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ABSTRACT

We develop algorithms for finding minimum energy disjoint
paths in an all-wireless network, for both the node and link-
disjoint cases. Our major results include a novel polynomial
time algorithm that optimally solves the minimum energy 2
link-disjoint paths problem, as well as a polynomial time al-
gorithm for the minimum energy k node-disjoint paths prob-
lem. In addition, we present efficient heuristic algorithms for
both problems. Our results show that link-disjoint paths
consume substantially less energy than node-disjoint paths.
We also found that the incremental energy of additional link-
disjoint paths is decreasing. This finding is somewhat sur-
prising due to the fact that in general networks additional
paths are typically longer than the shortest path. However,
in a wireless network, additional paths can be obtained at
lower energy due to the broadcast nature of the wireless
medium. Finally, we discuss issues regarding distributed
implementation and present distributed versions of the op-
timal centralized algorithms presented in the paper.
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1. INTRODUCTION

In this paper, we address the problem of finding minimum
energy disjoint paths in wireless ad-hoc networks. An ad-
hoc network is an infrastructure-less network, where every
node assumes the role of both host and router. Generally,
nodes in an ad-hoc network are mobile as well, though in
this paper we are primarily concerned with relatively static
ad-hoc networks, a prevalent example of which are sensor
networks.

The motivation for the minimum energy disjoint paths
problem considered in this paper is two-fold. The first is
the need for reliability in wireless networks. This need stems
from the unpredictable nature of the wireless environment,
which unlike its wired counterpart is more easily prone to
link failures (e.g. due to channel fading or obstructions)
and resulting path failures and data loss. Additionally, node
failures (e.g. due to power loss or mobility) are also com-
mon to ad-hoc networks. Therefore from this perspective,
a potential application of our work, i.e. simultaneous rout-
ing along multiple disjoint paths, can result in increased
resiliency against such failures. This is especially apparent
in the case of real-time data transmission, whereby if one
routes along a single path, just one node (or link) failure
is sufficient to cause path failure and transmission inter-
ruption. In contrast, routing along k disjoint paths makes
failure much less likely, as all k disjoint paths must become
disconnected in order for transmission to be interrupted. We
consider both node and link-disjoint path routing in this pa-
per. Node-disjoint paths are more resilient to failures than
link-disjoint paths; as they protect against both node and
link failures. However, as will be seen later in this paper,
link disjoint paths are much more energy efficient than node
disjoint paths. Moreover, in a wireless network, link disjoint
paths can protect against link failures that may result from
mobility, fading, or obstructions. Hence, in many cases, in-
dividual links may fail while the node remains operational.

The second motivation is the importance of energy effi-
ciency in wireless networks. Wireless nodes, especially sen-
sors, tend to use small batteries for energy supply that are
in many instances non-replenishable. Therefore, energy con-
servation is a vital factor in prolonging network lifetime. It



was shown in [1] that wireless nodes often expend most of
their energy in communications. As such, our objective is
to minimize the aggregate transmission power (energy) used
by nodes to route data along multiple paths.

Our approach to energy-efficient routing is similar to that
discussed in [2] in that it differs in a key aspect from the
conventional layered structure. In our treatment of routing
(a network layer function), we also incorporate transmis-
sion power level variations (hence network connectivity, a
physical layer function). Traditional research on routing in
ad-hoc networks decouples these two layers by restricting
nodes to constant transmission ranges, leading to a “static”
(node mobility notwithstanding) network topology. These
networks are subsequently modelled as “disk graphs”, and
routing is done to minimize a link-based metric (e.g. short-
est hop, minimum weight). In recent years however, it has
been argued that a decoupled approach, while well-suited for
wired networks, does not capture many salient properties of
wireless networks. This is especially true for transmission
energy usage, where joint consideration of the network and
physical layer issues can result in significant energy savings.

