Exact semidefinite representations for genus zero curves

Pablo A. Parrilo
WWw.mit.edu/~parrilo

Laboratory for Information and Decision Systems
Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Outline

e Convex sets and semidefinite representations
e Two existing approaches
e Rigid convexity / Lax conjecture
e SOS construction
Q A counterexample: the lemniscate

- Genus zero curves
e Construction of SDP representations
e A dual interpretation
e Extensions and conclusions

Semidefinite programming (SDP,LMIs)

A broad generalization of LP to symmetric matrices

$$
\min \operatorname{Tr} C X \quad \text { s.t. } \quad X \in \mathcal{L} \cap \mathcal{S}_{+}^{n}
$$

Q The intersection of an affine subspace \mathcal{L} and the cone of positive semidefinite matrices.

Q Lots of applications. A true "revolution" in computational methods for engineering applications
e Originated in control theory and combinatorial optimization. Nowadays, applied everywhere.
e Convex finite dimensional optimization. Nice duality theory.
Q Essentially, solvable in polynomial time (interior point, etc.)

Semidefinite representations

A natural question in convex optimization:
What sets can be represented using semidefinite programming?
Q Representability issues (e.g., closedness under projection)
e Polytopes are closed under projection
e Basic semialgebraic and SDP-representable sets are not

Semidefinite representations

A natural question in convex optimization:
What sets can be represented using semidefinite programming?
Q Representability issues (e.g., closedness under projection)
e Polytopes are closed under projection
e Basic semialgebraic and SDP-representable sets are not
In the LP case, well-understood question: finite number of extreme points (polyhedral sets)

Semidefinite representations

A natural question in convex optimization:
What sets can be represented using semidefinite programming?
a Representability issues (e.g., closedness under projection)
e Polytopes are closed under projection
e Basic semialgebraic and SDP-representable sets are not
In the LP case, well-understood question: finite number of extreme points (polyhedral sets)

Are there "obstructions" to SDP representability?
Open question: is every convex basic semialgebraic set SDP-representable? (generalized Lax conjecture)

Known SDP-representable sets

a Many interesting sets are known to be SDP-representable

Q Preserved by "natural" properties: affine transformations, convex hull, polarity, etc.
e Several known structural results (e.g., facial exposedness)

Work of Nesterov-Nemirovski, Ramana, Tunçel, etc.

Existing results

Necessary conditions: \mathcal{S} must be convex and semialgebraic (defined by polynomial inequalities).

Several versions of the problem:
e Exact vs. approximate representations.
e "Direct" (non-lifted) representations: no additional variables.

$$
x \in \mathcal{S} \quad \Leftrightarrow \quad A_{0}+\sum_{i} x_{i} A_{i} \succeq 0
$$

Q "Lifted" representations: can use extra variables (projection)

$$
x \in \mathcal{S} \quad \Leftrightarrow \quad \exists y \text { s.t. } A_{0}+\sum_{i} x_{i} A_{i}+\sum y_{j} B_{j} \succeq 0
$$

Today we focus on the "exact" version.

Direct representations

$$
x \in \mathcal{S} \quad \Leftrightarrow \quad A_{0}+\sum_{i} x_{i} A_{i} \succeq 0
$$

Helton \& Vinnikov (2004) fully characterized the sets $S \subset \mathbb{R}^{2}$ that admit a non-lifted SDP representation.

A "rigid convexity" condition: every line through the set must intersect the Zariski closure of the boundary a constant number of times (equal to the degree of the curve).

Related to hyperbolic polynomials and the Lax conjecture (Renegar, Lewis-Ramana-P. 2005)

Lax conjecture

A homogeneous polynomial $p(x) \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is hyperbolic with respect to the direction $e \in^{n}$ if $t \mapsto p(x-t e)$ has only real roots for all $x \in \mathbb{R}^{n}$.

Lax conjecture

A homogeneous polynomial $p(x) \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is hyperbolic with respect to the direction $e \in^{n}$ if $t \mapsto p(x-t e)$ has only real roots for all $x \in \mathbb{R}^{n}$.

Ex: Let A, B, C be symmetric matrices, with $A \succ 0$. The polynomial

$$
p(x, y, z)=\operatorname{det}(A x+B y+C z)
$$

is hyperbolic wrt $e=(1,0,0)$ (eigenvalues of symm. matrices are real).

