A PTAS FOR THE MINIMIZATION OF POLYNOMIALS OF
FIXED DEGREE OVER THE SIMPLEX
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ABSTRACT. We consider the problem of computing the minimum value pupi,
taken by a polynomial p(z) of degree d over the standard simplex A. This is an
NP-hard problem already for degree d = 2. For any integer k£ > 1, by minimiz-
ing p(x) over the set of rational points in A with denominator k, one obtains a
hierarchy of upper bounds pa (x) converging to pmin as k — co. These upper
approximations are intimately linked to a hierarchy of lower bounds for pmin
constructed via Pélya’s theorem about representations of positive forms on the
simplex. Revisiting the proof of Pélya’s theorem allows us to give estimates on
the quality of these upper and lower approximations for pyi,. Moreover, we
show that the bounds pa(x) yield a polynomial time approximation scheme for
the minimization of polynomials of fixed degree d on the simplex, extending
an earlier result of Bomze and De Klerk for degree d = 2.
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1. INTRODUCTION

1.1. Problem definition and complexity. We consider the problem of minimiz-
ing a polynomial p(z) of degree d on the standard simplex

A::{:ve]Ri|in:1};
i=1

that is, the problem of computing

1.1 i i= mi :
(1.1) P min p(z)

One may assume w.l.o.g. that p(z) is a homogeneous polynomial (form). Indeed,
as observed in [6], if p(z) = Z(Z:o pe(z), where py(z) is homogeneous of degree
¢, then minimizing p(z) over A is equivalent to minimizing the degree d form
p'(z) = EZ:O pe(z) (X7, z:)? ¢, We will use the standard compact notation:

p() = paz”

where the summation is over o € Z7} with finitely many nonzero terms, and = :=
z{t ... z%n. Setting |af := Y, oy, then |a| = d for all nonzero terms when p is a
degree d form.
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Problem (1.1) is an NP-hard problem, already for forms of degree d = 2, as it
contains the maximum stable set problem. Indeed, for a graph G with adjacency
matrix A, the maximum size a(G) of a stable set in G can be expressed as

1 .

by the theorem of Motzkin and Straus [8].

1.2. Upper bounds using a rational grid. Given an integer k > 1, let
(1.2) Alk)y={zecAlkreZ"}

denote the set of rational points in A with denominator k& and define
(1.3) PAk) = minp(z) s.t. z € A(k).

Thus, pmin < pa) for any & > 1. As |A(k)| = (”+,]:_1), one can compute the
bound pa(x) in polynomial time for any fived k. Set

(14) Pmax ‘= l;vneag(p(x)

When p(x) is a form of degree d = 2, Bomze and De Klerk [4] show that the

following inequality holds:

1
(15) pA(k) — Pmin S E(pmax - pmin)
for any k£ > 1.

Using a probabilistic approach, Nesterov [10] gave a different proof of (1.5), and
proved the following result for the case when p(z) is a form of degree d which is
a sum of square-free monomials; that is, a monomial z® appears with a nonzero
coefficient in p(z) only if a; <1 for all i = 1,...,n. Then, for k > d,

(1.6) PA(K) — Pmin < <1 - m> (—Pmin) < %(_pmin)-

1.3. Lower bounds using Pdlya’s representation theorem. A second — and
closely related — way of obtaining approximations to pyi,, is via Pdlya’s represen-
tation theorem for positive forms on the simplex.

We need to introduce the following parameters for a polynomial p(z) = ) paz®:

041! !

(1.7) L, := max \pa|T!",

l... |

(1.8) pl(T?gx = maxpau
a |a!

which obviously satisfy: p'oayx < L.

Theorem 1.1. Let p be a form of degree d which is positive on the simplex A, i.e.,
Pmin > 0. Then the polynomial (37 | ;)" p(z) has nonnegative coefficients for all
r satisfying

(0)
(1.9) r> <d> Pmax _ 4.

2 Pmin
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Pélya [15] proved that (3, z;)" p(z) has nonnegative coefficients for r large
enough. Powers and Reznick [16] proved that this holds for any r > (‘Q’l) Lo 4. We

Pmin

observe here that this holds for any r satisfying the weaker condition (1.9) (with

L, replaced by pmax) see Section 2.1 for a proof.

Now let us indicate how Pélya’s result can be used for constructing an asymp-
totically converging hierarchy of lower bounds for pp,i,. Observe first that pmi, can
alternatively be formulated as the maximum scalar A for which p(z) — A > 0 for all
x € A. Equivalently,

Pmin = max A\ such that p(z (Z a:Z) >0Vz e RY.

For any integer > 0, define the parameter:

n d
pf;)n :=max X\ s.t. the polynomial p(") (z (Z wl> p(z) — A (Z m1>
i=1

has nonnegative coefficients.

For the problem of maximizing p(x) over A, one can analogously define the pa-
rameter p,(ﬂ;x as the minimum scalar A for which the polynomial —p(")(z) has
nonnegative coefficients. One can verify (see Section 2.1) that

(0) aal-can! (g agl- - ap!

