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Stable set relaxations Stable Set Problem

The Problem

Our starting point is a classical problem in combinatorics:

Stable Set Problem
Given a graph G = (V ,E) and vertex weights ω find a stable set of
vertices S for which the cost

ω(S) :=
∑
s∈S

ωs

is maximum.

Remarks:
If all weights are one, we are computing α(G), the cardinality of
the largest independent set;
NP-hard in general.
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Stable set relaxations Stable Set Problem

Stable Set Polytope

Given a graph G = ({1, ...,n},E) we define STAB(G), the stable set
polytope of G, in the following way:

For every stable set S ⊆ {1, . . . ,n} consider its characteristic
vector χS ∈ {0,1}n;
let SG ⊂ {0,1}n be the collection of all those vectors;
the polytope STAB(G) is then defined as the convex hull of the
vectors in SG.
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Stable set relaxations Stable Set Problem

Example

SG = {(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,0,1)}
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Stable set relaxations Stable Set Problem

Reformulation

Stable Set Problem Reformulated
Given a graph G = ({1, ...,n},E) and a weight vector ω ∈ Rn, solve the
linear program

α(G, ω) := max
x∈STAB(G)

〈ω, x〉 .

However, finding STAB(G) is as hard as solving the original problem,
and not practical in general.

Want to find approximations for it.
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Stable set relaxations Theta Body

Definition of Theta Body

Definition (Lovász ∼ 1980)

Given a graph G = ({1, . . . ,n},E) we define its theta body, TH(G), as
the set of all vectors x ∈ Rn such that[

1 xT

x U

]
� 0

for some symmetric U ∈ Rn×n with diag(U) = x and Uij = 0 for all
(i , j) ∈ E .

STAB(G) ⊆ TH(G) since for all stable sets S,

0 � (1, χS) · (1, χS)t =

[
1 χt

S
χS χS · χt

S

]
.
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Stable set relaxations Theta Body

Some Properties of the Theta Body

Optimizing over the theta body is polynomial in the size of the
graph.

Theorem (Lovász ∼ 1980)

The relaxation is tight, i.e. TH(G) = STAB(G), if and only if the graph G
is perfect.
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Stable set relaxations Theta Body

From combinatorics to algebra

Wonderful, and well-known.
Can we gain a better understanding, and generalize this?
Instead of characteristic vectors, let’s think polynomials:

xi ∈ {0,1} ⇔ xi(1− xi) = 0
edge constraints ⇔ xixj = 0 (i , j) ∈ E .

Why?
Can use a simple algebraic proof system.
Continuous and/or discrete variables.
Same basic tools, independent of specific structure.
Will be able to exploit additional features.
Later, may want to go back to combinatorics.
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Stable set relaxations Theta Body

Connection to Algebra

Let I ⊆ R[x] be a polynomial ideal.

Definition
A polynomial p(x) is sos modulo the ideal I if it can be written as a
sum of squares of polynomials modulo I.

p(x) =
∑

i

qi(x)2 mod I.

Definition
A polynomial p(x) is k -sos modulo the ideal I if it can be written as a
sum of squares of polynomials of degree at most k modulo I.

p(x) =
∑

i

qi(x)2 mod I, deg(qi) ≤ k .

Obvious: If p(x) is sos mod I, then p(x) ≥ 0 on VR(I).
10 / 35



Stable set relaxations Theta Body

Connection to Algebra

Let I ⊆ R[x] be a polynomial ideal.

Definition
A polynomial p(x) is sos modulo the ideal I if it can be written as a
sum of squares of polynomials modulo I.

p(x) =
∑

i

qi(x)2 mod I.

Definition
A polynomial p(x) is k -sos modulo the ideal I if it can be written as a
sum of squares of polynomials of degree at most k modulo I.

p(x) =
∑

i

qi(x)2 mod I, deg(qi) ≤ k .

Obvious: If p(x) is sos mod I, then p(x) ≥ 0 on VR(I).
10 / 35



Stable set relaxations Theta Body

Connection to Algebra

Let I ⊆ R[x] be a polynomial ideal.

