An Optimal Architecture for Decentralized Control over Posets

Parikshit Shah

Pablo A. Parrilo

Laboratory for Information and Decision Systems
Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Stanford ISL - March 2011

Motivation

- Many decision-making problems are large-scale and complex.
- Complexity, cost, physical constraints ⇒ Decentralization.
- Fully distributed control is notoriously hard.
- A common underlying theme: flow of information.
- What are the right language and tools to think about flow of information?

Contributions

A framework to reason about information flow in terms of partially ordered sets (posets).

An architecture for decentralized control, based on Möbius inversion, with provable optimality properties.

Motivation

- Many decision-making problems are large-scale and complex.
- Complexity, cost, physical constraints ⇒ Decentralization.
- Fully distributed control is notoriously hard.
- A common underlying theme: flow of information.
- What are the right language and tools to think about flow of information?

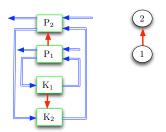
Contributions

A framework to reason about information flow in terms of partially ordered sets (posets).

An architecture for decentralized control, based on Möbius inversion, with provable optimality properties.

Motivation

- Many interesting examples can be unified in this framework.
- Example: Nested Systems [Voulgaris00].



- Emphasis: Flow of information. Can abstract away this flow of information to picture on right.
- Natural for problems of causal or hierarchical nature.

Outline

- Basic Machinery: Posets and Incidence Algebras.
- Decentralized control problems and posets.
- \mathcal{H}_2 case: state-space solution
- Zeta function, Möbius inversion
- Controller architecture

Partially ordered sets (posets)

Definition

A poset $P = (P, \leq)$ is a set P along with a binary relation \leq which satisfies for all $a, b, c \in P$:

- \bigcirc $a \leq a$ (reflexivity)
- 2 $a \leq b$ and $b \leq a$ implies a = b (antisymmetry)
- \bullet $a \leq b$ and $b \leq c$ implies $a \leq c$ (transitivity).
 - Will deal initially with finite posets (i.e. |P| is finite).
 - Will relate posets to decentralized control.

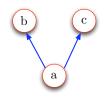
Incidence Algebras

Definition

The set of functions $f: P \times P \to \mathbb{Q}$ with the property that f(x, y) = 0 whenever $y \not\leq x$ is called the incidence algebra \mathcal{I} .

- Concept developed and studied in [Rota64] as a unifying concept in combinatorics.
- For finite posets, elements of the incidence algebra can be thought of as matrices with a particular sparsity pattern.

Example



Example

- Closure under addition and scalar multiplication.
- What happens when you multiply two such matrices?

$$\begin{bmatrix} * & 0 & 0 \\ * & * & 0 \\ * & 0 & * \end{bmatrix} \begin{bmatrix} * & 0 & 0 \\ * & * & 0 \\ * & 0 & * \end{bmatrix} = \begin{bmatrix} * & 0 & 0 \\ * & * & 0 \\ * & 0 & * \end{bmatrix}$$

Not a coincidence!

Example

- Closure under addition and scalar multiplication.
- What happens when you multiply two such matrices?

$$\begin{bmatrix} * & 0 & 0 \\ * & * & 0 \\ * & 0 & * \end{bmatrix} \begin{bmatrix} * & 0 & 0 \\ * & * & 0 \\ * & 0 & * \end{bmatrix} = \begin{bmatrix} * & 0 & 0 \\ * & * & 0 \\ * & 0 & * \end{bmatrix}$$

Not a coincidence!

Incidence Algebras

Closure properties are true in general for all posets.

Lemma

Let \mathcal{P} be a poset and \mathcal{I} be its incidence algebra. Let $A, B \in \mathcal{I}$ then:

- $\mathbf{0} \quad c \cdot A \in \mathcal{I}$
- lacksquare $AB \in \mathcal{I}$.

Thus the incidence algebra is an associative algebra.

- A simple corollary: Since *I* is in every incidence algebra, if $A \in \mathcal{I}$ and invertible, $A^{-1} \in \mathcal{I}$.
- Properties useful in Youla domain.

