An Optimal Architecture for Decentralized Control over Posets

Parikshit Shah

Pablo A. Parrilo

Laboratory for Information and Decision Systems
Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Stanford ISL - March 2011

Motivation

- Many decision-making problems are large-scale and complex.
- Complexity, cost, physical constraints \Rightarrow Decentralization.
- Fully distributed control is notoriously hard.
- A common underlying theme: flow of information.
- What are the right language and tools to think about flow of information?

Contributions
A framework to reason about information flow in terms of partially ordered sets (posets).

An architecture for decentralized control, based on Möbius inversion,
with provable optimality properties.

Motivation

- Many decision-making problems are large-scale and complex.
- Complexity, cost, physical constraints \Rightarrow Decentralization.
- Fully distributed control is notoriously hard.
- A common underlying theme: flow of information.
- What are the right language and tools to think about flow of information?

Contributions

A framework to reason about information flow in terms of partially ordered sets (posets).

An architecture for decentralized control, based on Möbius inversion, with provable optimality properties.

Motivation

- Many interesting examples can be unified in this framework.
- Example: Nested Systems [Voulgaris00].

- Emphasis: Flow of information. Can abstract away this flow of information to picture on right.
- Natural for problems of causal or hierarchical nature.

Outline

- Basic Machinery: Posets and Incidence Algebras.
- Decentralized control problems and posets.
- \mathcal{H}_{2} case: state-space solution
- Zeta function, Möbius inversion
- Controller architecture

Partially ordered sets (posets)

Definition

A poset $\mathcal{P}=(P, \preceq)$ is a set P along with a binary relation \preceq which satisfies for all $a, b, c \in P$:
(1) $a \preceq a$ (reflexivity)
(2) $a \preceq b$ and $b \preceq a$ implies $a=b$ (antisymmetry)
(3) $a \preceq b$ and $b \preceq c$ implies $a \preceq c$ (transitivity).

- Will deal initially with finite posets (i.e. $|P|$ is finite).
- Will relate posets to decentralized control.

Incidence Algebras

Definition

The set of functions $f: P \times P \rightarrow \mathbb{Q}$ with the property that $f(x, y)=0$ whenever $y \npreceq x$ is called the incidence algebra \mathcal{I}.

- Concept developed and studied in [Rota64] as a unifying concept in combinatorics.
- For finite posets, elements of the incidence algebra can be thought of as matrices with a particular sparsity pattern.

Example

Example

- Closure under addition and scalar multiplication.
- What happens when you multiply two such matrices?

- Not a coincidence!

Example

- Closure under addition and scalar multiplication.
- What happens when you multiply two such matrices?

$$
\left[\begin{array}{lll}
* & 0 & 0 \\
* & * & 0 \\
* & 0 & *
\end{array}\right]\left[\begin{array}{lll}
* & 0 & 0 \\
* & * & 0 \\
* & 0 & *
\end{array}\right]=\left[\begin{array}{lll}
* & 0 & 0 \\
* & * & 0 \\
* & 0 & *
\end{array}\right]
$$

- Not a coincidence!

Incidence Algebras

- Closure properties are true in general for all posets.

Lemma
Let \mathcal{P} be a poset and \mathcal{I} be its incidence algebra. Let $A, B \in \mathcal{I}$ then:
(1) $c \cdot A \in \mathcal{I}$
(2) $A+B \in \mathcal{I}$
(3) $A B \in \mathcal{I}$.

Thus the incidence algebra is an associative algebra.

- A simple corollary: Since $/$ is in every incidence algebra, if $A \in \mathcal{I}$ and invertible, $A^{-1} \in \mathcal{I}$.
- Properties useful in Youla domain.

Incidence Algebras

- Closure properties are true in general for all posets.

Lemma
Let \mathcal{P} be a poset and \mathcal{I} be its incidence algebra. Let $A, B \in \mathcal{I}$ then:
(1) $c \cdot A \in \mathcal{I}$
(2) $A+B \in \mathcal{I}$
(3) $A B \in \mathcal{I}$.