Definition
A polynomial p(x) is sos modulo the ideal I if it can be written as a
sum of squares of polynomials modulo I.

p(x) =
∑

i

qi(x)2 mod I.

Definition
A polynomial p(x) is k -sos modulo the ideal I if it can be written as a
sum of squares of polynomials of degree at most k modulo I.

p(x) =
∑

i

qi(x)2 mod I, deg(qi) ≤ k .

Obvious: If p(x) is sos mod I, then p(x) ≥ 0 on VR(I).
10 / 35



Stable set relaxations Theta Body

SOS and SDP

We can decide if a polynomial is k -sos using SDP. Furthermore, we
can optimize over the set of k -sos polynomials.
Remarks:

Details important, but irrelevant for this talk.
OK. Sketch: choose basis for quotient, write quadratic form, taking
normal form yields linear equations.
Here we assume we can compute normal forms over I.

Why abstract this out? Methods operate at the level of polynomials, not
the matrices that represent them.
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Stable set relaxations Theta Body

Stable sets as SOS

Theorem (Lovász ∼ 1993)

TH(G) = STAB(G) if and only if any linear polynomial f (x) that is
non-negative on STAB(G) is 1-sos modulo I(SG).

This property does not depend on the graph, but only on the ideal
I(SG) and its variety.
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Stable set relaxations Theta Body

Perfect ideals

Lovász’s Question
Which ideals are “perfect” i.e., for what ideals I is it true that any linear
polynomial that is nonnegative in VR(I) is 1-sos modulo I?

Definition
We’ll call an ideal k -sos if and only if every linear polynomial that is
nonnegative in VR(I) is k -sos modulo I.

We want to know which ideals are k -sos for some fixed k , and in
particular 1-sos.
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Theta Bodies of Ideals Examples and Definitions

Example

Consider the ideal I =
〈
yx2 − 1

〉
.

Nonnegative linear polynomials −→ y + c2 for some real c.

y + c2 ≡ (xy)2 + (c)2 mod I,

hence I is 2-sos.
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Theta Bodies of Ideals Examples and Definitions

Theta Bodies of Ideals

A geometric approach to the problem:

Definition
Given an ideal I ⊂ R[x1, ..., xn] we define its k -th theta body:

THk (I) := {p ∈ Rn : f (p) ≥ 0, ∀ linear f that is k -sos mod I}.

Remarks:
Nested closed convex sets:

TH1(I) ⊇ TH2(I) ⊇ · · · ⊇ conv(VR(I)).

For any graph G, TH1(I(SG)) = TH(G).
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Theta Bodies of Ideals Examples and Definitions

Finite convergence

Recall that a polynomial ideal is radical if I = I(V(I)) (informally, “no
multiplicities”).

Theorem (P.)
If I is a radical ideal whose variety is zero-dimensional then
THk (I) = conv(VR(I)) for some k.

Easy: existence of Lagrange interpolants, and weak Nullstellensatz.
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Theta Bodies of Ideals Examples and Definitions

Theta Bodies and Nonnegativity

We call an ideal THk -exact if THk (I) = conv(VR(I)).
If I is k -sos, then clearly it is THk -exact. Under mild conditions, the
converse is also true.

Theorem
Let I be a real radical ideal. Then I is k-sos if and only if it is THk -exact.

The real radical assumption cannot be dropped.
The ideal I =

〈
x2〉 is not k -sos, but TH1(I) = conv(VR(I)).
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Theta Bodies of Ideals First Theta Body

Structural Result

We’ll focus now on the first relaxation.

Theorem
Given any ideal I ⊆ R[x] we have

TH1(I) =
⋂

F convex quadric ∈I

conv(VR(F )).

