
Theoretical Computer Science 409 (2008) 269–281

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Computing sum of squares decompositions with rational coefficients
Helfried Peyrl a,∗, Pablo A. Parrilo b
a Automatic Control Laboratory, ETH Zürich, Physikstrasse 3, 8092 Zürich, Switzerland
b Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139-4307, USA

a r t i c l e i n f o

Keywords:
Symbolic–numerical methods
Algebraic geometry
Sum of squares
Semidefinite programming

a b s t r a c t

Sum of squares (SOS) decompositions for nonnegative polynomials are usually computed
numerically, using convex optimization solvers. Although the underlying floating point
methods in principle allow for numerical approximations of arbitrary precision, the
computed solutions will never be exact. In many applications such as geometric theorem
proving, it is of interest to obtain solutions that can be exactly verified. In this paper, we
present a numeric–symbolic method that exploits the efficiency of numerical techniques
to obtain an approximate solution, which is then used as a starting point for the
computation of an exact rational result. We show that under a strict feasibility assumption,
an approximate solution of the semidefinite program is sufficient to obtain a rational
decomposition, and quantify the relation between the numerical error versus the rounding
tolerance needed. Furthermore, we present an implementation of our method for the
computer algebra system Macaulay 2.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

An important question in computational mathematics is to decide whether a multivariate polynomial p(x) ∈ R[x] only
takes nonnegative values for all x ∈ Rn. Clearly, a sufficient condition for nonnegativity is that p(x) can be written as a sum
of squared polynomials, i.e., p(x) =

∑
i pi(x)

2. The question of whether every nonnegative polynomial can be written as a
sum of squares (SOS) dates back to Hilbert. The negative answer was given by Hilbert himself, and famous counterexamples
were found later byMotzkin, Robinson, Choi, and Lam.We refer the reader to [37] for a survey on nonnegative polynomials,
SOS, and their relations to Hilbert’s 17th problem.
The algorithmic questions of deciding whether a sum of squares decomposition exists, and effectively finding one when

it does, have been studied only relatively recently. A key structural element to these issues is provided by the ‘‘Grammatrix’’
method discussed in Section 2.2. This was presented in full form by Choi, Lam, and Reznick in [6], but there are clear traces of
it in those authors’ earlier works. Based on this characterization, perhaps the first work in the algebraic literature presenting
an effective algorithm is Powers and Wörmann [30]. Their method is based on the Gram matrix technique, and relied on
general decision theory algorithms such as quantifier elimination. For this reason, despite its high conceptual value, the
methodology was not too applicable, except for very small problems.
A key development in this direction was the recognition that this problem has some very attractive properties from the

geometric viewpoint, namely the convexity of the underlying feasible sets. These ideas were presented in [21,25], and in
fact go back to Shor’s pioneering work on global lower bounds on polynomials [39]. In fact, as we review in Section 2.2,
these problems can be posed in a quite natural way in terms of the class of convex optimization problems known as

∗ Corresponding author.
E-mail addresses: peyrl@control.ee.ethz.ch (H. Peyrl), parrilo@mit.edu (P.A. Parrilo).
URLs: http://www.control.ee.ethz.ch/∼hpeyrl (H. Peyrl), http://www.mit.edu/∼parrilo (P.A. Parrilo).

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.09.025

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:peyrl@control.ee.ethz.ch
mailto:parrilo@mit.edu
http://www.control.ee.ethz.ch/~hpeyrl
http://www.control.ee.ethz.ch/~hpeyrl
http://www.control.ee.ethz.ch/~hpeyrl
http://www.control.ee.ethz.ch/~hpeyrl
http://www.control.ee.ethz.ch/~hpeyrl
http://www.control.ee.ethz.ch/~hpeyrl
http://www.control.ee.ethz.ch/~hpeyrl
http://www.mit.edu/~parrilo
http://www.mit.edu/~parrilo
http://www.mit.edu/~parrilo
http://www.mit.edu/~parrilo
http://www.mit.edu/~parrilo
http://dx.doi.org/10.1016/j.tcs.2008.09.025

270 H. Peyrl, P.A. Parrilo / Theoretical Computer Science 409 (2008) 269–281

semidefinite programs (SDPs). Since SDPs can be efficiently solved by interior point methods (cf. e.g., [42]), SOS problems
have now become computationally tractable. After establishing the links between SDP, SOS and the Positivstellensatz,
SOS techniques based on semidefinite programming gained widespread use in various fields, such as continuous and
combinatorial optimization [25,18,22], control and dynamical systems [33,31] and quantum information theory [7] to cite
a few.
In many applications, particularly those arising from problems in pure mathematics, it is often desirable to obtain exact

algebraic solutions. Examples of this are the use of SOSmethods for geometric theorem proving as in [27], or for establishing
the validity of certain algebraic inequalities as in [16]. An interesting recent application is thework in [2],where SOSmethods
were used to prove new upper bounds on kissing numbers, a well-known problem in sphere packings. A common element
in all these papers is the use of exact algebraic identities obtained from inspection of a numerically computed solution, as
the basic ingredients in a rigorous proof.
In principle, semidefinite programming problems can be defined and solved purely algebraically. This can be done

through real algebraic techniques such as the general decision methods as in the already mentioned [30], or slightly more
efficient versions that partially exploit the convexity of the underlying sets (e.g., [1]). A possible alternative approach, relying
on the solution of zero dimensional systems, is to focus on a specific element of the feasible set such as its analytic center
(Section 2.2), and provide algebraic equations that uniquely define it. The considerable price to pay here is the algebraic
degree of the corresponding solution. As has been recently shown by Nie et al. in [23], optimal solutions of relatively small
semidefinite programs generically have minimum defining polynomials of astronomically high degree (an example of von
Bothmer and Ranestad in [43] shows that for a generic semidefinite programwith amatrix constraintwith n = 20,m = 105,
the degree of the optimal solution is≈1.67×1041). Despite the fact that an explicit algebraic representation of this solution
is absolutely impossible to compute, it is a simple task using interior pointmethods to produce arbitrary precision numerical
approximations to its solution.
While this and other dramatic examples suggest the superiority of numerical methods for these tasks, approximate

numerical solutions computed via floating point (even with arbitrary precision) are often useless for certain applications
such as the already mentioned ones. The reason is that they will never exactly satisfy the constraints, and thus do not serve
as true certificates of the SOS property of the given polynomial, but only of nearby approximations.
There are solid theoretic reasons to justify the use of a mixed symbolic-numerical approach to the SOS problem. The

aforementioned facts point to the necessity of an approach where the advantages of numerical computation are exploited
for numerical efficiency, but at the same time the obtained solutions yield exact, unconditionally valid certificates of the
existence of a SOS representation. This is exactly the objective of this paper, wherewe present a technique to use a numerical
solution obtained from computationally efficient interior-point solvers as a starting point for the computation of an exact
one. In this paper we develop a simple method based on this idea.
Our main contributions in this paper are the following:

– We show that under a strict feasibility assumption, it is sufficient to compute an approximate solution to the semidefinite
program in order to obtain a rational sum of squares representation. In particular, we quantify the relation between the
numerical error in the subspace and semidefinite constraints, versus the rounding tolerance, that guarantee that the
rounded and projected solution will remain feasible. See Proposition 8 for the exact statement.

– We discuss several rounding procedures to convert the computed floating point solutions into rational numbers, and
compare their relative advantages.