0 .
(1-10) Pmin — mampaTa Pmax = ma?XpaT;

that is, we find again the value from (1.8) for pﬁﬂgx. Obviously,

0 1
PO <pl) < plt ) <

Moreover, pfm)n > 0 if and only if the polynomial (3", z;)"p(z) has nonnegative

coefficients. Hence, Theorem 1.1 asserts that pfgi)n > 0 for any r satisfying (1.9).

The bound pgi)n can be computed in polynomial time for any fized r, as it can be

expressed as the minimum over the grid A(r+d) of a perturbation of the polynomial
p(z); see relation (2.3). As a consequence of Pdlya’s theorem, the bounds pfgi)n
converge asymptotically to pymin as r — oco.

This idea of using Pélya’s result for constructing converging approximations goes
back to the work of Parrilo [13, 14], who used it for constructing hierarchies of conic
relaxations for the cone of copositive matrices (corresponding to degree 2 positive
semidefinite forms). The construction was extended to general positive semidefinite
forms by Faybusovich [6], and Zuluaga et al. [22]. Faybusovich [6] proved:

Theorem 1.2. Let p(z) be a form of degree d and r > 0 an integer. Then,

(r) 1
1.11 min — < (Lp = Pmin) | —= -1,
( ) p min ( p p )<’U)T(d) >

where

(1.12) wr(d) = T.Tr:dd 1:[ < r+d>
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One can verify that
d\ 1
1.13 1- <wr(d) <1
(113 (5) g =w@=L

which implies that lim,_, ., w,(d) = 1. Thus one finds again that the sequence p
converges t0 Pmin as r — o0.

(r)

min
1.4. Main results of this paper. In this paper we prove new bounds on the

quality of the approximations pa(x) and pgi)n. In particular, we show the following.

Theorem 1.3. Let p(z) be a form of degree d and r > 0 an integer. Then,

1 2d -1
1.14 min — (T) < -1 dd max — Pmin

2d — 1
d
The motivation for proving bounds of this type comes from approximation the-

ory. In order to explain this we recall the definition of an e-approximation in

nonlinear programming. The next definition is taken from Vavasis [21] and has
been used by several other authors, e.g., Bellare and Rogaway [2], Nesterov et al.

[9].
Definition 1.4. Consider the optimization problems:
Pmax ;= max{p(z) : £ €S}, Gmin:=min{d(z) : z € S},

where ¢ : R" — IR is continuous and S is a compact convex set. Given € > 0, a
value . is said to approrimate Pumin with relative accuracy € if

|¢E - ¢min| S 6((,Zsmax - ¢min)-

Then one also says that ¥ is a e-approzimation of ¢nin. The approximation is
called implementable if 1. = ¢(x) for some z € S.

(1.15) PA(r+d) — Pmin < (1 — w,(d)) < >dd(pmax — Prmin)-

As is customary, we speak of a polynomial time approximation scheme (PTAS)
if an implementable e-approximation can be computed in polynomial time for every
fixed € > 0. Formally, we have the following definition.

Definition 1.5 (PTAS). If a problem allows an implementable approximation
Ye = ¢(z) for each € > 0, such that z. € S can be computed in time polynomial
in n and the bit size required to represent ¢, we say that the problem allows a
polynomial time approzimation scheme (PTAS).

For the problem of minimizing a form over the simplex, this definition may be
summarized as follows.

Definition 1.6. Consider the problem (1.1) of minimizing a degree d form p on
the standard simplex. A PTAS for this problem exists if, for every € > 0, there is
an algorithm that returns a solution x € A satisfying

(116) p(l‘) — Pmin S (pmax 7pmin)€

in time polynomial in n and the bit size of the coefficients of p.

In view of these definitions, our results in Theorem 1.3 imply the following
complexity result.
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Theorem 1.7. There exists a PTAS for the problem class of minimizing a form
of fixed degree d > 2 over the simplex A.

In contrast, Bellare and Rogaway [2] proved that if P £ NP and € € (0,1/3), there
is no polynomial time e-approximation algorithm for the problem of minimizing a
polynomial of total degree d > 2 over a feasible region S = {z € [0,1]" | Az < b}.
What Theorem 1.7 shows is that there is a PTAS in the special case when S is the
standard simplex.

Note that the approximation result from Theorem 1.2 does not constitute a
PTAS since it is not clear how to bound L, — pmin in terms of pmax — Pmin. The
reason is that the quantity L, is independent of ppax in general as Example 1.8
below illustrates. As argued by Vavasis [21], the definition of an e-approximation
adopted in Definition 1.4 has some useful invariance properties. For instance, it is
invariant under dilation of the objective function, as well as under the addition of a
function g(x) constant on the feasible region (e.g., g(z) = t(>_;—, ;)" in our case of
optimization over the simplex A); that is, if the objective function ¢ is replaced by
a¢ + g (a > 0) then an e-approximation for ¢ remains an e-approximation for the
new objective function. This invariance property would be lost if one would replace
in (1.16) the parameter ppax by the parameter L, (as in (1.11)). The following
example illustrates this too.

