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Introduction and motivation

Motivation (from Optimization viewpoint)

Analysis of algorithms equivalent to analysis of dynamical systems:

E.g., for minimizing a quadratic function f (x) = 1
2
xTAx :

Iterative algorithm
(e.g., gradient descent)
xk+1 = xk − γ∇f (xk)

⇐⇒
Dynamical system
(e.g., linear recursion)
xk+1 = (I − γA)xk

Q: What happens if we switch between algorithms?

For instance, one step of gradient, and one step of proximal mapping . . . ?

(or ADMM, or forward-backward, etc...)
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Introduction and motivation

Switching can be interesting

Example: Consider

A =

[
0 2
0 0

]
, B =

[
0 0
2 0

]
We have

lim
k→∞ ‖A ∗ A ∗ A ∗ . . . ‖ = 0, lim

k→∞ ‖B ∗ B ∗ B ∗ . . . ‖ = 0,

(in fact, A and B are nilpotent, so A2 = B2 = 0), but...

lim
k→∞ ‖A ∗ B ∗ A ∗ B ∗ . . . ‖ = ∞ (!)
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Introduction and motivation

Opportunity?

Perhaps we can also do this in reverse...?

Take Algorithm A (slow), and Algorithm B (bad).

Can we schedule them (e.g., alternate between them, or something else) to obtain a
better/faster algorithm?

Many, many possible variations.

Today, focus on analysis methods/tools, and a simple example.
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Introduction and motivation

Example

Consider a convex quadratic function f (x) = 1
2
xTAx , with m 6 λi(A) 6 M . For

concreteness, we choose m = 1, M = 5.

Gradient method: xk+1 = xk − α∇f (xk) = (I − αA)xk .
Optimal constant stepsize choice: α? = 2

m+M
= 1/3, achieves rate

r? = maxλ∈[m,M] |1 − α?λ| =
M−m
M+m

= 2/3.

Consider now two suboptimal methods, of stepsizes α1 = 1/5 and α2 = 1/2. The
corresponding rates are r1 = 4/5 and r2 = 3/2 > 1 (divergent!).
Q: Can we schedule them to make them converge? Perhaps faster, even?

Run them in “proportions” (2/3, 1/3), e.g., 1 − 1 − 2 − 1 − 1 − 2 − . . .
The achieved rate is now 1

3√5
≈ 0.5848.

Better than both; actually outperforms the “optimal” constant stepsize!
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Switched linear systems

Formal setting: switched linear systems

Given a finite set of matrices Σ = {A1, . . . , Am}, consider the (switched) linear
dynamical system:

xk+1 = Aσk
xk , for k = 0, 1, . . .

where σk ∈ {1, . . . , m} and x0 is a given initial state.

Understanding this system is equivalent to analyzing the (left-)infinite matrix products

· · ·Aσk
· · ·Aσ2Aσ1
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Switched linear systems

How does one analyze/design this kind of things?

Different setups:

Deterministic (worst-case) switching

Arbitrary switching, perhaps constrained (e.g., by an automaton)
Technical tool: Joint spectral radius

Random switching

Probabilistic setup, could be i.i.d, or other process (e.g., Markov chain)
Technical tool: Lyapunov exponent

Also, distinguish between

Analysis: quantify convergence rate of given switching scheme σ

Synthesis: design a switching scheme with good properties
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Joint spectral radius (deterministic) Definition

Joint spectral radius

Given a set of matrices Σ := {A1, . . . , Am} ⊂ Rn×n, what is the maximum “growth rate”
that can be achieved by arbitrary switching?

ρ(Σ) := lim sup
k→∞ max

σ∈{1,...,m}k
‖Aσk

· · ·Aσ2Aσ1‖1/k

Appeared in several different contexts: linear algebra (Rota-Strang 1960), wavelets
(Daubechies-Lagarias 1992), switched linear systems, etc.

If m = 1, “standard” spectral radius ρ(A1) = maxi |λi |.