Lax conjecture

A homogeneous polynomial $p(x) \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is hyperbolic with respect to the direction $e \epsilon^{n}$ if $t \mapsto p(x-t e)$ has only real roots for all $x \in \mathbb{R}^{n}$.

Ex: Let A, B, C be symmetric matrices, with $A \succ 0$. The polynomial

$$
p(x, y, z)=\operatorname{det}(A x+B y+C z)
$$

is hyperbolic wrt $e=(1,0,0)$ (eigenvalues of symm. matrices are real).

Thm (Lax Conjecture): If $p(x, y, z)$ is hyperbolic wrt e, then it has such as determinantal representation.

A "polar" viewpoint

Any convex set \mathcal{S} is uniquely defined by its supporting hyperplanes.
Thus, if we can optimize a linear function over a set using SDP, we effectively have an SDP representation.

Need to solve (or approximate)

$$
\min c^{T} x \quad \text { s.t. } x \in \mathcal{S}
$$

If \mathcal{S} is defined by polynomial equations/inequalities, can use sum of squares (SOS) techniques.

SOS background

A multivariate polynomial $p(x)$ is a sum of squares (SOS) if

$$
p(x)=\sum_{i} q_{i}^{2}(x), \quad q_{i}(x) \in \mathbb{R}[x] .
$$

e If $p(x)$ is SOS, then clearly $p(x) \geq 0 \forall x \in \mathbb{R}^{n}$.
e For univariate or quadratic polynomials, the converse is also true.
e Convex condition, can be reduced to SDP.

A natural SOS approach

Let $\mathcal{S}=\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \geq 0\right\}$. Different conditions exist to certify nonnegativity of $c^{T} x+d$ over \mathcal{S} :

Q General Positivstellensatz type:

$$
(1+q)\left(c^{T} x+d\right) \in \operatorname{cone}_{k+1}\left(f_{i}\right), \quad q \in \operatorname{cone}_{k}\left(f_{i}\right) .
$$

e Schmüdgen:

$$
c^{T} x+d \in \operatorname{cone}_{k}\left(f_{i}\right)
$$

e Putinar/Lasserre:

$$
c^{T} x+d \in \operatorname{preprime}_{k}\left(f_{i}\right)
$$

where preprime ${ }_{k} \subseteq$ cone $_{k} \subseteq \mathbb{R}_{k}[x]$. All these versions give convergent families of SDP approximations.

Concretely, for Putinar/Lasserre, if

$$
c^{T} x+d=s_{0}(x)+\sum_{i} s_{i}(x) f_{i}(x), \quad s_{0}, s_{i} \text { are SOS. }
$$

Example

Consider the set described by $x^{4}+y^{4} \leq 1$
e Fails the rigid convexity condition.
e The SOS construction is exact.

Lemniscates

A (Bernoulli) lemniscate is a plane curve, defined as the set of points such that the product of the distances from two fixed points at distance $2 d$ (the foci) is constant and equal to d^{2}.
In particular, if the points are $\left(\pm \frac{1}{\sqrt{2}}, 0\right)$, then

$$
x^{4}+y^{4}-x^{2}+2 x^{2} y^{2}+y^{2}=0 .
$$

Half-lemniscate

The lemniscate has two branches.
Each one is the boundary of a convex set.
Do these sets have semidefinite representations?

Rigid convexity fails

The lemniscate fails to satisfy the Helton-Vinnikov rigid convexity condition.
The number of intersections is not constant (sometimes 2, or 4).
Thus, no representation of the form $A_{0}+A_{1} x+A_{2} y \succeq 0$ can exist. If an SDP description exists, it must use additional variables.

SOS fails

SOS schemes (Schmüdgen, Putinar/Lasserre) give outer approximations, but in this example they are never exact.

SOS fails

SOS schemes (Schmüdgen, Putinar/Lasserre) give outer approximations, but in this example they are never exact.

Can prove that this happens for all values of k.

