Semidefinite approximations of the matrix logarithm

Pablo A. Parrilo
EECS - MIT

Caltech CMS, November 2018

Joint work with:

Original motivation: quantum information

How to solve convex optimization problems involving, e.g., quantum relative entropy?

$$
D(X \| Y):=\operatorname{tr}[X(\log (X)-\log (Y))]
$$

Original motivation: quantum information

How to solve convex optimization problems involving, e.g., quantum relative entropy?

$$
D(X \| Y):=\operatorname{tr}[X(\log (X)-\log (Y))]
$$

No existing off-the-shelf methods
Some bespoke algorithms for particular problems:

- Classical-to-quantum channel capacity [Sutter et al. 2016]
- Relative entropy of entanglement [Zinchenko et al. 2010]

Original motivation: quantum information

How to solve convex optimization problems involving, e.g., quantum relative entropy?

$$
D(X \| Y):=\operatorname{tr}[X(\log (X)-\log (Y))]
$$

No existing off-the-shelf methods
Some bespoke algorithms for particular problems:

- Classical-to-quantum channel capacity [Sutter et al. 2016]
- Relative entropy of entanglement [Zinchenko et al. 2010]

Can we exploit and leverage (or extend) successful existing technology (e.g., parsers/solvers for LP/SOCP/SDP, like CVX)?

Fundamental issue:

- Semidefinite programming (SDP) can only solve semialgebraic problems
- Problems involving logarithms (or entropy) are not semialgebraic

This talk:

- Principled approximations of logarithm that can be modeled using SDP
- Complexity of SDP approximation grows mildly with approximation quality
- Works for matrix logarithm and related functions (e.g., quantum entropy)
- Larger theme: what is the SDP complexity of sets and functions?

Logarithm

Logarithm

Properties

- Monotone:

$$
x \geq y>0 \quad \text { implies } \quad \log (x) \geq \log (y)
$$

- Concave:

$$
\{(x, \tau): x>0, \log (x) \geq \tau\} \quad \text { is a convex set }
$$

Logarithm

Related functions:

- Entropy: $H(p)=-\sum_{i=1}^{n} p_{i} \log \left(p_{i}\right)$ is concave
- Kullback-Leibler divergence (or relative entropy)

$$
D(p \| q)=\sum_{i=1}^{n} p_{i} \log \left(p_{i} / q_{i}\right)
$$

convex in (p, q)

Matrix logarithm

For positive definite X with eigendecomposition

$$
X=U \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) U^{*}
$$

define

$$
\log (X)=U \operatorname{diag}\left(\log \left(\lambda_{1}\right), \ldots, \log \left(\lambda_{n}\right)\right) U^{*}
$$

Properties

- Operator monotone:

$$
X \succeq Y \succ 0 \quad \text { implies } \quad \log (X) \succeq \log (Y)
$$

- Operator concave:

$$
\{(X, T): X \succ 0, \log (X) \succeq T\} \quad \text { is convex }
$$

Matrix logarithm

For positive definite X with eigendecomposition

$$
X=U \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) U^{*}
$$

define

$$
\log (X)=U \operatorname{diag}\left(\log \left(\lambda_{1}\right), \ldots, \log \left(\lambda_{n}\right)\right) U^{*}
$$

Related functions:

- Entropy $-\operatorname{tr}[X \log (X)]$ is concave in X
- Quantum relative entropy

$$
D(X \| Y)=\operatorname{tr}[X(\log (X)-\log (Y))]
$$

convex in (X, Y) [Lieb-Ruskai, 1973]

Semidefinite representations

Concave function f has a semidefinite representation of size d if:

$$
f(x) \geq t \quad \Longleftrightarrow \quad \exists u \in \mathbb{R}^{m}: \mathcal{S}(x, t, u) \succeq 0
$$

for some affine function $\mathcal{S}: \mathbb{R}^{n+1+m} \rightarrow \mathbf{S}^{d}$.

