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Question: representability of convex sets

Existence and efficiency:

When is a convex set representable by conic optimization?

How to quantify the number of additional variables that are needed?

Given a convex set C , is it possible to repre-
sent it as

C = π(K ∩ L)

where K is a cone, L is an affine subspace,
and π is a linear map?
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Factorizations

Matrix factorizations

Given a matrix M ∈ Rm×n, can factorize it as M = AB, i.e.,

Rn B−→ Rk A−→ Rm

Ideally, k is small (matrix M is low-rank), so we’re factorizing through a
“small subspace.”

Why is this useful?

Principal component analysis (e.g., factorization of covariance matrix
of a Gaussian process)

System realization theory (e.g., factorization of the Hankel matrix)

And many others... Standard notion in linear algebra.
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Factorizations

More Factorizations...

However, often we impose further conditions on M = AB...

Norm conditions on the factors A,B:

Want factors A,B to be “small” in some norm
Well-studied topic in Banach space theory, through the notion of
factorization norms
E.g., the nuclear norm ‖M‖? :=

∑
k σk(M) has the variational

characterization

‖M‖? = min
A,B : M=AB

1

2
(‖A‖2

F + ‖B‖2
F )

Nonnegativity conditions:

Matrix M is (componentwise) nonnegative, and so must be the factors.
This is the nonnegative factorization problem (e.g., Berman-Plemmons
’74, Cohen-Rothblum ’93)
Let’s see this in more detail...
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Factorizations

Nonnegative factorizations and nonnegative rank

Given a nonnegative matrix M ∈ Rm×n, a factorization

M = AB

where A ∈ Rm×k , B ∈ Rk×n are also nonnegative.

The smallest such k is the nonnegative rank of the matrix M.

Can interpret as

Mij = eTi Mej = (AT ei )
T (Bej) = 〈ai , bj〉,

where ai := (AT ei ) ∈ Rk
+, bj := (Bej) ∈ Rk

+.

Many applications: probability/statistics, information theory, machine
learning, communication complexity, . . .

Very difficult problem, many heuristics exist.
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Factorizations Conic factorizations

Conic factorizations

We’re interested in a different class: conic factorizations [GPT11]

Let M ∈ Rm×n
+ be a nonnegative matrix, and K be a convex cone in Rk .

Then, we want M = AB, where

Rn
+

B−→ K A−→ Rm
+

M maps the nonnegative orthant into the nonnegative orthant.

For K = Rk
+, this is a standard nonnegative factorization.

In general, factorize a linear map through a “small cone”

Important special case: K is the cone of psd matrices...

Parrilo (MIT) Convexity, factorizations, and rank ILAS 2016 - Leuven 7 / 32



Factorizations Conic factorizations

Conic factorizations

We’re interested in a different class: conic factorizations [GPT11]

Let M ∈ Rm×n
+ be a nonnegative matrix, and K be a convex cone in Rk .

Then, we want M = AB, where

Rn
+

B−→ K A−→ Rm
+

M maps the nonnegative orthant into the nonnegative orthant.

For K = Rk
+, this is a standard nonnegative factorization.

In general, factorize a linear map through a “small cone”

Important special case: K is the cone of psd matrices...

Parrilo (MIT) Convexity, factorizations, and rank ILAS 2016 - Leuven 7 / 32



Factorizations Conic factorizations

Conic factorizations

We’re interested in a different class: conic factorizations [GPT11]

Let M ∈ Rm×n
+ be a nonnegative matrix, and K be a convex cone in Rk .

Then, we want M = AB, where

Rn
+

B−→ K A−→ Rm
+

M maps the nonnegative orthant into the nonnegative orthant.

For K = Rk
+, this is a standard nonnegative factorization.

In general, factorize a linear map through a “small cone”

Important special case: K is the cone of psd matrices...

Parrilo (MIT) Convexity, factorizations, and rank ILAS 2016 - Leuven 7 / 32



Factorizations Positive semidefinite rank

PSD rank of a nonnegative matrix

Let M ∈ Rm×n be a nonnegative matrix.

Definition [GPT11]: The PSD rank of M, denoted rankpsd , is the smallest
integer r for which there exists r × r PSD matrices {A1, . . . ,Am} and
{B1, . . . ,Bn} such that

Mij = traceAiBj , i = 1, . . . ,m j = 1, . . . , n.