Proof

Consider the linear functional $x+y$, which is nonnegative over S.
Its minimum over the set $\{(x, y) \mid p(x, y)=0, \quad x \geq 0\}$ is zero. However, if

$$
x+y=s_{0}(x, y)+s_{1}(x, y) \cdot x+t(x, y) \cdot p(x, y)
$$

evaluating at $x=0$ we have

$$
y=\tilde{s}_{0}(y)+\tilde{t}(y)\left(y^{2}+y^{4}\right),
$$

from which a contradiction easily follows.

Proof

Consider the linear functional $x+y$, which is nonnegative over S.
Its minimum over the set $\{(x, y) \mid p(x, y)=0, \quad x \geq 0\}$ is zero. However, if

$$
x+y=s_{0}(x, y)+s_{1}(x, y) \cdot x+t(x, y) \cdot p(x, y)
$$

evaluating at $x=0$ we have

$$
y=\tilde{s}_{0}(y)+\tilde{t}(y)\left(y^{2}+y^{4}\right),
$$

from which a contradiction easily follows.

Hmmm. Perhaps the lemniscate cannot be represented?

SDP representation (I)

The (half) lemniscate is the intersection of a paraboloid and a circular cone:

$$
S=\left\{x^{2}+y^{2} \leq z\right\} \cap\left\{y^{2}+z^{2} \leq x^{2}\right\}
$$

BIRS 2006-SDP and genus zero curves - p. 18/28

SDP representation (II)

Thus, the set above can be represented as:

$$
\left[\begin{array}{lll}
z & x & y \\
x & 1 & 0 \\
y & 0 & 1
\end{array}\right] \succeq 0, \quad\left[\begin{array}{lll}
x & y & z \\
y & x & 0 \\
z & 0 & x
\end{array}\right] \succeq 0 .
$$

SDP representation (II)

Thus, the set above can be represented as:

$$
\left[\begin{array}{lll}
z & x & y \\
x & 1 & 0 \\
y & 0 & 1
\end{array}\right] \succeq 0, \quad\left[\begin{array}{lll}
x & y & z \\
y & x & 0 \\
z & 0 & x
\end{array}\right] \succeq 0
$$

Can we obtain this in an algorithmic way?

Algebraic curves and genus

A plane curve is a set in \mathbb{R}^{2} defined by a polynomial equation $p(x, y)=0$.
An important invariant of an algebraic curve is its genus. This can be defined in several ways. Classically, in terms of the degree d and the singularities $\sigma: g(C):=\binom{d-1}{2}-\sum_{\sigma} \delta_{\sigma}$.

Notice that in \mathbb{C}^{2}, an algebraic curve is actually a surface (a Riemann surface). The genus is associated with the topological genus (number of holes) of its Riemann surface.

More importantly (for us), a curve with genus zero is birationally equivalent to the real line.

Rational parametrizations

Every genus zero curve can be rationally parametrized: there exist rational functions $r(t), s(t)$, such that

$$
p(r(t), s(t))=0
$$

Constructive procedures exist (e.g., Maple's algcurves package).

Rational parametrizations

Every genus zero curve can be rationally parametrized: there exist rational functions $r(t), s(t)$, such that

$$
p(r(t), s(t))=0
$$

Constructive procedures exist (e.g., Maple's algcurves package).

For our lemniscate, for instance, we have the bijective parametrization

$$
t \mapsto\left(\frac{t\left(1+t^{2}\right)}{1+t^{4}}, \frac{t\left(1-t^{2}\right)}{1+t^{4}}\right),
$$

for $t \in(-\infty, \infty)$.

Examples:

Many interesting curves have genus zero:
Ellipses, Parabolas, Hyperbolas, Astroids, Cardioids, Descartes Folium, etc.

Examples:

Many interesting curves have genus zero:
Ellipses, Parabolas, Hyperbolas, Astroids, Cardioids, Descartes Folium, etc.

Not every plane curve has genus zero (e.g, elliptic curves, of genus 1).

Why is this good news?

When optimizing a linear function on the set, need to optimize

$$
\min _{(x, y) \in \mathcal{C}} a x+b y \quad \Leftrightarrow \quad \min _{t \in I} a x(t)+b y(t)=\min _{t \in I} r(t)
$$

where $r(t)=\frac{r_{1}(t)}{r_{2}(t)}$ is a univariate rational function.

Why is this good news?

