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This talk

Convex sets with algebraic descriptions

The role of semidefinite programming and sums

of squares

Unifying idea: convex hull of algebraic varieties

Examples and applications throughout

Discuss results, but also open questions

Connections with other areas of mathematics
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Convex sets: geometry vs. algebra

The geometric theory of convex sets (e.g., Minkowski, Carathéodory,

Fenchel) is very rich and well-understood.

Enormous importance in applied mathematics and engineering, in particular

in optimization.

But, what if we are concerned with the representation of these geometric

objects? For instance, basic semialgebraic sets?

How do the algebraic, geometric, and computational aspects interact?
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The polyhedral case

Consider first the case of polyhedra, which are described by finitely many

linear inequalities {x ∈ R
n : aT

i x ≤ bi}.

Behave well under projections (Fourier-Motzkin)

Farkas lemma (or duality) gives emptiness certificates

Good associated computational techniques

Optimization over polyhedra is linear programming (LP)
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The polyhedral case

Consider first the case of polyhedra, which are described by finitely many

linear inequalities {x ∈ R
n : aT

i x ≤ bi}.

Behave well under projections (Fourier-Motzkin)

Farkas lemma (or duality) gives emptiness certificates

Good associated computational techniques

Optimization over polyhedra is linear programming (LP)

Great. But how to move away from linearity? For instance, if we want

convex sets described by polynomial inequalities?

Claim: semidefinite programming is an essential tool.
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Semidefinite programming (SDP, LMIs)

A broad generalization of LP to symmetric matrices

minTrCX s.t. X ∈ L ∩ Sn
+

PSD cone

O

L

Intersection of an affine subspace L and the cone of positive

semidefinite matrices.

Lots of applications. A true“revolution” in computational methods for

engineering applications

Originated in control theory and combinatorial optimization. Nowadays,

applied everywhere.

Convex finite dimensional optimization. Nice duality theory.

Essentially, solvable in polynomial time (interior point, etc.)
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Example

Consider the feasible set of the SDP:
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



x 0 y
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


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Convex, but not necessarily polyhedral

In general, piecewise-smooth

Determinant vanishes on the boundary

In this case, the determinant is the elliptic curve x − x3 = y2.
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Symbolic vs. numerical computation

An ongoing discussion. Clearly, both have advantages/disadvantages.

“Exact solutions”vs. “approximations”

“Input data often inexact”

“Global”vs. “local”. One vs. all solutions.

Computational models: bits vs. reals. Encoding of solutions.

“Best”method depends on the context. Hybrid symbolic-numeric methods

are an interesting possibility.

SDP bring some interesting new twists.
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Algebraic aspects of SDP

In LPs with rational data, the optimal solution is rational. Not so for SDP.

Optimal solutions of relatively small SDPs generically have minimum

defining polynomials of very high degree.

Example (von Bothmer and Ranestad): For n = 20, m = 105, the

algebraic degree of the optimal solution is ≈ 1.67 × 1041.

Explicit algebraic representations are absolutely impossible to compute

(even without worrying about coefficient size!).

Nevertheless, interior point methods yield arbitrary precision numerical

approximations!

SDP provides an efficient, and numerically convenient encoding.

Representation does not pay the price of high algebraic complexity.

For more about the algebraic degree of SDP, see Nie-Ranestad-Sturmfels

(arXiv:math/0611562) and von Bothmer-Ranestad (arXiv:math.AG/0701877).
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Semidefinite representations

A natural question in convex optimization:

What sets can be represented using semidefinite programming?
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Semidefinite representations

A natural question in convex optimization:

What sets can be represented using semidefinite programming?

In the LP case, well-understood question: finite number of extreme points

(polyhedral sets)
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Semidefinite representations

A natural question in convex optimization:

What sets can be represented using semidefinite programming?

In the LP case, well-understood question: finite number of extreme points

(polyhedral sets)

Are there“obstructions” to SDP representability?
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Known SDP-representable sets

Many interesting sets are known to be

SDP-representable (e.g., polyhedra, convex

quadratics, matrix norms, etc.)

