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A new robust identification framework that incorporates both time and frequency
domain data is proposed. ¹his framework avoids situations where a good data fit

in one domain leads to poor fitting in the other.
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Abstract—In this paper we propose a new robust identification
framework that combines both frequency and time-domain ex-
perimental data. The main result of the paper shows that the
problem of obtaining a nominal model consistent with the
experimental data and bounds on the identification error can be
recast as a constrained finite-dimensional convex optimization
problem that can be efficiently solved using Linear Matrix
Inequalities techniques. This approach, based upon a generaliz-
ed interpolation theory, contains as special cases the
Carathéodory—Fejér (purely time-domain) and Nevanlinna—
Pick (purely frequency-domain) problems. The proposed pro-
cedure interpolates the frequency and time domain experimental
data while restricting the identified system to be in an a priori
given class of models, resulting in a nominal model consistent
with both sources of data. Thus, it is convergent and optimal up
to a factor of two (with respect to central algorithms). ( 1998
Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

During the past few years a large research effort has
been devoted to the problem of developing de-
terministic identification procedures that, starting
from experimental data and an a priori class of
models, generate a nominal model and bounds on
identification errors. These models and bounds can
then be combined with standard robust control
synthesis methods (such as H=, k or l1) to obtain
robust systems. This problem, termed the Robust

Identification problem was originally posed in
Helmicki et al. (1991) and has since attracted con-
siderable attention (Chen et al., 1992; Gu and
Khargonekar, 1992; Hakvoort, 1992; Jacobson
et al., 1992; Mäkilä, 1991a, b, 1992; Mäkilä and
Partington, 1992; Milanese, 1994; Parrilo et al.,
1994; Partington, 1992; Sánchez Pen8 a and Galarza,
1994; Smith and Doyle, 1992).

Classical parameter identification methods
(Ljung, 1987), consider mainly a priori sets of para-
metric models and are based on a stochastic ap-
proach. The outcome of these identification pro-
cedures consists of a nominal model and confidence
bounds on the parameters. They have been used
extensively in relation to adaptive control methods.
On the other hand, robust identification is based on
non-parametric mathematical models and a deter-
ministic worst case criterion. The identification pro-
cedures use the experimental data (a posteriori in-
formation) and the a priori assumptions on the class
of systems to be identified. They generate both
a nominal model and a worst case bound over the set
of systems considered, which fits the robust control
framework. See Mäkilä et al. (1995) for an excellent
survey of the robust identification framework.

Usual a priori assumptions are that systems un-
der consideration are linear time invariant (LTI),
exponentially stable, with known bounds on the
frequency response magnitude, stability margin
and measurement noise. The case where the experi-
mental data available is generated by frequency-
domain experiments leads to H=-based identifica-
tion procedures. In this context the main effort has
been directed towards establishing robust conver-
gence of the algorithms and analyzing their
untuned characteristics. A complete class of
robustly convergent algorithms was presented in
Gu and Khargonekar (1992). The case of strongly
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*Preliminary versions of these results have appeared in Par-
rilo and Sánchez Pen8 a (1995) and Parrilo et al. (1996).

stabilizable systems has been considered in Mäkilä
(1991a) and Mäkilä and Partington (1992).

On the other hand, the case where the experi-
mental data available originates from time-domain
experiments leads to l1 identification, addressed in
Hakvoort (1992), Jacobson et al. (1992), Mäkilä
(1991b, 1992), Milanese (1994) and Parrilo et al.
(1994). Algorithms based on time series are strongly
dependent on the input sequence (Mäkilä, 1991b).
In fact it can be shown that there is no untuned
algorithm capable of identifying a system using
only impulse response measurements (Jacobson
et al., 1992).

Finally, recent papers (Chen and Nett, 1995; Zhou
and Kimura, 1993) proposed interpolatory algo-
rithms that use data obtained from time domain
experiments to generate a nominal model together
with an H= bound on the identification error.

In this paper we propose a new robust identifica-
tion framework that takes into account both time
and frequency domain experiments. With this ap-
proach, the problem where ‘‘good’’ frequency re-
sponse fitting (small H= error norm) leads to
‘‘poor’’ fitting in the time-domain is avoided. Addi-
tionally, from an information theoretic viewpoint,
more experiments produce a smaller consistency
set of indistinguishable models, and as a conse-
quence a smaller worst case error. From a more
practical standpoint, robust identification algo-
rithms are applied in many cases to systems that
may not be exactly LTI. Under these circumstances
it is desirable to perform both time and frequency
response experiments (Sánchez Pen8 a and Galarza,
1994) to assess the validity of these assumptions.
Thus, in these cases the proposed algorithm takes
advantage of the additional data available. It is
worth mentioning that the Chebyshev algorithm
(Mäkilä et al., 1995) also allows one to consider
time and frequency-domain data simultaneously.

The paper is motivated by our earlier results
(Sánchez Pen8 a and Sznaier, 1995) furnishing neces-
sary and sufficient conditions for the consistency of
mixed time/frequency experimental data for finite
impulse response (FIR) systems and proposing
an identification algorithm based upon solving
a finite-dimensional convex optimization problem.
In this paper we extend these results to the general
case of infinite impulse response (IIR) systems.*

The main result of the paper shows that the
problems of establishing consistency of the data
and of obtaining a nominal model and bounds on
the identification error can be recast as a con-
strained finite-dimensional convex optimization

problem that can be efficiently solved using Linear
Matrix Inequalities techniques. Additional results
include an analysis of the conditioning of the prob-
lem as the amount of experimental data increases
and an analysis of the effects of variations in the
data points. Our approach, based upon a generaliz-
ed Nevanlinna—Pick interpolation theory, includes
as special cases the frequency based approach of
Chen et al. (1992) and the time domain approach of
Chen and Nett (1995) and Zhou and Kimura
(1993).

