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Semidefinite programs (SDPs)

minimize  Tr CX
subjectto X € ANST

Formulated over vector space S” of n x n symmetric matrices.
@ variable X € §”
@ A C S" an affine subspace, C € S cost matrix
@ S’ cone of psd matrices

Efficiently solvable in theory; in practice, solving some instances
impossible unless special structure is exploited.
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Dimension reduction
Reformulate problem over subspace S C S” intersecting set of optimal
solutions

minimize TrCX minimize Tr CX
subjectto X € ANST subjectto X c ANSTNS

(Reformulation)

opt. solns —

where S'! NS equals product £; x - -- x K, of ‘simple’ cones.

Reduction methods: symmetry reduction and facial reduction



Symmetry reduction (MAXCUT relaxation example )

minimize TrCX
subjectto X € ANST

A={XeS": X;=1}
C := adjacency matrix
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Symmetry reduction (MAXCUT relaxation example )

minimize TrCX
subjectto X € ANST

={XeS": X;j=1}
:= adjacency matrix

(SIS

Idea: find special projection map P
@ P(X) optimal when X optimal.

ANSh @ P explicitly constructed from
rangeP | | :
automorphism group of graph.
opt. solns @ Range 'block-diagonal—a

direct-sum of matrix algebras.
(e.g., Schrijver '79; Gatermann-P. '03)
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Facial reduction

sn .
+ minimize TrCX

TH A subjectto X € ANST

First, find face of ' containing feasible set.

@ There exists a hyperplane H* containing A.
@ S N H* aface—isomorphic to S¢ for d < n.
@ Face S N H* contains feasible set AN S.

Next, reformulate SDP over face:

minimize  Tr CX
subjectto X € ANST NH*

Borwein-Wolkowicz ’81; Pataki '00; Permenter-P. '14



Application specific approaches

Facial reduction:
@ MAXCUT (Anjos, Wolkowicz)
@ QAP (Zhao,Wolkowicz)
@ Sums-of-squares optimization (Permenter-P., Waki-Muramatsu)
@ Matrix completion (Krislock,Wolkowicz)
° ..
Symmetry reduction:
@ MAXCUT (earlier example),
@ QAP (de Klerk, Sotirov);
@ Markov chains (Boyd et al.);
@ codes (Schrijver; Laurent)
° ..
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Our approach

This talk: a reduction method subsuming symmetry reduction

@ Notion of ‘optimal’ reductions.
@ A general purpose algorithm with optimality guarantees

@ Jordan algebra interpretation; hence, easy extension to symmetric
cone optimization (e.g., LP, SOCP).

@ Combinatorial refinements for computational efficiency



How does symmetry reduction work?

Given SDP minye 4nsn Tr CX, method finds special orthogonal
projection P : S" — S"

range of P

W,

opt. solns —

If X feas./optimal, P(X) feas./optimal.
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How does symmetry reduction work?

Given SDP minye 4nsn Tr CX, method finds special orthogonal
projection P : S" — S"

range of P

- (mm] )

opt. solns —

If X feas./optimal, P(X) feas./optimal.

@ P satisfies following conditions:
P(A) C A, P(sh) cst, P(C)=C

@ Hence, if X feasible then P(X) feasible with equal cost:
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Example: a MAXCUT SDP relaxation
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Example: a MAXCUT SDP relaxation

minimize TrCX
subjectto X € ANST

A={XeS": Xj=1}
C := adjacency matrix

Let G denote group of permutation matrices (automorphisms)
G := {U a permutation matrix : U CU = C}
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Example: a MAXCUT SDP relaxation

minimize TrCX
subjectto X € ANST

A={XeS": Xj=1}
C := adjacency matrix

Let G denote group of permutation matrices (automorphisms)
G := {U a permutation matrix : U CU = C}
Taking P(X) := ﬁ > ueg UT XU, desired conditions hold:
P(sh) c st P(A) C A, P(C)=C

Hence, range of P contains solutions: when X feasible, P(X) feasible
with equal cost.
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Our approach: optimize over projections

Given SDP minxe 451 (C, X), find map P that solves

minimize rank P
subjectto P(C)=C,P(l)=1
P(A) C A
P(s]) < st
P . S™ — S" an orthogonal projection.
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|
Our approach: optimize over projections

Given SDP minxe 451 (C, X), find map P that solves

minimize rank P
subjectto P(C)=C,P(l)=1
P(A) C A
P(s]) < st
P . S™ — S" an orthogonal projection.