If m > 2, much more complicated...

Parrilo (MIT) 8 / 26



Joint spectral radius (deterministic) Hardness

Switching is hard...

Determining if ρ(Σ) 6 1 is NP-hard (Tsitsiklis & Blondel 1997).

ρ(Σ) is not a semialgebraic function of the problem data.

Determining if ρ(Σ) 6 1 is undecidable (Blondel & Tsitsiklis 2000).

Related work by Gurvits, Kozyakin, Barabanov, Wang-Lagarias “finiteness conjecture”,
Blondel-Nesterov, Theys, Jungers, etc.

Still, how to compute/approximate ρ(Σ)?

What approximation guarantees can we have?

How to produce “bad” (high-growth) switching sequences?
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Joint spectral radius (deterministic) Constrained switching

Constrained switched systems

Switching constrained by a directed graph (automaton)

xk+1 = Aσk
xk

where Aσ1 , Aσ2 , Aσ3 , Aσ4 , ... is a valid path.

q0

q1

q2 q3

1

32
1

2

3

4

1

1

Constrained Joint Spectral Radius:

ρ = lim sup
k→∞ max

σ
‖Aσk

· · ·Aσ1‖1/k .

where σ1, . . . ,σk is a path.
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Joint spectral radius (deterministic) Bounds

Bounding JSR using polynomials

Theorem

Let p(x) be a strictly positive homogeneous polynomial of degree 2d, that satisfies

p(Aix) 6 γ2d p(x), ∀x ∈ Rn i = 1, . . . , m

Then, ρ(Σ) 6 γ.

Proof: Since p(x) is strictly positive, there exist 0 < α 6 β such that

α ‖x‖2d 6 p(x) 6 β ‖x‖2d ∀x ∈ Rn.

and

‖Aσk
. . .Aσ1

‖ 6 max
x

‖Aσk
. . .Aσ1

x‖
‖x‖

6

(
β

α

) 1
2d p(Aσk

. . .Aσ1
x)

1
2d

p(x)
1

2d

6

(
β

α

) 1
2d

γk .

The result follows by taking kth roots, and the limit k →∞.
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Joint spectral radius (deterministic) Bounds

Using sum of squares (SOS)

Want to find a strictly positive polynomial p(x) that satisfies

p(x) > 0, γ2d p(x) − p(Aix) > 0, i = 1, . . . , m.

While this is not tractable, we can use instead

p(x) is SOS, γ2d p(x) − p(Aix) is SOS.

Then, ρ(Σ) 6 ρSOS := γ.

For fixed γ, this is an SOS program (convex optimization), can be solved using a
semidefinite programming (SDP) solver. As degree 2d increases, better bounds.

Parrilo (MIT) 12 / 26



Joint spectral radius (deterministic) Example

Example

Based on (Ando and Shih 98). Consider the two matrices:

A1 =

[
1 0
1 0

]
, A2 =

[
0 1
0 −1

]
,

The true spectral radius is ρ(A1, A2) = 1.

A common quadratic Lyapunov function (i.e., d = 2), gives ρ(A1, A2) 6
√

2.

Parrilo (MIT) 13 / 26



Joint spectral radius (deterministic) Example

Example (cont.)

A quartic SOS Lyapunov function is enough to prove
an upper bound of 1 + ε for every ε > 0, since

p(x) = (x2
1 − x2

2 )
2 + ε(x2

1 + x2
2 )

2

−4 −3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

x

y

(x
1

2
−x

2

2
)
2
+ε (x

1

2
+x

2

2
)
2

satisfies

(1 + ε)p(x) − p(A1x) = (x2
2 − x2

1 + ε(x2
1 + x2

2 ))
2

(1 + ε)p(x) − p(A2x) = (x2
1 − x2

2 + ε(x2
1 + x2

2 ))
2.
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Joint spectral radius (deterministic) Approximation ratio

SOS-based upper bound

Find γ, p(x) such that

p(x) is SOS, γ2d p(x) − p(Aix) is SOS.