Thus the incidence algebra is an associative algebra.

- A simple corollary: Since I is in every incidence algebra, if $A \in \mathcal{I}$ and invertible, $A^{-1} \in \mathcal{I}$.
- Properties useful in Youla domain.

Control problem

- A given matrix P.
- Design K.

Control problem

- A given matrix P.
- Design K.
- Interconnect P and K

Control problem

- A given matrix P.
- Design K.
- Interconnect P and K

$$
f(P, K)=P_{11}+P_{12} K\left(I-P_{22} K\right)^{-1} P_{21} .
$$

Control problem

- A given matrix P.
- Design K.
- Interconnect P and K

$$
f(P, K)=P_{11}+P_{12} K\left(I-P_{22} K\right)^{-1} P_{21} .
$$

Control problem

- A given matrix P.
- Design K.
- Interconnect P and K

$$
f(P, K)=P_{11}+P_{12} K\left(I-P_{22} K\right)^{-1} P_{21} .
$$

- Find "best" K.

Modeling decentralized control problems using posets

- All the action happens at $P_{22}=G$. Focus here.
- G (called the plant) interacts with the controller.
- Plant divided into subsystems:

Subsystem
Outputs

Modeling decentralized control problems using posets

- Let G be the transfer function matrix of the plant. We divide up the plant into subsystems:

Subsystem

Outputs

Modeling decentralized control problems using posets

- Let G be the transfer function matrix of the plant. We divide up the plant into subsystems:

Subsystem
Outputs

Modeling decentralized control problems using posets

Subsystem

Outputs

- Denote this by $1 \preceq 2$ and $1 \preceq 3$.
- Subsystems 2 and 3 are in cone of influence of 1
- This relationship is a causality relation between subsystems.
- We call systems with $G \in \mathcal{I}$ poset-causal systems.

Modeling decentralized control problems using posets

Subsystem

Outputs

- Denote this by $1 \preceq 2$ and $1 \preceq 3$.
- Subsystems 2 and 3 are in cone of influence of 1
- This relationship is a causality relation between subsystems.
- We call systems with $G \in \mathcal{I}$ poset-causal systems.

Controller Structure

- Given a poset causal plant $G \in \mathcal{I}$.
- Decentralization constraint: mirror the information structure of the plant.
- In other words we want poset-causal $K \in \mathcal{I}$.
- Similar causality interpretation.
- Intuitively, $i \preceq j$ means subsystem j is more information rich.
- The poset arranges the subsystems according to the amount of information richness.

Controller Structure

- Given a poset causal plant $G \in \mathcal{I}$.
- Decentralization constraint: mirror the information structure of the plant.
- In other words we want poset-causal $K \in \mathcal{I}$.
- Similar causality interpretation.
- Intuitively, $i \preceq j$ means subsystem j is more information rich.
- The poset arranges the subsystems according to the amount of information richness.

Examples of poset systems

- Independent subsystems

- Nested systems

- Closures of directed acyclic graphs

General framework

Goal is to capture what is essential about causal decision-making.

- Elements of the poset do not necessarily have to represent only subsystems.
- "Standard" case discussed earlier corresponds to the product of the spatial interaction poset (space) and a linear chain (time)
- Posets model branching time, nondeterminism, etc.
- Posets in space-time (e.g., distributed systems)
- Controller structure does not necessarily have to mirror plant.
- Generalizations via Galois connections

Literature review

- Classical work: Witsenhausen, Radner, Ho-Chu.
- Mullans-Elliot (1973), linear systems on partially ordered time sets
- Voulgaris (2000), showed that a wide class of distributed control problems became convex through a Youla-type reparametrization.
- Rotkowitz-Lall (2002) introduced quadratic invariance (QI) an important unifying concept for convexity in decentralized control.
- Poset framework introduced in Shah-P. (2008). Special case of QI, with richer and better understood algebraic structure.
- Swigart-Lall (2010) gave a state-space solution for the two-controller case, via a spectral factorization approach.
- Shah-P. (2010), provided a full solution for all posets, with controller degree bounds. Separability a key idea, which is missing in past work. Introduced simple Möbius-based architecture (in slightly different form).

