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Outline

Motivating examples: problems we want to solve

Analysis and synthesis for nonlinear systems

Partial differential inequalities

Polynomial systems and semialgebraic games.

Sum of squares programs

Convexity, relationships with semidefinite programming

Interpretations

Exploiting structure for efficiency

Algebraic and Numerical techniques.

Perspectives, limitations, and challenges
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Control problems

How to provide“satisfactory”computational solutions? For instance:

How to prove stability of a nonlinear dynamical system?

Region of attraction of a given equilibrium?

What about performance guarantees?

If uncertain/robust, how to compute stability margins?

What changes (if anything) for switched/hybrid systems?
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Control problems

How to provide“satisfactory”computational solutions? For instance:

How to prove stability of a nonlinear dynamical system?

Region of attraction of a given equilibrium?

What about performance guarantees?

If uncertain/robust, how to compute stability margins?

What changes (if anything) for switched/hybrid systems?

Many undecidability/hardness results (e.g., Sontag, Braatz et al., Toker,

Blondel & Tsitsiklis, etc.).

“Good”bounds can be obtained by considering associated convex

optimization problems (e.g., linearization, D-scales, IQCs, etc)
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Partial diff inequalities

Solutions for linear PDIs:

Lyapunov:

V (x) ≥ 0,

(

∂V

∂x

)T

f(x) ≤ 0, ∀x

Hamilton-Jacobi:

V (x, t) ≥ 0, −
∂V

∂t
+H(x,

∂V

∂x
) ≤ 0, ∀(x, u, t)
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Very difficult in three or higher dimensions.

Many approaches: approximation, discretizations, level set methods,

etc.

How to find certified solutions?

Can we obtain bounds on linear functionals of the solutions?

ACC 2006 - Sum of squares optimization – p. 4/39



Data consistency

Elementary reaction models for gene expression in yeast

d[T F ]

dt
= −KA,1 · [T F ] · [GENE] + KD,1 · [T F • GENE]

d[GENE]

dt
= −KA,1 · [T F ] · [GENE] + KD,1 · [T F • GENE]

d[T F • GENE]

dt
= KA,1 · [T F ] · [GENE] − KD,1 · [T F • GENE] −

−KA,2 · [T F • GENE] · [RNAP ol] + KD,2 · [T F • GENE • RNAP ol] +

+KT C · [T F • GENE • RNAP ol]

Nonlinear dynamics

Microarray data of wildtype and mutants

Steady state + dynamic measurements

Extract as much information as possible

What parameter/rate values are consistent with measurements?

Joint work with L. Küpfer and U. Sauer (ETH Zürich)
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Queueing networks and copositivity

Open re-entrant line.

Arrival and service rates λ, µi.

How to analyze performance?

S2S1

Def: A matrix Q is copositive if x ≥ 0 implies xT Qx ≥ 0.

Stability/performance analysis is possible using a Lyapunov-like function

E[xT (τn)Qx(τn)],

where x(τ) are the queue lenghts at time τ (Kumar-Meyn).

But how to characterize copositive matrices? (coNP-complete)
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Polynomial systems

General systems of polynomial equations/inequalities:

{x ∈ R
n, fi(x) ≥ 0, hi(x) = 0}
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Define semialgebraic sets

In general, nonconvex and difficult (NP-hard)

Includes continuous and combinatorial aspects

Natural representation for many problems

How to optimize, or decide and certify infeasibility?
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Motivation

All very different problems, that share common properties.

Can be expressed/approximated with polynomials and/or rational

functions

Include nonnegativity constraints (perhaps implicitly)

Provably difficult (NP-complete, or worse)

These constitute a very significant class of problems in Control:

quantified polynomial inequalities or semialgebraic problems.
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Motivation

All very different problems, that share common properties.

