Convex sets, matrix factorizations and positive semidefinite rank

Pablo A. Parrilo
Laboratory for Information and Decision Systems Electrical Engineering and Computer Science Massachusetts Institute of Technology

Based on joint work with
Hamza Fawzi (MIT \rightarrow U. Cambridge), João Gouveia (U. Coimbra), James Saunderson (Monash U.) and Rekha Thomas (U. Washington)

$$
\text { ILAS } 2016 \text { - Leuven }
$$

Question: representability of convex sets

Existence and efficiency:

- When is a convex set representable by conic optimization?
- How to quantify the number of additional variables that are needed?

Given a convex set C, is it possible to represent it as

$$
C=\pi(K \cap L)
$$

where K is a cone, L is an affine subspace, and π is a linear map?

Outline

(1) Factorizations

- Conic factorizations
- Positive semidefinite rank
(2) Representations of convex sets
- Extended formulations
- Slack operators
- Factorizations and representability
(3) Positive semidefinite rank
- Basic properties
- Bounds and extensions

Matrix factorizations

Given a matrix $M \in \mathbb{R}^{m \times n}$, can factorize it as $M=A B$, i.e.,

$$
\mathbb{R}^{n} \xrightarrow{B} \mathbb{R}^{k} \xrightarrow{A} \mathbb{R}^{m}
$$

Ideally, k is small (matrix M is low-rank), so we're factorizing through a "small subspace."

Why is this useful?

- Principal component analysis (e.g., factorization of covariance matrix of a Gaussian process)
- System realization theory (e.g., factorization of the Hankel matrix) And many others... Standard notion in linear algebra.

Matrix factorizations

Given a matrix $M \in \mathbb{R}^{m \times n}$, can factorize it as $M=A B$, i.e.,

$$
\mathbb{R}^{n} \xrightarrow{B} \mathbb{R}^{k} \xrightarrow{A} \mathbb{R}^{m}
$$

Ideally, k is small (matrix M is low-rank), so we're factorizing through a "small subspace."

Why is this useful?

- Principal component analysis (e.g., factorization of covariance matrix of a Gaussian process)
- System realization theory (e.g., factorization of the Hankel matrix) And many others... Standard notion in linear algebra.

More Factorizations...

However, often we impose further conditions on $M=A B \ldots$

- Norm conditions on the factors A, B :
- Want factors A, B to be "small" in some norm
- Well-studied topic in Banach space theory, through the notion of factorization norms
- E.g., the nuclear norm $\|M\|_{\star}:=\sum_{k} \sigma_{k}(M)$ has the variational characterization

$$
\|M\|_{\star}=\min _{A, B: M=A B} \frac{1}{2}\left(\|A\|_{F}^{2}+\|B\|_{F}^{2}\right)
$$

- Nonnegativity conditions:
- Matrix M is (componentwise) nonnegative, and so must be the factors.
- This is the nonnegative factorization problem (e.g., Berman-Plemmons '74, Cohen-Rothblum '93)
- Let's see this in more detail...

More Factorizations...

However, often we impose further conditions on $M=A B \ldots$

- Norm conditions on the factors A, B :
- Want factors A, B to be "small" in some norm
- Well-studied topic in Banach space theory, through the notion of factorization norms
- E.g., the nuclear norm $\|M\|_{\star}:=\sum_{k} \sigma_{k}(M)$ has the variational characterization

$$
\|M\|_{\star}=\min _{A, B: M=A B} \frac{1}{2}\left(\|A\|_{F}^{2}+\|B\|_{F}^{2}\right)
$$

- Nonnegativity conditions:
- Matrix M is (componentwise) nonnegative, and so must be the factors.
- This is the nonnegative factorization problem (e.g., Berman-Plemmons '74, Cohen-Rothblum '93)
- Let's see this in more detail.

More Factorizations...

However, often we impose further conditions on $M=A B \ldots$

- Norm conditions on the factors A, B :
- Want factors A, B to be "small" in some norm
- Well-studied topic in Banach space theory, through the notion of factorization norms
- E.g., the nuclear norm $\|M\|_{\star}:=\sum_{k} \sigma_{k}(M)$ has the variational characterization

$$
\|M\|_{\star}=\min _{A, B: M=A B} \frac{1}{2}\left(\|A\|_{F}^{2}+\|B\|_{F}^{2}\right)
$$

- Nonnegativity conditions:
- Matrix M is (componentwise) nonnegative, and so must be the factors.
- This is the nonnegative factorization problem (e.g., Berman-Plemmons '74, Cohen-Rothblum '93)
- Let's see this in more detail...