Incidence Algebras

• Closure properties are true in general for all posets.

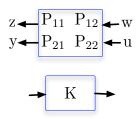
Lemma

Let \mathcal{P} be a poset and \mathcal{I} be its incidence algebra. Let $A, B \in \mathcal{I}$ then:

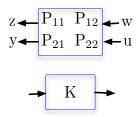
- $\mathbf{0} \quad c \cdot A \in \mathcal{I}$
- lacksquare $AB \in \mathcal{I}$.

Thus the incidence algebra is an associative algebra.

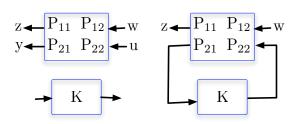
- A simple corollary: Since *I* is in every incidence algebra, if $A \in \mathcal{I}$ and invertible, $A^{-1} \in \mathcal{I}$.
- Properties useful in Youla domain.



- A given matrix P.
- Design K.
- Interconnect P and K



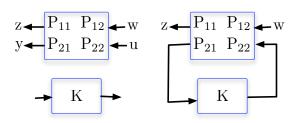
- A given matrix P.
- Design K.
- Interconnect P and K



- A given matrix P.
- Design K.
- Interconnect P and K

$$f(P,K) = P_{11} + P_{12}K(I - P_{22}K)^{-1}P_{21}.$$

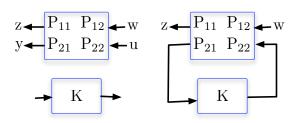
Find "best" K



- A given matrix P.
- Design K.
- Interconnect P and K

$$f(P,K) = P_{11} + P_{12}K(I - P_{22}K)^{-1}P_{21}.$$

Find "best" K

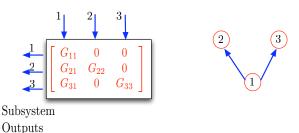


- A given matrix P.
- Design K.
- Interconnect P and K

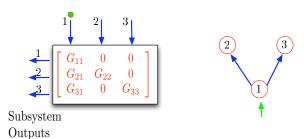
$$f(P,K) = P_{11} + P_{12}K(I - P_{22}K)^{-1}P_{21}.$$

Find "best" K.

- All the action happens at $P_{22} = G$. Focus here.
- G (called the plant) interacts with the controller.
- Plant divided into subsystems:

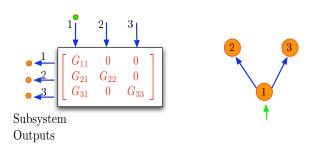


• Let *G* be the transfer function matrix of the plant. We divide up the plant into subsystems:

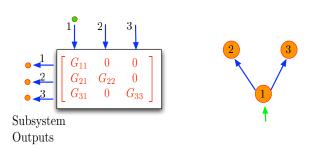


• Let *G* be the transfer function matrix of the plant. We divide up the plant into subsystems:





- Denote this by $1 \leq 2$ and $1 \leq 3$.
- Subsystems 2 and 3 are in cone of influence of 1
- This relationship is a causality relation between subsystems.
- We call systems with $G \in \mathcal{I}$ poset-causal systems.



- Denote this by $1 \le 2$ and $1 \le 3$.
- Subsystems 2 and 3 are in cone of influence of 1
- This relationship is a causality relation between subsystems.
- We call systems with $G \in \mathcal{I}$ poset-causal systems.

Controller Structure

- Given a poset causal plant $G \in \mathcal{I}$.
- Decentralization constraint: mirror the information structure of the plant.
- In other words we want poset-causal $K \in \mathcal{I}$.
- Similar causality interpretation.
- Intuitively, $i \leq j$ means subsystem j is more information rich.
- The poset arranges the subsystems according to the amount of information richness.