- Key fact: f has semidefinite representation \Longrightarrow can solve opt. problems involving f using semidefinite solvers

Semidefinite representations

Concave function f has a semidefinite representation of size d if:

$$
f(x) \geq t \quad \Longleftrightarrow \quad \exists u \in \mathbb{R}^{m}: \mathcal{S}(x, t, u) \succeq 0
$$

for some affine function $\mathcal{S}: \mathbb{R}^{n+1+m} \rightarrow \mathbf{S}^{d}$.

- Key fact: f has semidefinite representation \Longrightarrow can solve opt. problems involving f using semidefinite solvers
- Many convex/concave functions have SDP representations ("can solve using LMIs...")

Logarithm function

Goal: find a semidefinite representation of (matrix) logarithm.

$$
\log X \succeq T \quad \Longleftrightarrow \quad ? ? ?
$$

Problem: Logarithm not semialgebraic! We must approximate

Want: Size of representation to grow mildly with approximation quality

Logarithms and matrix friends

Many inter-related convex functions:

Logarithms and matrix friends

Many inter-related convex functions:

- For positive definite X with eigendecomposition:

$$
X=U \Lambda U^{*} \quad \rightarrow \quad \log (X):=U \log (\Lambda) U^{*}
$$

- Matrix log is operator monotone and operator concave

Starting point: Integral representation

$$
\log (x)=\int_{0}^{1} \frac{x-1}{1+\xi(x-1)} d \xi
$$

Starting point: Integral representation

$$
\log (x)=\int_{0}^{1} \frac{x-1}{1+\xi(x-1)} d \xi
$$

Integrand:
Rational, (operator) monotone and concave, has SDP rep. for fixed ξ :

$$
\frac{x-1}{1+\xi(x-1)} \succeq \tau \quad \Longleftrightarrow \quad\left[\begin{array}{cc}
1+\xi(x-1) & 1 \\
1 & 1-\xi \tau
\end{array}\right] \succeq 0
$$

In the background: Löwner's theorem on operator monotone functions

Idea 1: Approximate via quadrature

$$
\begin{aligned}
\log (x) & =\int_{0}^{1} \frac{x-1}{1+\xi(x-1)} d \xi \\
& \approx \sum_{j=1}^{m} w_{j} \frac{x-1}{1+\xi_{j}(x-1)}=: r_{m}(x)
\end{aligned}
$$

for quadrature nodes $\xi_{j} \in(0,1)$ and weights $w_{j}>0$

- $r_{m}(x)$ is rational, operator monotone, operator concave
- $r_{m}(x)$ has semidefinite rep. with m LMIs of size 2×2

Idea 1: Approximate via quadrature

$$
\begin{aligned}
\log (x) & =\int_{0}^{1} \frac{x-1}{1+\xi(x-1)} d \xi \\
& \approx \sum_{j=1}^{m} w_{j} \frac{x-1}{1+\xi_{j}(x-1)}=: r_{m}(x)
\end{aligned}
$$

for quadrature nodes $\xi_{j} \in(0,1)$ and weights $w_{j}>0$

- $r_{m}(x)$ is rational, operator monotone, operator concave
- $r_{m}(x)$ has semidefinite rep. with m LMIs of size 2×2

Which quadrature rule to use?

Idea 1: Approximate via quadrature

$$
\begin{aligned}
\log (x) & =\int_{0}^{1} \frac{x-1}{1+\xi(x-1)} d \xi \\
& \approx \sum_{j=1}^{m} w_{j} \frac{x-1}{1+\xi_{j}(x-1)}=: r_{m}(x)
\end{aligned}
$$

for quadrature nodes $\xi_{j} \in(0,1)$ and weights $w_{j}>0$

- $r_{m}(x)$ is rational, operator monotone, operator concave
- $r_{m}(x)$ has semidefinite rep. with m LMIs of size 2×2

Which quadrature rule to use?
Gaussian quadrature, with w_{i} given by Gauss-Legendre weights.

