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Semidefinite programs (SDPs)

minimize Tr CX
subject to X ∈ A ∩ Sn

+

Formulated over vector space Sn of n × n symmetric matrices.
variable X ∈ Sn

A ⊆ Sn an affine subspace, C ∈ Sn cost matrix
Sn
+ cone of psd matrices

Efficiently solvable in theory; in practice, solving some instances
impossible unless special structure is exploited.
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Dimension reduction

Reformulate problem over subspace S ⊆ Sn intersecting set of optimal
solutions

minimize Tr CX
subject to X ∈ A ∩ Sn

+

minimize Tr CX
subject to X ∈ A ∩ Sn

+ ∩ S
(Reformulation)

S
A ∩ Sn

+

opt. solns

where Sn
+ ∩ S equals product Ki × · · · × Km of ‘simple’ cones.

Reduction methods: symmetry reduction and facial reduction
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Symmetry reduction (MAXCUT relaxation example )

minimize Tr CX
subject to X ∈ A ∩ Sn

+

A := {X ∈ Sn : Xii = 1}
C := adjacency matrix

range P
A ∩ Sn

+

opt. solns

Idea: find special projection map P
P(X ) optimal when X optimal.
P explicitly constructed from
automorphism group of graph.
Range ’block-diagonal’—a
direct-sum of matrix algebras.

(e.g., Schrijver ’79; Gatermann-P. ’03)
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Facial reduction

Sn
+

AH
minimize Tr CX
subject to X ∈ A ∩ Sn

+

First, find face of Sn
+ containing feasible set.

There exists a hyperplane H⊥ containing A.
Sn
+ ∩ H⊥ a face—isomorphic to Sd

+ for d < n.
Face Sn

+ ∩ H⊥ contains feasible set A ∩ Sn
+.

Next, reformulate SDP over face:

minimize Tr CX
subject to X ∈ A ∩ Sn

+ ∩ H⊥

Borwein-Wolkowicz ’81; Pataki ’00; Permenter-P. ’14
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Application specific approaches

Facial reduction:
MAXCUT (Anjos, Wolkowicz)
QAP (Zhao,Wolkowicz)
Sums-of-squares optimization (Permenter-P., Waki-Muramatsu)
Matrix completion (Krislock,Wolkowicz)
...

Symmetry reduction:
MAXCUT (earlier example),
QAP (de Klerk, Sotirov);
Markov chains (Boyd et al.);
codes (Schrijver; Laurent)
...
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Our approach

This talk: a reduction method subsuming symmetry reduction

Notion of ‘optimal’ reductions.
A general purpose algorithm with optimality guarantees
Jordan algebra interpretation; hence, easy extension to symmetric
cone optimization (e.g., LP, SOCP).
Combinatorial refinements for computational efficiency
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How does symmetry reduction work?

Given SDP minX∈A∩Sn
+

Tr CX , method finds special orthogonal
projection P : Sn → Sn

range of P

A ∩ Sn
+

opt. solns

If X feas./optimal, P(X ) feas./optimal.

P satisfies following conditions:

P(A) ⊆ A, P(Sn
+) ⊆ Sn

+, P(C) = C

Hence, if X feasible then P(X ) feasible with equal cost:

Tr CX = Tr P(C)X = Tr CP(X ).
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Example: a MAXCUT SDP relaxation

minimize Tr CX
subject to X ∈ A ∩ Sn

+

A := {X ∈ Sn : Xii = 1}
C := adjacency matrix

Let G denote group of permutation matrices (automorphisms)

G := {U a permutation matrix : UT CU = C}

Taking P(X ) := 1
|G|

∑
U∈G UT XU, desired conditions hold:

P(Sn
+) ⊆ Sn

+ P(A) ⊆ A, P(C) = C

Hence, range of P contains solutions: when X feasible, P(X ) feasible
with equal cost.