Preserved by“natural”properties: affine

transformations, convex hull, polarity, etc.

Several known structural results (e.g., facial

exposedness)

Work of Nesterov-Nemirovski, Ramana, Tunçel, Güler,

Renegar, Chua, etc.
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Existing results

Obvious necessary conditions: S must be convex and semialgebraic.
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Existing results

Obvious necessary conditions: S must be convex and semialgebraic.

Several versions of the problem:

Exact vs. approximate representations.

“Direct” (non-lifted) representations: no additional variables.

x ∈ S ⇔ A0 +
∑

i

xiAi � 0

“Lifted” representations: can use extra variables (projection)

x ∈ S ⇔ ∃y s.t. A0 +
∑

i

xiAi +
∑

yjBj � 0

Projection helps a lot!
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Liftings and projections

Often,“simpler”descriptions of convex sets from higher-dimensional spaces.

Ex: The n-dimensional crosspolytope (ℓ1 unit ball). Requires 2n

linear inequalities, of the form

±x1 ± x2 ± · · · ± xn ≤ 1.

However, can efficiently represent it as the projection (on x) of:

{(x, y) ∈ R
2n,

n
∑

i=1

yi ≤ 1, −yi ≤ xi ≤ yi i = 1, . . . , n}

Only 2n variables, and 2n + 1 constraints!

In convexity, elimination is not always a good idea.

Quite the opposite, it is often advantageous to go to higher-dimensional

spaces, where descriptions (can) become simpler.
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Exact representations: direct case

x ∈ S ⇔ A0 +
∑

i

xiAi � 0
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Exact representations: direct case

x ∈ S ⇔ A0 +
∑

i

xiAi � 0

Necessary condition: “rigid convexity.” Every line through the set must

intersect the Zariski closure of the boundary a constant number of times

(equal to the degree of the curve).

[Assume A0 ≻ 0, and let xi = tβi. Then

q(t) := det(A0 +
∑

xiAi) = det(A0 + t ·
∑

βiAi) has all its d roots real.]
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Exact representations: direct case

x ∈ S ⇔ A0 +
∑

i

xiAi � 0

Necessary condition: “rigid convexity.” Every line through the set must

intersect the Zariski closure of the boundary a constant number of times

(equal to the degree of the curve).

[Assume A0 ≻ 0, and let xi = tβi. Then

q(t) := det(A0 +
∑

xiAi) = det(A0 + t ·
∑

βiAi) has all its d roots real.]

Helton & Vinnikov (2004) proved that in R
2, this is also sufficient.

Related to hyperbolic polynomials and the Lax conjecture (Güler, Renegar,

Lewis-P.-Ramana 2005)

For higher dimensions the problem is open.
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Representations of hyperbolic polynomials

A homogeneous polynomial p(x) ∈ R[x1, . . . , xn] is hyperbolic with respect

to the direction e ∈ R
n if t 7→ p(x − te) has only real roots for all x ∈ R

n.
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Representations of hyperbolic polynomials

A homogeneous polynomial p(x) ∈ R[x1, . . . , xn] is hyperbolic with respect

to the direction e ∈ R
n if t 7→ p(x − te) has only real roots for all x ∈ R

n.

Ex: Let A, B, C be symmetric matrices, with A ≻ 0. The polynomial

p(x, y, z) = det(Ax + By + Cz)

is hyperbolic wrt e = (1, 0, 0) (eigenvalues of symm. matrices are real).
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Representations of hyperbolic polynomials

A homogeneous polynomial p(x) ∈ R[x1, . . . , xn] is hyperbolic with respect

to the direction e ∈ R
n if t 7→ p(x − te) has only real roots for all x ∈ R

n.

Ex: Let A, B, C be symmetric matrices, with A ≻ 0. The polynomial

p(x, y, z) = det(Ax + By + Cz)

is hyperbolic wrt e = (1, 0, 0) (eigenvalues of symm. matrices are real).