– We describe our implementation of these techniques through a Macaulay 2 package. This software formulates and
numerically solves the required optimization problems, and uses this to produce certified rational solutions, guaranteed
by construction to be correct.

The reminder of the paper is organized as follows: in Section 2 we will give a brief introduction to semidefinite
programming and show the connection to the SOS problem. The basic ideas of our method are presented in Section 3. We
conclude the paper with Section 4 in which we show how to use our Macaulay 2 software package.

1.1. Notation

1.1.1. Matrices
Let Sn ⊂ Rn×n denote the space of symmetric matrices with inner product between two elements A, B ∈ Sn denoted by

〈A, B〉 := trace AB. A matrix A ∈ Sn is called positive semidefinite (PSD) if xTAx ≥ 0, ∀x ∈ Rn, and A is called positive definite
if xTAx > 0, ∀x ∈ Rn\{0}. Equivalently, A is positive semidefinite if and only if all eigenvalues are nonnegative, and A is
positive definite if and only if all eigenvalues are strictly positive. Denoting the cone of PSD matrices by Sn

+
, we write A � B

if A− B ∈ Sn
+
. Similarly, A � B if A− B ∈ int Sn

+
. Furthermore, we write A � B for B � A and A ≺ B for B � A respectively.

1.1.2. Polynomials
Let K[x] := K[x1, . . . , xn] denote the ring of polynomials in n variables with coefficients in the field K. Throughout

this paper K = R or Q. We will use the multi-index α ∈ Zn
+
to denote the monomial xα11 · · · x

αn
n by x

α . The degree of xα

is |α| =
∑n
i=1 αi. A polynomial f (x) ∈ K[x] can be written as

∑
α∈ZN
+
fαxα , where fα is the coefficient of monomial xα .

H. Peyrl, P.A. Parrilo / Theoretical Computer Science 409 (2008) 269–281 271

The degree of f (x) is determined by the largest |α| with fα 6= 0. Let Sk denote the set of exponents with degree at most
k: Sk = {α ∈ Zn

+
| |α| ≤ k}. A polynomial f (x) =

∑
α∈Sk
fαxα can be represented by its coefficient vector f ∈ KSk if

deg f (x) ≤ k.

2. Sum of squares and semidefinite programming

In the following we will give a concise introduction to semidefinite programming and show its connection to the SOS
problem.

2.1. Semidefinite programming background

In this section we will give a brief introduction to semidefinite programming and its basic underlying ideas. We refer the
reader to [42,5] for a comprehensive treatment of the topic.
A semidefinite program is defined as the following convex optimization problem:

minimize 〈C, X〉

subject to 〈Ai, X〉 = bi, i = 1, . . . ,m,

X � 0,

(P)

where X ∈ Sn is the decision variable and the matrices C, Ai ∈ Sn, and b ∈ Rm are the problem data. The problem is convex
since its objective function and the feasible region defined by the constraints are convex. A geometric interpretation is the
minimization of a linear function over the intersection of the set of positive semidefinite matrices with an affine subspace.
Problem (P) is called strictly feasible if there exists some X � 0 which satisfies the equality constraints in (P). The problem
above has an associated dual problem being

maximize 〈b, y〉

subject to A(y) := C −
m∑
i=1
yiAi � 0,

(D)

with decision variable y ∈ Rm. Problem (D) is called strictly feasible if there exists a y such that A(y) � 0. The value of any
feasible solution of the dual problem provides a lower bound on any achievable value of the primal. This crucial property is
referred to as weak duality and follows since for every feasible pair X and y

〈C, X〉 − 〈y, b〉 = 〈C, X〉 −
m∑
i=1

yi〈Ai, X〉 =

〈
C −

m∑
i=1

yiAi, X

〉
≥ 0,

where the last inequality follows from the fact that the inner product of two positive semidefinite matrices is nonnegative.
The difference between the value of a primal feasible and a dual feasible solution is called the duality gap. Under certain
constraint qualifications, e.g., the existence of a strictly feasible solution (Slater’s condition), strong duality will hold and
the optimal values of the primal and the dual problem will be equal, i.e., there is no duality gap. Furthermore, if both
problems have nonempty interior, the optima will be attained by some X∗ and y∗ which satisfy the Karush–Kuhn–Tucker
(KKT) optimality conditions stated in the following theorem:

Theorem 1 (Cf. e.g., [42]). Assume that both the primal SDP (P) and the dual SDP (D) are strictly feasible. Then there exist optimal
solutions X∗ and y∗ that achieve a zero duality gap, i.e., 〈C, X∗〉 = 〈b, y∗〉. Furthermore, X∗ and y∗ are optimal if and only if they
satisfy the optimality conditions

〈Ai, X〉 = bi, i = 1, . . . ,m, (1a)
A(y)X = 0, (1b)

A(y) � 0 and X � 0.

Eq. (1b) is called complementary slackness condition and is a direct consequence of strong duality and the existence of
optimal solutions. Note that Eqs. (1a) and (1b) form a system of polynomial equations and at least in principle, one could
solve themsymbolically, for example, usingGröbner bases. However, as shown in [23], the degrees of the polynomials arising
in the solution process when eliminating variables is usually enormous. On the other hand, numerical algorithms based
on interior point methods can solve SDPs efficiently with polynomial worst-case complexity (cf. e.g., [42]). These methods
generally use a barrier function to encode the feasible set in the objective function. For example, to represent the constraint
X � 0, a typical approach is to augment the objective functionwith the logarithmof the determinant ofX and solve instances
of the problem

minimize t 〈C, X〉 − log det X
subject to 〈Ai, X〉 = bi, i = 1, . . . ,m, (2)

272 H. Peyrl, P.A. Parrilo / Theoretical Computer Science 409 (2008) 269–281

where t ≥ 0 is a real parameter. For t = 0 (a pure feasibility problem) the solution minimizes the barrier function and is
called the analytic center of the feasible region. Since the barrier function tends to infinity along the boundary of the feasible
set (i.e., when any of the eigenvalues of X gets close to zero), the returned solution will be well-centered in the interior of
the feasible set. In contrast to simplex-like algorithms, the optimal solution X∗ of (P) is approached iteratively along the
so-called central path in the interior of the feasible set as t increases in each iteration step. For large values for t , the optimal
value of (2) will get close to the optimum of (P).
Most SDP solvers are primal–dualmethodswhich create sequences of primal feasible points {Xk} and dual feasible points

{yk}, and use the duality gap as a stopping criteria. They can be interpreted as solving a relaxed system of KKT conditions of
problem (2):

〈Ai, X〉 = bi, i = 1, . . . ,m,
A(y)X = (1/t) I,

A(y) � 0 and X � 0.

For large values for t , the above system almost satisfies the optimality conditions (1). Hence the central path can be regarded
as a continuous deformation of the KKT conditions.
Nowadays, there exist several efficient open source SDP solvers, e.g., SeDuMi [40], SDPA [8], CSDP [3], SDPT3 [41], just to

mention a few of them.