Let ρSOS,2d be the smallest such γ.

What (if anything) can we say about its approximation properties?

Parrilo (MIT) 15 / 26



Joint spectral radius (deterministic) Approximation ratio

SOS Guarantees

Theorem

The degree-2d SOS upper bound for ρ(A1, . . . , Am) satisfies

η−
1

2d ρSOS,2d 6 ρ 6 ρSOS,2d ,

where η = min {m,
(
n+d−1

d

)
}.

As degree d →∞, approximation ratio goes to 1 (!)

For unbounded m, related to Barvinok/John’s ellipsoid.

For fixed m, proof based on Lyapunov iteration.

But...

How to produce “bad” (high-growth) switching sequences?

P.A. Parrilo and A. Jadbabaie, Approximation of the joint spectral radius using sum of squares, Lin. Alg. Appl., 428(10), pp. 2385–2402, 2008.
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Joint spectral radius (deterministic) High-growth sequences and duality

Constrained switching and upper bounds for ρ

q0

q1

q2 q3

1

32

1

2

3

4

1

1

Use local polynomials: u →σ v pv(Aσx) 6 γ2dpu(x).

Parrilo (MIT) 17 / 26



Joint spectral radius (deterministic) High-growth sequences and duality

SOS Program

minimize γ

pv(x) is SOS ∀v ∈ V

γ2dpu(x) − pv(Aσx) is SOS ∀(u, v ,σ) ∈ E .

Q: What is the dual?
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Joint spectral radius (deterministic) High-growth sequences and duality

Dual: more in-flow than out-flow

Dual variables: pseudo-expectations Ẽ[·] for every edge, that satisfy∑
(u,v ,σ)∈E

Ẽuvσ[p(Aσx)] > γ2d
∑

(v ,w ,σ)∈E

Ẽvwσ[p(x)], ∀v ∈ V , p(x) SOS,

Inequality between incoming and outgoing
“probability flows”:

Ẽ1v1[p(A1x)] + Ẽ2v2[p(A2x)] >

γ2d(Ẽv33[p(x)] + Ẽv44[p(x)] + Ẽv55[p(x)])

v

1 2

3 4 5

1 2

3 4 5

Parrilo (MIT) 19 / 26



Joint spectral radius (deterministic) High-growth sequences and duality

Building a high growth sequence

∑
(u,v ,σ)∈E

Ẽuvσ[p(Aσx)] > γ2d
∑

(v ,w ,σ)∈E

Ẽvwσ[p(x)], ∀v ∈ V , p(x) SOS,

Construct infinite sequence backwards using “best expectation,” by lower bounding the
maximum by the average.

Construction yields a guaranteed lower bound on JSR:

γ

(d in
max)

1
2d

6 lim
k→∞ ‖Aσ1 · · ·Aσk

‖ 1
k .

B. Legat, R. Jungers, P. Parrilo. “Generating unstable trajectories for switched systems via dual sum-of-squares techniques.” HSCC2016, ACM, 2016.
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Joint spectral radius (deterministic) Rank one case

The rank one case

Interesting special case: JSR of rank-one matrices (Ai = uiv
T
i ).

Geometric picture: for simplicity, take Ai symmetric (Ai = uiu
T
i ).

Then the switched system

xk+1 = Aσk
xk

= uσk
(uT
σk

xk)

corresponds to projecting xk onto lines uσk
.

u1

u2

u3
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Joint spectral radius (deterministic) Rank one case

JSR of rank one matrices as a graph problem

Given matrices Ai = uiv
T
i define a weighted directed graph

G = (E , V ), where E = [m] and wij = log |vT
i uj |.

Optimal sequences can be obtained by solving the maximum cycle mean (MCM)
problem for G , i.e., finding a directed simple cycle of largest average weight.

MCM can be efficiently solved using dynamic programming (Karp 1978).