The paper is organized as follows. In Section 2
we introduce a robust identification framework us-
ing both time and frequency experiments and some
background material, including a generalized
Nevanlinna—Pick theory developed in Rotstein
(1996) that contains as special cases the classical
Carathéodory—Fejér and Nevanlinna—Pick prob-
lems. Section 3 contains the main theoretical re-
sults. Here we show that the problems of establish-
ing consistency of the experimental data and the
a priori information and of determining a nominal
model can be recast into a finite-dimensional Lin-
ear Matrix Inequality (LMI) optimization form.
This optimization generates a model that interpo-
lates the frequency domain data points and, at the
same time, is consistent with the data obtained
from time-domain experiments. Since the proposed
algorithm is interpolatory, it is optimal up to a fac-
tor of two with respect to strongly optimal central
algorithms (Mäkilä, 1991b, 1992), i.e., its worst case
identification error is at most twice the minimal
error over all possible experiments and algorithms.
Moreover, it is convergent in the sense that the
modelling error tends to zero as the information is
completed. Section 4 deals with some computa-
tional considerations. Section 5 illustrates the re-
sults with two examples that highlight the import-
ance of taking into account both frequency and
time domain experimental data. Finally, Section
6 contains some concluding remarks and directions
for future research.

2. PRELIMINARIES

2.1. Notation
L= denotes the Lebesgue space of complex

valued functions essentially bounded on the unit
circle, equipped with the norm

EG(z)E=¢ess sup
DzD"1

DG (z)D.

By H= we denote the subspace of functions in
L= with a bounded analytic continuation inside
the unit disk D, equipped with the norm
EG(z)E=¢ess supDzD(1 DG(z)D. Also of interest is the
space H=,o of transfer functions in H= which have
bounded analytic continuation inside the disk of
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*Note that this is the inverse of the usual Z transform.
Therefore for causal, stable systems H (z) is analytic in DzD(1.

radius o'1, i.e. the space of exponentially stable
systems with a stability margin of (o!1). When
equipped with the norm EG (z)E=,o¢sup

z(oDG(z)D,
H=,o becomes a Banach space. BM H=¢MF3H=,
EF=E41N denotes the closed unit-ball in H=. Sim-
ilarly BM H=,o denotes the closed unit-ball in H=,o .

Given a vector x3Rn its infinity norm is defined
as Ex=E¢max

i
Dx

i
D. l1 denotes the space of absolute-

ly summable sequences h"Mh(i)N equipped with
the norm EhEl

Ç
¢+=

i/0 Dh(i)D(R. Similarly, l= de-
notes the space of bounded sequences h"Mh (i)N
equipped with the norm EhEl

=
¢sup

i50Dh (i)D(R,
and l=(e) denotes the subset Mh3l=, Dh(i)D4eN.
Given a sequence h3l1, its Z transform is defined*
as H (z)"+=

i/0 h(i) zi. It is a standard result that the
series converges uniformly on the unit disk and that
EH(z)E=4EhEl

Ç
(R. In the sequel, by a slight

abuse of notation, we shall use indistinctly both
notations (transfer function or sequence of coeffi-
cients) to refer to the same object. We will also
associate with the sequence h a vector h whose
components are the first n elements of the sequence
(n will be clear from the context).

In this paper we will consider both continuous
and discrete time systems. To unify the treatment,
the results in the sequel are stated for the discrete
time case, but can easily be extended to the continu-
ous time by defining H(z)"H

c
(j(1!z)/(1#z)),

j'0, where H
c
denotes the continuous time trans-

fer function. Finally, for simplicity we consider
SISO models, although all results can be applied to
MIMO systems, following Chen et al. (1994).

2.2. ¹he robust identification framework
In this paper we consider the case where the

a posteriori experimental data originates from two
different sources: (i) frequency and (ii) time do-
main experiments. The first type of information
consists of a set of N

f
samples of the frequency

response of the system: yf(k)"hK (k)#gf(k),
k"0, 2, N

f
!1, where hK (k)"H(e+)

k
),

k"0, 2, N
f
!1, )

k
denotes the sampling fre-

quencies; and where gf(k) represents complex addi-
tive noise, bounded by e

f
(i.e. Dgf(k)D (e

f
).

The time domain data are the first N
t
samples of

the time response corresponding to a known but
otherwise arbitrary input, also corrupted by addi-
tive noise yt(n)"(ºh) (n)#gt(n), n"0, 2,N

t
!1,

where

º"

u (0) 0 2 0

u (1) u(0) 2 0

F } } 0

u(N
t
!1) 2 u(1) u(0)

is the Toeplitz matrix corresponding to the input
sequence and where the noise gt(n) is real and be-
longs to l=(e

t
). In the sequel, for notational simpli-

city we will collect the samples yf(k) and yt(n) in the
vectors yf3CN

f
and yt3RN

t
respectively.

The a priori information available is that the
system H under consideration belongs to the fol-
lowing classes of models:

(1)

H3H=(o, K)¢MH3H=,o: EHE=,o4KN

i.e. the class of models considered in the fre-
quency domain corresponds to exponentially
stable systems (finite or infinite dimensional)
having a stability margin of (o!1) and a peak
response to complex exponential inputs of K.
Thus the impulse response of these systems
satisfies the time-domain bound

Dh (k)D4Ko~k. (1)

(2) Additionally, the system H is known to belong
to a class ' of models satisfying a time-domain
bound of the form

'¢Mh()) D/l(k)4h (k)4/
u
(k),

k"0, 2 , N(!1, N( givenN.