Idea 1: Approximate via quadrature

$$
\begin{aligned}
\log (x) & =\int_{0}^{1} \frac{x-1}{1+\xi(x-1)} d \xi \\
& \approx \sum_{j=1}^{m} w_{j} \frac{x-1}{1+\xi_{j}(x-1)}=: r_{m}(x)
\end{aligned}
$$

for quadrature nodes $\xi_{j} \in(0,1)$ and weights $w_{j}>0$

- $r_{m}(x)$ is rational, operator monotone, operator concave
- $r_{m}(x)$ has semidefinite rep. with m LMIs of size 2×2

Which quadrature rule to use?
Gaussian quadrature, with w_{i} given by Gauss-Legendre weights.
Nice properties, e.g., gives Padé approximant at 1

Idea 2: Using the functional equation $\log \left(x^{h}\right)=h \log (x)$

Observations:

- $r_{m}(x)$ is very good approximation to $\log (x)$ when $x \approx 1$
- $x^{1 / 2^{k}} \approx 1$ (Briggs (1617) method for computing log)

Idea 2: Using the functional equation $\log \left(x^{h}\right)=h \log (x)$

Observations:

- $r_{m}(x)$ is very good approximation to $\log (x)$ when $x \approx 1$
- $x^{1 / 2^{k}} \approx 1$ (Briggs (1617) method for computing log)

Define: two-parameter family of approximations

$$
r_{m, k}(x):=2^{k} r_{m}\left(x^{1 / 2^{k}}\right) \approx 2^{k} \log \left(x^{1 / 2^{k}}\right)=\log (x)
$$

- operator monotone and operator concave
- has semidefinite rep. with $m+k$ LMIs of size 2×2

$$
r_{m, k}(x) \geq \tau \quad \Longleftrightarrow \quad \exists u \text { s.t. } 2^{k} r_{m}(u) \geq \tau, \quad x^{1 / 2^{k}} \geq u
$$

Approximation error

Approximation error $\left\|r_{m, k}-\log \right\|_{\infty}$ on [1/a, a]
Optimal choice: $m \approx k$.

Theorem
There exists a semidefinite representable function r such that

$$
|r(x)-\log (x)| \leq \epsilon \quad \text { for all } x \in[1 / a, a]
$$

and r has semidefinite rep. of size $O(\sqrt{\log (1 / \epsilon)}+\log \log (a))$

Logarithm and matrix friends (SDP version)

What about matrix logarithm?

$$
\begin{aligned}
& \log (X) \approx r_{m, k}(X) \succeq T, \\
& \begin{array}{ccc}
\log (x) \\
\text { matrix arg } \\
\underset{\log (X)}{\downarrow} & \xrightarrow{\text { perspective }} & \begin{array}{c}
y \log (x / y) \\
\text { NC Perspective }
\end{array} \\
Y^{\frac{1}{2}} \log \left(Y^{-\frac{1}{2}} X Y^{-\frac{1}{2}}\right) Y^{\frac{1}{2}}
\end{array}
\end{aligned}
$$

- 2×2 linear matrix inequalities become $2 n \times 2 n$

$$
\left[\begin{array}{cc}
1+\xi(x-1) & 1 \\
1 & 1-\xi \tau
\end{array}\right] \succeq 0 \quad \rightarrow\left[\begin{array}{cc}
I+\xi(X-I) & I \\
I & I-\xi T
\end{array}\right] \succeq 0
$$

Logarithm and matrix friends (SDP version)

What about matrix logarithm?

$$
\log (X) \approx r_{m, k}(X) \succeq T, \quad \underset{\text { matrix arg }}{\log (x)} \xrightarrow{\log (X)} \xrightarrow{\text { pCerspective }} \xrightarrow{y \log (x / y)} \xrightarrow[\substack{\text { perspective }}]{\downarrow{ }^{\text {bimatrix arg }}} \underset{Y^{\frac{1}{2}} \log \left(Y^{-\frac{1}{2}} X Y^{-\frac{1}{2}}\right) Y^{\frac{1}{2}}}{ }
$$