2.2. SDP formulation of SOS problems

Although verifying nonnegativity of a polynomial p(x) is in general a difficult problem, there exists a sufficient condition
which is easier to solve: p(x) is nonnegative if it can be decomposed into a sumof squared polynomials, i.e., p(x) =

∑
i pi(x)

2.
As alreadymentioned in the introduction, computing a sum of squares decomposition is equivalent to solving a semidefinite
program. To pose the SOS problem in a semidefinite programming formulation, we express the given polynomial of degree
2d as a quadratic form

p(x) = z(x)TQz(x), (3)

where z(x) is the vector of all monomials of degree less than or equal to d, i.e., zα = xα, α ∈ Sd and Q ∈ SSd is a symmetric
matrix indexed by the exponent tuples in Sd. Since the components of z(x) are not algebraically independent, Q is in general
not unique. Expansion of the right-hand side of (3) andmatching coefficients of themonomials yields a set of linear equations
for the entries of Q . Hence the set of all matrices Q for which (3) holds is an affine subspace of the set of symmetric matrices.
Let this affine subspace be denoted byL:

L := {Q ∈ SSd | p(x) = z(x)TQz(x)}. (4)

If the intersection ofLwith the cone of PSD matrices is nonempty, p(x) can be written as a sum of squares:

Theorem 2 ([6, p. 106]). Let p(x) ∈ R[x] be a polynomial of degree less than or equal to 2d. The following assertions are
equivalent:

(i) p(x) is a sum of squares.
(ii) There exists a positive semidefinite Q ∈ L.

Proof. Assume that (ii) is true. Then (i) follows from a factorization of Q : p(x) = zTQz = zTLTLz =
∑
i(Liz)

2
=
∑
i pi(x)

2.
Conversely, if p(x) is a SOS, there exists a positive semidefinite matrix Q such that (3) holds. �

A positive semidefinite matrix Q ∈ L is called a Grammatrix of p(x) (with respect to some expression p(x) =
∑
i pi(x)

2).
Since finding a positive semidefinite matrix in an affine space is a semidefinite program, computing an SOS decomposition
is equivalent to solving a feasibility SDP. In the following we will discuss several issues arising in SOS problems such as
exploitation of sparsity, different descriptions ofL, and parametrized sum of squares.

2.2.1. Sparseness
If p(x) is a sparse polynomial, i.e., only a few coefficients pα are different from zero, not all monomials in Sd might be

needed in the monomial vector z(x). Techniques exploiting sparseness can dramatically reduce the size of the underlying
SDP. Sparseness can be exploited using the Newton polytope associated to the polynomial p(x). This polytope is defined as
the convex hull of the polynomial’s exponent set: C(p) := conv({α| pα 6= 0}). Reznick proved in [36] that only monomials
with exponents contained in 12C(p) can appear in an SOS decomposition:

Theorem 3 ([36]). If p(x) =
∑
i pi(x)

2, then C(pi) ⊆ 1
2C(p).

H. Peyrl, P.A. Parrilo / Theoretical Computer Science 409 (2008) 269–281 273

2.2.2. Description ofL
The affine spaceL can be presented either through a set of basis matrices (image or explicit representation)

Q = G0 +
∑
i

yiGi, (5)

where G0 ∈ L and the Gi are a basis of the subspace L − G0, or by a system of defining equations (kernel or implicit
representation):∑

β,γ∈ 12 C(p)
β+γ=α

Qβ,γ = pα, α ∈ C(p). (6)

Depending on the dimension ofL, it is computationally advantageous to use either the kernel or the image representation.
For polynomials of large degree d, the implicit form turns out to be more efficient. We refer the reader to [26] for a
comprehensive complexity analysis of either representation. In any case, an SOS problem will be cast into either an SDP
in primal form (P) or an SDP in dual form (D). In the following example we will derive the kernel and image representation
for a simple polynomial.

Example 1. We consider the quartic form p(x1, x2) = 2x41 + 2x
3
1x2 − x

2
1x
2
2 + 5x

4
2. Note that since p(x1, x2) is homogeneous

of degree 4, it suffices to restrict the components of z(x) to monomials of degree 2:

2x41 + 2x
3
1x2 − x

2
1x
2
2 + 5x

4
2 =

 x21x1x2
x22

T [q11 q12 q13
q12 q22 q23
q13 q23 q33

] x21x1x2
x22

= q11x41 + 2q12x

3
1x2 + (2q13 + q22)x

2
1x
2
2 + 2q23x1x

3
2 + q33x

4
2.

Matching coefficients yields the following linear defining equations forL (kernel representation):

q11 = 2, 2q12 = 2, (2q13 + q22) = −1, 2q23 = 0, q33 = 5.

An image representation of the same affine subspace is given by the parametrization

Q (y) =

[2 1 −y
1 −1+ 2y 0
−y 0 5

]
.

A positive semidefinite matrix Q ∈ L can be obtained using semidefinite programming. A particular solution is

Q =

[2 1 −2
1 3 0
−2 0 5

]
= LTDL, where L =

[
−2/5 0 1
1/3 1 0
1 0 0

]
and D =

[5 0 0
0 3 0
0 0 13/15

]
.

Hence p(x1, x2) can be written as a sum of 3 squares:

p(x1, x2) = 5
(
−
2
5
x21 + x

2
2

)2
+ 3

(
1
3
x21 + x1x2

)2
+
13
15
(x21)

2.

When the kernel representation is used for an SOS problem, the equality constraints (6) can be easily written in standard
form (we use again exponent tuples for indexing the matrices):

〈Aα,Q 〉 = pα, where Aαβ,γ =
{
1 if β + γ = α,
0 otherwise.

As described, an SOS problem corresponds to an SDP feasibility problem, and any feasible matrix Q will yield a valid Gram
matrix. To convert this into a problemwith a unique solution, we can compute for instance the analytic center of the feasible
set. Under the assumption of strict feasibility, it is easy to verify that the analytic center Q0, i.e., the solution minimizing the
barrier− log detQ , has to satisfy the following optimality conditions:

〈Aα,Q0〉 = pα, α ∈ C(p),

∇(log detQ0) = Q−10 =
∑
α

Aαyα.

Note the remarkable multivariate Hankel structure of Q−10 which follows from the definition of the matrices Aα . Again,
one could try to solve the optimality conditions symbolically, but the algebraic degree of the solution will in general be
prohibitive already for problems of moderate size.

274 H. Peyrl, P.A. Parrilo / Theoretical Computer Science 409 (2008) 269–281

2.2.3. Parametrized SOS problems
A tremendous advantage of the SOS approach to polynomial nonnegativity is that the method can be easily extended

to the problem of finding a sum of squares in a convex set of polynomials. To see this, consider the polynomial family
p(x, λ), where p(x, λ) is affinely parametrized in λ, and λ is either free or belongs to a convex set described by semidefinite
constraints.We can use semidefinite programming to efficiently search for parameters λwhich render p(x, λ) to be a sum of
squares. The procedure is exactly as before:matching coefficients of the identity p(x, λ) = z(x)TQz(x) yields linear equations
for Q and λ. Since both Q and λ are defined by semidefinite constraints, the problem is again an SDP. This fact is exploited
in many applications, e.g., computing a lower bound on p(x) or searching for a polynomial Lyapunov function for a system
with a polynomial vector field.

Example 2. Let us revisit the polynomial from Example 1, but now assume that the coefficient of the monomial x31x2 is a
free parameter. An image representation of the corresponding affine subspaceL is then given by

Q (λ, y) =

[2 λ −y
λ −1+ 2y 0
−y 0 5

]
.

The kernel representation of the same space is obtained by dropping the constraint 2q12 = 2 in Example 1.

With software tools like SOSTOOLS [32] and YALMIP [20] there are two MATLAB packages available relieving the user
from the task of casting a SOS problem into the corresponding SDP. However, since these are pure numerical methods, their
answers will never yield exact results. Additionally, we would like to mention GloptiPoly 3 [12] and SparsePOP [44], two
related MATLAB packages specialized on solving generalized problems of moments which are dual to SOS problems.