Consequences:
If F is a convex quadric then 〈F 〉 is TH1-exact.
There are arbitrarily high dimensional TH1-exact ideals.
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Theta Bodies of Ideals First Theta Body

Example 1

Let S be the five vertices of the regular pentagon centered at the
origin, and I its vanishing ideal.
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Theta Bodies of Ideals First Theta Body

Example 2

Let S be the set {(0,0), (1,0), (0,1), (2,2)}. All convex quadrics that
contain these four points are convex combinations of two particular
parabolas.
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Theta Bodies of Ideals First Theta Body

Zero-dimensional Varieties

A full characterization is possible in the case of zero-dimensional real
radical ideals.

Theorem (Gouveia-P.-Thomas)
Let I be a zero-dimensional real radical ideal, then the following are
equivalent:

I is 1-sos;
I is TH1-exact;
For every facet defining hyperplane H of the polytope conv(VR(I))
we have a parallel translate H ′ of H such that VR(I) ⊆ H ′ ∪ H.
The polytope conv(VR(I)) has a 0-1 slack matrix.
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Theta Bodies of Ideals First Theta Body

Examples in R2

TH1-exact

Not TH1-exact
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Theta Bodies of Ideals First Theta Body

Examples in R3

TH1-exact

Not TH1-exact
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Theta Bodies of Ideals First Theta Body

A Small Extension

Theorem
Suppose S ⊆ Rn is a finite point set such that for each facet F of
conv(S) there is an hyperplane HF such that HF ∩ conv(S) = F and S
is contained in at most t + 1 parallel translates of HF . Then I(S) is
THt -exact.

Sufficient, but not necessary.
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Theta Bodies of Ideals First Theta Body

Consequences

Corollary

Let S ⊂ Rn be an exact set (i.e. with TH1-exact vanishing ideal). Then
all points of S are vertices of conv(S),
the set of vertices of any face of conv(S) is again exact,
conv(S) is affinely equivalent to a 0/1 polytope.

For simplicity, we’ll call a finite set of points in Rn exact, if its vanishing
ideal is TH1-exact.

Theorem

If S ⊆ Rn is a finite exact point set then conv(S) has at most 2d facets
and vertices, where d = dim conv(S). Both bounds are sharp.
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Theta Bodies of Ideals First Theta Body

Perfect Graphs revisited

Corollary

A graph G is perfect if and only if for any facet supporting hyperplane
H of its stable set polytope there is some hyperplane H ′ parallel to H
such that SG ⊆ H ∪ H ′.

Corollary

Let P ⊆ Rn be a full-dimensional down-closed 0/1-polytope and S be
its vertex set. Then S is exact if and only if P is the stable set polytope
of a perfect graph.
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Cone lifts of convex bodies Conic extended formulations

Cone lifts of convex bodies

When does a convex body C have a “conic extended formulation”?

Definition

Let K ⊂ Rm be a closed convex cone and C ⊂ Rn a full-dimensional
convex body. A K -lift of C is a set Q = K ∩ L, where L ⊂ Rm is an
affine subspace, and π : Rm → Rn is a linear map such that C = π(Q).

If optimization over K is tractable, this is a “good” representation of C.

When do such representations exist?
Even ignoring complexity aspects, this question is not well understood.
E.g: can all basic closed semialgebraic sets be represented using
semidefinite programming?
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Cone lifts of convex bodies Conic extended formulations

Polars and slack operators

Recall that the polar of a convex set C ⊂ Rn is the set

C◦ = {y ∈ Rn : 〈x , y〉 ≤ 1, ∀x ∈ C}.

Let ext(C) denote the set of extreme points of C.
Let S : Rn × Rn → R be the operator defined by S(x , y) = 1− 〈x , y〉.

Definition
The slack operator SC of the convex set C is the restriction of S to
ext(C)× ext(C◦).

When C is a polytope, then SC is the usual slack matrix indexed by
facets and vertices.
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Cone lifts of convex bodies Conic extended formulations

Cone factorizations and Generalized Yannakakis

Definition
The slack operator SC is K -factorizable if there exist maps

A : ext(C)→ K and B : ext(C◦)→ K ∗

such that SC(x , y) = 〈A(x),B(y)〉 for all (x , y) ∈ ext(C)× ext(C◦).