Can be expressed/approximated with polynomials and/or rational

functions

Include nonnegativity constraints (perhaps implicitly)

Provably difficult (NP-complete, or worse)

These constitute a very significant class of problems in Control:

quantified polynomial inequalities or semialgebraic problems.

Fundamental importance recognized many years ago (e.g.,

Anderson-Bose-Jury, Dorato-Yang-Abdallah, Glad-Jirstrand, etc.).
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Aside: quantifiers and alternation

To analyze structural features, need to understand the

underlying first-order formula:

(Q1x1)(Q2x2) . . . (Qnxn) P (x1, x2, . . . , xn),

where Qi ∈ {∀, ∃} (e.g., Tierno-Doyle)

1Õ
1å

2å2å2Õ

3Õ 3å

......

2Õ

3Õ 3å

......

NPCoNP

0 0Õ = å

P

Usually defined for discrete problems (e.g., SAT, QBF), extends to reals.
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Aside: quantifiers and alternation

To analyze structural features, need to understand the

underlying first-order formula:

(Q1x1)(Q2x2) . . . (Qnxn) P (x1, x2, . . . , xn),

where Qi ∈ {∀, ∃} (e.g., Tierno-Doyle)

1Õ
1å

2å2å2Õ

3Õ 3å

......

2Õ

3Õ 3å

......

NPCoNP

0 0Õ = å

P

Usually defined for discrete problems (e.g., SAT, QBF), extends to reals.

Many different approaches, quality/performance tradeoffs:

Tarski-Seidenberg, quantifier elimination

Explicit discretization and enumeration

Bounding/abstraction (e.g., interval arithmetic, etc)

Sampling and statistical learning

ACC 2006 - Sum of squares optimization – p. 9/39



Semidefinite programming (LMIs)

A broad generalization of LP to symmetric matrices

minTrCX s.t. X ∈ L ∩ Sn
+

PSD cone

O

L

The intersection of an affine subspace L and the cone of positive

semidefinite matrices.

Lots of applications. A true“revolution” in computational methods for

engineering applications

Originated in control theory (Boyd et al., etc) and combinatorial

optimization (e.g., Lovász). Nowadays, applied everywhere.

Convex finite dimensional optimization. Nice duality theory.

Essentially, solvable in polynomial time (interior point, etc.)
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Why are LMIs so appealing?

In coordinates, we have A0 +
∑

i Aixi � 0, i.e.,

∃x∀y P (x, y) ≥ 0,

where P (x, y) := yT (A0 +
∑

i Aixi)y is affine in x and quadratic in y.

This should be really hard (Σ2), but it’s actually in P !
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Why are LMIs so appealing?

In coordinates, we have A0 +
∑

i Aixi � 0, i.e.,

∃x∀y P (x, y) ≥ 0,

where P (x, y) := yT (A0 +
∑

i Aixi)y is affine in x and quadratic in y.

This should be really hard (Σ2), but it’s actually in P !

In other words, LMIs are:

quadratic forms, that are nonnegative.

We want to generalize this as much as possible, while keeping tractability.

For this, we introduce the notion of sum of squares.
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Sum of squares

A multivariate polynomial p(x) is a sum of squares (SOS) if

p(x) =
∑

i

q2
i (x), qi(x) ∈ R[x].

If p(x) is SOS, then clearly p(x) ≥ 0 ∀x ∈ R
n.

Convex condition: p1, p2 SOS ⇒ λp1 + (1 − λ)p2 SOS for 0 ≤ λ ≤ 1.

SOS polynomials form a convex cone

For univariate or quadratic polynomials, SOS and nonnegativity are

equivalent.
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From LMIs to SOS

LMI optimization problems:

affine families of quadratic forms, that are nonnegative.
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From LMIs to SOS

LMI optimization problems:

affine families of quadratic forms, that are nonnegative.

Instead, for SOS we have:

affine families of polynomials, that are sums of squares.