Example 1.8. Consider the problem of minimizing a quadratic form p(z) := 27 Qx
on the standard simplex A. Thus L, = maxi<;<j<n |Q:j|.- Now let us transform
the problem data by replacing Q by @ — teeT for some t > 0, i.e. define

pe(z) = 27(Q — tee )z = p(x) — t (Z x,) .

Thus p:(z) = p(z) — t if x € A. This transformation does not change the global
minimizer, nor does it change the range (p;)max — (P¢t)min Of the modified objective
function. In other words, if x € A defines an e-approximation for the original
problem, it also defines an e-approximation for the modified problem.

However, Ly, — (pt)min is clearly an increasing function of ¢ for sufficiently large
t. Therefore, one cannot bound L,, — (Pt)min in terms of (Pt)max — (Pt)min =
Pmax — Pmin-

Let us now argue that, if we replace in (1.16) the parameter ppmax by L, (as
in (1.11)), then we obtain an alternative notion of e-approximation that is not
invariant under addition of a function constant on A. Indeed, given z € A and
t > 0, define ¢ via

pt(x) - (pt)min = €t (Lpt - (pt)min) -
That is, = is an e-approximation for (p;)min using the “new definition”. If the
invariance property would hold for the new definition, then ¢; would be independent
of t. This is not the case, since €; goes to 0 as t goes to co. |

2. APPROXIMATING FORMS ON THE SIMPLEX - PROOFS

2.1. Estimating the upper and lower approximations pa(,+4) and pfzi)n for

Pmin Via Pdlya’s theorem. We will use the following notation. Given a@ € N*|
set
ali=oa!--ap,!
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and, following [16], given scalars z,t and a nonnegative integer m, set

m—1

(@) =a(z—t)(z— (m—1)t) = [] (@ —it).
i=0
Then, (1), = w,(d), the parameter defined in (1.12). Define

r+d
I(n,m) :={a e N": |q] :Zai =m}.

We use the multinomial identity:

(2.1) (Zx) = Y ’z_!!xa

acl(n,m)

and its generalization, known as the Vandermonde-Chu identity:

(22) (Z) =Y D i

acl(n,m)
(See [16] for a proof. Alternatively, use induction on m > 1.)

In what follows, p(z) is a form of degree d and r > 0 is an integer. By definition,
pl(m)n is the maximum scalar X for which the polynomial (3, z;)" p(z)—X (3, ;) T
has nonnegative coefficients. We begin with evaluating the coefficients of this poly-

nomial. We have:

no\ (r + d)!
(290) Py

BeI(n,r+d)
x) (Z ﬂ”z) = Z AgaP
1=1 BeI(n,r+d)
where
r! ri(r +d)? - i
Aﬂ = Z Pa = Pa H
_ | !
acl(n,d), a<p (6 Oé). B a€l(n,d) i=1 r + d ==

Therefore, pfm)n is the maximum A for which Ag — A*57= (Hd) > 0forall 8 € I(n,r+d);
that is,

(r) B!

= mln
Pmin BEI(n r+d) ( + d)'
= mln

BeI(n,r+d) W Z paH<T+d> id

aelnd) =1

Ap
(2.3)

As the point z := r:%d belongs to A(r + d), it follows that

(r) . 1 o @
2.4 ) = m ST pal@)® o (@)
(2:4) Prmin zeA(lrrid) wy-(d) o d)p (Il)r}rﬁ (@ )rid
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As in [16], define the polynomial

$(x) =p@)— D pale)®L -+ (zn)%

(2 5) a€cl(n,d) e e
= > pa(e o), )
acl(n,d) ™ ™
and set
¢max = ze%lgﬁd) ¢(I)
Then,
r 1 .
(2.6) Doy = min_(p(z) — ¢(x)).

wT(d) zEA(r+d)
This implies:
5 1 -
Pmin 2 wr(d) (pA(r+d) ¢max)

(r)

min’

and thus, as pa(r4+d) = Pmin = P

1

2. (T) > — min — ®max),
(2.7 P 2 g min )
(28) pA(r—i—d) S wr(d)pmin + ¢max-
Therefore,

(r) 1 1

2. in—po < [1— —— . -
( 9) Pmin = Pmin = < wT(d)> Pmin + w, (d) ¢maxa
(2.10) — poin < wrd) (1= —) prin + ——

. PA(r+4d) Pmin > Wy wr(d) Pmin wr(d) max | -

We are now in a position to prove the following result which implies the bound
(1.11) by Faybusovich [6], since pé?;x < L,.

Theorem 2.1. Let p be a form of degree d and r > 0 an integer. Then,

) o . (L
211 min i S max min ]- I
(2.11) P Pmin < (P P )(wT( ) )
(2.12) PA(r+d) — Pmin < (P — Pmin) (1 — wy(d)).

