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Original motivation: quantum information

How to solve convex optimization problems involving, e.g., quantum relative
entropy?

D(X|[Y) == tr[X(log(X) — log(Y))]
No existing off-the-shelf methods

Some bespoke algorithms for particular problems:
» Classical-to-quantum channel capacity [Sutter et al. 2016]
> Relative entropy of entanglement [Zinchenko et al. 2010]

Can we exploit and leverage (or extend) successful existing technology
(e.g., parsers/solvers for LP/SOCP/SDP, like CVX)?




Fundamental issue:
» Semidefinite programming (SDP) can only solve semialgebraic problems

» Problems involving logarithms (or entropy) are not semialgebraic

This talk:
» Principled approximations of logarithm that can be modeled using SDP
» Complexity of SDP approximation grows mildly with approximation quality
» Works for matrix logarithm and related functions (e.g., quantum entropy)
» Larger theme: what is the SDP complexity of sets and functions?
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Logarithm

log(x)

Properties
» Monotone:
x>y >0 implies log(x)> log(y)

» Concave:
{(x,7) : x>0, log(x) > 7} is a convex set



Logarithm

log(x)

Related functions:
» Entropy: H(p) = — >, pilog(p;) is concave
» Kullback-Leibler divergence (or relative entropy)

D(pllq) = Z pilog(pi/q:)

convex in (p, q)



Matrix logarithm
For positive definite X with eigendecomposition
X = Udiag(A1, ..., \y)U”
define

log(X) = U diag(log()1), . . ., log(\,)) U*

Properties
» Operator monotone:
X =Y =0 implies log(X) > log(Y)
» Operator concave:

{(X,T): X >0, log(X) =T} is convex



Matrix logarithm
For positive definite X with eigendecomposition
X = Udiag(A1, ..., \y)U”
define

log(X) = Udiag(log(\1), . .., log(\,))U*

Related functions:
» Entropy —tr [X log(X)] is concave in X

» Quantum relative entropy
D(X[[Y) = tr[X(log(X) — log(Y))]

convex in (X, Y) [Lieb-Ruskai, 1973]



Semidefinite representations

Concave function f has a semidefinite representation of
size d if: : k()

f(x)>t <= JueR":S(x,t,u)>=0

for some affine function S : R"t1+m — §9

» Key fact: f has semidefinite representation = can solve
opt. problems involving f using semidefinite solvers



Semidefinite representations

Concave function f has a semidefinite representation of
size d if: oe)

fx)y>t < JueR":S(x,t,u) =0

for some affine function S : R"t1+m — §9

» Key fact: f has semidefinite representation = can solve
opt. problems involving f using semidefinite solvers

» Many convex/concave functions have SDP representations
(“can solve using LMIs...")




Logarithm function

Goal: find a semidefinite representation of (matrix) logarithm.

log X = T <« 777

Problem: Logarithm not semialgebraic! We must approximate

Want: Size of representation to grow mildly with approximation quality



Logarithms and matrix friends

Many inter-related convex functions:

perspective
—_—

log(x) ylog(x/y)

matrix argl lbimatrix arg

|0g(X) NC perspective Y% |Og( Y_%XY_%)Y%



Logarithms and matrix friends

Many inter-related convex functions:

perspective
—_—

log(x) ylog(x/y)

matrix argl lbimatrix arg

|0g(X) NC perspective Y% |Og( Y_%XY_%)Y%

» For positive definite X with eigendecomposition:
X = UNU” — log(X) := Ulog(AN)U*

» Matrix log is operator monotone and operator concave



Starting point: Integral representation

1 x—1
log(x) = /0 T %



Starting point: Integral representation

ox—1
6= | e %

Integrand:
Rational, (operator) monotone and concave, has SDP rep. for fixed &:
x—1 1+&(x—1) 1
7 = =0
e Rt AR SRRk

In the background: Lowner's theorem on operator monotone functions



|ldea 1: Approximate via quadrature

1 x—1
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> rm(x) is rational, operator monotone, operator concave

» rn(x) has semidefinite rep. with m LMIs of size 2 x 2
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|ldea 1: Approximate via quadrature

1 x—1
log(x) = /0 T %
x—1
NZ Jl—{—fjx—l) = m(X)

for quadrature nodes &; € (0,1) and weights w; > 0

> rm(x) is rational, operator monotone, operator concave
» rn(x) has semidefinite rep. with m LMIs of size 2 x 2

Which quadrature rule to use?