Optimal Control Problem

Given a system P with plant G, find a stabilizing controller $K \in \mathcal{I}$.

- Here $f(P, K)=P_{11}+P_{12} K(I-G K)^{-1} P_{21}$ is the closed loop transfer function.
- Problem is nonconvex.
- Standard approach: reparametrize the problem by getting rid of the nonconvex part of the objective.

Convex reparametrization

- "Youla domain" technique: define $R=K(I-G K)^{-1}$.

$$
\begin{array}{ll}
\operatorname{minimize} & \left\|\hat{P}_{11}+\hat{P}_{12} R \hat{P}_{21}\right\| \\
\text { subject to } & R \text { stable } \\
& R \in \mathcal{I} .
\end{array}
$$

Algebraic structure of \mathcal{I} allows to rewrite a convex constraint in K into a convex constraint in R.

- Main difficulty: Infinite dimensional problem.
- Can be approximated by various techniques, but there are drawbacks.
- Desire state-space techniques. Advantages:
(1) Computationally efficient
(2) Degree bounds
(3) Provide insight into structure of optimal controller.

State-Space Setup

- Have state feedback system:

$$
\begin{aligned}
x[t+1] & =A x[t]+B u[t]+w[t] \\
y[t] & =x[t] \\
z[t] & =C x[t]+D u[t]
\end{aligned}
$$

- Wish to find controller $u=K x$ which is stabilizing and optimal.

$$
\begin{aligned}
& \operatorname{Min}_{K}\left\|P_{11}+P_{12} K\left(I-P_{22} K\right)^{-1} P_{21}\right\|^{2} \\
& \quad K \in \mathcal{I} \\
& \quad K \text { stabilizing. }
\end{aligned}
$$

- Key property we exploit: separability of the \mathcal{H}_{2} norm.

\mathcal{H}_{2} Optimal Control

- Recall Frobenius norm:

$$
\|H\|_{F}^{2}=\operatorname{Trace}\left(H^{T} H\right)
$$

- \mathcal{H}_{2} norm is its extension to operators.
- Solution to optimal centralized problem standard.
- Based on algebraic Riccati equations:

$$
\begin{aligned}
& X=C^{T} C+A^{T} X A-A^{T} X B\left(D^{T} D+B^{T} X B\right)^{-1} B^{T} X A \\
& K=\left(D^{T} D+B^{T} X B\right)^{-1} B^{T} X A
\end{aligned}
$$

Decentralized Control Problem

- System poset causal: $A, B \in \mathcal{I}(\mathcal{P})$.
- Solve:

$$
\begin{gathered}
\operatorname{minimize}_{K}\left\|P_{11}+P_{12} K\left(I-P_{22} K\right)^{-1} P_{21}\right\|^{2} \\
K \in \mathcal{I} \\
K \text { stabilizing. }
\end{gathered}
$$

- Due to state-feedback: $P_{21}=(z I-A)^{-1}$.
- Define $Q:=K(I-G K)^{-1} P_{21}$.
- Problem reduces to:

$$
\begin{gathered}
\text { minimize }_{Q}\left\|P_{11}+P_{12} Q\right\|^{2} \\
Q \in \mathcal{I} \\
Q \text { stabilizing. }
\end{gathered}
$$

\mathcal{H}_{2} Decomposition Property

- Let $G=\left[G_{1}, \ldots G_{k}\right]$.

$$
\|G\|^{2}=\sum_{i=1}^{k}\left\|G_{i}\right\|^{2}
$$

- This separability property is the key feature we exploit.