Note that this class includes the systems
described by equation (1) in the special case
when /l(k)"!Ko~k and /

u
(k)"Ko~k.

To combine both classes of models we define the
a priori set of systems

S¢'WH=(o, K).

The a priori information we have considered simply
adds to the usual H= identification procedures
a bound on the first N( samples of the impulse
response. In other words, the time domain bound
provided by the set ' tightens the bound in equa-
tion (1) due to the set H=(o, K). Trivially, if there is
no time domain a priori information, the class of
models S reduces to H=(o, K).

To recap, the a priori information and the
a posteriori experimental input data are:

S"'WH=(o, K), (o'1, K(R)

N
f
"l=(e

f
)"Mgf3CN

f
, Dgf(k)D4e

f
N

N
t
"l=(e

t
)"Mgt3RN

t
, Dgt(k)D4e

t
N (2)

yf"Mhª #gf3CN
f
N

yt"M(ºh)#gt3RN
t
N.

By using these definitions the robust identification
problem with mixed data can be precisely stated as:

Problem 1 (Mixed l1/H= robust identification prob-
lem). Given the experiments (yf, yt) and the a priori
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*A transfer function H (z) is said to be J-lossless if
H*(1/z) JH(z)"J when DzD"1, and H*(1/z)JH(z)(J when
DzD(1. Here J"[ I

0
0
~I

].

sets (S, N
f
, N

t
), determine:

(1) If the a priori and a posteriori information are
consistent, i.e. the consistency set

S(yf, yt)¢GH3S K
(yf!hª )3N

f

(yt!ºh)3N
t
H (3)

is nonempty.
(2) If equation (3) holds, find a nominal model

which belongs to the consistency set S(yf, yt),
and an error bound.

2.3. Generalized interpolation framework
In this section we briefly present a generalized

interpolation framework developed in Ball et al.
(1990) and applied to H= control in Rotstein
(1996). This framework will be used in Section 3 to
solve Problem 1.

¹heorem 1. There exists a transfer function
F(z)3BH= (BM H=) such that

+
z0|D

Res
z/z0

F(z)C~(zI!A)~1"C
`

(4)

if and only if the following discrete time Lyapunov
equation has a unique positive (semi)definite
solution

M"A*MA#C*~C~!C*̀C
`

, (5)

where A, C~ and C
`

are constant complex ma-
trices of appropriate dimensions. If M'0 then the
solution F (z) is non-unique and the set of solutions
can be parameterized as a linear fractional trans-
formation (LFT) in terms of Q(z), an arbitrary ele-
ment of BM H=, as follows:

F (z)"
¹11(z)Q(z)#¹12(z)
¹21(z)Q(z)#¹22(z)

, (6)

¹(z)"C
¹11(z) ¹12(z)

¹21(z) ¹22(z)D, (7)

where ¹(z) is the J-lossless* matrix

¹(z),CA
T

B
T

C
T

D
TD,

A
T
"A,

B
T
"M~1(A*!I)~1[!C*̀ C*~],

C
T
"C

C
`

C~
D (A!I),

D
T
"I#C

C
`

C~
DM~1(A*!I)~1[!C*̀ C*~].

Proof. See Ball et al. (1990) and Rotstein
(1996). K

Note that the matrices A and C~ provide the
structure of the interpolation problem while
C

`
provides the interpolation values. The follow-

ing corollaries show that both the Nevanlinna—
Pick and the Carathe{ odory—Feje{ r problems are
special cases of this theorem, corresponding to an
appropriate choice of the matrices A and C~.

Corollary 1 (Nevanlinna—Pick). Let !"

diagMz
i
N3Cr]r and take

A"!, (8)

C~"[1 1 2 1]3Rr, (9)

C
`
"[w1 w2 2 w

r
], (10)

then equation (4) is equivalent to

F (z
i
)"w

i
, i"1, 2, r,

and the solution to equation (5) is the standard
Pick matrix

P"C1!w*
i
w
j

1!z*
i
z
j Dij.

Proof. Substitute A, C~, C
`

in equation (4). See
Rotstein (1996) for details. K

Corollary 2 (Carathe{ odory—Feje{ r). Let I
n]n

denote
the identity matrix, and A

f
3R(n`1)](n`1),

A
f
"C

0 I
n]n

0 0 D.
Take

A"A
f
, (11)

C~"[1 0 2 0]3Rn`1, (12)

C
`
"[ f (0) f (1) 2 f (n)] (13)

then equation (4) is satisfied if and only if F (z) can
be written as

F (z)"f (0)#f (1)z#f (2)z2#2#f (n)zn#2,

and the solution to equation (5) is the matrix:
M

c
"I!F*F where

F"

f (0) f (1) 2 f (n)

0 f (0) 2 f (n!1)

F F } F

0 0 2 f (0)

.

Note that M
c
'0 if and only if p6 (F)(1.

Proof. Substitute A, C~, C
`

in equation (4). See
Rotstein (1996) for details. K
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3. MAIN RESULTS

Nevanlinna—Pick based identification algo-
rithms address the case where the experimental
data available is purely frequency domain, while
Carathéodory—Fejér based identification deals only
with time domain data. In this section we exploit
the generalized interpolation framework introduc-
ed in the previous section to solve Problem 1,
obtaining a robust identification algorithm that
combines both sources of data. To this effect,
we will divide Problem 1 into two subproblems:
(i) consistency and (ii) identification. The first con-
sists of determining the existence of a candidate
model H3S which may have produced both, the
time and frequency domain experimental data.
Clearly, this is a prerequisite to the second stage,
the identification step, consisting of the computa-
tion of the nominal model itself and a bound on the
identification error.