Nonnegative factorizations and nonnegative rank

Given a nonnegative matrix $M \in \mathbb{R}^{m \times n}$, a factorization

$$
M=A B
$$

where $A \in \mathbb{R}^{m \times k}, B \in \mathbb{R}^{k \times n}$ are also nonnegative.

- The smallest such k is the nonnegative rank of the matrix M.
- Can interpret as

$$
M_{i j}=e_{i}^{T} M e_{j}=\left(A^{T} e_{i}\right)^{T}\left(B e_{j}\right)=\left\langle a_{i}, b_{j}\right\rangle
$$

where $a_{i}:=\left(A^{T} e_{i}\right) \in \mathbb{R}_{+}^{k}, b_{j}:=\left(B e_{j}\right) \in \mathbb{R}_{+}^{k}$.

- Many applications: probability/statistics, information theory, machine learning, communication complexity, ...
- Very difficult problem, many heuristics exist.

Conic factorizations

We're interested in a different class: conic factorizations [GPT11]
Let $M \in \mathbb{R}_{+}^{m \times n}$ be a nonnegative matrix, and \mathcal{K} be a convex cone in \mathbb{R}^{k}. Then, we want $M=A B$, where

$$
\mathbb{R}_{+}^{n} \xrightarrow{B} \mathcal{K} \xrightarrow{A} \mathbb{R}_{+}^{m}
$$

- M maps the nonnegative orthant into the nonnegative orthant.
- For $\mathcal{K}=\mathbb{R}_{\perp}^{k}$, this is a standard nonnegative factorization.
- In general, factorize a linear map through a "small cone"

Important special case: \mathcal{K} is the cone of psd matrices...

Conic factorizations

We're interested in a different class: conic factorizations [GPT11]
Let $M \in \mathbb{R}_{+}^{m \times n}$ be a nonnegative matrix, and \mathcal{K} be a convex cone in \mathbb{R}^{k}. Then, we want $M=A B$, where

$$
\mathbb{R}_{+}^{n} \xrightarrow{B} \mathcal{K} \xrightarrow{A} \mathbb{R}_{+}^{m}
$$

- M maps the nonnegative orthant into the nonnegative orthant.
- For $\mathcal{K}=\mathbb{R}_{+}^{k}$, this is a standard nonnegative factorization.
- In general, factorize a linear map through a "small cone"

Important special case: \mathcal{K} is the cone of psd matrices.

Conic factorizations

We're interested in a different class: conic factorizations [GPT11]
Let $M \in \mathbb{R}_{+}^{m \times n}$ be a nonnegative matrix, and \mathcal{K} be a convex cone in \mathbb{R}^{k}. Then, we want $M=A B$, where

$$
\mathbb{R}_{+}^{n} \xrightarrow{B} \mathcal{K} \xrightarrow{A} \mathbb{R}_{+}^{m}
$$

- M maps the nonnegative orthant into the nonnegative orthant.
- For $\mathcal{K}=\mathbb{R}_{+}^{k}$, this is a standard nonnegative factorization.
- In general, factorize a linear map through a "small cone" Important special case: \mathcal{K} is the cone of psd matrices...

PSD rank of a nonnegative matrix

Let $M \in \mathbb{R}^{m \times n}$ be a nonnegative matrix.
Definition [GPT11]: The PSD rank of M, denoted rank ${ }_{p s d}$, is the smallest integer r for which there exists $r \times r$ PSD matrices $\left\{A_{1}, \ldots, A_{m}\right\}$ and $\left\{B_{1}, \ldots, B_{n}\right\}$ such that

$$
M_{i j}=\operatorname{trace} A_{i} B_{j}, \quad i=1, \ldots, m \quad j=1, \ldots, n
$$

(The maps are then given by $x \mapsto \sum_{i} x_{i} A_{i}$, and $Y \mapsto$ trace $Y B_{j}$.)
Natural definition, generalization of nonnegative rank.