Example

$$
\begin{array}{cc}
\text { min } & \left\|P_{11}+P_{12}\left[\begin{array}{ccc}
Q_{11} & 0 & 0 \\
Q_{21} & Q_{22} & 0 \\
Q_{31} & 0 & Q_{33}
\end{array}\right]\right\|^{2} \\
\text { s.t. } & Q \text { stabilizing. } \\
\text { min. } & \left\|P_{11}(1)+P_{12}\left[\begin{array}{l}
Q_{11} \\
Q_{21} \\
Q_{31}
\end{array}\right]\right\|^{2}+\left\|P_{11}(2)+P_{12}(2) Q_{22}\right\|^{2} \\
& +\left\|P_{11}(3)+P_{12}(3) Q_{33}\right\|^{2} \\
\text { s.t. } & Q \text { stabilizing. }
\end{array}
$$

\mathcal{H}_{2} State Space Solution

This decomposition idea extends to all posets.
Theorem (Shah-P., CDC2010)
Problem can be reduced to decoupled problems:

minimize	$\left\\|P_{11}(j)+P_{12}(\uparrow j) Q^{\uparrow j}\right\\|^{2}$
subject to	$Q^{\uparrow j}$ stabilizing
	for all $j \in P$.

- Optimal Q can be obtained by solving a set of decoupled centralized sub-problems.
- Each sub-problem requires solution of a Riccati equation.

\mathcal{H}_{2} State Space Solution

- Can recover K from optimal Q.
- Q and K are in bijection, $K=Q P_{21}^{-1}\left(I+P_{22} Q P_{21}^{-1}\right)^{-1}$.
- Further analysis gives:
(1) Explicit state-space formulae.
(2) Controller degree bounds.
(3) Insight into structure of optimal controller.

General Controller Architecture

Great. We solved the problem for all posets! But, what is the structure here?

- Swigart-Lall (2010) had a nice interpretation for the two-controller case, in terms of the first controller estimating the state of the second subsystem.

No "obvious" generalizations:

- In general, do not have enough information to predict upstream states. Also, there may be incomparable states.
- More importantly, too many predictions from downstream! How to combine them?

General Controller Architecture

- What is the "right" architecture?
- Ingredients:
(1) Lower sets and upper sets
(2) Local variables (partial state predictions)
- Zeta function and Möbius function.
- Simple separation principle
- Optimality of architecture for \mathcal{H}_{2}.

General Controller Architecture

- What is the "right" architecture?
- Ingredients:
(1) Lower sets and upper sets
(2) Local variables (partial state predictions)
(3) Zeta function and Möbius function.
- Simple separation principle
- Optimality of architecture for \mathcal{H}_{2}.

Lower sets and upper sets

- Each "node" in \mathcal{P} is a subsystem with state x_{i} and input u_{i}.
- Lower set: $\downarrow p=\{q \mid q \preceq p\}$.
- Corresponds to "downstream" known information.

$\uparrow 2$

$\downarrow 2$
- Upper set: $\uparrow p=\{q \mid p \preceq q\}$.
- Corresponds to "upstream" unknown information.
- u_{i} has access to x_{j} for $j \in \downarrow i$ (downstream).

Lower sets and upper sets

- Each "node" in \mathcal{P} is a subsystem with state x_{i} and input u_{i}.
- Lower set: $\downarrow p=\{q \mid q \preceq p\}$.
- Corresponds to "downstream" known information.

$\uparrow 2$

$\downarrow 2$
- Upper set: $\uparrow p=\{q \mid p \preceq q\}$.
- Corresponds to "upstream" unknown information.
- u_{i} has access to x_{j} for $j \in \downarrow i$ (downstream).

Local Variables

- Overall state x and input u are global variables.
- Subsystems carry local copies.

- Local variable $X_{i}: \uparrow i \rightarrow \mathbb{R}$.
- Can think of it as a vector in $\mathbb{R}^{P \mid}$

- Two local variables of interest:
(1) $X: X_{i j}=x_{i}(j)$ is the (partial) prediction of state x_{i} at subsystem j.
(2) $U: U_{i j}=u_{i}(j)$ is the (partial) prediction of input u_{i} at subsystem j.

Local Variables

- Overall state x and input u are global variables.
- Subsystems carry local copies.