3. Computing rational SOS decompositions

We are interested in solving the following problem: given a polynomial with rational coefficients, i.e., p(x) ∈ Q[x],
compute an exact SOS decomposition consisting only of squares of polynomials inQ[x]. If such a decomposition is possible,
we call p(x) a rational sum of squares. To our knowledge, it is still an open question whether there always exists such a
decomposition for every SOS polynomial. Landau showed in [17] that this is indeed possible for univariate polynomials that
can bewritten as a sum of 8 squares inQ[x]. Pourchet was able to improve Landau’s estimate and proved in [29] that already
5 squares are sufficient (we refer the reader interested in the proof to Chapter 17 in [35]). Recently, it was shown by Hillar
in [13] that sums of polynomial squares over totally real number fields are sum of squares in Q[x]. Schweighofer presented
an algorithmic proof in [38] showing that every univariate polynomial with coefficients in a subfield ofR is a sum of squares
of polynomials with coefficients in the same subfield. Unfortunately, the algorithm is restricted to univariate polynomials.
The following proposition links rational SOS with the Gram matrix method:

Proposition 4. The existence of a rational SOS decomposition, i.e., p(x) =
∑
i pi(x)

2 where pi(x) ∈ Q[x], is equivalent to the
existence of a Gram matrix with rational entries.

Proof. Assume that there exists a rational positive semidefinite Grammatrix Q for p(x). Using diagonalization of quadratic
forms over a field (cf. e.g., [34, Theorem 3.1.5]), the quadratic form zTQz can bewritten as a weighted sum of squares inQ[x]:

p(x) = zTQz = zTPTDPz =
k∑
i=1

di(Pz)2i =
k∑
i=1

dipi(z(x))2,

where P and D are rational matrices, D := diag(d1, . . . , dk) being diagonal. The rational weights di are nonnegative because
Q was assumed to be positive semidefinite. Observe that di = ai/bi = aibi/b2i . Hence p(x) can be written as a sum of at
most a1b1+· · ·+akbk squares inQ[x]. A slightly different argument, using Lagrange’s four-square theorem, yields an upper
bound of 4k squares.
Conversely, if p(x) can be written as a sum of squared polynomials in Q[x], there exists a positive semidefinite Gram

matrix Q with rational entries. �

The basic idea of our approach for computing rational sums of squares is to take advantage of interior point solvers’
computational efficiency: we compute an approximate numerical solution and in a second step we round the numerical
solution to an exact rational one. We have the following standing assumption:

Assumption 1. There exists a strictly feasible Gram matrix for p(x).

A crucial factor in obtaining an exact SOS decomposition with our method is the strict feasibility of the underlying SDP,
i.e., the existence of a Gram matrix Q with full rank. Consequently, the method could fail in general for sum of squares that
are not strictly positive: if there is an x∗ such that p(x∗) = 0, it follows from the identity p(x∗) = z(x∗)TQz(x∗) that the
monomial vector z(x∗) is in the kernel of Q . Hence Q cannot be positive definite.
If the real zeros of p(x) are known, then it may be possible to remove them using the linear constraint Qz(x∗) = 0, to

obtain a smaller semidefinite program that will likely be strictly feasible. Both this procedure, and the already mentioned

H. Peyrl, P.A. Parrilo / Theoretical Computer Science 409 (2008) 269–281 275

Theorem 3, can be understood in terms of a facial reduction procedure [4], where the full-dimensional SOS cone is replaced
by a smaller (but not necessarilyminimal) face containing the given polynomial. It would be of interest to extend theNewton
polytope theory to a fully general facial reduction scheme.
As already mentioned, a plain SOS problem is just a feasibility SDP without any objective function. Hence an interior

point solver that minimizes the log-barrier function will return a solution which is ‘‘well-centered’’ in the cone of PSD
matrices. Under the strict feasibility assumption, this analytic centerwill be a positive definitematrix, since the optimization
is maximizing the determinant, and there exists at least one solution with strictly positive determinant. Thus chances are
good that a rational approximation of the numeric solution is positive semidefinite as well. Consequently, we have to verify
in a last step that the Gram matrix corresponding to the rational solution is indeed positive semidefinite.
In the following we will briefly discuss different methods to symbolically verify positive semidefiniteness of a rational

matrix:

Characteristic polynomial. The following theorem links positive semidefiniteness of a matrix with the signs of the
coefficients of its characteristic polynomial.

Theorem 5 (Cf. e.g., [14]). An n × n symmetric matrix Q is positive semidefinite if and only if all the coefficients of
its characteristic polynomial p(λ) = det(λI − Q) = λn + pn−1λn−1 + · · · + p0 alternate in sign, i.e., they satisfy
pi(−1)n−i ≥ 0.

If Q has only rational entries, the coefficients of the characteristic polynomial will be rational numbers that can be
computed exactly. Checking their signs according to the theorem yields an unconditionally valid test for positive
semidefiniteness.

Matrix diagonalization. Another way to verify positive semidefiniteness of a matrix is to diagonalize it as in the proof
of Proposition 4. A particular diagonalization is obtained via the LDLT decomposition, a variant of the LU
decomposition appropriate for symmetric matrices:

Theorem 6 (Cf. e.g., [9, pp. 134ff.]). Let Q be a symmetric positive semidefinite n×nmatrix. Then there exist a diagonal
matrix D = diag(d1, . . . , dn), a lower triangular matrix L with unit diagonal, and a nonsingular permutation matrix P
such that PTQP = LDLT.

Since the LDLT factorization of a matrix only involves basic arithmetic computations, the decomposition can be
computed exactly in the field of rational numbers. ThematrixQ is positive semidefinite if andonly if all the diagonal
elements di are nonnegative.
Alternatively, an essentially similar matrix diagonalization may also be obtained from a Gram–Schmidt

orthogonalization process (cf. e.g., [34, Theorem 3.1.5]).

For ourMacaulay 2 SOS package we decided to use the LDLT decomposition, since it turned out to be significantly faster than
the computation of the characteristic polynomial. As is to be expected, solving the SDP is evidently the bottleneck in our
algorithm.
In the approximation step we have to distinguish two cases depending on whether the SOS problem is posed as an SDP

in primal form (P) or dual form (D):

3.1. Kernel representation

If the SOS problem is posed as an SDP in primal form (P), the numerical solution Q will not exactly fulfill identity (3). For
an exact representation of the original polynomial p(x), we have to find a rational approximation of Q which satisfies the
equality constraints (6). The simplest procedure is to compute a rational approximation Q̃ , for example by using continued
fractions (cf. e.g., [15]) which represent a real number r with an expression as follows

r = a0 +
1

a1 + 1
a2+

1

...

,

where the ai are integer numbers. Continued fractions are a sensible choice as truncating the series yields best rational
approximations: a best rational approximation of a real number r is a rational number ab , b > 0 such that there is no rational
number with smaller denominator which is closer to r .
To satisfy (6), the rational approximation Q̃ is projected onto the subspaceL. Since the affine space is defined by rational

data, i.e., the coefficients of p(x), an orthogonal projection Π onto L will yield a rational matrix Π(Q̃) satisfying (3). The
special structure ofL results in a very simple projection formula:

276 H. Peyrl, P.A. Parrilo / Theoretical Computer Science 409 (2008) 269–281

Fig. 1. Projection of a rounded solution. The orthogonal projections of the matrices Q and Q̃ are denoted byΠ(Q) andΠ(Q̃) respectively. The shaded cone
PSD represents the cone of positive semidefinite matrices.