Controller Structure

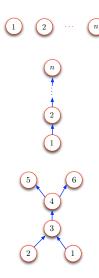
- Given a poset causal plant $G \in \mathcal{I}$.
- Decentralization constraint: mirror the information structure of the plant.
- In other words we want poset-causal $K \in \mathcal{I}$.
- Similar causality interpretation.
- Intuitively, $i \leq j$ means subsystem j is more information rich.
- The poset arranges the subsystems according to the amount of information richness.

Examples of poset systems

Independent subsystems

Nested systems

Closures of directed acyclic graphs



General framework

Goal is to capture what is essential about causal decision-making.

- Elements of the poset do not necessarily have to represent only subsystems.
 - "Standard" case discussed earlier corresponds to the product of the spatial interaction poset (space) and a linear chain (time)
 - Posets model branching time, nondeterminism, etc.
 - Posets in space-time (e.g., distributed systems)
- Controller structure does not necessarily have to mirror plant.
 - Generalizations via Galois connections

Literature review

- Classical work: Witsenhausen, Radner, Ho-Chu.
- Mullans-Elliot (1973), linear systems on partially ordered time sets
- Voulgaris (2000), showed that a wide class of distributed control problems became convex through a Youla-type reparametrization.
- Rotkowitz-Lall (2002) introduced quadratic invariance (QI) an important unifying concept for convexity in decentralized control.
- Poset framework introduced in Shah-P. (2008). Special case of QI, with richer and better understood algebraic structure.
- Swigart-Lall (2010) gave a state-space solution for the two-controller case, via a spectral factorization approach.
- Shah-P. (2010), provided a full solution for all posets, with controller degree bounds. Separability a key idea, which is missing in past work. Introduced simple Möbius-based architecture (in slightly different form).

Optimal Control Problem

Given a system P with plant G, find a stabilizing controller $K \in \mathcal{I}$.

- Here $f(P, K) = P_{11} + P_{12}K(I GK)^{-1}P_{21}$ is the closed loop transfer function.
- Problem is nonconvex.
- Standard approach: reparametrize the problem by getting rid of the nonconvex part of the objective.

Convex reparametrization

• "Youla domain" technique: define $R = K(I - GK)^{-1}$.

minimize
$$||\hat{P}_{11} + \hat{P}_{12}R\hat{P}_{21}||$$
 subject to R stable $R \in \mathcal{I}$.

Algebraic structure of \mathcal{I} allows to rewrite a convex constraint in K into a convex constraint in R.

- Main difficulty: Infinite dimensional problem.
- Can be approximated by various techniques, but there are drawbacks.
- Desire state-space techniques. Advantages:
 - Computationally efficient
 - ② Degree bounds
 - Provide insight into structure of optimal controller.

State-Space Setup

Have state feedback system:

$$x[t+1] = Ax[t] + Bu[t] + w[t]$$
$$y[t] = x[t]$$
$$z[t] = Cx[t] + Du[t]$$

• Wish to find controller u = Kx which is stabilizing and optimal.

$$egin{aligned} \mathsf{Min}_K \|P_{11} + P_{12}K(I - P_{22}K)^{-1}P_{21}\|^2 \ K \in \mathcal{I} \ K & \mathsf{stabilizing}. \end{aligned}$$

• Key property we exploit: separability of the \mathcal{H}_2 norm.

H₂ Optimal Control

Recall Frobenius norm:

$$||H||_F^2 = \operatorname{Trace}(H^T H).$$

- H₂ norm is its extension to operators.
- Solution to optimal centralized problem standard.
- Based on algebraic Riccati equations:

$$X = C^{T}C + A^{T}XA - A^{T}XB(D^{T}D + B^{T}XB)^{-1}B^{T}XA$$

 $K = (D^{T}D + B^{T}XB)^{-1}B^{T}XA.$

Decentralized Control Problem

- System poset causal: $A, B \in \mathcal{I}(\mathcal{P})$.
- Solve:

- Due to state-feedback: $P_{21} = (zI A)^{-1}$.
- Define $Q := K(I GK)^{-1}P_{21}$.
- Problem reduces to:

minimize
$$_{Q}\|P_{11}+P_{12}Q\|^{2}$$
 $Q\in\mathcal{I}$ Q stabilizing.