Thm (“Lax Conjecture”): If p(x, y, z) is hyperbolic wrt e, then it has such

a determinantal representation.
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Exact representations: lifted case

x ∈ S ⇔ ∃y s.t. A0 +
∑

i

xiAi +
∑

yjBj � 0
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Exact representations: lifted case

x ∈ S ⇔ ∃y s.t. A0 +
∑

i

xiAi +
∑

yjBj � 0

No known nontrivial obstructions.

Does every convex basic SA set have a (lifted) exact SDP representation?
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Exact representations: lifted case

x ∈ S ⇔ ∃y s.t. A0 +
∑

i

xiAi +
∑

yjBj � 0

No known nontrivial obstructions.

Does every convex basic SA set have a (lifted) exact SDP representation?

A recent positive partial answer.

Theorem (Helton & Nie 2007): Under strict positive curvature assumptions

on the boundary, lifted SDP representations exist.

No direct control on lifting dimension.

For details, see arXiv:0709.4017
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Exact representations: lifted case

x ∈ S ⇔ ∃y s.t. A0 +
∑

i

xiAi +
∑

yjBj � 0

No known nontrivial obstructions.

Does every convex basic SA set have a (lifted) exact SDP representation?

A recent positive partial answer.

Theorem (Helton & Nie 2007): Under strict positive curvature assumptions

on the boundary, lifted SDP representations exist.

No direct control on lifting dimension.

For details, see arXiv:0709.4017

How are these representations obtained? Is this constructive at all?
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SOS background

A multivariate polynomial p(x) is a sum of squares (SOS) if

p(x) =
∑

i

q2
i (x), qi(x) ∈ R[x].

If p(x) is SOS, then clearly p(x) ≥ 0 ∀x ∈ R
n.

Converse not true, in general (Hilbert). Counterexamples exist.

For univariate or quadratics, nongativity is equivalent to SOS.

Convex condition, can be reduced to SDP.
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Checking the SOS condition

Basic method, the“Gram matrix” (Shor 87, Choi-Lam-Reznick 95,

Powers-Wörmann 98, Nesterov, Lasserre, P., etc.)

F (x) is SOS iff F (x) = w(x)T Qw(x), where w(x) is a vector of

monomials, and Q � 0.

Let F (x) =
∑

fαxα. Index rows and columns of Q by monomials. Then,

F (x) = w(x)T Qw(x) ⇔ fα =
∑

β+γ=α

Qβγ

Thus, we have the SDP feasibility problem

fα =
∑

β+γ=α

Qβγ , Q � 0

Factorize Q = LT L. The SOS is given by f = Lz.
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SOS Example

F (x, y) = 2x
4 + 5y

4 − x
2
y
2 + 2x

3
y

=









x2

y2

xy









T 







q11 q12 q13

q12 q22 q23

q13 q23 q33

















x2

y2

xy









= q11x
4 + q22y

4 + (q33 + 2q12)x
2
y
2 + 2q13x

3
y + 2q23xy

3

An SDP with equality constraints. Solving, we obtain:

Q =









2 −3 1

−3 5 0

1 0 5









= L
T
L, L =

1
√

2





2 −3 1

0 1 3





And therefore F (x, y) = 1

2
(2x2 − 3y2 + xy)2 + 1

2
(y2 + 3xy)2
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Polynomial systems over R

When do equations and inequalities have real solutions?

A remarkable answer: the Positivstellensatz.

Centerpiece of real algebraic geometry (Stengle 1974).

Common generalization of Hilbert’s Nullstellensatz and LP duality.

Guarantees the existence of algebraic infeasibility certificates for real

solutions of systems of polynomial equations.

Sums of squares are a fundamental ingredient.

How does it work?
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P-satz and SOS

Given {x ∈ R
n | fi(x) ≥ 0, hi(x) = 0}, want to prove that it is empty.

Define:

Cone(fi) =
∑

si · (
∏

j fj), Ideal(hi) =
∑

ti · hi,

where the si, ti ∈ R[x] and the si are sums of squares.

To prove infeasibility, find f ∈ Cone(fi), h ∈ Ideal(hi) such that

f + h = −1.