Proposition 7. The orthogonal projectionΠ of a symmetric matrix Q onto the spaceL defined in (4) is given by

Π(Q) α,β = Qα,β −
1

n(α + β)

[∑
α′+β ′=α+β

Qα′,β ′ − pα+β

]
︸ ︷︷ ︸

eα+β

for all α, β ∈
1
2
C(p),

where n(α + β) denotes the number of pairs (α′, β ′) such that α′ + β ′ = α + β , i.e.,

n(α + β) := |{(α′, β ′) | α′ + β ′ = α + β, α′, β ′ ∈
1
2
C(p)}|.

The proof for this proposition can be found in Appendix A of this paper. Note that the expression in the square brackets, eα+β ,
is the error in the coefficient of monomial xα+β of the polynomial z(x)TQz(x). Thus the orthogonal projection is obtained
by just subtracting the weighted errors of the coefficients from the Gram matrix. Furthermore, note that since only basic
arithmetic operations are used,Π(Q)will be a rational matrix if Q and p are rational.
We concludewith an estimate of the rounding tolerance needed. Assuming strict feasibility of the numerical solution, we

quantify how ‘‘far away’’ it is from the boundary of the PSD cone and the affine subspace. In other words, there are an ε > 0
and a δ ≥ 0 such that Q � εI and d(Q ,Π(Q)) ≤ δ, where d(·, ·) denotes the Euclidean distance between two matrices.
Note that the condition Q � εI is equivalent to the minimum eigenvalue of Q being greater than or equal to ε. The matrix
Q is approximated by a rational matrix Q̃ such that d(Q , Q̃) ≤ τ . Fig. 1 depicts the whole situation.

Proposition 8. Let ε, δ, and τ be defined as above. Assume τ 2 + δ2 ≤ ε2. Then, the orthogonal projection of the rounded matrix
Q̃ on the affine subspaceL is positive semidefinite, and thus it is a valid SOS decomposition.

Proof. Since the projection of Q̃ ontoL is orthogonal,Q−Π(Q) andΠ(Q̃)−Π(Q) are orthogonal. Therefore, by Pythagoras’
theorem:

d(Π(Q̃),Q)2 = d(Q ,Π(Q))2 + d(Π(Q̃),Π(Q))2.

Clearly, d(Π(Q̃),Π(Q)) ≤ d(Q̃ ,Q) ≤ τ , so

d(Π(Q̃),Q) ≤
√
δ2 + τ 2.

Let λi(·) denote the i-th largest eigenvalue of a symmetric matrix, and let σ̄ (·) = maxi |λi(·)|. Note that because |λi(·)| ≤√∑
i λ
2
i (·) = d(·, 0), it holds that |λi(Π(Q̃) − Q)| ≤ d(Π(Q̃) − Q , 0) = d(Π(Q̃),Q) ≤

√
δ2 + τ 2. To show thatΠ(Q̃) is

positive semidefinite, we rewriteΠ(Q̃) as follows:

Π(Q̃) = Q +
(
Π(Q̃)− Q

)
�

(
ε − σ̄ (Π(Q̃)− Q)

)
I � (ε −

√
δ2 + τ 2)I � 0,

where the last inequality follows from the assumption that τ 2 + δ2 ≤ ε2. �

Hence if the SDP is strictly feasible, and δ2 < ε2, it is in principle always possible to compute a valid rational solution by
using sufficiently many digits for the approximated solution. The allowed rounding tolerance τ depends on the minimum
eigenvalue of the positive definite matrix Q and its distance from the affine spaceL. Under the strict feasibility assumption
(Assumption 1), there always exists a solution with δ sufficiently small such that the inequality above can be fulfilled
(in particular, we can just take δ = 0). From a practical point of view, however, it could conceivably happen that a
fixed-precision floating-point solver returns a solution where δ ≥ ε. This is not too serious an issue, for two reasons. A
simple reformulation described in the next section, using the image representation and the dual form of SDP, will guarantee

H. Peyrl, P.A. Parrilo / Theoretical Computer Science 409 (2008) 269–281 277

Table 1
Functions provided by the SOS package
Function Description

(g,d) = getSOS(f) Computes a rational SOS decomposition of the input polynomial f and returns a list of rational weights d
and a list of polynomials g inQ[x] such that f (x) =

∑
i digi(x)

2 . An error message is displayed if no valid SOS
decomposition is found.

(ok,Q,z) = findSOS(f) Has the same functionality as getSOS but returns the corresponding Grammatrix Q and a list of monomials
z such that f (x) = z(x)TQz(x). ok is a Boolean variable which is true when the decomposition algorithmwas
successful and false otherwise.

f = sumSOS(g,d) For checks: given a list of polynomials g and a list of weights d, sumSOS computes the expression
∑
i digi(x)

2 .

that the computed solution exactly satisfies the constraints (i.e., δ = 0). Alternatively, many available SDP solvers such as
SDPT3 or SDPA allow the user to specify the accepted error in the equality constraints for an solution. Nevertheless, we think
that arbitrary precision floating point SDP solvers could be an important step to overcome this potential difficulty for more
complicated problems. Furthermore, please note that Proposition 8 only provides a sufficient condition for the rounding
tolerance; in many examples, even not strictly feasible ones, we were able to obtain valid rational solutions using much
coarser roundings.
Alternatively to the approximation with continued fractions and its subsequent projection, a rational solution may be

obtained using the LLL lattice basis reduction developed by Lenstra, Lenstra, and Lovász. Already in their seminal paper [19]
Lenstra et al. presented the simultaneous approximation of a vector of rational numbers as a possible application. It is not
difficult to extend their algorithm for the simultaneous approximation in a subspace. We refer the reader to Appendix B for
the details.

3.2. Image representation

If the SOS problem is formulated as an SDP in dual form, the polynomial identity (3) holds for any value of the decision
variables y since the base matrices Gi are exact. Thus it suffices to approximate the numerical solution y by a vector of
rational numbers ỹ. Again, a sensible choice for the rounding procedure are truncated continued fractions. While for a given
precision they will yield the best rational approximation of y, the denominators of the ỹi will in general be different. Similar
as in the case of the kernel representation, the LLL algorithm can be used to obtain a rational approximation with common
denominator. We refer the reader to [19] and Appendix B for the details.
We have the following estimate for the rounding tolerance that guarantees a valid solution:

Proposition 9. Let the subspaceL be described by a set of basis matrices as in (5). Assume that Q � εI � 0, and let the rational
approximation ỹ be such that |yi − ỹi| ≤ τ , where τ ≤ ε∑

i σ̄ (Gi)
and σ̄ (·) = maxi |λi(·)|. Then the rational approximation ỹ will

yield an exact SOS decomposition.

Proof. Since identity (3) is fulfilled for any ỹ, we only have to verify thatQ (ỹ) is positive semidefinite. Under the assumptions
of the proposition it is easy to see that this is indeed the case:

Q (ỹ) = G0 +
∑
i

ỹiGi � G0 +
∑
i

(yiGi − τ σ̄ (Gi)I) �

(
ε − τ

∑
i

σ̄ (Gi)

)
I � 0. �

4. Macaulay 2 SOS package

We used the computer algebra systemMacaulay 2 [10] to implement a SOS package based on the ideas presented in this
paper. The package together with packages for solving SDPs and computing LDLT decompositions are available for download
at [28]. To solve the SDPwe use a simple, pure dual interior pointmethod based on dampedNewton steps as described in [5].
The algorithm for the LDLT decomposition is taken from [9]. Similar ideas to the ones presented in this paper have recently
been implemented by Harrison in the open source theorem prover HOL Light [11].
Table 1 summarizes the functions provided by the SOS package. The main function is getSOS which tries to compute a

rational SOS decomposition for a given polynomial. In the following example we demonstrate how to use the getSOS for
computing an SOS decomposition of a polynomial of degree 4 with 4 variables.