- Local variable $X_{i}: \uparrow i \rightarrow \mathbb{R}$.
- Can think of it as a vector in $\mathbb{R}^{|P|}$

$$
X=\left[\begin{array}{cccc}
x_{1} & * & * & * \\
x_{2}(1) & x_{2} & * & * \\
x_{3}(1) & * & x_{3} & * \\
x_{4}(1) & x_{4}(2) & x_{4}(3) & x_{4}
\end{array}\right]
$$

- Two local variables of interest:
(a) $X: X_{i i}=X_{i}(j)$ is the (partial) prediction of state x_{i} at subsystem j.

Local Variables

- Overall state x and input u are global variables.
- Subsystems carry local copies.

- Local variable $X_{i}: \uparrow i \rightarrow \mathbb{R}$.
- Can think of it as a vector in $\mathbb{R}^{|P|}$

$X=\left[\begin{array}{cccc}x_{1} & * & * & * \\ x_{2}(1) & x_{2} & * & * \\ x_{3}(1) & * & x_{3} & * \\ x_{4}(1) & x_{4}(2) & x_{4}(3) & x_{4}\end{array}\right]$
- Two local variables of interest:
(1) $X: X_{i j}=x_{i}(j)$ is the (partial) prediction of state x_{i} at subsystem j.
(2) $U: U_{i j}=u_{i}(j)$ is the (partial) prediction of input u_{i} at subsystem j.

Local Products

- Local gain: $G(i): \uparrow i \times \uparrow i \rightarrow \mathbb{R}$. Think of it as zero-padded matrix:

- Define $\mathbf{G}=\{G(1), \ldots, G(s)\}$.
- Local Product: $\mathbf{G} \circ X$ defined columnwise via:

$$
(\mathbf{G} \circ X)_{i}=G(i) X_{i}
$$

- If $Y=\mathbf{G} \circ X$, then local variables $\left(X_{i}, Y_{i}\right)$ decoupled.

Zeta and Möbius

For any poset \mathcal{P}, two distinguished elements of its incidence algebra:

- The Zeta matrix is

$$
\zeta_{\mathcal{P}}(x, y)= \begin{cases}1, & \text { if } y \preceq x \\ 0, & \text { otherwise }\end{cases}
$$

- Its inverse is the Möbius matrix of the poset:

$$
\mu_{\mathcal{P}}=\zeta_{\mathcal{P}}^{-1}
$$

E.g., for the poset below, we have:

Zeta and Möbius

For any poset \mathcal{P}, two distinguished elements of its incidence algebra:

- The Zeta matrix is

$$
\zeta_{\mathcal{P}}(x, y)= \begin{cases}1, & \text { if } y \preceq x \\ 0, & \text { otherwise }\end{cases}
$$

- Its inverse is the Möbius matrix of the poset:

$$
\mu_{\mathcal{P}}=\zeta_{\mathcal{P}}^{-1}
$$

E.g., for the poset below, we have:

$$
\zeta_{\mathcal{P}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right], \quad \mu_{\mathcal{P}}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

Möbius inversion

Given $f: P \rightarrow \mathbb{Q}$, we can define

$$
(\zeta f)(x)=\sum_{y} \zeta(x, y) f(y), \quad(\mu f)(x)=\sum_{y} \mu(x, y) f(y) .
$$

These operations are obviously inverses of each other.

For our example:

Möbius inversion formula

Möbius inversion

Given $f: P \rightarrow \mathbb{Q}$, we can define

$$
(\zeta f)(x)=\sum_{y} \zeta(x, y) f(y), \quad(\mu f)(x)=\sum_{y} \mu(x, y) f(y)
$$

These operations are obviously inverses of each other.
For our example:
$\zeta\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}, a_{1}+a_{2}, a_{1}+a_{3}\right), \quad \mu\left(b_{1}, b_{2}, b_{3}\right)=\left(b_{1}, b_{2}-b_{1}, b_{3}-b_{1}\right)$.