9 / 24



Example: a MAXCUT SDP relaxation

minimize Tr CX
subject to X ∈ A ∩ Sn

+

A := {X ∈ Sn : Xii = 1}
C := adjacency matrix

Let G denote group of permutation matrices (automorphisms)

G := {U a permutation matrix : UT CU = C}

Taking P(X ) := 1
|G|

∑
U∈G UT XU, desired conditions hold:

P(Sn
+) ⊆ Sn

+ P(A) ⊆ A, P(C) = C

Hence, range of P contains solutions: when X feasible, P(X ) feasible
with equal cost.

9 / 24



Example: a MAXCUT SDP relaxation

minimize Tr CX
subject to X ∈ A ∩ Sn

+

A := {X ∈ Sn : Xii = 1}
C := adjacency matrix

Let G denote group of permutation matrices (automorphisms)

G := {U a permutation matrix : UT CU = C}

Taking P(X ) := 1
|G|

∑
U∈G UT XU, desired conditions hold:

P(Sn
+) ⊆ Sn

+ P(A) ⊆ A, P(C) = C

Hence, range of P contains solutions: when X feasible, P(X ) feasible
with equal cost.

9 / 24



Example: a MAXCUT SDP relaxation

minimize Tr CX
subject to X ∈ A ∩ Sn

+

A := {X ∈ Sn : Xii = 1}
C := adjacency matrix

Let G denote group of permutation matrices (automorphisms)

G := {U a permutation matrix : UT CU = C}

Taking P(X ) := 1
|G|

∑
U∈G UT XU, desired conditions hold:

P(Sn
+) ⊆ Sn

+ P(A) ⊆ A, P(C) = C

Hence, range of P contains solutions: when X feasible, P(X ) feasible
with equal cost.

9 / 24



Example: a MAXCUT SDP relaxation

minimize Tr CX
subject to X ∈ A ∩ Sn

+

A := {X ∈ Sn : Xii = 1}
C := adjacency matrix

Let G denote group of permutation matrices (automorphisms)

G := {U a permutation matrix : UT CU = C}

Taking P(X ) := 1
|G|

∑
U∈G UT XU, desired conditions hold:

P(Sn
+) ⊆ Sn

+ P(A) ⊆ A, P(C) = C

Hence, range of P contains solutions: when X feasible, P(X ) feasible
with equal cost.

9 / 24



Our approach: optimize over projections

Given SDP minX∈A∩Sn
+
〈C,X 〉, find map P that solves

minimize rank P
subject to P(C) = C,P(I) = I

P(A) ⊆ A
P(Sn

+) ⊆ Sn
+

P : Sn → Sn an orthogonal projection.

Main properties:
Can be solved in polynomial time.
Range of P structured: a Jordan subalgebra of Sn.
Sn
+ ∩ range P equals a product of symmetric cones.
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Unital and positive projections and the squaring map

Theorem (Størmer)

Let P : Sn → Sn be an orthogonal projection satisfying P(I) = I. The
following are equivalent.

1 P(Sn
+) ⊆ Sn

+, i.e., P is positive.
2 The range of P is invariant under the squaring map X 7→ X 2.

Proof (1⇒ 2):
P(I) = I and P positive implies Kadison’s inequality

P(X 2)− P(X )P(X ) � 0.
For X ∈ range P

〈I,P(X 2)− X 2〉 = 〈P(I),P(X 2)− X 2〉
= 〈I,P2(X 2)− P(X 2)〉
= 〈I,P(X 2)− P(X 2)〉.

Hence, trace of psd matrix P(X 2)− X 2 is zero.
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Invariant affine subspaces of projections

Theorem
For an orth. proj. map P : Sn → Sn and affine set A := XL⊥ + L the
following are equivalent.

1 P(A) ⊆ A
2 The range of P contains XL⊥ and is invariant under PL.

XL⊥ the min.-Frobenius-norm pt. of A
L a linear subspace
PL the orthogonal projection map onto L.

XL⊥ + L

XL⊥

A := XL⊥ + L

12 / 24



The optimal subspace of minX∈A∩Sn
+
〈C,X 〉

Theorem (Permenter-P.)