PSD rank of a nonnegative matrix

Let $M \in \mathbb{R}^{m \times n}$ be a nonnegative matrix.
Definition [GPT11]: The PSD rank of M, denoted rank ${ }_{p s d}$, is the smallest integer r for which there exists $r \times r$ PSD matrices $\left\{A_{1}, \ldots, A_{m}\right\}$ and $\left\{B_{1}, \ldots, B_{n}\right\}$ such that

$$
M_{i j}=\operatorname{trace} A_{i} B_{j}, \quad i=1, \ldots, m \quad j=1, \ldots, n
$$

(The maps are then given by $x \mapsto \sum_{i} x_{i} A_{i}$, and $Y \mapsto \operatorname{trace} Y B_{j}$.)
Natural definition, generalization of nonnegative rank.

PSD rank of a nonnegative matrix

Let $M \in \mathbb{R}^{m \times n}$ be a nonnegative matrix.
Definition [GPT11]: The PSD rank of M, denoted rank ${ }_{p s d}$, is the smallest integer r for which there exists $r \times r$ PSD matrices $\left\{A_{1}, \ldots, A_{m}\right\}$ and $\left\{B_{1}, \ldots, B_{n}\right\}$ such that

$$
M_{i j}=\operatorname{trace} A_{i} B_{j}, \quad i=1, \ldots, m \quad j=1, \ldots, n
$$

(The maps are then given by $x \mapsto \sum_{i} x_{i} A_{i}$, and $Y \mapsto \operatorname{trace} Y B_{j}$.)
Natural definition, generalization of nonnegative rank.

Example (I)

$$
M=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

M admits a psd factorization of size 2:

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \quad A_{2}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \quad A_{3}=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] \\
& B_{1}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \quad B_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \quad B_{3}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] .
\end{aligned}
$$

One can easily check that the matrices A_{i} and B_{j} are positive semidefinite, and that $M_{i j}=\left\langle A_{i}, B_{j}\right\rangle$. This factorization shows that rank psd $(M) \leq 2$, and in fact $\operatorname{rank}_{\text {psd }}(M)=2$.

Example (I)

$$
M=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

M admits a psd factorization of size 2 :

$$
\begin{array}{ll}
A_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] & A_{2}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
\end{array} A_{3}=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] .
$$

One can easily check that the matrices A_{i} and B_{j} are positive semidefinite, and that $M_{i j}=\left\langle A_{i}, B_{j}\right\rangle$. This factorization shows that $\operatorname{rank}_{\text {psd }}(M) \leq 2$, and in fact rank psd $(M)=2$.

Example (II)

Consider the matrix

$$
M(a, b, c)=\left[\begin{array}{lll}
a & b & c \\
c & a & b \\
b & c & a
\end{array}\right]
$$

- Usual rank of $M(a, b, c)$ is 3 , unless $a=b=c$ (then, rank is 1).
- One can show that

$$
\operatorname{rank}_{\mathrm{psd}}(M(a, b, c)) \leq 2 \quad \Longleftrightarrow \quad a^{2}+b^{2}+c^{2} \leq 2(a b+b c+a c)
$$

Back to representability...

Existence and efficiency:

- When is a convex set representable by conic optimization?
- How to quantify the number of additional variables that are needed?

Given a convex set C, is it possible to represent it as

$$
C=\pi(K \cap L)
$$

where K is a cone, L is an affine subspace, and π is a linear map?

Question: representability of convex sets

"Complicated" objects are sometimes easily described as "projections" of "simpler" ones.

A general theme: algebraic varieties, unitaries/contractions, ...

Extended formulations

These representations are usually called extended formulations. Particularly relevant in combinatorial optimization (e.g., TSP).

Seminal work by Yannakakis (1991). He gave a beautiful characterization (for LP) in terms of nonnegative factorizations, and used it to disprove the existence of "symmetric" LPs for the TSP polytope. Nice recent survey by Conforti-Cornuéjols-Zambelli (2010).

Our goal: to understand this phenomenon for convex optimization (SDP), not just LP.

"Extended formulations" in semidefinite programming

Many convex sets can be modeled by SDP. Among others:

- Sums of eigenvalues of symmetric matrices
- Convex envelope of univariate polynomials
- Multivariate polynomials that are sums of squares
- Unit ball of matrix operator and nuclear norms
- Geometric and harmonic means
- (Some) orbitopes - convex hulls of group orbits

How to produce extended formulations?