Rank-one JSR is nice: efficiently solvable, optimal sequence always periodic (Ahmadi-P.,
also Gurvits-Samorodnitski).

A. Ahmadi, P. Parrilo. “Joint spectral radius of rank one matrices and the maximum cycle mean problem,” IEEE CDC, 2012.

Parrilo (MIT) 22 / 26



Lyapunov exponent (random)

Random switching: Lyapunov exponent

Given a set of matrices Σ := {A1, . . . , Am} and a probability distribution p ∈ ∆m, what is
the “growth rate” of random product of i.i.d. matrices?

Rp(Σ) := lim
k→∞‖Aσk

· · ·Aσ2Aσ1‖1/k

(Furstenberg-Kesten 1960) Rp(Σ) = eλp(Σ) a.s., where

λp(Σ) := lim
k→∞

1

k
E [log‖Aσk

· · ·Aσ2Aσ1‖]

Characterization in terms of an invariant measure (hides complexity...)

Applications: ergodic theory, dynamical systems, fractals, stochastic linear systems, etc.

Parrilo (MIT) 23 / 26



Lyapunov exponent (random)

Random switching is hard...

Analysis: Given (Σ, p), compute convergence rate Rp(Σ).

Deciding stability (i.e. if Rp(Σ) < 1) is undecidable (Tsitsiklis & Blondel 1997).

Still: how to compute/approximate? Special cases?

Recently, nice convex bound (Sutter-Fawzi-Renner, arXiv:1905.03270)

Design: Given Σ, optimize convergence rate minp∈∆m Rp(Σ).

Deciding stabilizability (i.e. if minp∈∆m Rp(Σ) < 1) is NP-hard (Altschuler-P. 2019).

Hard even for “simple” case of rank-one matrices, in contrast to analogous
optimization for JSR!

Parrilo (MIT) 24 / 26



Lyapunov exponent (random) Rank one case

Rank one case

Consider symmetric, rank-one matrices Σ = {Ai = uiu
T
i }

m
i=1.

Analysis: Simple formula: λp(Σ) =
∑m

ij=1 pipj log |uT
i uj |.

Ergodic formula: average time spent on edges of weighted graph

Quadratic form on the simplex

Computable, and in polynomial time.

Design: NP-hard to decide if minp∈∆m λp(Σ) < 0. (i.e., if Rp(Σ) < 1).

Reduction from Motzkin-Straus formulation of Independent Set, and use its
hardness of approximation.

J. Altschuler, P. Parrilo. “Lyapunov Exponent of Rank One Matrices: Ergodic Formula and Inapproximability of the Optimal Distribution,” arXiv:1905.07531.
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Summary

Summary

Switching is a powerful algorithmic tool, sometimes counterintuitive

Key techniques: JSR and Lyapunov exponents

SOS-based approximation for joint spectral radius

Rank one case more tractable, but design problem still hard

When is JSR/Lyapunov an algebraic function of data?

A. Ahmadi, P. Parrilo. “Joint spectral radius of rank one matrices and the maximum cycle mean problem,” IEEE CDC, 2012.

A. Ahmadi, R. Jungers, P. Parrilo, M. Roozbehani. “Joint spectral radius and path-complete graph Lyapunov functions,” SIAM J. on Control and Optimization,
52(1), 687–717, 2014.

J. Altschuler, P. Parrilo. “Lyapunov Exponent of Rank One Matrices: Ergodic Formula and Inapproximability of the Optimal Distribution,” arXiv:1905.07531.

P.A. Parrilo and A. Jadbabaie, Approximation of the joint spectral radius using sum of squares, Linear Algebra and its Applications, 428(10), pp. 2385–2402, 2008.

B. Legat, R. Jungers, P. Parrilo. “Generating unstable trajectories for switched systems via dual sum-of-squares techniques.” Proc. Hybrid Systems: Computation
and Control (HSCC), ACM, 2016.
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