
(Fig. 4). All simulations show a phase difference between
the variation of curvature or inflow velocity and the
flowrate ratio variation. In the simulation with fixed
averaged geometry and steady inflow, the flowrate ratio
between the side and the main branch is 0.123. Both
dynamic geometry and pulsatility can result in more
than 20% change in the flowrate ratio. The difference in
flowrate through the side branch is insignificant in
quasi-static simulations, when the geometry is fixed with
mean, minimum or maximum curvature radii. The
combined effect of dynamic geometry and pulsatile
inflow depends strongly on the phase difference angle a:
In the simulation with a ¼ 90� the variation is the least
of all the simulations (less than 5%). The maximum
variation, observed for a ¼ 270�; is 51%.

4.3. Wall shear rate

Next, we examine the distribution of the wall shear
rate (WSR) at selected cross-sections of the main and
side branch. The extracted values of the WSR are
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Fig. 5. Normalized time-averaged wall shear rate extracted along the

myocardial wall for different simulation cases.
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normalized by the magnitude of the wall shear rate in a
straight pipe with the same diameter and Reynolds
number. The same normalization of the WSR is used for
all results presented here. For the simulation with steady
inflow and fixed (in the mean) position geometry ðd ¼

0:0; � ¼ 0:0Þ; the highest WSR values occur on the side
branch wall of the main branch beyond the bifurcation.
In general, the WSR is lower on the myocardial wall of
the main branch than on the epicardial wall. Low WSR
values are also observed on the outer wall of the side
branch close to bifurcation. The effect of curvature on
the WSR distribution is not pronounced in the side
branch. The time-averaged WSR is similar to the steady
inflow and fixed geometry case (Fig. 5). This is
consistent with previous findings in Weydahl and Moore
(2001) and Zeng et al. (2003), but somewhat surprising
for the combined cases considered here due to the large
temporal variation, especially for certain values of the
phase difference, as we see next.
The WSR variations along the myocardial wall of the

main branch in simulation with dynamic geometry and
steady inflow ðd ¼ 0:1; � ¼ 0:0Þ are significant in com-
parison to its low mean (Fig. 6). The region of the
largest WSR variation during the cycle is located on the
surface of the side branch and can be attributed to the
significant variation of the flowrate through the branch.
The variation of WSR during the cycle in simulation
with fixed geometry and pulsatile inflow ðd ¼ 0:0; � ¼
0:1Þ is large in comparison to the previously described
case. This is in agreement with the results of Zeng et al.
(2003) for a single coronary artery without a side
branch. In our case, this can be related to the temporal
variation of the total mass flow through the model.
Next, we compare the combined effect of pulsatility

ð� ¼ 0:1Þ and unsteady geometry ðd ¼ 0:1Þ with phase
difference a ¼ 0�; 90�; 180� and 270� on mean (i.e., time-
averaged) values and variation of WSR during the
periodic cycle (Fig. 7). In the main branch, the
dependence of WSR variation on the phase difference
is less pronounced before the bifurcation than after. For
the simulation cases with a ¼ 90� and 180�; the variation
of WSR before the bifurcation in the main branch is
larger on the myocardial wall than on the epicardial.
The opposite is observed in simulations with a ¼ 0� and
270�: One large tube diameter beyond the bifurcation in
the main branch, both minimal and maximal variations
of WSR are observed in simulation with phase
difference of 270�: More specifically, the minimum is
located on the myocardial wall and the maximum on the
side branch wall. At the same time, maximal WSR
variation on the myocardial wall and minimal WSR
variation on the side branch wall are observed in the
simulation with a ¼ 90�: The magnitude of the time-
dependent WSR on the myocardial wall becomes very
low during the periodic cycle in this simulation. Further
beyond the bifurcation, the dependence of WSR
variation on the phase difference becomes less pro-
nounced. In the side branch, the overall WSR variation
depends strongly on a: Minimal variation is observed
when a ¼ 90� and maximal variation when a ¼ 270�: In
the latter case, the minimum of the magnitude of the
WSR on the outer wall of the side branch during the
periodic cycle is very low.

4.4. Combined effect of d; � and a on NWSRA

In general, in all simulations an increase of para-
meters d and � produces a linear increase in the variation
of wall shear rate. To characterize WSR variation
during the cycle we use the normalized wall shear rate
amplitude (NWSRA). This quantity was introduced in
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Fig. 6. Wall shear rate, mean (time-averaged), and variation during the periodic cycle. Upper row: the case with dynamic geometry and steady inflow

ðd ¼ 0:1; � ¼ 0:0Þ: Lower row: effect of pulsatile inflow on WSR ðd ¼ 0:0; � ¼ 0:1Þ: The cross-sections are taken perpendicular to the tube axes at
certain distances from the intersection point of axes of main and side branches. The distance is normalized by the large ðD1Þ or small ðD2Þ tube

diameter for the main or side branch cross-sections, respectively. The extracted values of the WSR are normalized by the magnitude of the wall shear

rate in a straight pipe with the same diameter and Reynolds number.
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Santamarina et al. (1998) and was also used in Weydahl
and Moore (2001), since it may be more relevant to
atherogenesis research than the dimensional WSR
amplitudes, which are of more interest from a fluid
dynamics perspective. NWSRA is defined as the
difference between the maximum and minimum values
of the WSR during the cycle divided by the mean ðd ¼