Orthogonal projection P : Sn → Sn solves

minimize rank P
subject to P(C) = C,P(I) = I

P(A) ⊆ A
P(Sn

+) ⊆ Sn
+

iff the range of P solves

minimize dimS
subject to S 3 I,XL⊥ ,C

S ⊇ PL(S)
S ⊇ {X 2 : X ∈ S},

where affine set A = XL⊥ + L
13 / 24



Subspace optimization and solution algorithm
minimize dimS
subject to S 3 C,XL⊥ , I

S ⊇ PL(S)
S ⊇ {X 2 : X ∈ S}

S ← span{C,XL⊥ , I}
repeat
S ← S + PL(S)
S ← S + span{X 2 : X ∈ S}

until converged.

Properties of algorithm:
Optimal subspace contains each iterate (induction)
Computes ascending chain of subspaces—terminates.
At termination, subspace feasible; hence, optimal.

Properties of minimization problem:
Feasible set closed under intersection (lattice)
A unique solution.
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Combinatorial descriptions

Great! Now, we can easily compute the optimal subspace S.

But, often want/need additional properties (e.g., “dense” subspaces
may not be very efficient).
Can tradeoff dimension with sparsity of a basis?
Yes! Three kinds of sparse bases for S:

Partition subspaces: defined by a partition of [n]× [n].
Coordinate subspaces: defined by a sparsity pattern
Combinatorial subspaces: orthogonal basis of 0/1 matrices

E.g., a a b
a a b
b b c

 vs.

a b 0
b c 0
0 0 d

 vs.

a 0 b
0 a c
b c b


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Finding optimal structured subspaces

The main algorithm can be adapted to compute the optimal subspace
for each of these three cases.

Key property (again): lattice structure (closedness under intersection)

E.g., for partition subspaces, instead of optimizing over lattice of
subspaces, use the lattice of partitions:

minimize dimS
subject to S 3 C,XL⊥ , I

S ⊇ PL(S)
S ⊇ {X 2 : X ∈ S}
S is a partition subspace

P ← Part{C,XL⊥ , I}
repeat
P ← refine(P,PL)
P ← refine(P,X 7→ X 2)

until converged.

Great! But there’s more...
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Decomposition via Jordan algebras

Given SDP minX∈A∩Sn
+
〈C,X 〉, we’ve found a subspace invariant under

X 7→ X 2 containing optimal solutions:

S
A ∩ Sn

+

opt. solns
S ⊇ {X 2 : X ∈ S}

Subspaces invariant under X 7→ X 2 have decomposition

S = Q


S1 0 . . . 0
0 S2 . . . 0
...

...
. . .

...
0 0 0 Sm

QT ,
Si are simple Jordan
algebras

Number of distinct eigenvalues of generic element equals rank of
Si—a complexity measure.
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Minimizing dimension optimizes decomposition

minimize dimS
subject to S 3 XL⊥ ,C, I

S ⊇ PL(S)
S ⊇ {X 2 : X ∈ S},

All feasible subspaces have decomp. S = ⊕dS
i=1Si . In what sense does

solution S∗ optimize the ranks of each Si?

Thm. (Permenter-P.):
S∗ minimizes

∑
i rankSi and maxi rankSi

Majorization inequalities hold, i.e., for each m ≥ 1
m∑

i=1

rankS∗i ≤
m∑

i=1

rankSi

(ranks sorted in decreasing order)
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Majorization inequalities hold, i.e., for each m ≥ 1
m∑

i=1

rankS∗i ≤
m∑

i=1

rankSi

(ranks sorted in decreasing order)
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Majorization example

Subspaces (parametrized by ui and vi ) and their rank vectors
u1 u2 0 0 0
u2 u3 0 0 0
0 0 u4 0 0
0 0 0 u5 u6
0 0 0 u6 u7


ru = (2,1,2)


v1 v2 0 0 0
v2 v3 0 0 0
0 0 v4 v5 v6
0 0 v5 v7 v8
0 0 v6 v8 v9


rv = (2,3)

Vector r ′u = (2,2,1) majorized by r ′v = (3,2,0):

2 ≤ 3, 2 + 2 ≤ 3 + 2, 2 + 2 + 1 ≤ 3 + 2 + 0
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Jordan algebras

Jordan algebras are commutative algebras satisfying Jordan
identity

(X ◦ Y ) ◦ X 2 = X ◦ (Y ◦ X 2)

The vector space Sn a Jordan algebra if equipped with product

X ◦ Y :=
1
2
(XY + YX )

The subalgebras of Sn precisely the sets closed under squaring
map X 7→ X 2 since

XY + YX = (X + Y )2 − X 2 − Y 2.