- 2×2 linear matrix inequalities become $2 n \times 2 n$

$$
\left[\begin{array}{cc}
1+\xi(x-1) & 1 \\
1 & 1-\xi \tau
\end{array}\right] \succeq 0 \quad \rightarrow\left[\begin{array}{cc}
I+\xi(X-I) & I \\
I & I-\xi T
\end{array}\right] \succeq 0
$$

- Related to inverse scaling and squaring method or Briggs-Padé method in numerical analysis
- Preserves operator concavity, via SDP.
- Links to "free spectrahedra" (Helton et al.)

Relative entropy cone

$$
K_{\mathrm{re}}=\{(x, y, \tau): x, y>0,-y \log (y / x) \leq \tau\}
$$

- Can approximate by homogenizing LMIs in our approximation for logarithm ($1 \leftrightarrow y$)
- Can model, e.g., geometric programs in conic form w.r.t. products of $K_{r e}$
- Can then approximate with second-order cone programs

What about matrices?

Operator relative entropy cone

Theorem [Effros, Ebadian et al.]
If f operator concave then matrix perspective of f, i.e.,

$$
g(X, Y)=Y^{1 / 2} f\left(Y^{-1 / 2} X Y^{-1 / 2}\right) Y^{1 / 2}
$$

is jointly matrix concave in (X, Y).
Operator relative entropy cone

$$
K_{\mathrm{re}}^{n}=\{(X, Y, T): X, Y \succ 0,
$$

$$
\left.-Y^{1 / 2} \log \left(Y^{-1 / 2} X Y^{-1 / 2}\right) Y^{1 / 2} \preceq T\right\}
$$

Operator relative entropy cone

Theorem [Effros, Ebadian et al.]
If f operator concave then matrix perspective of f, i.e.,

$$
g(X, Y)=Y^{1 / 2} f\left(Y^{-1 / 2} X Y^{-1 / 2}\right) Y^{1 / 2}
$$

is jointly matrix concave in (X, Y).
Operator relative entropy cone

$$
K_{\mathrm{re}}^{n}=\{(X, Y, T): X, Y \succ 0,
$$

$$
\left.-Y^{1 / 2} \log \left(Y^{-1 / 2} X Y^{-1 / 2}\right) Y^{1 / 2} \preceq T\right\}
$$

- Can approximate by 'homogenizing' LMIs in approximation for matrix logarithm $(I \leftrightarrow Y)$

Approximating quantum relative entropy

Quantum relative entropy

$$
D(Y \| X)=\operatorname{tr}[Y \log (Y)-Y \log (X)]
$$

(Effros 2009, Tropp 2015) $D(Y \| X)$ can be written as

$$
-\phi\left[(I \otimes Y)^{1 / 2} \log \left((I \otimes Y)^{-1 / 2}(X \otimes I)(I \otimes Y)^{-1 / 2}\right)(I \otimes Y)^{1 / 2}\right]
$$

where ϕ is the positive linear map s.t. $\phi(X \otimes Y)=\operatorname{tr}(X Y)$.

Approximating quantum relative entropy

Quantum relative entropy

$$
D(Y \| X)=\operatorname{tr}[Y \log (Y)-Y \log (X)]
$$

(Effros 2009, Tropp 2015) $D(Y \| X)$ can be written as

$$
-\phi\left[(I \otimes Y)^{1 / 2} \log \left((I \otimes Y)^{-1 / 2}(X \otimes I)(I \otimes Y)^{-1 / 2}\right)(I \otimes Y)^{1 / 2}\right]
$$

where ϕ is the positive linear map s.t. $\phi(X \otimes Y)=\operatorname{tr}(X Y)$.
Representation with operator relative entropy cone

$$
\begin{aligned}
& K_{\mathrm{re}}^{n}=\left\{(X, Y, T): X, Y \succ 0,-Y^{1 / 2} \log \left(Y^{-1 / 2} X Y^{-1 / 2}\right) Y^{1 / 2} \preceq T\right\} \\
& \left.D(Y \| X) \leq \tau \Longleftrightarrow \exists T \text { s.t. }(X \otimes I, I \otimes Y, T) \in K_{\mathrm{re}}^{\mathrm{n}^{2}}, \phi(T) \leq \tau\right\}
\end{aligned}
$$