An SOS program is an optimization problem with SOS constraints:

minui
c1u1 + · · · + cnun

s.t Pi(x, u) := Ai0(x) + Ai1(x)u1 + · · · + Ain(x)un are SOS

This is a finite-dimensional, convex optimization problem.
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SOS programs: questions

Why not just use nonnegative polynomials?

While convex, unfortunately it’s NP-hard ;(
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SOS programs: questions
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And is SOS any better?

Yes, we can solve SOS programs in polynomial time

Aren’t we losing too much then?

In several important cases (quadratic, univariate, etc), nonnegativity

and SOS is the same thing.
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SOS programs: questions

Why not just use nonnegative polynomials?

While convex, unfortunately it’s NP-hard ;(

And is SOS any better?

Yes, we can solve SOS programs in polynomial time

Aren’t we losing too much then?

In several important cases (quadratic, univariate, etc), nonnegativity

and SOS is the same thing.

And in the other cases?

Low dimension, computations and some theory show small gap. Recent

negative results in very high dimension, though (Blekherman)

Isn’t it a very special formulation?

No, we can approximate any semialgebraic problem!

How? And how do you solve them?

OK, I’ll tell you. But first, examples!
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Lyapunov

For ẋ = f(x), a Lyapunov function must satisfy

V (x) ≥ 0,
(

∂V
∂x

)T
f(x) ≤ 0. Inequalities are linear in V .

A jet engine model (derived from Moore-Greitzer),

with controller:

ẋ = −y +
3

2
x2 −

1

2
x3

ẏ = 3x − y;
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Lyapunov

For ẋ = f(x), a Lyapunov function must satisfy

V (x) ≥ 0,
(

∂V
∂x

)T
f(x) ≤ 0. Inequalities are linear in V .

A jet engine model (derived from Moore-Greitzer),

with controller:

ẋ = −y +
3

2
x2 −

1

2
x3

ẏ = 3x − y;

A generic 4th order polynomial Lyapunov function.

V (x, y) =
∑

0≤j+k≤4

cjk xjyk
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Lyapunov

For ẋ = f(x), a Lyapunov function must satisfy

V (x) ≥ 0,
(

∂V
∂x

)T
f(x) ≤ 0. Inequalities are linear in V .

A jet engine model (derived from Moore-Greitzer),

with controller:

ẋ = −y +
3

2
x2 −

1

2
x3

ẏ = 3x − y;

A generic 4th order polynomial Lyapunov function.

V (x, y) =
∑

0≤j+k≤4

cjk xjyk

Find a V (x, y) by solving the SOS program:

V (x, y) is SOS, −∇V (x, y) · f(x, y) is SOS.
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Lyapunov example (cont.)

After solving, we obtain a Lyapunov function.
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Global optimization

Consider minx,y F (x, y), with

F (x, y) := 4x2 − 21

10
x4 + 1

3
x6 + xy − 4y2 + 4y4.

Not convex. Many local minima. NP-hard. How to find good lower bounds?

Find the largest γ s.t.

F (x, y) − γ is SOS.

If exact, can recover optimal solution.

Surprisingly effective.
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Solving, the maximum γ is -1.0316. Exact bound.

Details in (P. & Sturmfels, 2001).

Direct extensions to constrained case.
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Constrained problems

What if we are interested in p(x) ≥ 0, on the set defined by {gi(x) ≥ 0}?

We can certainly write duality (or “S-procedure”)-like sufficient conditions:
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We can certainly write duality (or “S-procedure”)-like sufficient conditions:

p(x) = λ0 +
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i

λigi(x), λi ≥ 0
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Constrained problems

What if we are interested in p(x) ≥ 0, on the set defined by {gi(x) ≥ 0}?

We can certainly write duality (or “S-procedure”)-like sufficient conditions:

p(x) = λ0 +
∑

i

λigi(x), λi ≥ 0

p(x) = s0(x) +
∑

i

si(x)gi(x), si SOS

[1+q(x)]p(x) = s0(x)+
∑

i

si(x)gi(x)+
∑

ij

sij(x)gi(x)gj(x) q, si, sij SOS
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Constrained problems

What if we are interested in p(x) ≥ 0, on the set defined by {gi(x) ≥ 0}?