3.1. Consistency
From equation (3) it follows that the problem

of determining consistency of the a posteriori
and a priori information reduces to establishing
whether or not there exists a model H3S that
interpolates the frequency experimental data

hª "yf!gf, gf3N
f

(14)

and has an impulse response that satisfies the con-
straints

ºh"yt!gt, gt3N
t
, (15)

where the noiseless output ºh is the convolution of
the input sequence u"[u (0) u (1) 2 u(N

t~1)]
and the system H(z).

The main result of this section shows that con-
sistency can be established by solving a finite—
dimensional convex optimization problem. To es-
tablish this result we will first obtain an equivalent
condition for consistency (Lemma 1). This condi-
tion, based upon the relationship between both
admissible experimental noises g

f
3N

f
and g

t
3N

t
,

has the form of a linearly constrained generalized
interpolation problem. In Theorems 2 and 3 we will
show that this generalized problem can be recast in
terms of an LMI optimization.

¸emma 1. The a priori and a posteriori information
are consistent if and only if there exists a function
H3H=(o, K) such that

hª "yf!gf, gf3N
f

(16)

y
L
4C

º

I D h4y
U
, (17)

where

y
L
"

yt(1)!e
t

F

yt(N
t~1)!e

t

/l(0)

F

/l(N(!1)

, y
U
"

yt(1)#e
t

F

yt(N
t~1)#e

t

/
u
(0)

F

/
u
(N(~1)

. (18)

Proof. The proof follows immediately by substitu-
ting equations (14) and (15) in equation (3). K

The next theorem provides necessary and
sufficient conditions for the existence of a function
H3H=(o, K) which interpolates fixed frequency
domain experimental data while, at the same time,
satisfying a time-domain constraint.

¹heorem 2. Given N
f

frequency-domain data
points (zi, wi), Dz

i
D(o, i"0, 2 , N

f
!1, and N

t
time-domain data points h(k), k"0, 2, N

t~1, there
exists H3H=(o, K) that interpolates the frequency
domain data (i.e., H (z

i
)"w

i
) and such that

H (z)"h (0)#h (1) z#h (2) z2#2#h (N
t~1)

zN
t
~Ç#2 if and only if

M
R
(w, h)"

Q!
1

K2
W*

f
QW

f
M

X

M*
X

R~2!
1

K2
F*

t
R~2F

t

'0,

(19)
where

M
X
"S0R~2!

1
K2

W*
f

S0R~2F
t
, (20)

R"diag[1 o o2 2 oN
t
~1 ], (21)

Q"C o2

o2!z*
i~1zj~1 Dij, i, j"1, 2 , N

f
,

S0"[(zj~1
i~1)*]

ij
, i"1, 2 , N

f
, j"1, 2 , N

t

(23)

W
f
"diag[w0 2 w

N
f
~1], (24)

F
t
"

h (0) h (1) 2 h (N
t
!1)

0 h (0) 2 h (N
t
!2)

F F } F

0 0 2 h (0)

. (25)

Proof. First we scale the desired class of functions
to transform the generalized interpolation problem
from H=,o to H=, i.e., KF(z/o)3H=(o, K)8
F(z)3BM H=. Equivalently we can scale the data

Mixed time/frequency domain based robust identification 1379



points which amounts to modifying the matrices in
problem (4) as follows:

A"

1
o ! 0

0 A
f

,

N
fdgegf

C~" 1 2 1 1 0 2 0 ,
hij

N
f

C
`
"

1
K

[w* h*R],

where ! and A
f

have been defined in Corollaries
1 and 2, respectively, and where w3CN

f
is the

vector of interpolation points. The above is simply
a generalized interpolation problem combining the
time and frequency domain constraints (Rtstein,
1996). Solving the Lyapunov equation (5) and
pre-post multiplying the solution by the diagonal
matrix:

¹¢C
I 0

0 R~1D
yields M

R
. Since ¹ is non-singular the positiveness

of the solution of equation (5) is not modified, i.e.
M'08M

R
'0. K

Remark 1. The (1, 1) block of M
R

is the Pick matrix
corresponding to the frequency domain consistency
problem solved in Chen et al. (1992) via the classical
Nevanlinna—Pick interpolation. Block (2, 2) is the
Caratheodory—Fejer matrix corresponding to the
time domain consistency problem solved in Chen
and Nett (1995) and Chen et al. (1994). M

X
is a

cross-coupling term due to the existence of both
types of experimental data.

Combining the previous result (that considers
only noiseless data points) with Lemma 1 yields the
following necessary and sufficient condition for
consistency:

¸emma 2. The a priori and a posteriori information
are consistent if and only if there exists two vectors

w"

w0
w1

2

w
N
f
~1

, h"

h (0)

h (1)

2

h (N
t
!1)

such that

M
R
(w, h)'0, (26)

(yf!w)3N
f
, (yt!ºh)3N

t
. (27)

Note that the components of w and h are elements
of the matrices W

f
and F

t
, respectively.

Proof. The proof follows immediately by combin-
ing Lemma 1 and Theorem 2. K

From Lemma 2 it follows that the consistency
problem can be reduced to solving a feasibility
problem in terms of the time and frequency domain
vectors h and w. In the next Theorem we will show
that this feasibility problem is a convex problem
that can be recast in terms of LMIs and thus
efficiently solved, using for instance interior—point
methods (Nesterov and Nemirovski, 1994; Boyd
et al., 1994).

¹heorem 3. The consistency problem with mixed
time/frequency-domain data is equivalent to a LMI
feasibility problem.

Proof. The matrix M
R

can be written as

M
R
"M0!