Proof. As z* > ], (%;)* and p, < pﬁ?&x% (by the definition of p&?;x), we find
r+d :
that

w0 <At 3 4 (- Ty, )

. +d
a€cl(n,d) i=1

In view of relations (2.1) and (2.2), the right hand side is equal to

O, (z) g (z ) 01— ().
=1 1=1 _1
+d

Therefore,

(2.13) Smax < Plax(1 — w,(d)).
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This inequality, combined with (2.9) and (2.10), gives the inequalities (2.11) and
(2.12) from Theorem 2.1. |

Proof of Theorem 1.1. Assume that pyi, > 0 and r > (‘21)’;‘(“& — d. Then, (2.13)

combined with the bound on w,(d) from (1.13) implies that ¢pax < pg?gx (‘21) T}rd.

Now, (2.7) implies that pfgi)n > = 1( ) (pmin — psg;x (g) ri d), which is nonnegative

by our assumption on r. This shows that pgi)n > 0 for such r; that is, Theorem 1.1
holds.

Proving the inequality (1.6) for polynomials that are sums of square-free monomials.
Assume that p, = 0 whenever a; > 2 for some i = 1,...,n. Then the polynomial
¢(z) from (2.5) is identically zero. Thus ¢max = 0 and the estimate (1.6) follows
directly from (2.10) (with k£ = r 4+ d and using (1.13)).

2.2. Estimating the maximum coefficient range of a polynomial. In this
(0) (0) (0)

section we prove our main result, Theorem 1.3. AS pmax — Pmin < Pmax — Ppins

Theorem 1.3 will follow directly from the next result, which estimates PO — pi?i)n

in terms of Pruax — Pmin, combined with Theorem 2.1.

Theorem 2.2. The following holds for a form p(x) of degree d.
2d — 1
(214) pEI?;X - pfr?l)n S ( d >dd(pmax - pmin)-

We now prove Theorem 2.2. Following Reznick [18], let us introduce the following
definitions.

Recall that I(n,d) = {a € Z} : |a| = d} and let F, 4 denote the set of forms of
degree d in n variables. For p € F,, 4, write

d!
ple)= > par®= Y a(p, @) %,
a€l(n,d) a€l(n,d)

after setting
al

i for a € I(n,d).

a(p, @) := pa

For a € R", define the degree d form:
P,(z) := (aTz)? for z € R".
Define the inner product on Fj, 4:
pa)= Y alpaalg,0) ]} for pa € Fra

a€l(n,d)
As P,(z) = ZBEI(n,d) g—iaﬂxﬁ, it follows that, for any p € F,, 4,
(2.15) (p, Po) = p(a) for a € R™.
Moreover,

(2.16) (p,z%) = a(p,a) for a € I(n,d).
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Finally, given a € I(n,d), define the polynomials:

(2.17) ho(z) == H i_[ (dzj —lij(z1 + ...+ 2,)), hi(z):= ﬁha(x).
j=1£;=0

Lemma 2.3. [18] For a, &’ € I(n,d), (b}, Py) =1 if a =& and 0 otherwise.
Proof. Direct verification. O
Corollary 2.4. [18] The set {P, | a € I(n,d)} is a basis of the vector space F, 4.

The above results can be found in this form in Reznick [18, §2], who extended
an old result of Biermann in 1903 for the ternary case. They claim in fact the
existence and uniqueness of an interpolation homogeneous polynomial of degree d
taking prescribed values at the points of I(n,d) (equivalently, at the points of the
rational grid A(d)) and as such can also be found in Nicolaides [11].

Let A be the |I(n,d)|x |I(n,d)| matrix permitting to express the monomial basis
{z*| a € I(n,d)} in terms of the basis {Ps | 8 € I(n,d)}. That is,
(2.18) ¢ = Z A(a, B)Ps(z).
BeI(n,d)

For p € F, 4, by taking the inner product in (2.18) with p and using (2.15) and
(2.16), we find:

(2.19) a(p,a)= Y A(a,B)p(B) for a € I(n,d).
BeI(n,d)
Taking the inner product in (2.18) with hj, we find:
(2.20) a(hg, a) = (hs,z*) = A(a, B) for a, B € I(n,d).
In view of (1.10), our parameters psr?g)ix and pfr?i)n can be expressed as
0 .
P =  max, a(p, ), P = Lo a(p,@).

Define the vectors = := (p(@))acr(n,a) and y := (a(p, @))acr(n,4)- In view of (2.19),
they are related by the relation:

(2.21) y = Ax.

Denote by Zmax (TeSp., Tmin) the largest entry (resp. smallest entry) of z; similarly

for y. Thus,
(0) (0)

Ymax — Ymin = Pmax — Pmin-
For a € I(n,d), p(a) = p(a/d)d?. Thus,
(222) Tmax — Tmin S dd(pmax - pmin)-

Our strategy for proving Theorem 2.2 consists of showing the following two
results.

Proposition 2.5. Let A be an N x N matriz satisfying Ae = pe for some scalar
u, where e denotes the all-ones vector, and set

i=1,...,

N
[Alloo = aXN; A K)I-

If’y = ACL'; then Ymax — Ymin < HAHoo(xmax - mmin)'
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Proposition 2.6. Let A be the matriz defined in (2.20); that is, A = (A(x, B) =
a(hg,a))aﬂel(m). Then, Ae = %e and || Al < (Qdd_l).