Main properties:
@ Can be solved in polynomial time.
@ Range of P structured: a Jordan subalgebra of S”.
@ S’ Nrange P equals a product of symmetric cones.
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Unital and positive projections and the squaring map
Theorem (Stgrmer)

Let P : S" — S" be an orthogonal projection satisfying P(l) = I. The
following are equivalent.

Q P(S7) C s, ie., P is positive.
@ The range of P is invariant under the squaring map X — X2.
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Unital and positive projections and the squaring map

Theorem (Stgrmer)

Let P : S" — S" be an orthogonal projection satisfying P(l) = I. The
following are equivalent.

Q P(S]) c ST, ie., P is positive.
@ The range of P is invariant under the squaring map X — X2.
Proof (1 = 2):
@ P(/) = land P positive implies Kadison’s inequality
P(X?) — P(X)P(X) = 0.

@ For X e range P
(I, P(X?) — X?)

(P(1), P(X?) = X?)
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(I, P(X?) — P(X?)).
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Unital and positive projections and the squaring map

Theorem (Stgrmer)

Let P : S" — S" be an orthogonal projection satisfying P(l) = I. The
following are equivalent.

Q P(S]) c ST, ie., P is positive.
@ The range of P is invariant under the squaring map X — X2.
Proof (1 = 2):
@ P(/) = land P positive implies Kadison’s inequality
P(X?) — P(X)P(X) = 0.

@ For X e range P
(I, P(X?) — X?)

(P(1), P(X?) = X?)
(I, P2(X?) = P(X?))
{1 ( ?) = P(X?)).
) —

2 is zero.

Hence, trace of psd matrix P(X? i
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Invariant affine subspaces of projections

Theorem

For an orth. proj. map P : S" — S" and affine set A .= X,. + L the
following are equivalent.

Q PACA
@ The range of P contains X,. and is invariant under Py.

Xer +L

@ X,. the min.-Frobenius-norm pt. of A
@ L alinear subspace
@ P, the orthogonal projection map onto L.

12/24
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The optimal subspace of minxc s (C, X)

Theorem (Permenter-P.)
Orthogonal projection P : S" — S" solves

minimize rank P

Subjectto P(C)=C,P(l)=1
P(A)C A
P(s}) C 8]

iff the range of P solves
minimize dimS
Subjectto S>1,X,.,C

S D P.(S)
SD{X?: XeS},

where affine set A = X, + L

13/24



Subspace optimization and solution algorithm

minimize dimS S «span{C, X, I}
subjectto S>> C, X1,/ repeat
S D P.(S) S+ S+ Pc(S)

SD{X?:XeS} S+ S+span{X?: X ¢ S}
until converged.
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Subspace optimization and solution algorithm

minimize dimS S +span{C, X,., I}
subjectto S$> C, X, .,/ repeat
S D Pr(S) S+ S+ Pe(S)
SD{X?:XeS} S+ S+span{X?: X ¢ S}

until converged.

Properties of algorithm:
@ Optimal subspace contains each iterate (induction)
@ Computes ascending chain of subspaces—terminates.
@ At termination, subspace feasible; hence, optimal.

Properties of minimization problem:
@ Feasible set closed under intersection (lattice)

@ A unigque solution.
14/24



Combinatorial descriptions

Great! Now, we can easily compute the optimal subspace S.

15/24



Combinatorial descriptions

Great! Now, we can easily compute the optimal subspace S.