Can find certificates by solving SOS programs!

Complete SOS hierarchy, by certificate degree (P. 2000).

Directly provides hierarchies of bounds for optimization.
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Convex hulls of algebraic varieties

Back to SDP representations...

FoCM 2008 - SDP and convex AG – p. 21/40



Convex hulls of algebraic varieties

Back to SDP representations...

Focus here on a specific, but very important case.
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Convex hulls of algebraic varieties

Back to SDP representations...

Focus here on a specific, but very important case.

Given a set S ⊂ R
n, we can define its convex hull

convS :=

{

∑

i

λixi : xi ∈ S,
∑

i

λi = 1, λi ≥ 0

}

We are interested in the case where S is a real algebraic variety.
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Why?

Many interesting problems require or boil down exactly to understanding

and describing convex hulls of (toric) algebraic varieties.

Nonnegative polynomials and optimization

Polynomial games

Convex relaxations for minimum-rank

We discuss these next.
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Polynomial optimization

Consider the unconstrained minimization of a multivariate polynomial

p(x) =
∑

α∈S

pαxα,

where x ∈ R
n and S is a given set of monomials (e.g., all monomials of

total degree less than or equal to 2d, in the dense case).

Define the (real, toric) algebraic variety VS ⊂ R
|S|:

VS := {(xα1 , . . . , xα|S|) : x ∈ R
n}.

This is the image of R
n under the monomial map (e.g., in the homogeneous

case, the Veronese embedding).

Want to study the convex hull of VS . Extends to the constrained case.
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Univariate case

Convex hull of the rational normal curve

(1, t, . . . , td).

Not polyhedral.

Known geometry (Karlin-Shapley)
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“Simplicial”: every supporting hyperplane yields a simplex.

Related to cyclic polytopes.
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Polynomial optimization

We have then (almost trivially):

inf
x∈Rn

p(x) = inf{pT y : y ∈ conv VS}

Optimizing a nonconvex polynomial is equivalent to linear optimization over

a convex set (!)
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Polynomial optimization

We have then (almost trivially):

inf
x∈Rn

p(x) = inf{pT y : y ∈ conv VS}

Optimizing a nonconvex polynomial is equivalent to linear optimization over

a convex set (!)

Unfortunately, in general, it is NP-hard to check membership in conv VS .

Nevertheless, we can turn this around, and use SOS relaxations to obtain

“good”approximate SDP descriptions of the convex hull VS .
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A“polar” viewpoint

Any convex set S is uniquely defined by its

supporting hyperplanes.
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Thus, if we can optimize a linear function over a set using SDP, we

effectively have an SDP representation.

Need to solve (or approximate)

min cT x s.t. x ∈ S

If S is defined by polynomial equations/inequalities, can use SOS.
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A natural SOS approach

Let S = {x ∈ R
n | fi(x) ≥ 0}. Different conditions exist to certify

nonnegativity of cT x + d over S:

General Positivstellensatz type:

(1 + q)(cT x + d) ∈ conek+1(fi), q ∈ conek(fi).

Schmüdgen, Putinar/Lasserre:

cT x + d ∈ conek(fi), or cT x + d ∈ preprimek(fi)

where preprimek ⊆ conek ⊆ Rk[x]. All these versions give convergent

families of SDP approximations.

For instance, Putinar/Lasserre representations:

cT x + d = s0(x) +
∑

i

si(x)fi(x), s0, si are SOS.

An SDP representation of S exists if degree is uniform.
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Example
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Consider the set described by x4 + y4 ≤ 1

Fails the rigid convexity condition.

The SOS construction is exact.
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Example
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Consider the set described by x4 + y4 ≤ 1

Fails the rigid convexity condition.

The SOS construction is exact.