When optimizing a linear function on the set, need to optimize

$$
\min _{(x, y) \in \mathcal{C}} a x+b y \quad \Leftrightarrow \quad \min _{t \in I} a x(t)+b y(t)=\min _{t \in I} r(t)
$$

where $r(t)=\frac{r_{1}(t)}{r_{2}(t)}$ is a univariate rational function.
For univariate polynomials, we have $\mathrm{PSD}=\mathrm{SOS}$.
This means that, by clearing denominators, we can write an SDP relaxation that is exact!

$$
r(t) \geq \gamma \quad \Leftrightarrow \quad r_{1}(t)-\gamma r_{2}(t) \geq 0 \quad \Leftrightarrow \quad r_{1}(t)-\gamma r_{2}(t) \text { is } \operatorname{SOS}
$$

Same thing if t is contrained to (finite unions of) intervals.

SDP representations

Thm: (P.) Let $p(x, y)$ have genus zero. Consider the set S, defined as the convex hull of a finite collection of closed segments of the curve. Then, S has an exact SDP representation.

SDP representations

Thm: (P.) Let $p(x, y)$ have genus zero. Consider the set S, defined as the convex hull of a finite collection of closed segments of the curve. Then, S has an exact SDP representation.

$\max d$
s.t. $\quad c_{1} t\left(1+t^{2}\right)+c_{2} t\left(1-t^{2}\right)-d\left(1+t^{4}\right)$ is SOS

A dual interpretation

Writing the dual, we have that the set can be written as the pairs $\left(\eta_{1}+\eta_{3}, \eta_{1}-\eta_{3}\right)$, where $\left(\eta_{0}, \eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}\right)$ satisfy

$$
\left[\begin{array}{ccc}
\eta_{0} & \eta_{1} & \eta_{2} \\
\eta_{1} & \eta_{2} & \eta_{3} \\
\eta_{2} & \eta_{3} & \eta_{4}
\end{array}\right] \succeq 0, \quad\left[\begin{array}{cc}
\eta_{1} & \eta_{2} \\
\eta_{2} & \eta_{3}
\end{array}\right] \succeq 0, \quad \eta_{0}+\eta_{4}=1
$$

The variables η_{i} can be interpreted as "generalized moments" with respect to the weight function $1 /\left(1+x^{4}\right)$, i.e.,

$$
\eta_{\alpha}=\int \frac{x^{\alpha}}{1+x^{4}} d \mu,
$$

The LMI constraints impose

$$
\int \frac{q^{2}(x)}{1+x^{4}} d \mu \geq 0, \quad \int \frac{x q^{2}(x)}{1+x^{4}} d \mu \geq 0
$$

Extensions to higher dimensions

Natural extensions to rational curves/surfaces in higher dimension.
Consider $O(3)$, the group of 3×3 orthogonal matrices of determinant one. This has two connected components.

There is a well-known double-cover of $S O(3)$ from $S U(2)$ (or S^{3}, the four-dimensional sphere), that yields a rational parametrization of 3×3 real orthogonal matrices (the quaternions).

We can use this to provide an SDP representation of the convex hull of $S O(3)$:
$\left[\begin{array}{c}Z_{11}+Z_{22}-Z_{33}-Z_{44} \\ 2 Z_{23}+2 Z_{14} \\ 2 Z_{24}-2 Z_{13}\end{array}\right.$

$$
\begin{gathered}
2 Z_{23}-2 Z_{14} \\
Z_{11}-Z_{22}+Z_{33}-Z_{44}
\end{gathered}
$$

$$
\left.\begin{array}{c}
2 Z_{24}+2 Z_{13} \\
2 Z_{34}-2 Z_{12} \\
Z_{11}-Z_{22}-Z_{33}+Z_{44}
\end{array}\right], \quad Z \succeq 0, \quad \operatorname{Tr} Z=1 .
$$

This is a convex set in \mathbb{R}^{9}.

Representable sets

Two good families of SDP-representable plane curves: "rigidly convex" (Helton-Vinnikov) and genus zero.

Are there others? Unifications?
Relations with earlier work of Scheiderer (and others)?

Summary

e A new class of SDP-representable sets.
Q A constructive procedure, interesting examples.
Q Appealing interpretations.
Q What is the role of singularities?
a Extensions to higher genus?
a How to obtain the "right" denominators in the Psatz?