(The maps are then given by x 7→
∑

i xiAi , and Y 7→ traceYBj .)

Natural definition, generalization of nonnegative rank.
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Factorizations Positive semidefinite rank

Example (I)

M =

0 1 1
1 0 1
1 1 0

 .
M admits a psd factorization of size 2:

A1 =

[
1 0
0 0

]
A2 =

[
0 0
0 1

]
A3 =

[
1 −1
−1 1

]
B1 =

[
0 0
0 1

]
B2 =

[
1 0
0 0

]
B3 =

[
1 1
1 1

]
.

One can easily check that the matrices Ai and Bj are positive semidefinite,
and that Mij = 〈Ai ,Bj〉. This factorization shows that rankpsd (M) ≤ 2,
and in fact rankpsd (M) = 2.
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Factorizations Positive semidefinite rank

Example (II)

Consider the matrix

M(a, b, c) =

a b c
c a b
b c a

 .
0 1 2 3 4

0

1

2

3

4

b

c

Usual rank of M(a, b, c) is 3, unless a = b = c (then, rank is 1).

One can show that

rankpsd (M(a, b, c)) ≤ 2 ⇐⇒ a2 + b2 + c2 ≤ 2(ab + bc + ac).
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Representations of convex sets

Back to representability...

Existence and efficiency:

When is a convex set representable by conic optimization?

How to quantify the number of additional variables that are needed?

Given a convex set C , is it possible to repre-
sent it as

C = π(K ∩ L)

where K is a cone, L is an affine subspace,
and π is a linear map?
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Representations of convex sets

Question: representability of convex sets

“Complicated” objects are sometimes easily described as “projections” of
“simpler” ones.

A general theme: algebraic varieties, unitaries/contractions, . . .
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Representations of convex sets Extended formulations

Extended formulations

These representations are usually called extended formulations.
Particularly relevant in combinatorial optimization (e.g., TSP).

Seminal work by Yannakakis (1991). He gave a beautiful characterization
(for LP) in terms of nonnegative factorizations, and used it to disprove the
existence of “symmetric” LPs for the TSP polytope.
Nice recent survey by Conforti-Cornuéjols-Zambelli (2010).

Our goal: to understand this phenomenon for convex optimization (SDP),
not just LP.
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Representations of convex sets Extended formulations

“Extended formulations” in semidefinite programming

Many convex sets can be modeled by SDP. Among others:

Sums of eigenvalues of symmetric matrices

Convex envelope of univariate polynomials

Multivariate polynomials that are sums of squares

Unit ball of matrix operator and nuclear norms

Geometric and harmonic means

(Some) orbitopes – convex hulls of group orbits
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Representations of convex sets Extended formulations

How to produce extended formulations?

Clever, non-obvious constructions

E.g., the KYP (Kalman-Yakubovich-Popov) lemma, LMI solution of
interpolation problems (e.g., AAK, Ball-Gohberg-Rodman), . . .
Work of Nesterov/Nemirovski, Boyd/Vandenberghe, Scherer,
Gahinet/Apkarian, Ben-Tal/Nemirovski, Sanyal/Sottile/Sturmfels, etc.

Systematic “lifting” techniques

Reformulation/linearization (Sherali-Adams, Lovasz-Schrijver)
Sum of squares (or moments), Positivstellensatz, (Lasserre, Putinar, P.)
Determinantal representations (Helton/Vinnikov, Nie)
Hyperbolic polynomials (Renegar)

Much research in this area. More recently, efforts towards understanding
the general case (not just specific constructions).

Parrilo (MIT) Convexity, factorizations, and rank ILAS 2016 - Leuven 15 / 32



Representations of convex sets Slack operators

Polytopes

What happens in the case of polytopes?

P = {x ∈ Rn : f Ti x ≤ 1}

(WLOG, compact with 0 ∈ intP).

Polytopes have a finite number of facets fi and vertices vj .
Define a nonnegative matrix, called the slack matrix of the polytope:

[SP ]ij = 1− f Ti vj , i = 1, . . . , |F | j = 1, . . . , |V |
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Representations of convex sets Slack operators

Example: hexagon (I)

Consider a regular hexagon in the plane.