We can certainly write duality (or “S-procedure”)-like sufficient conditions:

p(x) = λ0 +
∑

i

λigi(x), λi ≥ 0

p(x) = s0(x) +
∑

i

si(x)gi(x), si SOS

[1+q(x)]p(x) = s0(x)+
∑

i

si(x)gi(x)+
∑

ij

sij(x)gi(x)gj(x) q, si, sij SOS

Any of these is a valid sufficient condition, and is an SOS program.

What is the most general case? Are there“converse” results?
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Polynomial systems over R

When do equations and inequalities have real solutions?

A remarkable answer: the Positivstellensatz.

Centerpiece of real algebraic geometry (Stengle 1974).

Common generalization of Hilbert’s Nullstellensatz and LP duality.

Guarantees the existence of infeasibility certificates for real solutions of

systems of polynomial equations.

Sums of squares are a fundamental ingredient.

How does it work?
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P-satz and SOS

Given {x ∈ R
n | fi(x) ≥ 0, hi(x) = 0}, want to prove that it is empty.

Define:

Cone(fi) =
∑

si · (
∏

j fj), Ideal(hi) =
∑

ti · hi,

where the si, ti ∈ R[x] and the si are sums of squares.

To prove infeasibility, find f ∈ Cone(fi), h ∈ Ideal(hi) such that

f + h = −1.

Can find certificates by solving SOS programs!

Complete SOS hierarchy, by certificate degree (P. 2000).

Directly provides hierarchies of bounds for optimization.
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SOS constraints are SDPs

“Gram matrix”method: F (x) is SOS iff F (x) = w(x)T Qw(x), where w(x)

is a vector of monomials, and Q � 0.

Let F (x) =
∑

fαxα. Index rows and columns of Q by monomials. Then,

F (x) = w(x)T Qw(x) ⇔ fα =
∑

β+γ=α

Qβγ

Thus, we have the SDP feasibility problem

fα =
∑

β+γ=α

Qβγ , Q � 0
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SOS Example

F (x, y) = 2x4 + 5y4 − x2y2 + 2x3y

=

2664 x2

y2

xy

3775T 2664 q11 q12 q13

q12 q22 q23

q13 q23 q33

37752664 x2

y2

xy
3775

= q11x
4 + q22y

4 + (q33 + 2q12)x
2y2 + 2q13x

3y + 2q23xy3

An SDP with equality constraints. Solving, we obtain:

Q =

2664 2 −3 1

−3 5 0

1 0 5

3775 = LT L, L =
1√
2

24 2 −3 1

0 1 3

35

And therefore F (x, y) = 1
2
(2x2 − 3y2 + xy)2 + 1

2
(y2 + 3xy)2
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A geometric interlude

How is this possible?
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A geometric interlude

How is this possible?

Convexity is relative. Every problem can be trivially “lifted”to a convex

setting (in general, infinite dimensional).

Ex: mixed strategies in games,“relaxed”controls, Fokker-Planck, etc.

Interestingly, however, often a finite (and small) dimension is enough.
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A geometric interlude

How is this possible?

Convexity is relative. Every problem can be trivially “lifted”to a convex

setting (in general, infinite dimensional).

Ex: mixed strategies in games,“relaxed”controls, Fokker-Planck, etc.

Interestingly, however, often a finite (and small) dimension is enough.

Consider the set defined by

1 ≤ x2 + y2 ≤ 2

Clearly non-convex.

Can we use convex optimization?
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Geometric interpretation

A polynomial “lifting” to a higher dimensional space:

(x, y) 7→ (x, y, x2 + y2)

The nonconvex set is the projection of the extreme points of a convex set.