Example 3. Consider the polynomial

p(x, y, z, w) = 2x4 + x2y2 + y4 − 4x2z − 4xyz − 2y2w + y2 − 2yz + 8z2 − 2zw + 2w2.

To begin with, we have to load the SOS package and define p(x, y, z, w):

i1 : loadPackage "SOS";
i2 : P = QQ[x,y,z,w];
i3 : p = 2*x^4 + x^2*y^2 + y^4 - 4*x^2*z - 4*x*y*z - 2*y^2*w + y^2 - 2*y*z + 8*z^2 - 2*z*w + 2*w^2;

278 H. Peyrl, P.A. Parrilo / Theoretical Computer Science 409 (2008) 269–281

Table 2
Parameter optimization with getSOS

(g,t [,pval]) = getSOS (f [,p [,ofun [,pmin, pmax]]] [,rndTol=>n])

Argument: Description:
f Input polynomial
p List of affine parameters
pmin/pmax List of lower/upper bounds for the parameters
ofun Linear objective function of the parameters, ofun is minimized
rndTol=>n Set required precision to n binary digits (0 ≤ n ≤ 52)
g List of polynomials
d List of rational weights
pval List of rational parameters

Optional arguments are given in square brackets.

If successful, the function getSOS returns a weighted SOS representation such that p(x, y, z, w) =
∑
i digi(x, y, z, w)

2.
Otherwise an error message is displayed.

i4 : (g,d) = getSOS p

... omitted output ...

1 2 1 1 1 2 2 2 8 2 1
o8 = ({- -*x - -*x*y - -*y + z - -*w, - --*x - --*x*y - --*y - --*y + w,

4 4 8 8 15 15 15 15
--
2 4 4 2 2 18 2 20 81 2 2

x - --*x*y - --*y - --*y, x*y - --*y - --*y, - ---*y + y, y },
11 11 11 59 59 205

--
15 22 59 41 66

{8, --, --, --, --, ----})
8 15 55 59 1025

Hence p(x, y, z, w)may be written as

p(x, y, z, w) = 8
(
−
1
4
x2 −

1
4
xy−

1
8
y+ z −

1
8
w

)2
+
15
8

(
−
2
15
x2 −

2
15
xy−

8
15
y2 −

1
15
y+ w

)2
+
22
15

(
x2 −

4
11
xy−

4
11
y2 −

2
11
y
)2
+
59
55

(
xy−

18
59
y2 −

20
59
y
)2
+
41
59

(
−
81
205
y2 + y

)2
+
66
1025

y4.

Correctness of the obtained decomposition may be verified with the function sumSOS which expands a weighted sum of
squares decomposition:

i5 : sumSOS (g,d) - p

o5 = 0

o5 : P

As discussed in Section 2.2, one of the strengths of the SDP approach towards polynomial nonnegativity is that one can
search for (and optimize over) coefficients which render a polynomial to be a SOS. The SOS package contains rudimentary
support for handling linearly parametrized polynomials. Please note that this functionality is still at an early stage. Table 2
shows the syntax of the command getSOSwhen used with parametrized polynomials. In the subsequent example we will
show how to compute a verified lower bound for a given polynomial.

Example 4. In [24] the value−2.11291382 was obtained as a numerical lower bound for the polynomial

f (x, y, z) = x4 + y4 + z4 − 4xyz + x+ y+ z.

We can compute an rational approximation of this lower bound with the function getSOS. We start by defining the
polynomial with an additional variable t for the lower bound:

i7 : P = QQ[x,y,z,t];
i8 : p = x^4 + y^4 + z^4 - 4*x*y*z + x+y+z - t;

H. Peyrl, P.A. Parrilo / Theoretical Computer Science 409 (2008) 269–281 279

To compute a rational lower bound,wewant to find the biggest t such that p(x, y, z, t) can still bewritten as a sumof squares
(we restrict t to be in the interval [−10, 0]):

i9 : (g,d,v) = getSOS (f,{t},-t,{-10},{0});

... omitted output ...

i10 : v

35448817
o10 = {- --------}

16777216

Hence a certified lower bound for f (x, y, z) is− 3544881716777216 which is roughly−2.112914145.

5. Conclusion and outlook

In this paper we presented a method for computing rational SOS decompositions which serve as exact certificates of the
SOS property. The proposed method is a symbolic–numeric approach that uses efficient interior point solvers to obtain
a numerical approximate solution which is then rounded to an exact rational solution. We showed that under a strict
feasibility assumption, an approximate solution of the underlying semidefinite program is sufficient to obtain an exact
SOS representation. We discussed several rounding procedures to convert the floating point solutions into rational ones.
Furthermore, we described an implementation of the proposedmethod through aMacaulay 2 package. An extended version
of this package which is able to handle several SOS constraints at once and has interfaces to external SDP solvers is currently
under development. Future research could address the case of non strictly feasible SOS problems.

Acknowledgements

The authors would like to thank the referees for their valuable feedback and useful comments.

Appendix A. Proof of Proposition 7

Proof. (i) The matrixΠ(Q) is an element ofL because for all γ ∈ C(p)∑
α+β=γ

Π(Q) α,β =
∑

α+β=γ

Qα,β −
∑

α+β=γ

1
n(γ)︸ ︷︷ ︸

=1

[∑
α′+β ′=γ

Qα′,β ′ − pγ

]
= pγ .

(ii) Q −Π(Q) is orthogonal toL, i.e., the inner product between Q −Π(Q) and the kernel of the linear map definingL is
zero. Let∆ be an element of the kernel of this linear map, i.e.,

∑
α+β=γ ∆α,β = 0 for all γ ∈ C(p). Then

〈Q −Π(Q), ∆〉 =
∑

α,β∈ 12 C(p)

(
Qα,β − Π(Q) α,β

)
∆α,β =

∑
α,β∈ 12 C(p)

eα+β
n(α + β)

∆α,β

=

∑
γ∈C(p)

∑
α+β=γ

eγ
n(γ)

∆α,β =
∑
γ∈C(p)

eγ
n(γ)

∑
α+β=γ

∆α,β = 0,

where the last equation follows from the assumption that∆ is contained in the kernel of the map Q 7→ p. �

Appendix B. Simultaneous approximation using the LLL algorithm

The LLL algorithm by Lenstra et al. computes a set of short, nearly orthogonal basis vectors for a given lattice. In [19] the
authors showed how the basis reduction algorithm can be used for the simultaneous approximation of a vector. To compute
a rational approximation ỹ with common denominator of a vector y ∈ Rm, consider the lattice spanned by the column
vectors of the matrix

L =

N 0 · · · 0 −dNy1e
0 N . . . 0 −dNy2e
...

...
. . .

...
...