\mathcal{H}_2 Decomposition Property

• Let $G = [G_1, \dots G_k]$.

$$||G||^2 = \sum_{i=1}^k ||G_i||^2.$$

This separability property is the key feature we exploit.

Example

\mathcal{H}_2 State Space Solution

This decomposition idea extends to all posets.

Theorem (Shah-P., CDC2010)

Problem can be reduced to decoupled problems:

minimize
$$||P_{11}(j) + P_{12}(\uparrow j)Q^{\uparrow j}||^2$$
 subject to $Q^{\uparrow j}$ stabilizing for all $j \in P$.

- Optimal Q can be obtained by solving a set of decoupled centralized sub-problems.
- Each sub-problem requires solution of a Riccati equation.

\mathcal{H}_2 State Space Solution

- Can recover K from optimal Q.
- Q and K are in bijection, $K = QP_{21}^{-1}(I + P_{22}QP_{21}^{-1})^{-1}$.
- Further analysis gives:
 - Explicit state-space formulae.
 - Controller degree bounds.
 - Insight into structure of optimal controller.

General Controller Architecture

Great. We solved the problem for all posets! But, what is the structure here?

 Swigart-Lall (2010) had a nice interpretation for the two-controller case, in terms of the first controller estimating the state of the second subsystem.

- No "obvious" generalizations:
 - In general, do not have enough information to predict upstream states. Also, there may be incomparable states.
 - More importantly, too many predictions from downstream! How to combine them?

General Controller Architecture

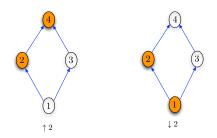
- What is the "right" architecture?
- Ingredients:
 - Lower sets and upper sets
 - 2 Local variables (partial state predictions)
 - 3 Zeta function and Möbius function
- Simple separation principle
- Optimality of architecture for \mathcal{H}_2 .

General Controller Architecture

- What is the "right" architecture?
- Ingredients:
 - Lower sets and upper sets
 - 2 Local variables (partial state predictions)
 - Zeta function and Möbius function.
- Simple separation principle
- Optimality of architecture for H₂.

Lower sets and upper sets

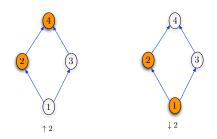
- Each "node" in \mathcal{P} is a subsystem with state x_i and input u_i .
- Lower set: $\downarrow p = \{q \mid q \leq p\}$.
- Corresponds to "downstream" known information.



- Upper set: $\uparrow p = \{q \mid p \leq q\}$.
- Corresponds to "upstream" unknown information.
- u_i has access to x_i for $j \in \downarrow i$ (downstream).

Lower sets and upper sets

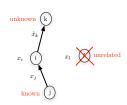
- Each "node" in \mathcal{P} is a subsystem with state x_i and input u_i .
- Lower set: $\downarrow p = \{q \mid q \leq p\}$.
- Corresponds to "downstream" known information.



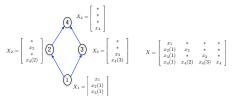
- Upper set: $\uparrow p = \{q \mid p \leq q\}$.
- Corresponds to "upstream" unknown information.
- u_i has access to x_i for $j \in \downarrow i$ (downstream).

Local Variables

- Overall state x and input u are global variables.
- Subsystems carry local copies.



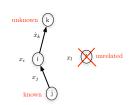
- Local variable $X_i : \uparrow i \to \mathbb{R}$.
- Can think of it as a vector in $\mathbb{R}^{|P|}$



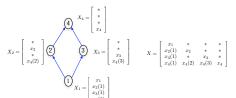
- Two local variables of interest
 - ① $X: X_{ii} = x_i(i)$ is the (partial) prediction of state x_i at subsystem i.
 - ② $U: U_{ii} = u_i(i)$ is the (partial) prediction of input u_i at subsystem i.