- Clever, non-obvious constructions
- E.g., the KYP (Kalman-Yakubovich-Popov) lemma, LMI solution of interpolation problems (e.g., AAK, Ball-Gohberg-Rodman), ...
- Work of Nesterov/Nemirovski, Boyd/Vandenberghe, Scherer, Gahinet/Apkarian, Ben-Tal/Nemirovski, Sanyal/Sottile/Sturmfels, etc.
- Systematic "lifting" techniques
- Reformulation/linearization (Sherali-Adams, Lovasz-Schrijver)
- Sum of squares (or moments), Positivstellensatz, (Lasserre, Putinar, P.)
- Determinantal representations (Helton/Vinnikov, Nie)
- Hyperbolic polynomials (Renegar)

Much research in this area. More recently, efforts towards understanding the general case (not just specific constructions).

Polytopes

What happens in the case of polytopes?

$$
P=\left\{x \in \mathbb{R}^{n}: f_{i}^{T} x \leq 1\right\}
$$

(WLOG, compact with $0 \in \operatorname{int} P$).
Polytopes have a finite number of facets f_{i} and vertices v_{j}. Define a nonnegative matrix, called the slack matrix of the polytope:

$$
\left[S_{P}\right]_{i j}=1-f_{i}^{T} v_{j}, \quad i=1, \ldots,|F| \quad j=1, \ldots,|V|
$$

Example: hexagon (I)

Consider a regular hexagon in the plane.

It has 6 vertices, and 6 facets. Its slack matrix has rank 3 , and is

$$
S_{H}=\left(\begin{array}{llllll}
0 & 0 & 1 & 2 & 2 & 1 \\
1 & 0 & 0 & 1 & 2 & 2 \\
2 & 1 & 0 & 0 & 1 & 2 \\
2 & 2 & 1 & 0 & 0 & 1 \\
1 & 2 & 2 & 1 & 0 & 0 \\
0 & 1 & 2 & 2 & 1 & 0
\end{array}\right)
$$

"Trivial" representation requires 6 facets. Can we do better?

Cone factorizations and representability

"Geometric" LP formulations exactly correspond to "algebraic" factorizations of the slack matrix.

For polytopes, this amounts to a nonnegative factorization of the slack matrix:

$$
S_{i j}=\left\langle a_{i}, b_{j}\right\rangle, \quad i=1, \ldots, v, \quad j=1, \ldots, f
$$

where a_{i}, b_{i} are nonnegative vectors.

Theorem (Yannakakis 1991): The minimal lifting dimension of a polytope is equal to the nonnegative rank of its slack matrix.

Example: hexagon (II)

Regular hexagon in the plane.

Its slack matrix is

$$
S_{H}=\left(\begin{array}{llllll}
0 & 0 & 1 & 2 & 2 & 1 \\
1 & 0 & 0 & 1 & 2 & 2 \\
2 & 1 & 0 & 0 & 1 & 2 \\
2 & 2 & 1 & 0 & 0 & 1 \\
1 & 2 & 2 & 1 & 0 & 0 \\
0 & 1 & 2 & 2 & 1 & 0
\end{array}\right)
$$

Nonnegative rank is 5 .

Example: hexagon (III)

A nonnegative factorization:

$$
S_{H}=\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 2 \\
0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 & 0
\end{array}\right)\left(\begin{array}{llllll}
0 & 0 & 0 & 1 & 2 & 1 \\
1 & 2 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

Beyond LPs and nonnegative factorizations

LPs are nice, but what about broader representability questions?
In [GPT11], a generalization of Yannakakis' theorem to the full convex case. General theme:
"Geometric" extended formulations exactly correspond to "algebraic" factorizations of a slack operator.

polytopes/LP	convex sets/convex cones
slack matrix	slack operators
vertices	extreme points of C
facets	extreme points of polar C°
nonnegative factorizations	conic factorizations
$S_{i j}=\left\langle a_{i}, b_{j}\right\rangle, \quad a_{i} \geq 0, b_{j} \geq 0$	$S_{i j}=\left\langle a_{i}, b_{j}\right\rangle, \quad a_{i} \in K, b_{j} \in K^{*}$

Polytopes, semidefinite programming, and factorizations

Even for polytopes, SDP representations can be interesting.
(Example: the stable set or independent set polytope of a graph. For perfect graphs, efficient SDP representations exist, but no known subexponential LP.)

> Thm: ([GPT 11]) Positive semidefinite rank of slack matrix exactly characterizes the complexity of SDP-representability.

Polytopes, semidefinite programming, and factorizations

Even for polytopes, SDP representations can be interesting.
(Example: the stable set or independent set polytope of a graph. For perfect graphs, efficient SDP representations exist, but no known subexponential LP.)