2.2.1. Proof of Proposition 2.5. Assume y = Ax where A = (aik)z{?{kzl' At row i,
yi = > n_y aixzk. Thus,

_ -
yi < § ik | Tmax — E |aik| | Zmin = 7 Tmax — 7} Tmin,
k\alkzo k|a,k§0

Z ik, 7“; = Z |aik|.

kla;x>0 kla;x <0

after setting

Similarly,
+ —
Yj > rj Tmin — rj Tmax-

Therefore, for any 7,7 =1,...,N,
i — i < (rf +77)Zmax — (1] + 17 )Tmin-

Note that ammax bTrmin < “T*b(xmax — Tmin) if and only if (b— a)(Zmax + Tmin) > 0.

Here, a = r;" +r;, b= ri_—l—rf, b—a=>,ajk—> 0k =0,and b+a =
Dk |a,k| + \ajk|. Therefore,

N
1
- y] = 2 (Z |azk| + |ajk:|> (zmax - xmin)

k=1
and

N
1
Yi S 5 <Z |aik| + |ajk:> (xmax - zmin)-

k=1
This implies that, for any ¢, 7,

N
1
|yi - yj‘ S 5 <§ |aik| + |ajk:> (xmax - zmin) S <m?,x § |azk> (xmax - zmin);
k=1 k

that is,

Ymax — Ymin S HAHoo(mmax - xmin)-

2.2.2. Proof of Proposition 2.6. Let us first prove that Ae = d~%e. For this consider
the polynomial p(z) := (Y., z;)% Then, a(p,a) = 1 and p(a) = d?¢ for all
o € I(n,d). Thus, z = (p(0))acrima = de and y == (a(D, @))acr(na) = e AS
y = Az by (2.21), it follows that Ae = d Ze.

Recall that A(a,8) = a(h},a) = a(hg, @) '{id Thus, A(a, 3) is equal to the

(X

coefficient of 2 in hg(z) scaled by the factor % B!dd' We proceed in two steps for

proving that
2d -1
IAlloe = max Y [A(a,B)] < :
acl(n,d) d
BEI(n,d)
(1) First, we show that each entry of A is bounded in absolute value by 1.
(2) Second, we show that there are at most (2d;1) nonzero entries in any row of A.
Those two facts imply obviously the desired result.



APPROXIMATING POLYNOMIALS OVER THE SIMPLEX 11

Step (1). Bounding the entries of A. By definition, hg(z) is defined as the product
of d linear forms: fi(z) = >.1 | f1i%i; ..., fa(x) = > i~ faiw;. Thus,

hﬁ(ﬂ)) = Z Z f1i1 ---fdidxil ---xid = Z Sal‘a,

i1=1,...,n tg=1,...,n a€l(n,d)

where so = Y f1i, -+ fai, and the summation is over all d-tuples (iy,...,iq) €
{1,...,n}% containing 1 exactly a; times, 2 exactly as times, ..., n exactly o,
times.

First of all, each product fi;, - - - f4;, is bounded in absolute value by d¢. Indeed,
the linear forms f;(z) are of the form: (d—{)x; —fxy ... —{x,; thus their coefficients
belong to {—d,-d+1,...,0,1,...,d}.

Let us now count the number of terms in the summation defining s,. It is equal
to (o‘i) . (d;jl) (d_al_o't;_a"*l), which is equal to %

Summarizing, we find that |s,| < dd%. Hence, |A(a, 8)| = |Sa‘%!!ﬁ!];id <L <l.

Step (2). Bounding the number of nonzero entries in a row of A. Write hg(z) =
[1}-, Pj(z), where

Bi—1
Piz)= ] |@—tp)ai— D
£;=0 i=1,...,n, i#j

Fix a € I(n,d) and consider the a-th row of A. We want to bound the number of
B’s for which A(a,3) # 0; that is, the number of 3’s for which z* occurs with a
nonzero coefficient in hg(x).

Consider some 8 for which A(a,8) # 0. Say, supp(8) = {1,...,t}; that is,

Bi>1,...,8t>1,Bi41=...= 0, =0. Then, Pj(z) =1for j=t+1,...,n and
Bi—1
Pj(z) = dz; H (d—4j)x; — Z liz;
gi=1 i=1,...,n, i#j

t t B;—1
t
h/g(x) =d H T H (d - gj)l‘j - Z gjél?i
j=1  j=1¢4;=1 i=1,...,m, i#j
Hence, if z* has a nonzero coefficient in hg(z), then necessarily oy > 1,...,04 > 1;

that is, the support of 3 is contained in the support of a.

Therefore, the number of 8’s for which A(a, 8) # 0 is bounded by the number of
sequences 8 € I(n,d) with supp(B) C supp(a), which is equal to (s+3_1), setting

s:= |supp(a)|. As |a| =d, s < d and thus (S+3_1) < (Qdd_l). O

3. CONCLUDING REMARKS

3.1. On the definition of a PTAS. Definitions 1.4 (e-approximation) and 1.5
(PTAS) are crucial for our complexity result in Theorem 1.7 to hold. Indeed,
consider defining an e-approximation via an z. € A satisfying

(31) p(xe) — Pmin S E|pmin|7
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for a given € > 0. Such definition mimics the definition of an e-approximation that
is classically used for combinatorial optimization problems (see, e.g., Papadimitriou
and Steiglitz [12], chapter 17).