Local Variables

- Overall state x and input u are global variables.
- Subsystems carry local copies.



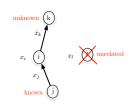
- Local variable $X_i : \uparrow i \to \mathbb{R}$.
- ullet Can think of it as a vector in $\mathbb{R}^{|P|}$



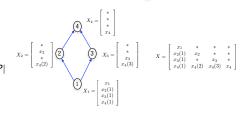
- Two local variables of interest
 - ① $X: X_{ii} = x_i(i)$ is the (partial) prediction of state x_i at subsystem i.
 - ② $U: U_{ij} = u_i(j)$ is the (partial) prediction of input u_i at subsystem j.

Local Variables

- Overall state x and input u are global variables.
- Subsystems carry local copies.



- Local variable $X_i: \uparrow i \to \mathbb{R}$.
- Can think of it as a vector in $\mathbb{R}^{|P|}$



- Two local variables of interest:
 - **1** $X: X_{ij} = x_i(j)$ is the (partial) prediction of state x_i at subsystem j.
 - 2 *U*: $U_{ij} = u_i(j)$ is the (partial) prediction of input u_i at subsystem j.

Local Products

• Local gain: $G(i): \uparrow i \times \uparrow i \to \mathbb{R}$. Think of it as zero-padded matrix:



- Define $G = \{G(1), ..., G(s)\}.$
- Local Product: G ∘ X defined columnwise via:

$$(\mathbf{G} \circ X)_i = G(i)X_i.$$

• If $Y = \mathbf{G} \circ X$, then local variables (X_i, Y_i) decoupled.

Zeta and Möbius

For any poset P, two distinguished elements of its incidence algebra:

• The Zeta matrix is

$$\zeta_{\mathcal{P}}(x,y) = \begin{cases} 1, & \text{if } y \leq x \\ 0, & \text{otherwise} \end{cases}$$

• Its inverse is the Möbius matrix of the poset:

$$\mu_{\mathcal{P}} = \zeta_{\mathcal{P}}^{-1}.$$

E.g., for the poset below, we have:

$$\zeta_{\mathcal{P}} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \qquad \mu_{\mathcal{P}} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

Zeta and Möbius

For any poset \mathcal{P} , two distinguished elements of its incidence algebra:

The Zeta matrix is

$$\zeta_{\mathcal{P}}(x,y) = \begin{cases} 1, & \text{if } y \leq x \\ 0, & \text{otherwise} \end{cases}$$

Its inverse is the *Möbius* matrix of the poset:

$$\mu_{\mathcal{P}} = \zeta_{\mathcal{P}}^{-1}.$$

E.g., for the poset below, we have:

$$\zeta_{\mathcal{P}} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \qquad \mu_{\mathcal{P}} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

$$\mu_{\mathcal{P}} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

Möbius inversion

Given $f: P \to \mathbb{Q}$, we can define

$$(\zeta f)(x) = \sum_{y} \zeta(x,y)f(y), \qquad (\mu f)(x) = \sum_{y} \mu(x,y)f(y).$$

These operations are obviously inverses of each other.

For our example:

$$\zeta(a_1, a_2, a_3) = (a_1, a_1 + a_2, a_1 + a_3), \qquad \mu(b_1, b_2, b_3) = (b_1, b_2 - b_1, b_3 - b_1).$$

Möbius inversion formula

$$g(y) = \sum_{x \le y} h(x)$$
 \Leftrightarrow $h(y) = \sum_{x \le y} \mu(x, y) g(x)$

Möbius inversion

Given $f: P \to \mathbb{Q}$, we can define

$$(\zeta f)(x) = \sum_{y} \zeta(x,y)f(y), \qquad (\mu f)(x) = \sum_{y} \mu(x,y)f(y).$$

These operations are obviously inverses of each other.