Gaussian quadrature, with w; given by Gauss-Legendre weights.
Nice properties, e.g., gives Padé approximant at 1



Idea 2: Using the functional equation log(x") = hlog(x)

Observations:
» rn(x) is very good approximation to log(x) when x ~ 1
> x1/2" ~ 1 (Briggs (1617) method for computing log)

3;
2; /
— Log

m=3




Idea 2: Using the functional equation log(x") = hlog(x)

Observations:
» rn(x) is very good approximation to log(x) when x ~ 1
> x1/2" ~ 1 (Briggs (1617) method for computing log)

Define: two-parameter family of approximations

Pk (X) 1= 25ron(x%) & 2¥ log(x1/2) = log(x)

» operator monotone and operator concave
» has semidefinite rep. with m -+ k LMIs of size 2 x 2

k(X)) > 7 = Ju st 2r(u)>7, x>0



Approximation error

102 . . !
100 m=2, k=2 |
5 10,2//%3*:37
Approximation error ||ry, x — log ||« on [1/a,a] £ 1OA/MM
£
X 10°p ]
Optimal choice: m =~ k. g .l
1040,
s 102 103 10* 10°

Theorem
There exists a semidefinite representable function r such that

|r(x) —log(x)| < e forall x €[1/a, 3]

and r has semidefinite rep. of size O(y/log(1/€) + loglog(a))



Logarithm and matrix friends (SDP version)
What about matrix logarithm?

og(x) TS ylog(x/y)
|Og(X) ~ rm7k(X) >—- T? matrix argl \l/bimatrix arg

NC i
log(X) XMyl log(Y 3XY“3)y3

» 2 x 2 linear matrix inequalities become 2n x 2n

1+&x—1) 1 [l+£(Xl) A

1 1—57]50 / I—€¢T| =



Logarithm and matrix friends (SDP version)
What about matrix logarithm?

og(x) TS ylog(x/y)
|Og(X) ~ rm7k(X) >—- T? matrix argl \l/bimatrix arg

NC i
log(X) M ydog(YTixyTE)Y:

» 2 x 2 linear matrix inequalities become 2n x 2n

1+&(x—1) 1 I+&X=1) I
1 1—57]50 [ / |—er| =0

» Related to inverse scaling and squaring method or Briggs-Padé method in
numerical analysis

» Preserves operator concavity, via SDP.
» Links to “free spectrahedra” (Helton et al.)



Relative entropy cone

Ke={(x,y,7) : x,y >0, —ylog(y/x) <7}

» Can approximate by homogenizing LMIs in our approximation for logarithm
(L y)

» Can model, e.g., geometric programs
in conic form w.r.t. products of K.

» Can then approximate with second-order cone programs

What about matrices?



Operator relative entropy cone

Theorem [Effros, Ebadian et al.]
If f operator concave then matrix perspective of f, i.e.,

g(X, Y) — Yl/Zf(Y71/2XY71/2)Y1/2

is jointly matrix concave in (X, Y).

Operator relative entropy cone

Kn={(X.Y.T):X,Y =0,
— Y2 log(Y2XY M) Y2 < T}



Operator relative entropy cone

Theorem [Effros, Ebadian et al.]
If f operator concave then matrix perspective of f, i.e.,

g(X, Y) — Yl/Zf(Y71/2XY71/2)Y1/2

is jointly matrix concave in (X, Y).