In particular, the convex set

defined by

x2 + y2 ≤ z

1 ≤ z ≤ 4
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Relaxation scheme

Nonnegativity

Lifted problem Sum of squares
SDP

Duality

Lifting and
convex hull

Relaxation

Many related open questions:

What sets have“nice”SDP representations?

Links to“rigid convexity”and hyperbolic polynomials: Helton-Vinnikov,

Lewis-P.-Ramana (Lax conjecture), etc.
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SOS and SDP

Strong relationship between SOS programs and SDP.

In their full generality, they are equivalent to each other.

Semidefinite matrices are SOS quadratic forms.

Conversely, can embed SOS polynomials into PSD cone.
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SOS and SDP

Strong relationship between SOS programs and SDP.

In their full generality, they are equivalent to each other.

Semidefinite matrices are SOS quadratic forms.

Conversely, can embed SOS polynomials into PSD cone.

However, they are a very special kind of SDP, with very rich algebraic and

combinatorial properties.

Exploiting this structure is crucial in applications.

Both algebraic and numerical methods are required.
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Exploiting structure

P-satz

relaxations

Exploit

structure

Representation

Displacement rank

Orthogonalization

Graph structure Semidefinite

programs

Polynomial

descriptions

Symmetry reduction

Ideal structure

Sparsity

Symmetry reduction

Ideal structure

Sparsity

SOS

Programs
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Algebraic structure

Sparseness: few nonzero coefficients.

Newton polytopes techniques.

Ideal structure: equality constraints.

SOS on quotient rings.

Compute in the coordinate ring. Quotient bases.

Graph structure:

Dependency graph among the variables.

Symmetries: invariance under a group (w/ K. Gatermann)

SOS on invariant rings

Representation theory and invariant-theoretic methods.

Enabling factor in applications (e.g., Markov chains)
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SOS over everything...

Algebraic tools are essential to exploit problem structure:

Standard Equality constraints Symmetries

polynomial ring R[x] quotient ring R[x]/I invariant ring R[x]G

monomials (deg ≤ k) standard monomials isotypic components

1
(1−λ)n =

∞X

k=0

 

n + k − 1

k

!

· λk Hilbert series Molien series

Finite convergence Block diagonalization

for zero dimensional ideals
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Numerical structure

Joint work with J. Löfberg (ETH Zürich), J.-L. Sun (SMA-MIT).

Rank one SDPs.

Dual coordinate change makes all constraints rank one

Efficient computation of Hessians and gradients

Representations

Interpolation representation

Orthogonalization

Displacement rank

Fast solvers for search direction

Let’s see some details...
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Numerical methods

Recall the SOS representation p(x) = z(x)T Qz(x)

In our earlier discussion, we have implicitly assumed the monomial basis in

both primal and dual. Bad numerical properties.

But, we are free to choose any basis we desire. Particularly good ones:

Chebyshev on the primal, Lagrange on the dual.

E.g., rather than matching coeffs, force the polynomials to agree on a given

set of points. Basis independent notion.

In this basis, SDP constraints have rank one:

p(xi) = z(xi)
T Qz(xi) = Q • (z(xi)z

T (xi))

Very good for barrier gradient and Hessians! This low-rank property can be

exploited by current SDP solvers (e.g., SDPT3).
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Numerical methods

Location of the sampling points:

Theoretically, weak requirement: poisedness

Distribution strongly affects conditioning

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4
Equidistant

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4
Chebyshev

Cf. classical interpolation (spectral methods, Lebesgue constants, etc).

Much improved numerical properties, both in terms of the conditioning of

the problem and solution time. In the univariate case, degree 100+ in under

a second.

Extensive evaluation upcoming, preliminary results very encouraging.
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Applications using SOS

Related basic work: N.Z. Shor, Nesterov, Lasserre, etc.

Systems and control.