The combined problem of minimum energy disjoint path
routing has not been looked at before. However, when taken
as separate problems, considerable work has been done on
energy efficient routing in wireless networks [2, 3, 4, 5, 6, 17,
18, 22, 28, 29] as well as disjoint path routing in both wired
and wireless networks [10, 11, 12, 13, 14, 15, 23, 24, 25,
27]. The energy efficiency aspect of our work builds upon
that of Wieselthier et. al. [2] on energy-efficient broadcast-
ing and multicasting in wireless networks. Although they
present only heuristic solutions to the problem (the prob-
lem was subsequently proven to be NP-Hard [3, 4, 5, 6]),
their work elucidates many of the fundamental aspects of
energy-efficient routing in wireless networks that are used
in this paper.

Other relevant work in the area of energy-efficiency in
wireless networks includes work by Chen and Huang [7] on
the minimum energy strongly connecting problem (i.e. there
exists a path between every node pair) for packet radio net-
works (also proven to be NP-Hard). Along the same lines are
the minimum energy topology control problems considered
in [8, 9, 20], where the minimum energy strongly connecting
problem is generalized to variants of the minimum energy k-
strongly connecting problem (i.e. there exists k-node (link)
disjoint paths between every node pair).

The distinction between these problems and the disjoint
paths problem considered in this paper is that instead of
k-disjoint paths between every node pair, our problem re-
quires k disjoint paths between just two nodes - the source
and destination. In the minimum energy k-strongly connect-
ing problems, transmission ranges are assigned to all nodes
such that the resulting network topology contains k disjoint
paths between every node pair, and the aggregate transmis-
sion energy for the entire network is minimum. However,
this type of optimization needlessly minimizes energy usage
over nodes that may not even be transmitting, and yields
sub-optimal aggregate energy usage for the specific nodes
that are actively involved in transmission, namely the nodes
belonging to the k disjoint paths between a specific source-
destination pair. In this regard, finding minimum energy k
disjoint paths is the more focused problem, as the energy op-
timization is done only over pertinent nodes. Furthermore,
while most of the minimum energy k-strongly connecting

problems have been proven to be NP-complete [7, 8, 9, 20],
we present polynomial time algorithms that optimally solve
the minimum energy k node-disjoint paths problem, as well
as the minimum energy 2 link-disjoint paths problem.

The problem of finding k node (link) disjoint source-destin-
ation paths in a network, is a well studied problem in graph
theory. Polynomial O(kN?) running time algorithms that
find minimum-weight k node (link) disjoint source-destination
paths have existed for decades [10, 11, 12]. While these al-
gorithms do not address the minimum energy disjoint paths
problem, they serve as basic building blocks for the algo-
rithms developed in this paper.

The remainder of the paper focuses on developing optimal
polynomial running time algorithms for finding minimum
energy disjoint paths. We start by introducing our network
model as well as some basic concepts pertaining to wire-
less transmission that will be used throughout the paper.
We next discuss the problem of finding k minimum energy
node-disjoint source-destination paths, and follow with the
link-disjoint variant. We then present a short section on
alternative heuristic algorithms with lower computational
complexity, but sub-optimal performance. This is followed
by results, including performance comparisons between sev-
eral energy-efficient algorithms. We conclude with a short
section regarding distributed implementation.

2. NETWORK MODEL

We consider a wireless network consisting of /N nodes that
have omnidirectional antennas and can dynamically vary
their transmission power. Specifically, each node has a max-
imum transmission power level &pqz, and we assume that
transmissions can take place at any power level in the range
[0, &maz]. We assume a commonly used wireless propagation
model [16] whereby the received signal power attenuates as
r~ % where r is the transmission range and « is the loss con-
stant, typically between 2 and 4 depending on the wireless
medium.