Operator relative entropy cone
Kli={(X,Y,T): X, Y >0,
— Y2 log(Y2XY M) Y2 < T}

» Can approximate by ‘homogenizing' LMIs in approximation for matrix
logarithm (/ <> Y)



Approximating quantum relative entropy
Quantum relative entropy

D(Y||X) =tr[Ylog(Y) — Y log(X)]

(Effros 2009, Tropp 2015) D(Y||X) can be written as
o [(1® Y)Y log((I @ V) V2(X @ (1@ Y) ) (I oY)

where ¢ is the positive linear map s.t. #(X ® Y) = tr(XY).




Approximating quantum relative entropy
Quantum relative entropy

D(Y||X) =tr[Ylog(Y) — Y log(X)]

(Effros 2009, Tropp 2015) D(Y||X) can be written as
o [(1® Y)Y log((I @ V) V2(X @ (1@ Y) ) (I oY)

where ¢ is the positive linear map s.t. #(X ® Y) = tr(XY).

Representation with operator relative entropy cone

KT={(X,Y,T): X,Y = 0,—YY2log(YY2XY-12)y¥/2 < T}

D(Y|X)<7 < 3T st. (X®1,I0Y,T)e K" ¢(T) <1}



Maximum entropy problems

maximize —Y ., X log(x;)
subject to Ax =b (AcR>" becRY
x>0
CVX'’s succ. approx. | Our approach m=3,h=1/8

n 1 time (s)  accuracy® | time (s) accuracy™
200 100 | 1.10s 6.635e-06 0.88 s 2.767e-06
400 200 | 3.38s 2.662e-05 0.72 s 1.164e-05
600 300 | 9.14s 2.927e-05 1.84 s 2.743e-05
1000 500 | 52.40s  1.067e-05 391s 1.469e-04

*accuracy measured wrt specialized MOSEK routine

» CVX's successive approx.: Uses Taylor expansion instead of Padé approx +
successively refine linearization point



Relative entropy of entanglement

Quantify entanglement of a bipartite state p:

min D(p||7) s.t. T € Sep

n  Cutting-plane Our approach Sy = b i
[Zinchenko etal.] m=3,h=1/8
4 6.13s 0.55s
6 12.30s 0.51 s v bogin sdp
8 2944 s 0.69 s variable tau(na*nb,na*nb) hermitian;
minimize (quantum_rel_entr(rho,tau));
9 37.56 s 0.82's subject to tau >= 0; trace(tau) == 1;
12 50.50s 1.74 s % PPT constraint
16 100.70 s 5.55 s Tx(tan,2, [na nbl) >= 0;

cvx_end




Beyond logarithm (and friends)

Recall two parts to the approximation:

1. Integral representation (with positive measure 1)

f(x) = / F(x.€) du(€)

where x — F(x, &) has semidefinite rep. for fixed &.
2. Functional equation hlog(x) = log(x")

First idea generalizes to other classes of functions:
» hypergeometric functions (for certain parameter ranges)

» operator monotone and concave functions on (0, o)

Sometimes second idea generalizes: AGM, logarithmic mean, ...



Conclusion

Broad issues:
» What can we describe with small SDPs (or SOCPs)?
» What can we approximate with small SDPs (or SOCPs)?

» How to approximate and preserve structural properties?

This talk:

» Matrix logarithm has e-approximate semidefinite description with
O(+y/log(1/e€)), 2n x 2n LMIs

» Gives approximate semidefinite description for quantum relative entropy,
operator relative entropy

» Gives new SOCP approx. for relative entropy cone



More information

Paper: H. Fawzi, J. Saunderson, P. Parrilo, ‘Semidefinite approximations of the
matrix logarithm' arXiv:1705.00812. Foundations of Computational
Mathematics, 2018.

Accompanying paper: H. Fawzi, O. Fawzi, ‘Relative entropy optimization in
quantum information theory via semidefinite programming approximations.’
arXiv:1705.06671, Journal of Physics A: Mathematical and Theoretical, 2018.

Code: www.github.com/hfawzi/cvxquad
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