0:0; � ¼ 0:0Þ WSR.
Next we examine the combined effect of curvature,

inflow velocity and phase difference variations on
NWSRA along the myocardial wall of the main branch
(Fig. 8). We can subdivide this figure into three regions.
The first region corresponds to the part of the
myocardial wall located before the tube axes intersection
point (zero on the horizontal axis in the figure). The
second region extends from this point up to three large
tube diameters and the third region includes the rest of
the figure. In the first and third regions the main
contribution to the NWSRA is from the pulsatility of
the flow. The dependence of the NWSRA on the phase
difference a is strong and can change the results even
qualitatively, as shown in the figure for region two. In
general, in the second region, the dependence of the
NWSRA on the simulation parameters is less intuitive.
In two simulation cases, ðd ¼ 0:0; � ¼ 0:1; a ¼ 0�Þ and
ðd ¼ 0:1; � ¼ 0:1; a ¼ 270�Þ; the distribution of NWSRA
differs significantly from the other cases: there is a local
minimum approximately 0.9 large tube diameters below
the tube axes intersection, while in other simulations a
local maximum is observed.
5. Summary and conclusions

We have presented new results on the effects of
unsteady flow in an unsteady (flexing) geometry—a side-
branched, curved tube flexing rhythmically in curva-
ture—as an approximation of the flows in and motions
of epicardial coronary arteries. These results go further
than the recent study of Zeng et al. (2003), which lacked
a side branch, and the earlier study of Weydahl and
Moore (2001), which included a side branch but lacked
flow pulsatility. The tube geometry, the flexing motion
and the flow pulsations are all approximations of what
happens in physiological and pathological circum-
stances. Such investigations help in determining which
boundary conditions have such significant effects that
they should be included in any study where, say, the flow
pulsations include more than the fundamental frequency
in a Fourier decomposition. We found that the flowrate
ratio between the side branch and the main branch is
influenced significantly by the combined unsteady
phenomena, as is the wall shear rate distribution in the
vicinity of the bifurcation.
Our results demonstrate the importance of phase

difference, not previously modeled in computational
studies. While the effects of curvature and of flexing well
away from bifurcation region agree reasonably with
straightforward expectations and previous studies, the
effects of phase difference are particularly marked in the
close vicinity of the bifurcation and in regard to the
wall shear rate of the flow. As the latter is widely
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Fig. 7. Wall shear rate, mean (time-averaged) and variation (bars) during the periodic cycle. Results are shown for the cases with dynamic geometry

ðd ¼ 0:1Þ and pulsatile inflow ð� ¼ 0:1Þ for phase difference angles a ¼ 0�; 90�; 180�; 270�: The cross-sections are taken perpendicular to the tube axes
at certain distances from the intersection point of axes of main and side branches. The distance is normalized by the large ðD1Þ or small ðD2Þ tube

diameter for the main or side branch cross-sections, respectively. The extracted values of the WSR are normalized by the magnitude of the wall shear

rate in a straight pipe with the same diameter and Reynolds number. The cross-sections are plotted with the epicardial wall on the top and the

myocardial wall on the bottom. For the main branch cross-sections, the side branch wall is located on the right. For the side branch cross-sections,

the inner wall is located on the left and the outer wall on the right. The circles represent the gridlines for values 0.3 (solid), 0.8 and 1.3 (dotted).
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hypothesized to influence atherosclerosis and its seque-
lae, this makes arterial flexure and its phase difference
from the flow important for more refined studies to
include.
The role and significance of the phase angle a may be

considered by first considering the variation of R with
respect to the cardiac cycle. To zeroth approximation,
the radius R increases as the ventricles are filled with
blood (diastole), and R decreases as blood ventricular
pressure is raised and blood is expelled (systole).
Diastole begins around 270�: In a healthy heart, then,
a might be in the vicinity of 180�: Matsuo et al. (1988)
have shown that with some pathologies, such as aortic
regurgitation or aortic stenosis, the effective phase of
flow in the coronaries can be shifted from normal. These
pathologies, of course, are not of the coronary arteries
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Fig. 8. Normalized wall shear rate amplitude (NWSRA) extracted

along the myocardial wall for different simulation cases.
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themselves. However, in view of our results which show
alterations of the wall shear stress distribution around a
major bifurcation with change in a (the value of � might
also be changed by the pathologies), to the extent that
atherosclerosis and plaque development are affected by
local flow conditions including wall shear stress dis-
tribution, we can propose as a hypothesis that specific
pathologies (aortic regurgitation or aortic stenosis)
outside the coronary arteries may have an influence on
the atherosclerotic developments in those arteries. This
hypothesis lacked a mechanistic basis before the
computational results we present here.
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