Uncertain system analysis (Papachristodoulou, Prajna)

Region of attraction (Tibken, Tan-Packard, P., etc.)

Control design (Packard et al., Henrion, Chesi et al., etc.)

Time-varying robustness analysis (Hol-Scherer)

Density functions (Prajna-Rantzer-P.)

Passivity-based synthesis (Ebenbauer-Allgöwer)

Contraction analysis for nonlinear systems (Aylward-P.-Slotine)

Stochastic reachability analysis (Prajna et al.)

Hybrid system verification (Prajna-Jadbabaie-Pappas)
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SOS applications in other areas

Matrix copositivity (de Klerk-Pasechnik, Peña, P., etc)

Sparse optimization (Waki-Kim-Kojima-Muramatsu, etc.)

Approximation algorithms (de Klerk-Laurent-P.)

Filter design (Alkire-Vandenberghe, Hachez-Nesterov, etc.)

Option pricing (Bertsimas-Popescu, Lasserre, Primbs)

Stability number of graphs (Laurent, Peña, Rendl)

Geometric theorem proving (P.-Peretz)

Quantum information theory (Doherty-Spedalieri-P., Childs-Landahl-P.)

Game theory (Stein-Ozdaglar-P.)
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Semialgebraic games

Games with an infinite number of pure strategies.

In particular, strategy sets are semialgebraic, defined by polynomial

equations and inequalities.

Simplest case (introduced by Dresher-Karlin-Shapley): two players,

zero-sum, payoff given by P (x, y), strategy space is a product of intervals.
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Semialgebraic games

Games with an infinite number of pure strategies.

In particular, strategy sets are semialgebraic, defined by polynomial

equations and inequalities.

Simplest case (introduced by Dresher-Karlin-Shapley): two players,

zero-sum, payoff given by P (x, y), strategy space is a product of intervals.

Thm: The value of the game, and the corresponding optimal mixed

strategies, can be computed by solving a single SOS program.

Perfect generalization of the classical LP for finite games.

Related results for multiplayer games and correlated equilibria (w/ N. Stein

and A. Ozdaglar).
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Software: SOSTOOLS

minui
c1u1 + · · · + cnun

s.t Pi(x, u) := Ai0(x) + Ai1(x)u1 + · · · + Ain(x)un are SOS

MATLAB toolbox, freely available.

Uses MATLAB’s symbolic toolbox, and SeDuMi (SDP solver).

Natural syntax, efficient implementation.

Collaboration w/S. Prajna, A. Papachristodoulou, P. Seiler.

Includes customized functions for several problems.

Get it from: www.mit.edu/~parrilo/sostools

www.cds.caltech.edu/sostools
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Perspectives, challenges

Theory:

Proof complexity, lower bounds, etc.

Approximability properties?

What’s the right measure of certificate size?

Conditioning issues

Computation and numerical efficiency:

Representation issues: straight-line programs?

Alternatives to interior point methods?

How big are the problems we can reliably solve?

Many more applications. . .
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Summary

A rich class of optimization problems for engineering

Methods have enabled many new applications

Mathematical structure must be exploited for reliability and efficiency

Combination of numerical and algebraic techniques.

Fully algorithmic implementations
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Finally...

If you want to know more:

Papers, slides, etc. at website: www.mit.edu/~parrilo

Upcoming workshop at MTNS2006 (w/ S. Lall)
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Finally...

If you want to know more:

Papers, slides, etc. at website: www.mit.edu/~parrilo

Upcoming workshop at MTNS2006 (w/ S. Lall)

Many thanks to my colleagues, students, and friends at Caltech, ETH, MIT,

and elsewhere.
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Finally...

If you want to know more:

Papers, slides, etc. at website: www.mit.edu/~parrilo

Upcoming workshop at MTNS2006 (w/ S. Lall)

Many thanks to my colleagues, students, and friends at Caltech, ETH, MIT,

and elsewhere.

Thank you very much for your attention. Questions?
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