Theorem (GPT 11)
If C has a proper K -lift then SC is K -factorizable. Conversely, if SC is
K -factorizable then C has a K -lift.
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Cone lifts of convex bodies Conic extended formulations

Example

Let C = {(x , y) ∈ R2 : x2 + y2 ≤ 1}. The set C has the semidefinite
representation: (

1 + x y
y 1− x

)
� 0.

Thus, SC must have a S2
+ factorization. Since C◦ = C, we must have

maps A,B : S2 → S2
+ such that for all (x1, y1), (x2, y2) ∈ ext(C),

〈A(x1, y1),B(x2, y2)〉 = 1− x1x2 − y1y2.

But this is accomplished by the maps

A(x1, y1) =

(
1 + x1 y1

y1 1− x1

)
, B(x2, y2) =

1
2

(
1− x2 −y2
−y2 1 + x2

)
which factorize SC and can easily be checked to be psd.
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Cone lifts of convex bodies Slack operators and cone ranks

Cone ranks

Assume we have a “nice” family of cones {Kk} (e.g. {Rk
+} or {Sk

+}).

Definition
The K-rank of C, denoted by rankK(C), is the least i for which
C = π(Ki ∩ L) for some π and L.

Equivalently, this is asking for the least i for which the slack operator
SC has a Ki -factorization.

Of particular interest are rank+ and rankpsd , since they correspond to
polyhedral or semidefinite lifts.

This makes sense
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Cone lifts of convex bodies Slack operators and cone ranks

Some inequalities

For any nonnegative matrix M

1
2

√
1 + 8 rank(M)− 1

2
≤ rankpsd (M) ≤ rank+(M).

Gap between rank+(M) and rankpsd (M) can be arbitrarily large:

Mij = (i − j)2 =

〈(
i2 −i
−i 1

)
,

(
1 j
j j2

)〉
has rankpsd (M) = 2, but rank+(M) = Ω(log n).

Arbitrarily large gaps between all pairs of ranks (rank, rank+ and
rankpsd). For slack matrices of polytopes, arbitrarily large gaps
between rank and rank+, and rank and rankpsd.
Recently, Fiorini et al. established interesting links between rankpsd
and quantum communication complexity, mirroring the situation
between rank+ and classical communication complexity.
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Cone lifts of convex bodies Slack operators and cone ranks

Special case: 0-1 slacks

There is a simple, but important situation where rank(M) is an upper
bound on rankpsd(M).

Theorem

Take M ∈ Rp×q and let M ′ be the nonnegative matrix obtained from M
by squaring each entry of M. Then rankpsd (M ′) ≤ rank(M). In
particular, if M is a 0/1 matrix, rankpsd (M) ≤ rank(M).

Corollary

If a polytope in Rn has a 0/1-slack matrix, then it admits a Sn+1
+ -lift.

This follows since the rank of a slack matrix of a polytope in Rn is at
most n + 1.

A k -valued generalization is immediate.
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Cone lifts of convex bodies Slack operators and cone ranks

Many questions

Conic factorizations and cone ranks are a good starting point to
understand representability of convex sets. But much more work is
needed!

For polytopes, separations between rank+ and rankpsd for slack
matrices?
Possible candidates: stable sets of perfect graphs?
Algebraic obstructions?
Approximate factorizations?
Lower/upper bounds?
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END

The End

Thank You!
Want to know more?

J. Gouveia, P.A. Parrilo, and R. Thomas, Theta bodies for polynomial
ideals, SIAM J. Optim., Vol. 20, Issue 4, pp. 2097-2118, 2010.

J. Gouveia, M. Laurent, P.A. Parrilo and R. Thomas, A new semidefinite
programming hierarchy for cycles in binary matroids and cuts in graphs,
Mathematical Programming, 2011. arXiv:0809.3480.

J. Gouveia, P.A. Parrilo, R. Thomas, Lifts of convex sets and cone
factorizations, arXiv:1111.3164.
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