0 0 · · · N −dNyme
0 0 · · · 0 1

 ,

280 H. Peyrl, P.A. Parrilo / Theoretical Computer Science 409 (2008) 269–281

whereN is a large integer number. The LLL algorithmwill compute a reduced basis spanning the same lattice as the columns
of L. Hence for every reduced basis vector ĝ , there exist integers a ∈ Zm and b ∈ Z such that

ĝ = N

a1
...
am
0

− b

dNy1e
...

dNyme
−1

 .
Since the reduced basis is short, we expect ĝi/N = ai − b

dNyie
N , i = 1, . . . ,m, to be a small. In other words,

ai
b is a good

approximation of dNyieN . For bounds on the quality of the approximation we refer the reader to [19].
When the SOS problem is formulated in the kernel representation, the LLL algorithm can also be used to find a rational

approximate solution directly in the affine space L. For the approximation we assume that a basis of L is available and
considerL in the vectorized form

q = g0 +
m∑
i=1

yigi, yi ∈ Rm,

where the gi := vec(Gi) denote the vectors containing the columns of the basis matrices Gi stacked below each other.
Without loss of generality we will assume that the polynomial p(x) has only integer coefficients (otherwise scale p(x)
appropriately) and hence the gi are integer vectors. Let q denote the vectorized floating point solution Q and consider the
lattice spanned by the column vectors of

L =
[
Ng1 Ng2 · · · Ngm Ng0 − dNqe
0 0 . . . 0 1

]
,

where N is again a large integer. For a reduced basis vector ĝ , there exist integers a ∈ Zm and b ∈ Z such that

ĝ =
[∑m

i=1 aiNgi + b(Ng0 − dNqe)
b

]
.

Since the reduced basis is short, we expect
∑m
i=1 aigi + bg0 − b

dNqe
N to be small. In other words,

∑m
i=1

ai
b gi + g0 is a good

approximation of dNqeN .

References

[1] H. Anai, P.A. Parrilo, Convex quantifier elimination for semidefinite programming, in: Proceedings of the InternationalWorkshop on Computer Algebra
in Scientific Computing, CASC 2003, 2003.

[2] C. Bachoc, F. Vallentin, New upper bounds for kissing numbers from semidefinite programming. arXiv:math/0608426v4[math.MG], 2006.
[3] B. Borchers, A C library for semidefinite programming, Optim. Meth. Software 11 (1) (1999) 613–623.
[4] J.M. Borwein, H. Wolkowicz, Facial reduction for a cone-convex programming problem, J. Aust. Math. Soc. Ser. A 30 (3) (1980–81) 369–380.
[5] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
[6] M.D. Choi, T.Y. Lam, B. Reznick, Sums of squares of real polynomials, in: K -Theory and Algebraic Geometry: Connections with Quadratic Forms and
Division Algebras, in: Proc. Sympos. Pure Math., vol. 58, Amer. Math. Soc., Providence, RI, 1995, pp. 103–126.

[7] A.C. Doherty, P.A. Parrilo, F.M. Spedalieri, Distinguishing separable and entangled states, Phys. Rev. Lett. 88 (18) (2002) 187904.
[8] K. Fujisawa, M. Kojima, K. Nakata, M. Yamashita, SDPA (SemiDefinite Programming Algorithm). Available from http://grid.r.dendai.ac.jp/sdpa.
[9] G. Golub, C. van Loan, Matrix Computations, 2nd ed., in: Johns Hopkins Series in the Mathematical Sciences, The Johns Hopkins University Press,
Baltimore, Maryland, 1989.

[10] D.R. Grayson, M.E. Stillman, Macaulay 2, a software system for research in algebraic geometry. Available from http://www.math.uiuc.edu/Macaulay2.
[11] J. Harrison, Verifying nonlinear real formulas via sums of squares, in: K. Schneider, J. Brandt (Eds.), Proceedings of the 20th International Conference

on Theorem Proving in Higher Order Logics, TPHOLs 2007, in: Lect. Notes Comput. Sci., vol. 4732, Springer-Verlag, Kaiserslautern, Germany, 2007.
[12] D. Henrion, J.B. Lasserre, J. Löfberg, Gloptipoly 3. Available from http://www.laas.fr/∼henrion/software/gloptipoly3, 2007.
[13] C.J. Hillar, Sums of squares over totally real fields are rational sums of squares. arXiv:0704.2824v2[math.AC], 2007.
[14] R.A. Horn, C.R. Johnsob, Matrix Analysis, Cambridge University Press, Cambridge, 1995.
[15] W. Jones, W. Thron, Continued Fractions: Analytic Theory and Applications, in: Encyclopedia of Mathematics and its Applications, vol. 11, Addison-

Wesley Publishing Company, 1980.
[16] I. Klep, M. Schweighofer, Sums of hermitian squares and the BMV conjecture. Available from http://perso.univ-rennes1.fr/markus.schweighofer/

publications/bmv.pdf, 2007.
[17] E. Landau, Über die Darstellung definiter Funktionen als Summe von Quadraten, Math. Ann. 62 (1906) 290–329.
[18] J.B. Lasserre, Global optimization with polynomials and the problem of moments, SIAM J. Optim. 11 (2001) 796–817.
[19] A.K. Lenstra, H.W. Lenstra, L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (4) (1982) 515–534.
[20] J. Löfberg, YALMIP: A toolbox for modeling and optimization in MATLAB, in: Proceedings of the CACSD Conference, Taipei, Taiwan, 2004. Available

from http://control.ee.ethz.ch/∼joloef/yalmip.php.
[21] Y. Nesterov, Squared functional systems and optimization problems, in: J. Frenk, C. Roos, T. Terlaky, S. Zhang (Eds.), High Performance Optimization,

Kluwer Academic Publishers, 2000, pp. 405–440.
[22] J. Nie, Sum of squares method for sensor network localization, Computational Optimization and Applications (in press) published online at http://

www.springerlink.com/content/xj58880l17615817/, 2007.
[23] J. Nie, K. Ranestad, B. Sturmfels, The algebraic degree of semidefinite programming. arXiv:math/0611562v2[math.OC], 2006.
[24] P. Parrilo, B. Sturmfels, Minimizing polynomial functions, in: Algorithmic and Quantitative Real Algebraic Geometry, in: DIMACS Series in Discrete

Mathematics and Theoretical Computer Science, vol. 60, Amer. Math. Soc, 2003, pp. 83–99.
[25] P.A. Parrilo, Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization, Ph.D. Thesis, California Institute

of Technology, 2000.