Maximum entropy problems

$$
\begin{array}{ll}
\operatorname{maximize} & -\sum_{i=1}^{n} x_{i} \log \left(x_{i}\right) \\
\text { subject to } & A x=b \\
& x \geq 0
\end{array} \quad\left(A \in \mathbb{R}^{\ell \times n}, b \in \mathbb{R}^{\ell}\right)
$$

n	ℓ	CVX's succ. approx. time (s) accuracy*		Our approach time (s)	$m=3, h=1 / 8$ accuracy*
200	100	1.10 s	$6.635 \mathrm{e}-06$	0.88 s	$2.767 \mathrm{e}-06$
400	200	3.38 s	$2.662 \mathrm{e}-05$	0.72 s	$1.164 \mathrm{e}-05$
600	300	9.14 s	$2.927 \mathrm{e}-05$	1.84 s	$2.743 \mathrm{e}-05$
1000	500	52.40 s	$1.067 \mathrm{e}-05$	3.91 s	$1.469 \mathrm{e}-04$

*accuracy measured wrt specialized MOSEK routine

- CVX's successive approx.: Uses Taylor expansion instead of Padé approx + successively refine linearization point

Relative entropy of entanglement

Quantify entanglement of a bipartite state ρ :

$$
\min D(\rho \| \tau) \text { s.t. } \tau \in \operatorname{Sep}
$$

n	Cutting-plane [Zinchenko et al.]	Our approach $m=3, h=1 / 8$
4	6.13 s	0.55 s
6	12.30 s	0.51 s
8	29.44 s	0.69 s
9	37.56 s	0.82 s
12	50.50 s	1.74 s
16	100.70 s	5.55 s

```
cvx_begin sdp
    variable tau(na*nb,na*nb) hermitian;
    minimize (quantum_rel_entr(rho,tau));
    subject to tau >= 0; trace(tau) == 1;
    % PPT constraint
    Tx(tau,2,[na nb]) >= 0;
```

cvx_end

Beyond logarithm (and friends)

Recall two parts to the approximation:

1. Integral representation (with positive measure μ)

$$
f(x)=\int F(x, \xi) d \mu(\xi)
$$

where $x \mapsto F(x, \xi)$ has semidefinite rep. for fixed ξ.
2. Functional equation $h \log (x)=\log \left(x^{h}\right)$

First idea generalizes to other classes of functions:

- hypergeometric functions (for certain parameter ranges)
- operator monotone and concave functions on ($0, \infty$)

Sometimes second idea generalizes: AGM, logarithmic mean, ...

Conclusion

Broad issues:

- What can we describe with small SDPs (or SOCPs)?
- What can we approximate with small SDPs (or SOCPs)?
- How to approximate and preserve structural properties?

This talk:

- Matrix logarithm has ϵ-approximate semidefinite description with $O(\sqrt{\log (1 / \epsilon)}), 2 n \times 2 n$ LMIs
- Gives approximate semidefinite description for quantum relative entropy, operator relative entropy
- Gives new SOCP approx. for relative entropy cone

More information

Paper: H. Fawzi, J. Saunderson, P. Parrilo, 'Semidefinite approximations of the matrix logarithm' arXiv:1705.00812. Foundations of Computational Mathematics, 2018.

Accompanying paper: H. Fawzi, O. Fawzi, 'Relative entropy optimization in quantum information theory via semidefinite programming approximations.' arXiv:1705.06671, Journal of Physics A: Mathematical and Theoretical, 2018.

Code: www.github.com/hfawzi/cvxquad

