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Original motivation: quantum information

How to solve convex optimization problems involving, e.g., quantum relative
entropy?

D(X‖Y ) := tr [X (log(X )− log(Y ))]

No existing off-the-shelf methods

Some bespoke algorithms for particular problems:

I Classical-to-quantum channel capacity [Sutter et al. 2016]

I Relative entropy of entanglement [Zinchenko et al. 2010]

Can we exploit and leverage (or extend) successful existing technology
(e.g., parsers/solvers for LP/SOCP/SDP, like CVX)?
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Fundamental issue:

I Semidefinite programming (SDP) can only solve semialgebraic problems

I Problems involving logarithms (or entropy) are not semialgebraic

This talk:

I Principled approximations of logarithm that can be modeled using SDP

I Complexity of SDP approximation grows mildly with approximation quality

I Works for matrix logarithm and related functions (e.g., quantum entropy)

I Larger theme: what is the SDP complexity of sets and functions?
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Logarithm
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Properties

I Monotone:
x ≥ y > 0 implies log(x) ≥ log(y)

I Concave:
{(x , τ) : x > 0, log(x) ≥ τ} is a convex set



Logarithm

x

t log(x)

Related functions:
I Entropy: H(p) = −

∑n
i=1 pi log(pi) is concave

I Kullback-Leibler divergence (or relative entropy)

D(p‖q) =
n∑

i=1

pi log(pi/qi)

convex in (p, q)



Matrix logarithm

For positive definite X with eigendecomposition

X = U diag(λ1, . . . , λn)U∗

define

log(X ) = U diag(log(λ1), . . . , log(λn))U∗

Properties

I Operator monotone:

X � Y � 0 implies log(X ) � log(Y )

I Operator concave:

{(X ,T ) : X � 0, log(X ) � T} is convex



Matrix logarithm

For positive definite X with eigendecomposition

X = U diag(λ1, . . . , λn)U∗

define

log(X ) = U diag(log(λ1), . . . , log(λn))U∗

Related functions:

I Entropy −tr [X log(X )] is concave in X

I Quantum relative entropy

D(X‖Y ) = tr [X (log(X )− log(Y ))]

convex in (X ,Y ) [Lieb-Ruskai, 1973]



Semidefinite representations

Concave function f has a semidefinite representation of
size d if:

f (x) ≥ t ⇐⇒ ∃u ∈ Rm : S(x , t, u) � 0

for some affine function S : Rn+1+m → Sd .

x

t log(x)

I Key fact: f has semidefinite representation =⇒ can solve
opt. problems involving f using semidefinite solvers

I Many convex/concave functions have SDP representations
(“can solve using LMIs...”)
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Logarithm function

Goal: find a semidefinite representation of (matrix) logarithm.

log X � T ⇐⇒ ???

Problem: Logarithm not semialgebraic! We must approximate

Want: Size of representation to grow mildly with approximation quality



Logarithms and matrix friends

Many inter-related convex functions:

log(x) y log(x/y)

log(X ) Y
1
2 log(Y −

1
2 XY −

1
2 )Y

1
2

perspective

matrix arg bimatrix arg

NC perspective

I For positive definite X with eigendecomposition:

X = UΛU∗ → log(X ) := U log(Λ)U∗

I Matrix log is operator monotone and operator concave
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Starting point: Integral representation

log(x) =

∫ 1

0

x − 1

1 + ξ(x − 1)
dξ

Integrand:
Rational, (operator) monotone and concave, has SDP rep. for fixed ξ:

x − 1

1 + ξ(x − 1)
� τ ⇐⇒

[
1 + ξ(x − 1) 1

1 1− ξτ

]
� 0

In the background: Löwner’s theorem on operator monotone functions
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Idea 1: Approximate via quadrature

log(x) =

∫ 1

0

x − 1

1 + ξ(x − 1)
dξ

≈
m∑
j=1

wj
x − 1

1 + ξj(x − 1)
=: rm(x)

for quadrature nodes ξj ∈ (0, 1) and weights wj > 0

I rm(x) is rational, operator monotone, operator concave

I rm(x) has semidefinite rep. with m LMIs of size 2× 2

Which quadrature rule to use?
Gaussian quadrature, with wi given by Gauss-Legendre weights.
Nice properties, e.g., gives Padé approximant at 1
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Idea 2: Using the functional equation log(xh) = h log(x)

Observations:

I rm(x) is very good approximation to log(x) when x ≈ 1

I x1/2k ≈ 1 (Briggs (1617) method for computing log)
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Idea 2: Using the functional equation log(xh) = h log(x)

Observations:

I rm(x) is very good approximation to log(x) when x ≈ 1

I x1/2k ≈ 1 (Briggs (1617) method for computing log)

Define: two-parameter family of approximations

rm,k(x) := 2krm(x1/2k ) ≈ 2k log(x1/2k ) = log(x)

I operator monotone and operator concave

I has semidefinite rep. with m + k LMIs of size 2× 2

rm,k(x) ≥ τ ⇐⇒ ∃u s.t. 2krm(u) ≥ τ, x1/2k ≥ u



Approximation error

Approximation error ‖rm,k − log ‖∞ on [1/a, a]

Optimal choice: m ≈ k .
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Theorem
There exists a semidefinite representable function r such that

|r(x)− log(x)| ≤ ε for all x ∈ [1/a, a]

and r has semidefinite rep. of size O(
√

log(1/ε) + log log(a))



Logarithm and matrix friends (SDP version)