1
K2

X*M0X, (28)

with

M0"C
Q S0R~2

R~2S*0 R~2 D , (29)

X"C
W

f
0

0 F
t
D. (30)

Positiveness of the matrix M0 is equivalent to con-
sistency in the case where both frequency and time
domain data are zero, i.e. w

i
"0, i"0, 2 , N

f
!1

and h ( j )"0, j"0, 2, N
t
!1. This is a homo-

geneous interpolation problem, that always has
solutions (in particular, the trivial solution
H(z)"0, and the Blaschke product). From The-
orem 1 it follows that M0'0, and thus, using
Schur complements we have

M
R
'08Z¢

M~10
1
K

X

1
K

X* M0

'0. (31)

Clearly this is a LMI in X. Define now
Y

f
¢diagMyfN. Using Schur complements it can be

easily shown that (yf!w)3N
f

is equivalent to

C
e
f
I Y

f
!W

f

(Y
f
!W

f
)* e

f
I D'0. (32)

Finally, the constraint (yt!ºh)3N
t
is equivalent

to the LMI

!e
t
(yt!F*

t
u(e

t
, (33)

where this last inequality should be understood in
the componentwise sense. Thus, the consistency

1380 P. A. Parrilo et al.



problem is equivalent to finding a feasible solution
to the set of LMIs (31)—(33). Alternatively, it can be
recast as the following standard generalized eigen-
value minimization problem (Nesterov and
Nemirovski, 1990; Overton, 1988; Vandenberghe
and Boyd, 1996):

min
X|X

jM [!Z (X)](0

X¢GC
W

f
0

0 F
t
D subject to (32), (33)H. K

It is interesting to analyze the extreme conditions
on the a priori elements K and o. Note that for
KPR, M

R
PM0, which is positive definite.

Therefore in the limit the problem is always consis-
tent. This seems reasonable considering that any
unbounded function may be a candidate nominal
model. On the other hand, as KP0, M

R
tends to

be negative definite and therefore establishes an
empty consistency set in the case of nonzero a
posteriori information.

3.2. Identification
Once consistency is established, the second step

towards solving Problem 1 consists of generating
a nominal model in the consistency set S(yf, yt).
The identification algorithm that we propose is
based on the parameterization of all solutions of
the generalized Nevanlinna—Pick interpolation
problem (Ball et al., 1990) presented in Theorem 1.
For simplicity we consider the case where the
matrix M

R
is strictly positive definite and therefore

the solution is non-unique. Details for the degener-
ate case where there exists a unique solution can be
found in (Ball et al., 1990). The algorithm can be
summarized as follows:

(1) Find feasible data vectors w, h for the consist-
ency problem (26), (27) by solving the LMI
feasibility problem given by equations (31)—(33).
Note that there is no need of any kind of opti-
mality in the search for the feasible vectors.
Instead, any pair w, h in the admissible set will
suffice.

(2) Compute the generalized Pick matrix M
R

in
equation (19) (which should be positive defi-
nite), corresponding to the vectors found in
step (1).

(3) Use Theorem 1 to compute a model from the
consistency set S. Recall that all the models in
S (i.e. all the solutions to the generalized inter-
polation problem) can be parameterized as
a Linear Fractional Transformation (LFT) of
a free parameter Q(z)3BM H= as follows:

H(z)"Fl[¸(z), Q (z)], (34)

¸ (z)"

¹12¹~122 ¹11!¹12¹~122 ¹21

¹~122 !¹~122 ¹21

. (35)

In particular, if the free parameter Q(z) is
chosen as a constant, then the model order is
less than or equal to N

f
#N

t
.

Remark 2. Note that ¹(z) depends on the choice of
vectors w, h. Thus, there are additional degrees of
freedom available in the problem (choices of w, h
and Q(z)) that could be used to optimize additional
performance criteria (e.g. model order).

Since the proposed algorithm is interpolatory, it
has several advantages over the usual ‘‘two step’’
algorithms sometimes used in the context of robust
identification (Gu and Khargonekar, 1992; Hel-
micki et al., 1991). In particular, since the identified
model is in the set S(yf, yt), its distance to the
Chebyshev center of this set is within the diameter
of information (Mäkilä, 1992). As a consequence
the algorithm is optimal up to a factor of two as
compared with central strongly optimal proced-
ures. For the same reasons, it is also convergent
and therefore the modeling error tends to zero as
the information is completed.

3.3. Analysis of the identification error
In this section we derive upper and lower bounds

for the worst-case identification error. Since these
bounds are given in terms of the radius and dia-
meter of information (Helmicki et al., 1991; Chen
et al., 1992), they are valid for all interpolatory
algorithms taking as inputs the available a priori
and a posteriori information.

¸emma 3. Assume that '
u
(k)"!'l(k)"'(k)50,

k"0, 2, N'!1 (symmetric time domain a priori
information), and let bK "min[e

f
, '(0), e

t
/EuE=],

where u is the vector associated with the input
signal sequence. Then, the radius of information
RI satisfies:

If bK 5K, RI5K (36)

If bK (K, RI5
KEB(z)E

=
#bK

1#EB(z)E
=
bK /K

(37)

Proof. Let N¢max[N
t
!1, N'!1] and define

B (z) ¢A
z

o B
N N

f
~1
<
k/0

o (z!z
k
)

o2!z*
k
z

Using the properties of the Blaschke product it is
easily seen that B (z) is in H

=
(o, 1). Therefore

H (z) ¢K
B (z)#b/K

1#B (z)b*/K
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*If for some i, j, z
i
!z

j
(e, as eP0, M

0
tends to singularity.

is in H
=
(o, K), provided that DbD(K. Addition-

ally, H(z) is consistent with the a posteriori fre-
quency information if DbD4e

f
. Furthermore, if

DbD4min[e
t
/EuE

=
, '(0)], H (z) will also be consis-

tent with the time domain a priori and a posteriori
information. The desired result follows from the fact
that RI5EH(z)E

=
5DH(z

*
)D by taking b"bK e+a,

where a"¸B(z
*
) and DB(z

*
)D"EB(z)E

=
. K

¸emma 4. Assume the same a priori information as
in the previous lemma. Then the radius of informa-
tion RI can be bounded above by

RI4
M
+
i/0

l
i
#

K

oM(o!1)

where M"N
t
#N

f
!1 and l

i
are a function of the

a priori information only.