Thm: ([GPT 11]) Positive semidefinite rank of slack matrix exactly characterizes the complexity of SDP-representability.

PSD factorizations of slack matrix SDP extended formulations

SDP representation of hexagon

A regular hexagon in the plane. PSD rank of its slack matrix is 4 .

Hexagon is the projection onto (x, y) of a 4×4 spectrahedron:

[^0]
SDP representation of hexagon

A regular hexagon in the plane. PSD rank of its slack matrix is 4 .

Hexagon is the projection onto (x, y) of a 4×4 spectrahedron:

$$
\left[\begin{array}{cccc}
1 & x & y & t \\
x & (1+r) / 2 & s / 2 & r \\
y & s / 2 & (1-r) / 2 & -s \\
t & r & -s & 1
\end{array}\right] \succeq 0
$$

Representation has nice symmetry properties (equivariance, [FSP14/15]).

Towards understanding psd rank

Generally difficult, since it's semialgebraic (inequalities matter), and symmetry group is "small".

- Basic properties
- Dependence on field and topology of factorizations
- Lower bounds on cone ranks
- Special cases and extensions

Basic inequalities

- For any nonnegative matrix M

$$
\frac{1}{2} \sqrt{1+8 \operatorname{rank}(M)}-\frac{1}{2} \leq \operatorname{rank}_{p s d}(M) \leq \operatorname{rank}_{+}(M)
$$

- Gap between rank ${ }_{+}(M)$ and rank $_{p s d}(M)$ can be arbitrarily large:

$$
M_{i j}=(i-j)^{2}=\left\langle\left(\begin{array}{rr}
i^{2} & -i \\
-i & 1
\end{array}\right),\left(\begin{array}{rr}
1 & j \\
j & j^{2}
\end{array}\right)\right\rangle
$$

has $\operatorname{rank}_{p s d}(M)=2$, but rank $(M)=\Omega(\log n)$.
Arbitrarily large gaps between all pairs of ranks (rank, rank ${ }_{+}$and rank ${ }_{\text {psd }}$). For slack matrices of polytopes, arbitrarily large gaps between rank and rank $_{+}$, and rank and rank ${ }_{\text {psd }}$.

Real and rational ranks can be different

If the matrix M has rational entries, sometimes it is natural to consider only factors A_{i}, B_{i} that are rational.

In general we have

$$
\operatorname{rank}_{\mathrm{psd}}(M) \leq \operatorname{rank}_{\mathrm{psd}}^{\mathbb{Q}}(M) .
$$

and inequality can be strict. Explicit examples (Fawzi-Gouveia-Robinson arXiv:1404.4864)

Same question for nonnegative rank was open (since Cohen-Rothblum 93). Finally settled a few weeks ago! (Chistikov et al., arXiv:1605.06848; Shitov, arXiv:1605.07173). Furthermore, universality results!

Real and rational ranks can be different

If the matrix M has rational entries, sometimes it is natural to consider only factors A_{i}, B_{i} that are rational.

In general we have

$$
\operatorname{rank}_{\mathrm{psd}}(M) \leq \operatorname{rank}_{\mathrm{psd}}^{\mathbb{Q}}(M)
$$

and inequality can be strict. Explicit examples (Fawzi-Gouveia-Robinson arXiv:1404.4864).

Same question for nonnegative rank was open (since Cohen-Rothblum 93). Finally settled a few weeks ago! (Chistikov et al., arXiv:1605.06848; Shitov, arXiv:1605.07173). Furthermore, universality results!

Real and rational ranks can be different

If the matrix M has rational entries, sometimes it is natural to consider only factors A_{i}, B_{i} that are rational.

In general we have

$$
\operatorname{rank}_{\mathrm{psd}}(M) \leq \operatorname{rank}_{\mathrm{psd}} \mathbb{Q}(M)
$$

and inequality can be strict. Explicit examples (Fawzi-Gouveia-Robinson arXiv:1404.4864).

Same question for nonnegative rank was open (since Cohen-Rothblum 93). Finally settled a few weeks ago! (Chistikov et al., arXiv:1605.06848; Shitov, arXiv:1605.07173). Furthermore, universality results!

Bounding nonnegative/SDP rank

Factorization methods (e.g., local search) give upper bounds on ranks. Also want techniques to lower bound the nonnegative rank of a matrix. For nonnegative rank, some known bounds (e.g. rank bound, combinatorial bounds, etc.)