But, often want/need additional properties (e.g., “dense” subspaces
may not be very efficient).

Can tradeoff dimension with sparsity of a basis?

15/24



-]
Combinatorial descriptions

Great! Now, we can easily compute the optimal subspace S.

But, often want/need additional properties (e.g., “dense” subspaces
may not be very efficient).

Can tradeoff dimension with sparsity of a basis?
Yes! Three kinds of sparse bases for S:

@ Partition subspaces: defined by a partition of [n] x [n].

@ Coordinate subspaces: defined by a sparsity pattern

@ Combinatorial subspaces: orthogonal basis of 0/1 matrices
E.g.,

15/24



Finding optimal structured subspaces

The main algorithm can be adapted to compute the optimal subspace
for each of these three cases.
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Finding optimal structured subspaces

The main algorithm can be adapted to compute the optimal subspace
for each of these three cases.

Key property (again): lattice structure (closedness under intersection)

E.g., for partition subspaces, instead of optimizing over lattice of
subspaces, use the lattice of partitions:

minimize dimS P+ Part{C, X,., I}
subjectto S>> C, XL,/ repeat
S D P.(S) P <« refine(P, Pr)
SO{X?:XeS} P < refine(P, X — X?)

S is a partition subspace until converged.
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Finding optimal structured subspaces

The main algorithm can be adapted to compute the optimal subspace
for each of these three cases.

Key property (again): lattice structure (closedness under intersection)

E.g., for partition subspaces, instead of optimizing over lattice of
subspaces, use the lattice of partitions:

minimize dimS P+ Part{C, X,., I}
subjectto S>> C, XL,/ repeat
S D P.(S) P <« refine(P, Pr)
SO{X?:XeS} P < refine(P, X — X?)

S is a partition subspace until converged.

Great! But there’s more...
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Decomposition via Jordan algebras

Given SDP minxc 451 (C, X), we've found a subspace invariant under
X — X2 containing optimal solutions:

------------------- S2{X?: XeS}
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Decomposition via Jordan algebras

Given SDP minxc 451 (C, X), we've found a subspace invariant under
X — X2 containing optimal solutions:

------------------- S2{X?: XeS}
opt. solns —

@ Subspaces invariant under X — X2 have decomposition

S 0 ... 0

0 S ... 0 S; are simple Jordan
S=Q| . . . . Q', algebras

0 0 0 Snm

@ Number of distinct eigenvalues of generic element equals rank of
Si—a complexity measure. -



Minimizing dimension optimizes decomposition

minimize dimS

subjectto §$> X,..,C,/
SD PE(S)
SDO{X?: XeS},

All feasible subspaces have decomp. S = @f’j1 S;. In what sense does
solution S* optimize the ranks of each S;?
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Minimizing dimension optimizes decomposition

minimize dimS

subjectto §$> X,..,C,/
S 2 P.(S)
SDO{X?: XeS},

All feasible subspaces have decomp. S = 69721 S;. In what sense does
solution S* optimize the ranks of each S;?

Thm. (Permenter-P.):
@ S* minimizes ), rank S; and max; rank S;
@ Majorization inequalities hold, i.e., for each m > 1

m m
Z rank S; < Z rank S
i—1 p

(ranks sorted in decreasing order)
18/24



Majorization example

Subspaces (parametrized by u; and v;) and their rank vectors

cocoof§ £

Uo 0 0
u3 0 O
0 Uy 0
0 0 us
0 0 Ug
rn=1(2,1,2)

0
0
0
Us
uz

cooyJy X

0
0
V4
Vs
Ve

OCO0OOFf N

0
0
Vs
V7
Vg

r.=(2,3)

0
0
Ve
Vg
Vo
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Majorization example

Subspaces (parametrized by u; and v;) and their rank vectors

Uo 0 0 0
u3 0 0 O
0 uu 0 O

0 0 us ug
0 0 u u

cocoof§ £

rn=1(2,1,2)

Vector r}, = (2,2, 1) majorized by r;,

2<3, 2+2<3+2

cooyJy X

0
0
V4
Vs
Ve

OCO0OOFf N

0
0
Vs
V7
Vg

r.=(2,3)

=(3,2,0):

0
0
Ve
Vg
Vo

2+2+1<3+2+40

19/24



Jordan algebras

@ Jordan algebras are commutative algebras satisfying Jordan
identity
(XoY)oX2=Xo(YoX?