Proof. Consider any H(z)3S(0, 0) and partition it
as follows:

G(z)dgegf

H(z)"
M
+
k/0

h(k)zk#
=
+

k/M`1

h (k)zk.

hgigj
F(z)

Consider now the first portion of the expansion.
The vector f (the coefficients of F (z)) satisfies:

»~1f"C
gt

gfD ,

»~1"

º 0

1 z
0

z2
0 2 zM

0
1 z

1
z2
1 2 zM

1
F F F F F

1 z
N
f
~1

z2
N
f
~1 2 zM

N
f
~1

,

where gt3N
t
, gf3l

=
(e6 ), and where e6 ¢e

f
#

K/(oM(o!1)). Note that »~1 is nonsingular as
long as u

0
O0. Next partition » as

»"

»
1t

»
1f

»
2t

»
2f

F F

»
(N

f
`N

t
)t

»
(N

f
`N

t
)f

.

It is well known that EgEl
Ç
4K/(oM(o!1)). It fol-

lows that

RI4 sup
F(z)|S(0,0)

EF(z)E
=
#

K

oM(o!1)

4 sup
F(z)|S(0,0)

E f El
Ç
#

K

oM(o!1)
. (38)

Thus, in order to compute a bound on RI we need
to compute an upper bound on E f El

Ç
. This bound

can be computed as follows:

E f E
1
"

M
+
i/0

D»
it
gt#»

if
gfD (39)

4

M
+
i/0

e
t
E»

it
E
1
#e6 E»

if
E
1
. (40)

Define

l
i
¢min[/ (i), Ko~i, e

t
E»

it
E
1
#e6 E»

if
E
1
].

From equation (1) and the definition of ', we have
that

E f El
Ç
4

M
+
i/0

l
i

(41)

NRI4
M
+
i/0

l
i
#

K

oM(o!1)
. K (42)

4. COMPUTATIONAL CONSIDERATIONS

In this section we address some issues concerning
the practical implementation of the algorithm out-
lined in Section 3.2. In particular we analyze the
conditioning of the problem as the cardinality of
the data grows.

The consistency question, as we saw in Section 2.3,
can be reduced to establishing positiveness of a gener-
alized Pick matrix that depends quadratically on the
optimization variables (28). To reduce the problem to
one affine in X, an explicit inversion of M

0
is needed.

However, the matrix M
0
, while always being posit-

ive definite, is asymptotically singular, with its condi-
tion number growing without bound as the number
of data points increases. This is certainly reasonable,
because as the amount of data available increases,
the solution (if one exists) will tend to be unique. It is
also consistent with the fact that the condition num-
ber does not decrease when data points are added
(this last fact can be easily established using the
well-known singular values inclusion property).

The following lemma gives an estimate on the
growth of M

0
’s condition number in the most

favorable case, i.e. when the z
i
are equidistant* (roots

of the unity). It provides a lower bound on the
conditioning of matrix M

0
.

¸emma 5. Let z
k
"e+(2nk@N

f
), k"0, 2, N

f
!1 (the

N
f
th roots of the unity). In this case, the singular

values and condition number of M
0
are bounded by

p
1
(M

0
)5p

i
(Q)"

1

o2(i~1)

N
f
o2N

f

o2N
f
!1

5p
N
f

(M
0
),

i"1, 2, N
f
, (43)

i(M
0
)5i(Q)"

p
1
(Q)

p
N
f

(Q)
"o2(N

f
~1). (44)
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Proof. When the z
k

are chosen as the roots of
unity, the Pick matrix is a circulant matrix, i.e.
Q

ij
"c

(i~j).0$N
t

. Since Q is normal (it is hermitian),
its singular values are the absolute value of its eigen-
values. Since the eigenvalues of a circulant matrix
can be obtained as the Discrete Fourier Transform
of the elements of the first row, it follows that the
singular values of Q can be obtained from the iden-
tity:

N
f
~1
+
k/0

ce(2n@N
f
)km

c!e+(2n@N
f
)k
"

N
f
cm

cN
f
!1

, m"1, 2, N
f
.

The desired result follows now from setting c"o2,
and using the interlacing property of the eigenvalues
of a symmetric matrix and its diagonal submatrix (Q
in this case). K

Thus, we see that the condition number of the
generalized Pick matrix, has at least an exponential
growth with the number of frequency data samples.

Next we show that the structure of the consistency
set allows for taking into account variations in the
experimental data points, and that this set can be
characterized as an LFT of the experimental data.
This is a generalization of a result proved in Zhou
and Kimura (1995) for the case where only time
domain experimental data is available. From the
methodological point of view this justifies using the
proposed robust identification procedure in a robust
control framework. It provides a natural structure
(Zhou and Kimura, 1995) for the set of unfalsified
models. Furthermore it allows a direct connection
between the identification and design procedures. As
a consequence, it is possible to provide an algorithm
that takes as inputs the time and frequency domain
experimental data and produces a controller
guaranteed to provide robust performance of the
physical system.

For simplicity and without loss of generality, in
the sequel we consider the special case where the
interpolation functions are in BH

=
, i.e. o"K"1,

which implies R"I. The general case can be ob-
tained by simply using the scaling in Theorem 2.