What about matrix logarithm?

log(X ) ≈ rm,k(X ) � T ,
log(x) y log(x/y)

log(X ) Y
1
2 log(Y− 1

2 XY− 1
2 )Y

1
2

perspective

matrix arg bimatrix arg

NC perspective

I 2× 2 linear matrix inequalities become 2n × 2n[
1 + ξ(x − 1) 1

1 1− ξτ

]
� 0 →

[
I + ξ(X − I ) I

I I − ξT

]
� 0

I Related to inverse scaling and squaring method or Briggs-Padé method in
numerical analysis

I Preserves operator concavity, via SDP.
I Links to “free spectrahedra” (Helton et al.)
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Relative entropy cone

Kre = {(x , y , τ) : x , y > 0, −y log(y/x) ≤ τ}

I Can approximate by homogenizing LMIs in our approximation for logarithm
(1↔ y)

I Can model, e.g., geometric programs
in conic form w.r.t. products of Kre

I Can then approximate with second-order cone programs

What about matrices?



Operator relative entropy cone

Theorem [Effros, Ebadian et al.]
If f operator concave then matrix perspective of f , i.e.,

g(X ,Y ) = Y 1/2f (Y −1/2XY −1/2)Y 1/2

is jointly matrix concave in (X ,Y ).

Operator relative entropy cone

K n
re = {(X ,Y ,T ) : X ,Y � 0,

− Y 1/2 log(Y −1/2XY −1/2)Y 1/2 � T}

I Can approximate by ‘homogenizing’ LMIs in approximation for matrix
logarithm (I ↔ Y )
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Approximating quantum relative entropy

Quantum relative entropy

D(Y ‖X ) = tr [Y log(Y )− Y log(X )]

(Effros 2009, Tropp 2015) D(Y ‖X ) can be written as

−φ
[
(I ⊗ Y )1/2 log((I ⊗ Y )−1/2(X ⊗ I )(I ⊗ Y )−1/2)(I ⊗ Y )1/2

]
where φ is the positive linear map s.t. φ(X ⊗ Y ) = tr(XY ).

Representation with operator relative entropy cone

K n
re = {(X ,Y ,T ) : X ,Y � 0,−Y 1/2 log(Y −1/2XY −1/2)Y 1/2 � T}

D(Y ‖X ) ≤ τ ⇐⇒ ∃T s.t. (X ⊗ I , I ⊗ Y ,T ) ∈ K n2

re , φ(T ) ≤ τ}.
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Maximum entropy problems

maximize −
∑n

i=1 xi log(xi)
subject to Ax = b

x ≥ 0
(A ∈ R`×n, b ∈ R`)

CVX’s succ. approx. Our approach m = 3, h = 1/8
n ` time (s) accuracy∗ time (s) accuracy∗

200 100 1.10 s 6.635e-06 0.88 s 2.767e-06
400 200 3.38 s 2.662e-05 0.72 s 1.164e-05
600 300 9.14 s 2.927e-05 1.84 s 2.743e-05
1000 500 52.40 s 1.067e-05 3.91 s 1.469e-04

∗accuracy measured wrt specialized MOSEK routine

I CVX’s successive approx.: Uses Taylor expansion instead of Padé approx +
successively refine linearization point



Relative entropy of entanglement

Quantify entanglement of a bipartite state ρ:

min D(ρ‖τ) s.t. τ ∈ Sep

n Cutting-plane
[Zinchenko et al.]

Our approach
m = 3, h = 1/8

4 6.13 s 0.55 s
6 12.30 s 0.51 s
8 29.44 s 0.69 s
9 37.56 s 0.82 s
12 50.50 s 1.74 s
16 100.70 s 5.55 s

Sep = “separable” states

ρ

cvx_begin sdp

variable tau(na*nb,na*nb) hermitian;

minimize (quantum_rel_entr(rho,tau));

subject to tau >= 0; trace(tau) == 1;

% PPT constraint

Tx(tau,2,[na nb]) >= 0;

cvx_end



Beyond logarithm (and friends)

Recall two parts to the approximation:

1. Integral representation (with positive measure µ)

f (x) =

∫
F (x , ξ) dµ(ξ)

where x 7→ F (x , ξ) has semidefinite rep. for fixed ξ.

2. Functional equation h log(x) = log(xh)

First idea generalizes to other classes of functions:

I hypergeometric functions (for certain parameter ranges)

I operator monotone and concave functions on (0,∞)

Sometimes second idea generalizes: AGM, logarithmic mean, . . .



Conclusion

Broad issues:

I What can we describe with small SDPs (or SOCPs)?

I What can we approximate with small SDPs (or SOCPs)?

I How to approximate and preserve structural properties?

This talk:

I Matrix logarithm has ε-approximate semidefinite description with
O(
√

log(1/ε)), 2n × 2n LMIs

I Gives approximate semidefinite description for quantum relative entropy,
operator relative entropy

I Gives new SOCP approx. for relative entropy cone



More information

Paper: H. Fawzi, J. Saunderson, P. Parrilo, ‘Semidefinite approximations of the
matrix logarithm’ arXiv:1705.00812. Foundations of Computational
Mathematics, 2018.

Accompanying paper: H. Fawzi, O. Fawzi, ‘Relative entropy optimization in
quantum information theory via semidefinite programming approximations.’
arXiv:1705.06671, Journal of Physics A: Mathematical and Theoretical, 2018.

Code: www.github.com/hfawzi/cvxquad

www.github.com/hfawzi/cvxquad