@ The vector space S" a Jordan algebra if equipped with product
XoY = %(XY+ YX)

@ The subalgebras of S" precisely the sets closed under squaring
map X — X2 since

XY +YX=(X+Y)?2-X2-Y2

@ Structure theorem of Jordan-von Neumann-Wigner describes
subalgebras of S"....

20/24



Decomposition of S N S”

If S ¢ S" a Jordan subalgebra, it equals direct-sum ®[" | S;, where
each S; is isomorphic to one of the following:
@ Algebra of Hermitian matrices with real, complex or quaternion
entries
@ A spin-factor algebra

Implies cone-of-squares S NS} isomorphic to product of
@ PSD cones with real/complex/quaternion entries
@ Lorentz cones

Yields reformulation of original SDP over this product

minimize TrCX minimize TrCX
subjectto X € ANST subjectto X e ANT(Ky x -+ x Kp)

Sns?
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Computational results

Comparison with reduction method of de Klerk '10 survey (generating
*-algebras from data):

instance S* Sdata
hamming_7 5 6| 5 8256
hamming_8 3 4 | 5 | 32896
hamming_ 9 5 6 | 6 | 131328
hamming_9 8 6 | 131328
hamming_10_2 | 7 | 524800

@ Table list dimension of our subspace S* C S” and subspace
Sqata € S" found by generating *-algebra.

@ Decomposing §* yields a linear program.
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Results: SOSOPT (Seiler '13) Demo scripts

Script Name n (before) n (after)
sosoptdemo?2 13,3 3,2x3,1x7
sosoptdemo4 35 5x5,1x10
gsosoptdemol 9,5 6,3 x2,2
I0GainDemo_3 15,8 10,5 x 2,3
Chesi(1]2)_IterationWithVlin 9,5 6,3 x 2,2
Chesi3_GlobalStability 14,5 8,6,3,2
Chesi (3]4)_IterationWithVlin 9,5 6,3 x 2,2
Chesi (5|6)_Bootstrap 19,9 13,6 x 2,3
Chesi(5]6)_IterationWithvlin 19,9 13,6 x 2,3
Coutinho3_IterationWithvlin 9,5 6,3 x2,2
HachichoTibken_Bootstrap 19,9 12,7,6,3
HachichoTibken_IterationWithVlin 19,9 12,7,6,3
Hahn_IterationWithvVlin 9,5 6,3,3,2
KuChen_IterationWithVlin 19,9 13,6 x 2,3
Parrilol_GlobalStabilityWithVec 3,2 2,1 x38
Parrilo2_GlobalStabilityWithMat 3,2 2,1 x38
VDP_IterationWithVball 5,4 3x22,1
VDP_IterationWithVlin 9,5 6,3 x2,2
VDP_LinearizedLyap 9,5 6,3 x2,2
VannellivVidyasagar2_Bootstrap 19,9 13,6 x 2,3
VannelliVidyasagar2_IterationWithVlin 19,9 13,6 x 2,3
VincentGrantham_IterationWithVlin 9,5 6,3 x2,2
WTBenchmark_IterationWithVlin 19,9 13,6 x 2,3
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Conclusions

New reduction method for SDP.

@ Generalizes symmetry reduction and *-algebra-methods
@ Fully algorithmic, don’t need to compute automorphisms!
@ Yields optimal ‘block-diagonalization’ (majorization)

@ Can exploit combinatorial description of subspace

@ Through Jordan algebra theory, extends to LP/SOCP/...
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Thanks for your attention!
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