¸emma 6. Consider the consistency set described in
equation (6), with

¹(z)"I#C
C

`
C

~
D¼(z)

]M~1
I

(A*!I)~1[!C*
`

C*
~
], (45)

¼(z)"I#(A!I) (zI!A)~1

"(z!1)(zI!A)~1, (46)

where M
I
"M

R
D
R/I

. If M
I
is positive definite for any

possible experimental noise compatible with the
a priori information then S can also be described by

a LFT of the form F
u
(T(z), *), where T(z) is a

constant transfer matrix and the structured uncer-
tainty is described by

*"diag[X X X* X*]. (47)

Furthermore, this uncertainty block can be present-
ed in the standard form, with 4 repeated blocks of
N
f

complex diagonal matrices, and 4N
t

repeated
blocks of N

t
real diagonal matrices, as follows:

*3 "diag[*
c
, **

c
, *

r
], (48)

*
c
"diag[d

1
, d

1
, 2, 2, d

N
f

, d
N
f

], d
i
3C, (49)

*
r
"diag d

N
f
`1

, 2, d
N
f
`1

, 2,
hggiggj

4N
t

4N
tdggeggf

d
N
f
`N

t

, 2, d
N
f
`N

t

], d
i
3R. (50)

Proof. The expressions (45) and (46) follow directly
from Theorem 1. Note that C

`
"C

~
X, where X is

defined in equation (30). Next we show that the term
M~1 in ¹(z) can be written as a LFT of the data. To
see this, note that using Schur’s formula for the
inverse of a partitioned matrix, we have

M~1"[0 I]C
M~1

0
X

X* M
0
D
~1

C
0

ID .

Note that matrix Z (defined in equation (31) with
K"1) is affine in X and its conjugate. Therefore
from M~1 we obtain a LFT with an ‘‘uncertainty’’
block *

X
¢diag[X, X*] and from C

`
and C*

`
in

equation (45) we obtain another uncertainty block
*
X
. Since the combination of LFTs is another

LFT, it follows that ¹(z) can be written as
¹(z)"F

u
(T(z), *), where * is given by equation

(47). Furthermore, this uncertainty block can be
represented in the standard form by writing
X"+N

f
`N

ti/1
C

i
d
i
. Here C

i
3RN

t

]N
t
are constant ma-

trices and d
i
are complex scalars for i"1, 2, N

f
and real scalars for i"N

f
#1, 2, N

f
#N

t
. K

The assumption on the positiveness of matrix
M

I
is related to the magnitude of the experimental

noise, which may be explained as follows. Assume
that for a certain measurement noise in (N

t
, N

f
), the

a priori class S and the a posteriori information are
consistent, i.e., M

I
'0. This provides an experi-

mental set of data which we interpolate to obtain
a nominal model. It is clear that for sufficiently large
noise bounds e*

t
, e*

f
there will exist noise elements in

the new classes (N*
t
, N*

f
), such that when they are

added to the experimental set defined above, pro-
duce a new possible data set which is inconsistent
with S, i.e., M is not positive definite. By ‘‘continu-
ity’’ arguments we note that as the noise sets (N

t
, N

f
)
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Fig. 1. The flexible testbed.

*For simplicity, we consider the time and frequency noise
bounds to be equal. There is no difficulty in removing this
assumption.

grow, i.e., e
t
(e
f
) approach e*

f
(e*
f
); there is a noise class

size for which M is singular. Therefore it is clear that
for small enough noise bounds, we can assume the
positiveness of M over all noise elements.

On the other hand, the current state of the control
design procedures prevents its application to system
descriptions which include a large number of uncer-
tainty blocks. Furthermore, in the case of real (Pol-
jak and Rohn, 1993; Braatz, et al., 1994) and mixed
(real#complex) uncertainty the computational
complexity is NP-hard. As a consequence, from
a purely numerical point of view, there is still re-
search to be done which should produce algorithms
which can cope with systems described by many real
and complex * blocks.

5. ILLUSTRATIVE EXAMPLES

In this section, we present two examples that
illustrate the importance of considering both time
and frequency experimental information. The first
one, very simple and mainly of conceptual value,
shows that consistency with time or frequency data
does not imply consistency with both. The second
example is more practical, and deals with the identi-
fication of a flexible structure, using both time and
frequency domain experimental data.

Example 1. For the first example, consider the
following data:

f A priori information: K"10, o"5. For simpli-
city, we will initially consider e

f
"e

t
"0 (noiseless

sampling).
f A posteriori information:
— Frequency data: F(1)"1, F(j)"1, F(!1)"1.
— Time domain data: f (0)"1, f (1)"0.1,

f (2)"0.01.

We will see that the a priori assumptions are consis-
tent with the time domain or frequency domain
a posteriori information, but not with both simulta-

neously. To this end, note that

G (z)"1

belongs to H
=

(o, K), and interpolates exactly the
frequency data. On the other hand,

G(z)"
10

10!z

also belongs to H
=
(o, K), and interpolates exactly

the time domain data.
However, the generalized Pick matrix M

R
corres-

ponding to this data is not positive definite, and
therefore there is no function in H

=
(o, K), that inter-

polates simultaneously both sets of data. A direct
proof of the above fact follows. Using equation (1),
consider the norm of one of the frequency experi-
ments as a function of the time domain data:

F (1)"K
=
+
k/0

f (k)K"K
2
+
k/0

f (k)#
=
+
k/3

f (k)K (51)

51.11!
=
+
k/3

D f (k)D (52)

51.11!
K

o2(o!1)
"1.01. (53)

Instead, the experiment outcome is F (1)"1, which
clearly denotes the inconsistency between both ex-
periments.