For our example:

$$\zeta(a_1,a_2,a_3)=(a_1,a_1+a_2,a_1+a_3), \qquad \mu(b_1,b_2,b_3)=(b_1,b_2-b_1,b_3-b_1).$$

Möbius inversion formula

$$g(y) = \sum_{x \le y} h(x)$$
 \Leftrightarrow $h(y) = \sum_{x \le y} \mu(x, y) g(x)$

Möbius inversion

Given $f: P \to \mathbb{Q}$, we can define

$$(\zeta f)(x) = \sum_{y} \zeta(x, y) f(y), \qquad (\mu f)(x) = \sum_{y} \mu(x, y) f(y).$$

These operations are obviously inverses of each other.

For our example:

$$\zeta(a_1,a_2,a_3)=(a_1,a_1+a_2,a_1+a_3), \qquad \mu(b_1,b_2,b_3)=(b_1,b_2-b_1,b_3-b_1).$$

Möbius inversion formula

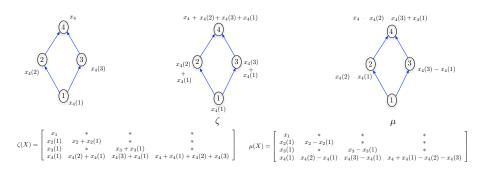
$$g(y) = \sum_{x \leq y} h(x)$$
 \Leftrightarrow $h(y) = \sum_{x \leq y} \mu(x, y)g(x)$

Möbius inversion: examples

- If \mathcal{P} is a chain: then ζ is "integration", $\mu := \zeta^{-1}$ is "differentiation".
- If \mathcal{P} is the subset lattice, then μ is inclusion-exclusion
- If $\mathcal P$ is the divisibility integer lattice, then μ is the number-theoretic Möbius function.
- Many others: vector spaces, faces of polytopes, graphs/circuits, ...

Möbius inversion is local

- Key insight: Möbius inversion respects the poset structure.
- No additional communication requirements to compute them.
- Thus, can view as operators on local variables: $\zeta(X)$, $\mu(X)$.



Controller Architecture

- Let the system dynamics be x[t+1] = Ax[t] + Bu[t], where $A, B \in \mathcal{I}(\mathcal{P})$
- Define controller state variables X_{ij} for $j \leq i$, where $X_{ii} = x_i$.
- Propose a control law:

$$U=\zeta(\mathbf{G}\circ\mu(X)).$$

where
$$G = \{G(1), \dots, G(s)\}.$$

Can compactly write closed-loop dynamics as matrix equations:

$$X[t+1] = AX[t] + B\zeta(\mathbf{G} \circ \mu(X[t])).$$

- Each column corresponds to a different subsystem
- Equations have structure of \mathcal{I} , only need entries with $j \leq i$
- Diagonal is the plant, off-diagonal is the controller
- Since ζ and μ are local, so is the closed-loop

Controller Architecture: $U = \zeta(\mathbf{G} \circ \mu(X))$

- "Local errors" computed by $\mu(X)$ (differentiation)
- Compute "local corrections"
- Aggregate them via $\zeta(\cdot)$ (integration)

$$\begin{bmatrix} * \\ u_2 \\ * \\ u_4(2) \end{bmatrix} = G(1) \begin{bmatrix} x_1 \\ x_2(1) \\ x_3(1) \\ x_4(1) \end{bmatrix} + G(2) \begin{bmatrix} * \\ x_2 - x_2(1) \\ * \\ x_4(2) - x_4(1) \end{bmatrix}$$

$$\begin{bmatrix} u_1 \\ u_2(1) \\ u_3(1) \\ u_3(1) \end{bmatrix} = G(1) \begin{bmatrix} x_1 \\ x_2(1) \\ x_3(1) \\ x_3(1) \end{bmatrix}$$

Separation Principle

Closed-loop equations:

$$X[t+1] = AX[t] + B\zeta(\mathbf{G} \circ \mu(X[t])).$$

• Apply μ , and use the fact that μ and ζ are inverses:

$$\mu(X)[t+1] = A\mu(X)[t] + B(\mathbf{G} \circ \mu(X)[t])$$
$$= (\mathbf{A} + \mathbf{B}\mathbf{G}) \circ \mu(X).$$

where
$$(\mathbf{A} + \mathbf{BG})_i = A(\uparrow i, \uparrow i) + B(\uparrow i, \uparrow i)G(i)$$
.