We show here that one cannot obtain an e-approximation for problem (1.1) in
the sense of (3.1) for each € > 0 in polynomial time, unless P = NP, not even for
d = 2. The proof is based on a reduction from the maximum stable set problem.

Given a graph G = (V, E) with adjacency matrix A, consider the quadratic
polynomial p(x) := 27 (I + A)z. By the Motzkin-Straus theorem, the minimum of

p(z) over A is ﬁ, where «(G) is the maximum cardinality of a stable set in G.

Thus, pmin = ﬁ > 0 and prmax > 2Pmin if @(G) > 2, since ppax > 1 = p(e;).

Lemma 3.1. Given z* € A, one can construct a stable set S for which ﬁ < p(z*)

in time polynomaial in n.

Proof. The proof is based on the same argument used for proving Motzkin-Straus
theorem. Let T' denote the support of z*. First we construct another point z € A
whose support is stable and such that p(z) < p(z*). If T is stable, let z := z*.
Suppose that T contains two adjacent nodes, say, nodes 1 and 2. Consider the

function f(zy,z2) := p(xy, 22,25, ...,22) in two variables z1,zs. For any point
(T1,%2) € Ao = {(z1,@2) | 1,2 > 0, 1 + @2 = 1= 3 5327}, f(21,22) has
the form az; + bze + ¢ where a,b, ¢ are constants depending on z3,...,z). As f

is linear, it attains its minimum on the segment Ay at one of its extremities, i.e.,
at (x1,22) with 21 = 0 or 2o = 0. Thus one can construct a new point z € A
such that p(z) < p(z*), whose support is contained in T and does not contain
{1,2}. Tterating, we find a point x € A whose support S is stable and such that
p(z) < p(a*). Now, p(z) = > ,cgx; which, using Cauchy-Schwartz inequality,
implies that p(z) > ﬁ O

Now let € be given such that 0 < e < 1 and set € := . Assume that one can
construct in polynomial time a point z € A satisfying (3.1), i.e., p(z) < ﬁc)(l—f-e’).

By Lemma 3.1, one can construct in polynomial time a stable set S such that
ﬁ < p(x) < ﬁ(l + ¢’), which implies |S| > a(G)(1 — €). This shows therefore
the existence of a PTAS for the maximum stable set problem, contradicting an

inapproximability result of Arora et al. [1].

3.2. Sharper bounds in the cases d = 2,3. Theorem 2.2 involves the constant
(2dd_1)dd as factor of ppax — Pmin (and thus Theorem 1.3 as well). This is a large
constant which could perhaps be improved via a tighter analysis, although this
would have no impact on the claim of existence of a PTAS. As a matter of fact, in
the case of degree d = 2,3 forms, we can prove a better constant in Theorem 1.3 by
looking more closely at the form of the function ¢ involved in the proof of Pélya’s
result. The result for d = 2 (Theorem 3.2) is known from Bomze and De Klerk [4]
and Nesterov [10], but the result for d = 3 in Theorem 3.3 is new.

In what follows, ey, ..., e, denote the standard unit vectors in R". Thus, pa,
denotes the coefficient of the monomial z? in p(z).

Theorem 3.2. Let p be a form of degree d =2 and r > 0 an integer. Then,

1

S H—l(pmax - pmin)7

(32) Pmin —P(T? < L ( max pae; _pmin)
min = .4 i

i=1,...,n
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1 1
3.3 T _minS— e; — Pmin S— max — Mmin)-
(3.3) DPA(r42) — P T‘—i—Z(i:nllf.%.).(,an’ P > r+2(pa Prmin)
Proof. By looking more closely at the form of the function ¢(z) in (2.5), one can
give an upper bound for ¢, .x depending on pp.x and pyi, only. Indeed, when
d = 2, one can verify that

p(x) = ! szeimi-

r+2
Therefore,
1
A4 max — | o e; < ——=DPmax-
(3-4) ¢ r+2i:nll?.}.(,np2’ r+2p
As w,(2) = %, together with (2.9) and (2.10), this implies that the inequalities
(3.2) and (3.3) from Theorem 3.2 hold.