Unfortunately, the SOS construction is not universal. Even if lifted SDP

representations exist, it may fail. However, by the Helton-Nie theorem, this

can happen only on the vanishing curvature case, or on singularities.
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SOS fails

SOS schemes (Schmüdgen, Putinar/Lasserre) give outer approximations,

but in this example they are never exact.
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SOS fails

SOS schemes (Schmüdgen, Putinar/Lasserre) give outer approximations,

but in this example they are never exact.
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Can prove that this happens for all values of k.
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SDP representation exist

-1 -0.5 0.5 1

-0.3

-0.2

-0.1

0.1

0.2

0.3

-1 -0.5 0.5 1

-0.3

-0.2

-0.1

0.1

0.2

0.3

Thus, the set above can be represented as:
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



z x y

x 1 0
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
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



� 0,


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

x y z

y x 0

z 0 x









� 0.
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SDP representation exist

-1 -0.5 0.5 1

-0.3

-0.2

-0.1

0.1

0.2

0.3

-1 -0.5 0.5 1

-0.3

-0.2

-0.1

0.1

0.2

0.3

Thus, the set above can be represented as:









z x y

x 1 0

y 0 1









� 0,









x y z

y x 0

z 0 x









� 0.

In this case, We can obtain SDP representations in an algorithmic way, via

an alternative P -satz construction.
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SDP representation exist
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Thus, the set above can be represented as:









z x y

x 1 0

y 0 1









� 0,









x y z

y x 0

z 0 x









� 0.

In this case, We can obtain SDP representations in an algorithmic way, via

an alternative P -satz construction.

Still, not fully general. But, can do some cool examples...

FoCM 2008 - SDP and convex AG – p. 30/40



Example: orthogonal matrices

Consider O(3), the group of 3 × 3 orthogonal matrices of determinant one.

It has two connected components (sign of determinant).

We can use the double-cover of SO(3) with SU(2) to provide an exact SDP
representation of the convex hull of SO(3):








Z11 + Z22 − Z33 − Z44 2Z23 − 2Z14 2Z24 + 2Z13

2Z23 + 2Z14 Z11 − Z22 + Z33 − Z44 2Z34 − 2Z12

2Z24 − 2Z13 2Z34 + 2Z12 Z11 − Z22 − Z33 + Z44









, Z � 0, Tr Z = 1.

This is a convex set in R
9.

Here is a two-dimensional projection.
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Polynomial games

Games with an infinite number of pure strategies.

In particular, strategy sets are semialgebraic, defined by polynomial

equations and inequalities.

Simplest case (introduced by Dresher-Karlin-Shapley): two players,

zero-sum, payoff given by P (x, y), strategy space is a product of intervals.
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Polynomial games

Games with an infinite number of pure strategies.

In particular, strategy sets are semialgebraic, defined by polynomial

equations and inequalities.

Simplest case (introduced by Dresher-Karlin-Shapley): two players,

zero-sum, payoff given by P (x, y), strategy space is a product of intervals.

Reducible to a minimax problem, over convex hulls of algebraic varieties

(the mixed strategies).

Thm: (P.) The value of the game, and the corresponding optimal mixed

strategies, can be computed by solving a SDP program.

Perfect generalization of the classical LP for finite games.

Related results for multiplayer games and correlated equilibria (w/ N. Stein

and A. Ozdaglar).
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Minimum rank and convex relaxations

Consider the rank minimization problem

minimize rank X subject to A(X) = b,

where A : R
m×n → R

p is a linear map.

Find the minimum-rank matrix in a given subspace. In general, NP-hard.
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Minimum rank and convex relaxations

Consider the rank minimization problem

minimize rank X subject to A(X) = b,

where A : R
m×n → R

p is a linear map.

Find the minimum-rank matrix in a given subspace. In general, NP-hard.

Since rank is hard, let’s use instead its convex envelope, the nuclear norm.

The nuclear norm of a matrix (alternatively, Schatten 1-norm, Ky Fan

r-norm, or trace class norm) is the sum of its singular values, i.e.,

‖X‖∗ :=
r

∑

i=1

σi(X).
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Convex hulls and nuclear norm

Consider the unit ball of the nuclear norm B := {X ∈ R
m×n : ||X ||∗ ≤ 1}.