- "Innovation" dynamics at subsystems decoupled!
- Stabilization easy: simply pick G(i) to stabilize $A(\uparrow i, \uparrow i), B(\uparrow i, \uparrow i)$.

Separation Principle

Closed-loop equations:

$$X[t+1] = AX[t] + B\zeta(\mathbf{G} \circ \mu(X[t])).$$

• Apply μ , and use the fact that μ and ζ are inverses:

$$\mu(X)[t+1] = A\mu(X)[t] + B(\mathbf{G} \circ \mu(X)[t])$$
$$= (\mathbf{A} + \mathbf{B}\mathbf{G}) \circ \mu(X).$$

where
$$(\mathbf{A} + \mathbf{BG})_i = A(\uparrow i, \uparrow i) + B(\uparrow i, \uparrow i)G(i)$$
.

- "Innovation" dynamics at subsystems decoupled!
- Stabilization easy: simply pick G(i) to stabilize A(↑i, ↑i), B(↑i, ↑i).

Separation Principle

Closed-loop equations:

$$X[t+1] = AX[t] + B\zeta(\mathbf{G} \circ \mu(X[t])).$$

• Apply μ , and use the fact that μ and ζ are inverses:

$$\mu(X)[t+1] = A\mu(X)[t] + B(\mathbf{G} \circ \mu(X)[t])$$
$$= (\mathbf{A} + \mathbf{B}\mathbf{G}) \circ \mu(X).$$

where
$$(\mathbf{A} + \mathbf{BG})_i = A(\uparrow i, \uparrow i) + B(\uparrow i, \uparrow i)G(i)$$
.

- "Innovation" dynamics at subsystems decoupled!
- Stabilization easy: simply pick G(i) to stabilize $A(\uparrow i, \uparrow i), B(\uparrow i, \uparrow i)$.

Optimality

Theorem (Shah-P., CDC2010)

 \mathcal{H}_2 -optimal controllers have the described architecture.

- Gains G(i) obtained by solving decoupled Riccati equations.
- States in the controller are precisely predictions X_{ij} for j < i.
- Controller order is number of intervals in the poset.

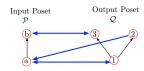
Controller architecture

Möbius-inversion controller

$$U = \zeta(\mathbf{G} \circ \mu(X)).$$

Simple and natural structure, for any locally finite poset.

- Can exploit further restrictions (e.g., distributive lattices)
- ullet For product posets, well-understood composition rules for μ
- Generalizes many concepts (Youla parameterization, "purified outputs", etc)
- Extensions to output feedback, different plant/controller posets (Galois connections), . . .



Conclusions

- Posets provide useful framework to reason about decentralized decision-making on causal or hierarchical structures.
 - Conceptually nice, computationally tractable.
 - Simple controller structure, based on Möbius inversion.
 - \mathcal{H}_2 -optimal controllers have this structure.
- Want to know more? → www.mit.edu/~pari
 - "A partial order approach to decentralized control", CDC 2008.
 - "H₂-optimal decentralized control over posets: a state-space solution for state-feedback", CDC 2010.
 - "An optimal architecture for decentralized control over posets", online soon!

Thanks for your attention

Conclusions

- Posets provide useful framework to reason about decentralized decision-making on causal or hierarchical structures.
 - Conceptually nice, computationally tractable.
 - Simple controller structure, based on Möbius inversion.
 - \mathcal{H}_2 -optimal controllers have this structure.
- Want to know more? → www.mit.edu/~pari
 - "A partial order approach to decentralized control", CDC 2008.
 - "H₂-optimal decentralized control over posets: a state-space solution for state-feedback", CDC 2010.
 - "An optimal architecture for decentralized control over posets", online soon!

Thanks for your attention!