Moreover, pl(:;i)n >0 for r > % — 2. That is, for degree 2 forms, Theorem
1.1 remains valid for such r (instead of (1.9)). O
Theorem 3.3. Let p be a form of degree d =3 and r > 0 an integer. Then,

4(r +3)
3.5 min — (T) < o—v = max — FMmin),
( ) p pmln — (T+1)(T+2) (p a: p )
(36) < )
. pA(r+3) Pmin > r+3 Pmax Pmin )-

Proof. When d = 3, one can verify that

(37) (]5(.7)) = ZP?,e,- (3t$12 - 2t2xi) + Z (p2ei+ej +pei+2ej)txixj’
i=1 1<i<j<n

after setting t := % Evaluating p at the simplex points e; and %(ei + €;) yields,
respectively, the relations:

(38) Pmin S p(el) = P3e; S Pmax,

(39) p3ei +p38j +p2ei+ej +pei+2ej S 8pmax-
Using (3.9), we can bound the second sum in (3.7):
Zi<j (p2€i+€j + Pe;+2e; )xiwj < Zi<]'(8pmax — P3e; — P3e; )Cl?iCL'j

= 8Pmax D i< j TiTj — D_; P3e,Ti(1 — T;).

Therefore,
d(z) < 8tPmax Z xixj + 4t Zpgeim? —t(142t) Zpgeixi.
i<j i i

Using the fact that pse, < pmax and Y, x; = 1, the sum of the first two terms can
be bounded by 4¢{pmax. Using the fact that —pse;, < —pmin, the third term can be

bounded by —t(1 + 2t)pmin = —ﬁpmm. This shows:
r+5
3.10 max S — oFPmax — 7 5\ Mmin-
(3.10) ¢ r+ 37 (r+3)2"
Together with (2.9), (2.10), and the fact that w,.(3) = %, this implies that

the relations (3.5) and (3.6) from Theorem 3.3 hold. O
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It is not clear whether this type of argument for bounding ¢,,.x in terms of pyax
and puin extends for forms of degree 4.

3.3. A probabilistic approach for estimating the grid bounds pa)- Nes-
terov [10] proposes an alternative probabilistic argument for estimating the quality
of the bounds pa(x)- He introduces a random walk on the simplex A, which gen-
erates a sequence of random points 3 (k > 0) in the simplex with the property
that xp € A(k). Thus the expected value E(p(zy)) of the evaluation of the poly-
nomial p(z) at zy satisfies: E(p(zx)) > pak). Hence upper bounds for pa ) can
be obtained by bounding E(p(xg)).

Fix a point ¢ € A (to be chosen later as a global minimizer of the polynomial p(x)

over A). Let ¢ be a discrete random variable with values in {1,...,n} distributed
as follows:
(3.11) Prob((=4)=¢q; (i=1,...,n).

Consider the random process:
Yo =0€ R", yri1 =yr +e¢, (k> 0)

where (;, are random independent variables distributed according to (3.11). In
other words, yr4+1 is yi + e; with probability ¢;. Finally, define
1
T = Eyk (k Z ].)

Thus all xj, lie in the set A(k). The following computations are given in [10]:

Plan(i) =, Blon(if) = o+ (11 ) 2

E(xk(z)wk(j)) = (1 - %) q:q; (Z # .7)7
k!
(k —d)!kdqﬁ

Therefore, if ¢ is a global minimizer of p(z) over A and if p(z) is a sum of square-free
monomials of degree d, then

E(zf) = if 8 € {0,1}" with |8 = d.

B(p(e)) = 3 2sB(ef) = p(0) G = Printn (@),
|8|=d

with k = r + d, which gives the estimate (1.6) ([10], Lemma 3). If p(x) is a form of
degree 2, then

1 1 1 O
E = — e.qi 1—— = r2 min a5 e; iy
(plov)) = f Sopaeai (1 ) o) = wr O+ 5 S pag
with k = r + 2, which gives the estimate (3.3) ([10], Theorem 2).
Remark 3.4. In these two cases (sum of square-free monomials, or degree 2), it

turns out that E(p(zx)) = w,(d)Pmin + ¢(q). Hence, the upper bound w; (d)pmin +
Gmax for pa(r+q) (recall (2.8)) remains an upper bound for E(p(zy)). The identity
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E(p(z1)) = wr(d)pmin + #(q) is not true when d = 3. When d = 3, one can verify
that E(p(zk)) = wr(3)Pmin + ¢(q) + ¢'(q), where

1 2
¢,(q) = < > 32]73@1(11(1 - Qz) - Z(p2ei+ej +pei+2ej)quj

r+3 i<j
One can verify that ¢'(q) < ﬁ(pmax — Pmin). Combined with (3.10), this implies
that
4 4
E(p(ﬂfk)) S Pmin + 7"+‘—3 + m (pmax - pmin)-

3.4. Approximating polynomials over polytopes. As observed by Nesterov
[10], some results for the simplex can be extended to the problem of minimizing a
degree d form p(x) over a polytope

P :=conv(uy,...,un)
where uq,...,uy € R"™. Indeed, if U denote the n x N matrix with columns
U1, - .., Uy, then minimizing the polynomial (in n variables) p(z) over P is equiva-

lent to minimizing the polynomial (in N variables) p(z) := p(Ux) over the standard
simplex A in RY. Thus,
Drmin, P = gnelgp(w) = ;nel/glp(x)

and, for an integer k > 1, one can define the grid approximation:

N
PP(k) i= PA(k) = ménAi&)p (Z miUi) .
i=1

The bounds obtained earlier for pa i) translate into bounds for pp (). For instance,
when p(x) has degree 2,