Bounding nonnegative/SDP rank

Factorization methods (e.g., local search) give upper bounds on ranks. Also want techniques to lower bound the nonnegative rank of a matrix.

For nonnegative rank, some known bounds (e.g. rank bound, combinatorial bounds, etc.).

A convex lower bound for nonnegative rank [FP13]

Let $A \in \mathbb{R}_{+}^{m \times n}$ be a nonnegative matrix, and define

$$
\nu_{+}(A):=\max _{W \in \mathbb{R}^{m \times n}}\left\{\langle A, W\rangle:\left[\begin{array}{cc}
I & -W \\
-W^{T} & I
\end{array}\right] \text { copositive }\right\} .
$$

Then,

$$
\operatorname{rank}_{+}(A) \geq\left(\frac{\nu_{+}(A)}{\|A\|_{F}}\right)^{2}
$$

- Essentially, a kind of "nonnegative nuclear norm"
- Convex, but hard... (membership in copositive cone is NP-hard!)

Approximate them using SDP!
Can be improved by "self-scaled" techniques (Fawzi-P. 2013), and extends to other product-cone ranks (e.g., NN tensor rank, CP-rank, etc).

Lower bounding PSD rank?

Bounds on PSD rank are of high interest, since combinatorial methods (based on sparsity patterns) don't quite work.

But, a few unexpected difficulties...

- In the PSD case, the underlying norm is non-atomic, and the corresponding "obvious" inequalities do not hold...
- "Noncommutative" trace positivity, quite complicated structure...

Nice links between rank ${ }_{p s d}$ and quantum communication complexity, mirroring the situation between rank ${ }_{+}$and classical communication complexity (e.g., Fiorini et al. (2011), Jain et al. (2011), Zhang (2012)). In complexity-theoretic settings, recent strong results, see e.g. Lee-Raghavendra-Steurer (2015).

The symmetric case

Given a symmetric $M \in \mathbb{R}^{n \times n}$, do there exist $A_{i} \succeq 0$ such that

$$
M_{i j}=\left\langle A_{i}, A_{j}\right\rangle \quad i, j=1, \ldots, n
$$

Equivalently, is M the Gram matrix of a set of psd matrices?

- Dual to trace positivity of noncommutative polynomials (e.g., Klep, Burgdorf, etc.)
- Of interest in quantum information (tomorrow's talk by M. Laurent)
- Many open questions; related to outstanding conjectures of Connes and Tsirelson

Many open questions!

- Computation, computation, computation!
- Efficient/practical lower/upper bounds?
- Approximate factorizations?
- Topology of space of factorizations?
- Structured matrices? PSD-rank preservers?
- Are current constructive methods (e.g., SOS) far from optimal?

Many open questions!

- Computation, computation, computation!
- Efficient/practical lower/upper bounds?
- Approximate factorizations?
- Topology of space of factorizations?
- Structured matrices? PSD-rank preservers?
- Are current constructive methods (e.g., SOS) far from optimal?

Summary

- Interesting new class of factorization problems
- Interplay of algebraic and geometric aspects
- Many open questions, lots to do!

you want to know more:

- ''. Fawzi, J. Gouveia, P.A. Parrilo, R. Robinson, R. Thomas, Positive semidefinite rank Mathematical Programming, 153:1, 2015. arXiv:1407.4095
- J. Gouveia, P.A. Parrilo, R. Thomas, Lifts of convex sets and cone factorizations, Mathematics of Operations Research, 38:2, 2013. arXiv:1111.3164.
- SIAM book SDP and convex algebraic geometry (Helton/P./Nie/Sturmfels/Thomas NSF FRG), available online.

Summary

- Interesting new class of factorization problems
- Interplay of algebraic and geometric aspects
- Many open questions, lots to do!

If you want to know more:

- H. Fawzi, J. Gouveia, P.A. Parrilo, R. Robinson, R. Thomas, Positive semidefinite rank, Mathematical Programming, 153:1, 2015. arXiv:1407.4095.
- J. Gouveia, P.A. Parrilo, R. Thomas, Lifts of convex sets and cone factorizations, Mathematics of Operations Research, 38:2, 2013. arXiv:1111.3164.
- SIAM book SDP and convex algebraic geometry (Helton/P./Nie/Sturmfels/Thomas NSF FRG), available online.

Thanks for your attention!

[^0]: Representation has nice symmetry properties (equivariance, [FSP14/15]).