It has 6 vertices, and 6 facets. Its slack matrix has rank 3, and is

SH =



0 0 1 2 2 1
1 0 0 1 2 2
2 1 0 0 1 2
2 2 1 0 0 1
1 2 2 1 0 0
0 1 2 2 1 0

 .

“Trivial” representation requires 6 facets. Can we do better?
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Representations of convex sets Factorizations and representability

Cone factorizations and representability

“Geometric” LP formulations exactly correspond to “algebraic”
factorizations of the slack matrix.

For polytopes, this amounts to a nonnegative factorization of the slack
matrix:

Sij = 〈ai , bj〉, i = 1, . . . , v , j = 1, . . . , f

where ai , bi are nonnegative vectors.

Theorem (Yannakakis 1991): The minimal lifting dimension of a polytope
is equal to the nonnegative rank of its slack matrix.
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Representations of convex sets Factorizations and representability

Example: hexagon (II)

Regular hexagon in the plane.

Its slack matrix is

SH =



0 0 1 2 2 1
1 0 0 1 2 2
2 1 0 0 1 2
2 2 1 0 0 1
1 2 2 1 0 0
0 1 2 2 1 0

 .

Nonnegative rank is 5.
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Representations of convex sets Factorizations and representability

Example: hexagon (III)

A nonnegative factorization:

SH =



1 0 1 0 0

1 0 0 0 1

0 0 0 1 2

0 1 0 0 1

0 1 1 0 0

0 0 2 1 0





0 0 0 1 2 1

1 2 1 0 0 0

0 0 1 1 0 0

0 1 0 0 1 0

1 0 0 0 0 1


.
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Representations of convex sets Factorizations and representability

Beyond LPs and nonnegative factorizations

LPs are nice, but what about broader representability questions?

In [GPT11], a generalization of Yannakakis’ theorem to the full convex
case. General theme:

“Geometric” extended formulations exactly correspond to “algebraic”
factorizations of a slack operator.

polytopes/LP convex sets/convex cones

slack matrix slack operators
vertices extreme points of C
facets extreme points of polar C ◦

nonnegative factorizations conic factorizations
Sij = 〈ai , bj〉, ai ≥ 0, bj ≥ 0 Sij = 〈ai , bj〉, ai ∈ K , bj ∈ K ∗
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Representations of convex sets Factorizations and representability

Polytopes, semidefinite programming, and factorizations

Even for polytopes, SDP representations can be interesting.

(Example: the stable set or independent set polytope of a graph. For perfect

graphs, efficient SDP representations exist, but no known subexponential LP.)

Thm: ([GPT 11]) Positive semidefinite rank of slack matrix exactly
characterizes the complexity of SDP-representability.

PSD factorizations of slack matrix ⇐⇒ SDP extended formulations
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Representations of convex sets Factorizations and representability

SDP representation of hexagon

A regular hexagon in the plane.

PSD rank of its slack matrix is 4.

Hexagon is the projection onto (x , y) of a 4× 4 spectrahedron:
1 x y t
x (1 + r)/2 s/2 r
y s/2 (1− r)/2 −s
t r −s 1

 � 0

Representation has nice symmetry properties (equivariance, [FSP14/15]).
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Positive semidefinite rank

Towards understanding psd rank

Generally difficult, since it’s semialgebraic (inequalities matter), and
symmetry group is “small”.

Basic properties

Dependence on field and topology of factorizations

Lower bounds on cone ranks

Special cases and extensions
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Positive semidefinite rank Basic properties

Basic inequalities

For any nonnegative matrix M

1

2

√
1 + 8 rank(M)− 1

2
≤ rankpsd(M) ≤ rank+(M).

Gap between rank+(M) and rankpsd(M) can be arbitrarily large:

Mij = (i − j)2 =

〈(
i2 −i
−i 1

)
,

(
1 j
j j2

)〉
has rankpsd(M) = 2, but rank+(M) = Ω(log n).

Arbitrarily large gaps between all pairs of ranks (rank, rank+ and rankpsd).
For slack matrices of polytopes, arbitrarily large gaps between rank and
rank+, and rank and rankpsd.
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Positive semidefinite rank Basic properties

Real and rational ranks can be different

If the matrix M has rational entries, sometimes it is natural to consider
only factors Ai ,Bi that are rational.