1
S N _p. .
pP(k) Pmin,P > X <Z:r{1,a>pr(Uz) pmln,P)
When p(z) is a sum of square-free monomials,
dd—-1
PP(k) — Pmin,P < %(7Pmin,P)-

However, the complexity of computing the parameter pp(;) depends on the number
N of vertices, which can be exponentially large in terms of the number n of variables.
Observe that the problem of maximizing a quadratic form over the cube [—1,1]"
is NP-hard and no PTAS can exist, since it contains the max-cut problem. Indeed,
given a graph G = (V, E), define its Laplacian matrix L as the V' x V matrix with
entries L;; := —deg(¢) (i € V) and L;; := 1 if § # j are adjacent, L;; := 0 otherwise.
Then,
L 7 L 7
me(G) = max -z Lzx= max -z Lz,
ze{£1}n 4 ze[-1,1]" 4
where the last equality follows from the fact that L > 0.
Nevertheless, when the polytope P is given by its vertices and the number of
vertices is polynomially bounded in terms of n, our results imply the existence of a
PTAS for the minimization of a fixed degree form on P.
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3.5. Semidefinite approximations. Stronger semidefinite bounds can be defined
for the minimum pp,;i, of a degree d form p(z) over the standard simplex A. For
this, if p(z) = Y°_ pax®, consider the (even) polynomial

p(z) := Zpaa;za.

The problem of minimizing p(z) over the simplex A is equivalent to the problem
of minimizing p(x) over the unit sphere S :={z € R" | 31" | 22 = 1}; that is,

Let ¥? denote the set of polynomials in R[z1,...,x,] that can written as a sum of
squares of polynomials. Given an integer r > 0, define the parameter:

n r n d
(3.12) pf;i)nysos := max A for which <Z xf) p(z) — A (Z mf) € x2.
i=1

i=1

If the polynomial (Y, ;)" (p(z) — A (X1, mi)d) has nonnegative coefficients, then
the polynomial (3}, z2)" (5(z) — A (X1, x?)d) is obviously a sum of squares. There-
fore,

N <pi) < for all 7 > 0.

Prnin = pmin,sos > Pmin

The bound pf;i)nysos can be computed in polynomial time with an arbitrary precision
for any fized r. This follows from the well known fact (see, e.g., [17]) that testing
whether a polynomial can be written as a sum of squares of polynomials can be
formulated as a semidefinite program. As a consequence of Pélya’s theorem, the
semidefinite bounds pf;i)nysos converge to ppmin as r — 0o.

Schmiidgen [20] proved (in a more general context) that every polynomial that
is positive on the unit sphere S has a representation of the form so(z) + (1 —
>, z3)s1(z), where so(z) € £2 and sq(z) € R|zy,...,z,]. This fact motivates the
definition of the following alternative semidefinite lower bound for pp,, for any
integer r > 0:

max A  such that p(z) — X =so(z) + (1 — Y1, z7)s1(z)

(3.13) where sg € X2, s; € Rlzy,...,z,], deg(so) < 2(r + d)

It follows from Schmiidgen’s theorem that these bounds also converge to ppi, as
r — oo. In fact, De Klerk et al. [5] show that the bounds (3.13) coincide with

the semidefinite bounds pfgi)msos. That is, both approaches based on Pdlya’s result
and on Schmiidgen’s result yield the same hierarchies of semidefinite bounds for
the problem of minimizing a form on the simplex.

3.6. Optimizing polynomials over the unit sphere. We group here a few
observations about the complexity of optimizing a form over the sphere.

As is well-known, minimizing a quadratic form over the unit sphere is an easy
problem, as it amounts to computing the minimum eigenvalue of a matrix, a prob-
lem for which efficient algorithms exist.

As we saw in the previous subsection, the problem of minimizing an even form
on the unit sphere can be reformulated as the problem of minimizing an associated
form on the simplex. Hence upper and lower bounds are available as well as good
estimates on their quality.
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On the other hand, Nesterov [10] shows that maximizing a cubic form on the
unit sphere is a NP-hard problem, using a reduction from the maximum stable set
problem.

Let us finally mention a result of Faybusovich [6] about the quality of the semidef-
inite bounds for the optimization of forms on the unit sphere. Let p(z) be a form
of even degree 2d, let S denote the unit sphere, and set ppin,s = minges p(z),
Pmax,s = Maxges p(z). For an integer r > 0, define the parameter

n T n d
pg) := max A\ s.t. fo p(z) — A Z:c? € x?.
i=1 i=1

Thus, pg) < Pmin,s for all 7 > 0. Using a result of Reznick [19], Faybusovich [6]

shows that, for r > 22424=1) _n _ 4

iln2 2
(r) < 2nd(2d — 1)
S = 2In2(2r +n+2d) — 2nd(2d — 1)
This does not yield a PTAS, since this estimate holds only for » = O(n). It remains

an open problem whether optimization of a fixed degree form over the unit sphere
allows a PTAS.

Pmin,Ss — P (pmax,S - pmin,S)-
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