Möbius inversion

Given $f: P \rightarrow \mathbb{Q}$, we can define

$$
(\zeta f)(x)=\sum_{y} \zeta(x, y) f(y), \quad(\mu f)(x)=\sum_{y} \mu(x, y) f(y)
$$

These operations are obviously inverses of each other.
For our example:
$\zeta\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}, a_{1}+a_{2}, a_{1}+a_{3}\right), \quad \mu\left(b_{1}, b_{2}, b_{3}\right)=\left(b_{1}, b_{2}-b_{1}, b_{3}-b_{1}\right)$.

Möbius inversion formula

$$
g(y)=\sum_{x \preceq y} h(x) \quad \Leftrightarrow \quad h(y)=\sum_{x \preceq y} \mu(x, y) g(x)
$$

Möbius inversion: examples

- If \mathcal{P} is a chain: then ζ is "integration", $\mu:=\zeta^{-1}$ is "differentiation".
- If \mathcal{P} is the subset lattice, then μ is inclusion-exclusion
- If \mathcal{P} is the divisibility integer lattice, then μ is the number-theoretic Möbius function.
- Many others: vector spaces, faces of polytopes, graphs/circuits, ...

Möbius inversion is local

- Key insight: Möbius inversion respects the poset structure.
- No additional communication requirements to compute them.
- Thus, can view as operators on local variables: $\zeta(X), \mu(X)$.

$\zeta(X)=\left[\begin{array}{cccc}x_{1} & * & * & * \\ x_{2}(1) & x_{2}+x_{2}(1) & * & * \\ x_{3}(1) & * & x_{3}+x_{3}(1) & * \\ x_{4}(1) & x_{4}(2)+x_{4}(1) & x_{4}(3)+x_{4}(1) & x_{4}+x_{4}(1)+x_{4}(2)+x_{4}(3)\end{array}\right]$

Controller Architecture

- Let the system dynamics be $x[t+1]=A x[t]+B u[t]$, where $A, B \in \mathcal{I}(\mathcal{P})$
- Define controller state variables $X_{i j}$ for $j \preceq i$, where $X_{i i}=X_{i}$.
- Propose a control law:

$$
U=\zeta(\mathbf{G} \circ \mu(X)) .
$$

where $\mathbf{G}=\{\boldsymbol{G}(1), \ldots, \boldsymbol{G}(s)\}$.

- Can compactly write closed-loop dynamics as matrix equations:

$$
X[t+1]=A X[t]+B \zeta(\mathbf{G} \circ \mu(X[t]))
$$

- Each column corresponds to a different subsystem
- Equations have structure of \mathcal{I}, only need entries with $j \preceq i$
- Diagonal is the plant, off-diagonal is the controller
- Since ζ and μ are local, so is the closed-loop

Controller Architecture: $U=\zeta(\mathbf{G} \circ \mu(X))$

- "Local errors" computed by $\mu(X)$ (differentiation)
- Compute "local corrections"
- Aggregate them via $\zeta(\cdot)$ (integration)

$$
\left[\begin{array}{c}
* \\
u_{2} \\
* \\
u_{4}(2)
\end{array}\right]=G(1)\left[\begin{array}{c}
x_{1} \\
x_{2}(1) \\
x_{3}(1) \\
x_{4}(1)
\end{array}\right]+G(2)\left[\begin{array}{c}
* \\
x_{2}-x_{2}(1) \\
* \\
x_{4}(2)-x_{4}(1)
\end{array}\right]\left[\begin{array}{c}
\\
{\left[\begin{array}{c}
u_{1} \\
u_{2}(1) \\
u_{3}(1) \\
u_{4}(1)
\end{array}\right]=G(1)\left[\begin{array}{c}
x_{1} \\
x_{2}(1) \\
x_{3}(1) \\
x_{4}(1)
\end{array}\right]}
\end{array}\right.
$$

Separation Principle

- Closed-loop equations:

$$
X[t+1]=A X[t]+B \zeta(\mathbf{G} \circ \mu(X[t])) .
$$

- Apply μ, and use the fact that μ and ζ are inverses:

$$
\begin{aligned}
\mu(X)[t+1] & =A \mu(X)[t]+B(\mathbf{G} \circ \mu(X)[t]) \\
& =(A+B G) \circ \mu(X) .
\end{aligned}
$$

where $(\mathbf{A}+\mathbf{B G})_{i}=A(\uparrow i, \uparrow i)+B(\uparrow i, \uparrow i) G(i)$.