Convex hull characterization:

B = conv{uvT : u ∈ R
m, v ∈ R

n, ||u||2 + ||v||2 = 2}

Exactly SDP-characterizable. Can solve the convex relaxation using SDP.
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Convex hulls and nuclear norm

Consider the unit ball of the nuclear norm B := {X ∈ R
m×n : ||X ||∗ ≤ 1}.

Convex hull characterization:

B = conv{uvT : u ∈ R
m, v ∈ R

n, ||u||2 + ||v||2 = 2}

Exactly SDP-characterizable. Can solve the convex relaxation using SDP.

Under certain conditions (e.g., if A is “random”), optimizing the nuclear

norm yields the true minimum rank solution.

Connections to“compressed sensing”.

For details, see arXiv:0706.4138: Recht-Fazel-P.,“Guaranteed Minimum-Rank

Solutions of Linear Matrix Equations via Nuclear Norm Minimization”(2007)
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Connections

Many fascinating links to other areas of mathematics:

Probability (moments, exchangeability and de Finetti, etc)

Operator theory (via Gelfand-Neimark-Segal)

Harmonic analysis on semigroups

Noncommutative probability (i.e., quantum mechanics)

Complexity and proof theory (degrees of certificates)

Graph theory (perfect graphs)

Tropical geometry (SDP over more general fields)

FoCM 2008 - SDP and convex AG – p. 35/40



Exploiting structure

P-satz

relaxations

Exploit

structure

Representation

Displacement rank

Orthogonalization

Graph structure Semidefinite

programs

Polynomial

descriptions

Symmetry reduction

Ideal structure

Sparsity

Symmetry reduction

Ideal structure

Sparsity

SOS

Programs
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Algebraic structure

Sparseness: few nonzero coefficients.

Newton polytopes techniques.

Ideal structure: equality constraints.

SOS on quotient rings.

Compute in the coordinate ring. Quotient bases.

Graph structure:

Dependency graph among the variables.

Symmetries: invariance under a group (w/ K. Gatermann)

SOS on invariant rings

Representation theory and invariant-theoretic methods.

Enabling factor in applications (e.g., Markov chains)
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Numerical structure

Rank one SDPs.

Dual coordinate change makes all constraints rank one

Efficient computation of Hessians and gradients

Representations

Interpolation representation

Orthogonalization

Displacement rank

Fast solvers for search direction
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Related work

Related basic work: N.Z. Shor, Nesterov, Lasserre, etc.

Systems and control (Prajna, Rantzer, Hol-Scherer, etc.)

Sparse optimization (Waki-Kim-Kojima-Muramatsu, Lasserre,

Nie-Demmel, etc.)

Approximation algorithms (de Klerk-Laurent-P.)

Filter design (Alkire-Vandenberghe, Hachez-Nesterov, etc.)

Stability number of graphs (Laurent, Peña, Rendl)

Geometric theorem proving (P.-Peretz)

Quantum information theory (Doherty-Spedalieri-P., Childs-Landahl-P.)

Joint spectral radius (P.-Jadbabaie)
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Summary

A very rich class of optimization problems

Methods have enabled many new applications

Interplay of many branches of mathematics

Structure must be exploited for reliability and efficiency

Combination of numerical and algebraic techniques.
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Interplay of many branches of mathematics

Structure must be exploited for reliability and efficiency

Combination of numerical and algebraic techniques.

If you want to know more:

Papers, slides, lecture notes, software, etc.: www.mit.edu/~parrilo

Upcoming“SDP and convex algebraic geometry”NSF FRG website

www.math.washington.edu/~thomas/frg/frg.html

(Helton/P./Nie/Sturmfels/Thomas)
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Summary

A very rich class of optimization problems

Methods have enabled many new applications

Interplay of many branches of mathematics

Structure must be exploited for reliability and efficiency

Combination of numerical and algebraic techniques.

If you want to know more:

Papers, slides, lecture notes, software, etc.: www.mit.edu/~parrilo

Upcoming“SDP and convex algebraic geometry”NSF FRG website

www.math.washington.edu/~thomas/frg/frg.html

(Helton/P./Nie/Sturmfels/Thomas)

Thanks for your attention!
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