In fact, in the noiseless case, it is not necessary to
use the generalized theory, as we can always find the
solution to the ‘‘pure’’ Carathéodory—Fejér problem,
and then find interpolation constraints on the free
parameter Q (z). The real advantage of our proced-
ure appears in practical cases with the presence of
both, time and frequency measurements errors.

To see this, we will use our algorithm to
compute the smallest noise bound* that makes the
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Fig. 2. (a) Experimental data and identified system, (b) Identification error.

experimental data consistent with the a priori in-
formation. This search can be cast as a convex
optimization problem, and solved by using a minor
modification of the consistency algorithm. In this
example the smallest noise bound necessary for
consistency satisfies 0.0484(e

.*/
(0.0485. This

means that if the (time and frequency) noise is
below 0.0484 then the a posteriori and a priori
information are inconsistent. On the other hand, if

both (time and frequency) noises are above 0.0485,
there always exists an interpolating function for
both types of data.

Example 2. Next we illustrate the proposed
framework by applying it to the problem of identi-
fying a flexible structure used as a damage mitiga-
tion testbed (Tangirala et al., 1995). The structure
is a two degree of freedom mass—beam system
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Fig. 3. l1 identification: (a) nominal model, (b) identification error.

consisting of two discrete masses supported by can-
tilever beams, excited by the vibratory motion of
a shaker table as shown in Fig. 1.

The first mass is connected to the shaker table,
which excites the mechanical system by vibrating
up and down, through a flexible pivot. The dis-
placement y

1
caused by the shaker table is meas-

ured using a linear variable differential transformer
(LVDT) sensor located at the midpoint of the mass
M

1
. The numerical values of the parameters are

(Tangirala et al., 1995):

M
1
"2.702 lbm M

2
"7.664 lbm

¸
1
"8.5 inch ¸

2
"11.84 inch

¼
1
"0.437 inch ¼

2
"0.87 inch

This mass—beam system, intended to model a plant
subjected to damage inducing stress, is being used
to test the concepts of life-extending and damage
mitigating control (Tangirala et al., 1995). Life
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Fig. 4. H
=

identification: (a) nominal model, (b) identification error.

extension is achieved by designing multiobjective
controllers that keep the peak values of both the
time and frequency responses below some prespeci-
fied thresholds. Thus, in this application is impor-
tant to have models that accurately reproduce the
behavior of the system in both domains.

To obtain the frequency-domain data points re-
quired by H

=
identification the system was driven

by a peak-to-peak 0.5V sinusoidal signal, with fre-
quency ranging from 1 to 21Hz. The time domain
data points where obtained by exciting the struc-

ture with a peak-to-peak 0.5V square wave with
frequency 2Hz. In both cases the outputs were
sampled with a sampling time ¹

s
"0.0215. Finally,

o was estimated to be o"1.25 and by measuring
the output in the absence of a driving signal it was
determined that the measurement noise was
bounded by e

f
"e

t
"0.2. A total of 33 samples

were used, 22 from time domain data and the rest
from frequency (not counting the ones that are
obtained by the complex conjugate symmetry of
the transfer function, otherwise the total is 42). The
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limited number of samples is mainly due to numer-
ical problems with the optimization software, that
currently does not exploit the structure available in
the problem. The identification stage was followed
by a model reduction stage (via balancing and
truncation), resulting in a final identified model of
third order. Figure 2 shows the time and frequency
responses of this model versus experimental data.
As it can be seen there, the model interpolates both
sources of data within the experimental error.

To illustrate the advantage of our approach, we
also identified the system using ‘‘pure’’ time (i.e., l

1
)

and frequency (H
=
) domain methods. Figures 3

and 4 show the responses of the resulting models as
well as the identification error. As predicted,
methods using only one source of data achieved
a good fit in the corresponding domain, but incur-
red in large errors in the order.

6. CONCLUSIONS AND DIRECTIONS FOR FUTURE

RESEARCH

In this work we presented a new generalized
robust identification framework that combines
both frequency and time-domain experimental
data, thus avoiding situations where a ‘‘good’’ fit of
the data provided by one class of experiments (such
as frequency domain) leads to poor fitting of the
data provided by the other experiments, as illus-
trated with the experimental example of Section 5.

The main result of the paper shows that the
problems of establishing consistency of the data
and of obtaining a nominal model and bounds on
the identification error can be recast as a LMI
feasibility problem that can be efficiently solved.

Additionally, we have shown that in this context
the set of models consistent with both the a priori
and a posteriori information can be parameterized
as a LFT of the experimental data, thus justifying
the combination of the proposed algorithm with
standard robust control synthesis techniques.

Finally, we have explored the conditioning of the
problem as the amount of experimental data avail-
able increases. From this analysis it follows that it
will be desirable to carry further research address-
ing the following issues:

f The step which takes M
R

to Z (to make the
problem affine in X) duplicates the size of the
matrix and explicitly inverts M

0
. While this step is

desirable from a theoretical standpoint (to estab-
lish convexity of the problem), it could possibly be
avoided by using a quadratic convex optimization
program.

f The algorithm should not destroy the theoretical
properties of the matrices involved. This is impor-
tant when inverting or constructing complex her-
mitian matrices.

f A reliable algorithm which transforms complex
realizations of real systems to real ones should be
included in the general procedure.

f For the case of interior point optimization pro-
cedures, a procedure which ‘‘cheaply’’ computes
good initial points by taking advantage of the
problem structure should be introduced. In this
regard, the procedure of using as a starting point
the solution of a similar problem but with fewer
interpolation points seems specially promising.

f Finally, as we indicated in Section 3, there are still
degrees of freedom available in the problem. This
raises the interesting possibility of using these
degrees of freedom to optimize an additional per-
formance criteria, for instance minimizing the or-
der of the nominal model.
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