- "Innovation" dynamics at subsystems decoupled!
- Stabilization easy: simply pick $G(i)$ to stabilize $A(\uparrow i, \uparrow i), B(\uparrow i, \uparrow i)$.

Separation Principle

- Closed-loop equations:

$$
X[t+1]=A X[t]+B \zeta(\mathbf{G} \circ \mu(X[t]))
$$

- Apply μ, and use the fact that μ and ζ are inverses:

$$
\begin{aligned}
\mu(X)[t+1] & =A \mu(X)[t]+B(\mathbf{G} \circ \mu(X)[t]) \\
& =(\mathbf{A}+\mathbf{B G}) \circ \mu(X) .
\end{aligned}
$$

where $(\mathbf{A}+\mathbf{B G})_{i}=A(\uparrow i, \uparrow i)+B(\uparrow i, \uparrow i) G(i)$.

- "Innovation" dynamics at subsystems decoupled!
- Stabilization easy: simply pick $G(i)$ to stabilize $A(\uparrow i, \uparrow i), B(\uparrow i, \uparrow i)$.

Separation Principle

- Closed-loop equations:

$$
X[t+1]=A X[t]+B \zeta(\mathbf{G} \circ \mu(X[t]))
$$

- Apply μ, and use the fact that μ and ζ are inverses:

$$
\begin{aligned}
\mu(X)[t+1] & =\boldsymbol{A} \mu(X)[t]+B(\mathbf{G} \circ \mu(X)[t]) \\
& =(\mathbf{A}+\mathbf{B G}) \circ \mu(X) .
\end{aligned}
$$

where $(\mathbf{A}+\mathbf{B G})_{i}=A(\uparrow i, \uparrow i)+B(\uparrow i, \uparrow i) G(i)$.

- "Innovation" dynamics at subsystems decoupled!
- Stabilization easy: simply pick $G(i)$ to stabilize $A(\uparrow i, \uparrow i), B(\uparrow i, \uparrow i)$.

Optimality

Theorem (Shah-P., CDC2010)
\mathcal{H}_{2}-optimal controllers have the described architecture.

- Gains $G(i)$ obtained by solving decoupled Riccati equations.
- States in the controller are precisely predictions $X_{i j}$ for $j \prec i$.
- Controller order is number of intervals in the poset.

Controller architecture

Möbius-inversion controller

$$
U=\zeta(\mathbf{G} \circ \mu(X)) .
$$

Simple and natural structure, for any locally finite poset.

- Can exploit further restrictions (e.g., distributive lattices)
- For product posets, well-understood composition rules for μ
- Generalizes many concepts (Youla parameterization, "purified outputs", etc)
- Extensions to output feedback, different plant/controller posets (Galois connections), ...

Conclusions

- Posets provide useful framework to reason about decentralized decision-making on causal or hierarchical structures.
- Conceptually nice, computationally tractable.
- Simple controller structure, based on Möbius inversion.
- \mathcal{H}_{2}-optimal controllers have this structure.
- Want to know more? \rightarrow www.mit.edu/~pari
- "A partial order approach to decentralized control", CDC 2008.
- "H 2_{2}-optimal decentralized control over posets: a state-space solution for state-feedback", CDC 2010.
- "An optimal architecture for decentralized control over posets", online soon!

Thanks for your attention!

Conclusions

- Posets provide useful framework to reason about decentralized decision-making on causal or hierarchical structures.
- Conceptually nice, computationally tractable.
- Simple controller structure, based on Möbius inversion.
- \mathcal{H}_{2}-optimal controllers have this structure.
- Want to know more? \rightarrow www.mit.edu/~pari
- "A partial order approach to decentralized control", CDC 2008.
- "H 2_{2}-optimal decentralized control over posets: a state-space solution for state-feedback", CDC 2010.
- "An optimal architecture for decentralized control over posets", online soon!

Thanks for your attention!