In general we have

rankpsd (M) ≤ rankpsd Q(M).

and inequality can be strict. Explicit examples (Fawzi-Gouveia-Robinson
arXiv:1404.4864).

Same question for nonnegative rank was open (since Cohen-Rothblum 93).
Finally settled a few weeks ago! (Chistikov et al., arXiv:1605.06848;
Shitov, arXiv:1605.07173). Furthermore, universality results!
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Positive semidefinite rank Basic properties

Bounding nonnegative/SDP rank

Factorization methods (e.g., local search) give upper bounds on ranks.

Also want techniques to lower bound the nonnegative rank of a matrix.

For nonnegative rank, some known bounds (e.g. rank bound,
combinatorial bounds, etc.).
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Positive semidefinite rank Basic properties

A convex lower bound for nonnegative rank [FP13]

Let A ∈ Rm×n
+ be a nonnegative matrix, and define

ν+(A) := max
W∈Rm×n

{
〈A,W 〉 :

[
I −W

−W T I

]
copositive

}
.

Then,

rank+(A) ≥
(
ν+(A)

‖A‖F

)2

Essentially, a kind of “nonnegative nuclear norm”

Convex, but hard... (membership in copositive cone is NP-hard!)

Approximate them using SDP!

Can be improved by “self-scaled” techniques (Fawzi-P. 2013), and extends
to other product-cone ranks (e.g., NN tensor rank, CP-rank, etc).
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Positive semidefinite rank Bounds and extensions

Lower bounding PSD rank?

Bounds on PSD rank are of high interest, since combinatorial methods
(based on sparsity patterns) don’t quite work.

But, a few unexpected difficulties...

In the PSD case, the underlying norm is non-atomic, and the
corresponding “obvious” inequalities do not hold...

“Noncommutative” trace positivity, quite complicated structure...

Nice links between rankpsd and quantum communication complexity,
mirroring the situation between rank+ and classical communication
complexity (e.g., Fiorini et al. (2011), Jain et al. (2011), Zhang (2012)).

In complexity-theoretic settings, recent strong results, see e.g.
Lee-Raghavendra-Steurer (2015).
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Positive semidefinite rank Bounds and extensions

The symmetric case

Given a symmetric M ∈ Rn×n, do there exist Ai � 0 such that

Mij = 〈Ai ,Aj〉 i , j = 1, . . . , n.

Equivalently, is M the Gram matrix of a set of psd matrices?

Dual to trace positivity of noncommutative polynomials (e.g., Klep,
Burgdorf, etc.)

Of interest in quantum information (tomorrow’s talk by M. Laurent)

Many open questions; related to outstanding conjectures of Connes
and Tsirelson
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Positive semidefinite rank Bounds and extensions

Many open questions!

Computation, computation, computation!

Efficient/practical lower/upper bounds?

Approximate factorizations?

Topology of space of factorizations?

Structured matrices? PSD-rank preservers?

Are current constructive methods (e.g., SOS) far from optimal?
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END

Summary

Interesting new class of factorization problems

Interplay of algebraic and geometric aspects

Many open questions, lots to do!
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This book provides a self-contained, accessible introduction to the mathematical 
advances and challenges resulting from the use of semidefinite programming in 
polynomial optimization. This quickly evolving research area with contributions from the 
diverse fields of convex geometry, algebraic geometry, and optimization is known as 
convex algebraic geometry.

Each chapter addresses a fundamental aspect of convex algebraic geometry. The book 
begins with an introduction to nonnegative polynomials and sums of squares and their 
connections to semidefinite programming and quickly advances to several areas at the 
forefront of current research. These include

•   semidefinite representability of convex sets,
•   duality theory from the point of view of algebraic geometry, and 
•   nontraditional topics such as sums of squares of complex forms and 

noncommutative sums of squares polynomials.

Suitable for a class or seminar, with exercises aimed at teaching the topics to 
beginners, Semidefinite Optimization and Convex Algebraic Geometry serves as a point 

of entry into the subject for readers from multiple communities such 
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Summary

Interesting new class of factorization problems

Interplay of algebraic and geometric aspects

Many open questions, lots to do!
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