arXiv:math/0608426v4
arXiv:math/0608426v4
arXiv:math/0608426v4
http://grid.r.dendai.ac.jp/sdpa
http://grid.r.dendai.ac.jp/sdpa
http://grid.r.dendai.ac.jp/sdpa
http://grid.r.dendai.ac.jp/sdpa
http://grid.r.dendai.ac.jp/sdpa
http://grid.r.dendai.ac.jp/sdpa
http://grid.r.dendai.ac.jp/sdpa
http://www.math.uiuc.edu/Macaulay2
http://www.math.uiuc.edu/Macaulay2
http://www.math.uiuc.edu/Macaulay2
http://www.math.uiuc.edu/Macaulay2
http://www.math.uiuc.edu/Macaulay2
http://www.math.uiuc.edu/Macaulay2
http://www.laas.fr/~henrion/software/gloptipoly3
http://www.laas.fr/~henrion/software/gloptipoly3
http://www.laas.fr/~henrion/software/gloptipoly3
http://www.laas.fr/~henrion/software/gloptipoly3
http://www.laas.fr/~henrion/software/gloptipoly3
http://www.laas.fr/~henrion/software/gloptipoly3
http://www.laas.fr/~henrion/software/gloptipoly3
arXiv:0704.2824v2
arXiv:0704.2824v2
arXiv:0704.2824v2
http://perso.univ-rennes1.fr/markus.schweighofer/publications/bmv.pdf
http://perso.univ-rennes1.fr/markus.schweighofer/publications/bmv.pdf
http://perso.univ-rennes1.fr/markus.schweighofer/publications/bmv.pdf
http://perso.univ-rennes1.fr/markus.schweighofer/publications/bmv.pdf
http://perso.univ-rennes1.fr/markus.schweighofer/publications/bmv.pdf
http://perso.univ-rennes1.fr/markus.schweighofer/publications/bmv.pdf
http://perso.univ-rennes1.fr/markus.schweighofer/publications/bmv.pdf
http://perso.univ-rennes1.fr/markus.schweighofer/publications/bmv.pdf
http://perso.univ-rennes1.fr/markus.schweighofer/publications/bmv.pdf
http://control.ee.ethz.ch/~joloef/yalmip.php
http://control.ee.ethz.ch/~joloef/yalmip.php
http://control.ee.ethz.ch/~joloef/yalmip.php
http://control.ee.ethz.ch/~joloef/yalmip.php
http://control.ee.ethz.ch/~joloef/yalmip.php
http://control.ee.ethz.ch/~joloef/yalmip.php
http://control.ee.ethz.ch/~joloef/yalmip.php
http://control.ee.ethz.ch/~joloef/yalmip.php
http://www.springerlink.com/content/xj58880l17615817/
http://www.springerlink.com/content/xj58880l17615817/
http://www.springerlink.com/content/xj58880l17615817/
http://www.springerlink.com/content/xj58880l17615817/
http://www.springerlink.com/content/xj58880l17615817/
http://www.springerlink.com/content/xj58880l17615817/
arXiv:math/0611562v2
arXiv:math/0611562v2
arXiv:math/0611562v2

H. Peyrl, P.A. Parrilo / Theoretical Computer Science 409 (2008) 269–281 281

[26] P.A. Parrilo, Semidefinite programming relaxations for semialgebraic problems, Math. Program. 96 (2) (2003) 293–320.
[27] P.A. Parrilo, R. Peretz, A geometric inequality for circle packings, Discrete Comput. Geom. 31 (3) (2004) 357–367.
[28] H. Peyrl, P.A. Parrilo, SOS.m2, a sum of squares package for Macaulay 2. Available from http://www.control.ee.ethz.ch/∼hpeyrl/index.php, 2007.
[29] Y. Pourchet, Sur la représentation en somme de carrés des polynômes à une indéterminée sur un corps de nombres algébriques, Acta Arithm. 19

(1971) 89–104.
[30] V. Powers, T. Wörmann, An algorithm for sums of squares of real polynomials, J. Pure Appl. Algebra 127 (1998) 99–104.
[31] S. Prajna, A. Jadbabaie, G.J. Pappas, A framework forworst-case and stochastic safety verification using barrier certificates, IEEE Trans. Automat. Control

52 (8) (2007) 1415–1428.
[32] S. Prajna, A. Papachristodoulou, P. Seiler, P.A. Parrilo, SOSTOOLS: Sum of squares optimization toolbox for MATLAB. Available from http://www.cds.

caltech.edu/sostools and http://www.mit.edu/∼parrilo/sostools, 2004.
[33] S. Prajna, P.A. Parrilo, A. Rantzer, Nonlinear control synthesis by convex optimization, IEEE Trans. Automat. Contr. 49 (2) (2004) 310–314.
[34] A. Prestel, C.N. Delzell, Positive Polynomials, Springer, 2001.
[35] A.R. Rajwade, Squares, in: London Mathematical Society Lecture Notes, vol. 171, 1993.
[36] B. Reznick, Extremal psd forms with few terms, Duke Math. J. 45 (1978) 363–374.
[37] B. Reznick, Some concrete aspects of Hilbert’s 17th problem, in: Real Algebraic Geometry and Ordered Structures, in: Contemporary Mathematics,

vol. 253, Amer. Math. Soc, Providence, RI, 2000, pp. 251–272.
[38] M. Schweighofer, Algorithmische Beweise für Nichtnegativ- und Positivstellensätze, Master’s Thesis, Universität Passau, 1999.
[39] N.Z. Shor, Class of global minimum bounds of polynomial functions, Cybernetics 23 (6) (1987) 731–734.
[40] J.F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Interior point methods, Optim. Meth. Software 11–12 (1–4)

(1999) 625–653.
[41] R.H. Tütüncü, K.C. Toh, M.J. Todd, Solving semidefinite-quadratic-linear programs using SDPT3, Math. Program. Ser. B 95 (2003) 189–217.
[42] L. Vandenberghe, S. Boyd, Semidefinite programming, SIAM Rev. 38 (1) (1996) 49–95.
[43] H.-C. von Bothmer, K. Ranestad, A general formula for the algebraic degree in semidefinite programming. math.AG/0701877, 2007.
[44] H. Waki, S. Kim, M. Kojima, M. Muramatsu, Sums of squares and semidefinite programming relaxation for polynomial optimization problems with

structured sparsity, SIAM J. Optim. 17 (1) (2006) 218–242. Available from http://www.is.titech.ac.jp/∼kojima/SparsePOP.

http://www.control.ee.ethz.ch/~hpeyrl/index.php
http://www.control.ee.ethz.ch/~hpeyrl/index.php
http://www.control.ee.ethz.ch/~hpeyrl/index.php
http://www.control.ee.ethz.ch/~hpeyrl/index.php
http://www.control.ee.ethz.ch/~hpeyrl/index.php
http://www.control.ee.ethz.ch/~hpeyrl/index.php
http://www.control.ee.ethz.ch/~hpeyrl/index.php
http://www.control.ee.ethz.ch/~hpeyrl/index.php
http://www.control.ee.ethz.ch/~hpeyrl/index.php
http://www.cds.caltech.edu/sostools
http://www.cds.caltech.edu/sostools
http://www.cds.caltech.edu/sostools
http://www.cds.caltech.edu/sostools
http://www.cds.caltech.edu/sostools
http://www.cds.caltech.edu/sostools
http://www.mit.edu/~parrilo/sostools
http://www.mit.edu/~parrilo/sostools
http://www.mit.edu/~parrilo/sostools
http://www.mit.edu/~parrilo/sostools
http://www.mit.edu/~parrilo/sostools
http://www.mit.edu/~parrilo/sostools
math.AG/0701877
math.AG/0701877
math.AG/0701877
http://www.is.titech.ac.jp/~kojima/SparsePOP
http://www.is.titech.ac.jp/~kojima/SparsePOP
http://www.is.titech.ac.jp/~kojima/SparsePOP
http://www.is.titech.ac.jp/~kojima/SparsePOP
http://www.is.titech.ac.jp/~kojima/SparsePOP
http://www.is.titech.ac.jp/~kojima/SparsePOP
http://www.is.titech.ac.jp/~kojima/SparsePOP
http://www.is.titech.ac.jp/~kojima/SparsePOP

	Computing sum of squares decompositions with rational coefficients
	Introduction
	Notation
	Matrices
	Polynomials

	Sum of squares and semidefinite programming
	Semidefinite programming background
	SDP formulation of SOS problems
	Sparseness
	Description of L
	Parametrized SOS problems

	Computing rational SOS decompositions
	Kernel representation
	Image representation

	Macaulay 2 SOS package
	Conclusion and outlook
	Acknowledgements
	Proof of Proposition 7
	Simultaneous approximation using the LLL algorithm
	References