Structure theorem of Jordan-von Neumann-Wigner describes
subalgebras of Sn....
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Decomposition of S ∩ Sn
+

If S ⊂ Sn a Jordan subalgebra, it equals direct-sum ⊕m
i=1Si , where

each Si is isomorphic to one of the following:
Algebra of Hermitian matrices with real, complex or quaternion
entries
A spin-factor algebra

Implies cone-of-squares S ∩ Sn
+ isomorphic to product of

PSD cones with real/complex/quaternion entries
Lorentz cones

Yields reformulation of original SDP over this product

minimize Tr CX
subject to X ∈ A ∩ Sn

+

minimize Tr CX
subject to X ∈ A ∩ T (K1 × · · · × Km)︸ ︷︷ ︸

S∩Sn
+
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Computational results

Comparison with reduction method of de Klerk ’10 survey (generating
*-algebras from data):

instance S∗ Sdata
hamming_7_5_6 5 8256
hamming_8_3_4 5 32896
hamming_9_5_6 6 131328

hamming_9_8 6 131328
hamming_10_2 7 524800

Table list dimension of our subspace S∗ ⊆ Sn and subspace
Sdata ⊆ Sn found by generating *-algebra.
Decomposing S∗ yields a linear program.
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Results: SOSOPT (Seiler ’13) Demo scripts

Script Name n (before) n (after)
sosoptdemo2 13, 3 3, 2× 3, 1× 7
sosoptdemo4 35 5× 5, 1× 10
gsosoptdemo1 9, 5 6, 3× 2, 2
IOGainDemo_3 15, 8 10, 5× 2, 3

Chesi(1|2)_IterationWithVlin 9, 5 6, 3× 2, 2
Chesi3_GlobalStability 14, 5 8, 6, 3, 2

Chesi(3|4)_IterationWithVlin 9, 5 6, 3× 2, 2
Chesi(5|6)_Bootstrap 19, 9 13, 6× 2, 3

Chesi(5|6)_IterationWithVlin 19, 9 13, 6× 2, 3
Coutinho3_IterationWithVlin 9, 5 6, 3× 2, 2
HachichoTibken_Bootstrap 19, 9 12, 7, 6, 3

HachichoTibken_IterationWithVlin 19, 9 12, 7, 6, 3
Hahn_IterationWithVlin 9, 5 6, 3, 3, 2

KuChen_IterationWithVlin 19, 9 13, 6× 2, 3
Parrilo1_GlobalStabilityWithVec 3, 2 2, 1× 3
Parrilo2_GlobalStabilityWithMat 3, 2 2, 1× 3

VDP_IterationWithVball 5, 4 3× 2, 2, 1
VDP_IterationWithVlin 9, 5 6, 3× 2, 2
VDP_LinearizedLyap 9, 5 6, 3× 2, 2

VannelliVidyasagar2_Bootstrap 19, 9 13, 6× 2, 3
VannelliVidyasagar2_IterationWithVlin 19, 9 13, 6× 2, 3
VincentGrantham_IterationWithVlin 9, 5 6, 3× 2, 2

WTBenchmark_IterationWithVlin 19, 9 13, 6× 2, 3
23 / 24



Conclusions

New reduction method for SDP.

Generalizes symmetry reduction and *-algebra-methods
Fully algorithmic, don’t need to compute automorphisms!
Yields optimal ‘block-diagonalization’ (majorization)
Can exploit combinatorial description of subspace
Through Jordan algebra theory, extends to LP/SOCP/...

Preprint at arXiv:1608.02090.

Thanks for your attention!
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