Based on this model, we can clarify the concept of a wire-
less link, which is quite different from the traditional wired
link. In wired networks the definition is clear: A “link” ex-
ists between two nodes if they can communicate via a physi-
cal medium (e.g. a wire) between them. By contrast, a wire-
less link is more of a “soft” concept, where it can be said that
a “link” exists between two wireless nodes if the transmit-
ting node transmits with sufficiently high power such that
the “signal-to-interference-plus-noise-ratio” (SINR) at the
receiving node is greater than a given threshold value 6.
The threshold value 6 is chosen to achieve a desired bit-
error-rate for the given modulation scheme and data rate.
Without loss of generality, we normalize all values such that
the power required to support a wireless link at a given data
rate between node i and node j is given by,

Eij =13 (1)

where 7;; is the distance between nodes i and j. We say
that node i can “reach” node j if and only if node i transmits
at a power greater than or equal to ;.

The first observation based on this model is that the net-
work topology is entirely dependent on the range at which
nodes transmit. Links can be added or removed by a node
changing its transmission range. The second observation is
that this model severely penalizes (from an energy stand-
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Figure 1: Example of algorithm that finds the mini-
mum energy source-destination path (with o = 2 and
&maz = 70?). Shown is the key step, consisting of a
graph transformation that we continually refer to
this paper as the “Energy Cost Graph”. The min-
imum energy path is highlighted in bold, and has
aggregate energy cost 607.

point) longer range transmissions. As can be seen from
(1), the energy required to support such transmissions in-
creases according to a power function. In fact, the solu-
tion to the energy efficient single path routing problem is
based primarily on the concept that shorter hops are pre-
ferred to longer ones. The actual solution, consisting of
two main steps is quite simple and is illustrated in figure
1. The first step, consisting of a basic graph transforma-
tion is one that we use quite extensively in all our algo-
rithms, and is as follows: Given a network of N nodes and
co-ordinates for each node, construct a graph G = (V, E)
such that (4,j) € E <= 1 < Enae and wy; = 135
(where w;; is the weight of link (¢, 7)). The new graph, that
we will hereby refer to as the energy cost graph, provides
information about all possible network topologies, in accor-
dance with characteristics of the wireless environment and
node power constraints. The second and final step is simply
to run a shortest path algorithm (e.g. Dijkstra, Bellman
Ford) on the energy cost graph, and the resultant path is
the minimum energy path.

In the case of energy efficient multicast and multipath rout-
ing, however, we see that long range transmissions can ac-
tually be used to extract energy savings. Specifically, due to
the use of omnidirectional antennas, when node i transmits
at a power r*, the transmission is simultaneously received
by all nodes j that are a distance less or equal to than r
from node i. In figure 2, we see that for node i to multicast
a message to both nodes j and k, it has three options: (a)
Transmit the message to j, and have j transmit that message
to k, (b) Transmit the message to j, and then re-transmit
the same message to k, or (c) Transmit the message once at
a range max(ri;, Tk ), thereby ensuring both j and k receive
the message simultaneously. Note that without the use of
omnidirectional antennas, only options (a) and (b) would be
possible. However, omnidirectional antennas allow the pos-
sibility of option (c), which is clearly more energy efficient

(a) Message Forward- (b) Separate Transmis-
ing sions

(c) Wireless Multicast

Figure 2: Examples of different ways to multicast
a message to neighbouring nodes in a wireless net-
work. The dashed edge in 2(c) indicates an edge
obtained for “free” due to the wireless multicast ad-
vantage.

than option (b) (i.e. the transmission at range min(ri;, rix)
in option (b) is redundant). The energy savings that op-
tion (c) provides over option (b) is referred to in [2] as the
“Wireless Multicast Advantage” (WMA).

It should be noted that Wieselthier et. al. [2] apply the
energy saving potential of the WMA only to the minimum
energy broadcast and multicast problems. In this paper, we
show that the WMA can also be exploited to provide energy
efficient reliability in the form of minimum energy multipath
transmission.

While it is clear that exploiting the WMA for maximum
energy savings is desirable, it should be noted that incorpo-
rating the WMA (i.e. allowing option (c) from figure 2) into
minimum energy routing problems makes finding optimal
solutions very difficult. As mentioned earlier, the majority
of minimum energy topological problems [2, 3, 4, 5, 6, 8, 9,
20] have been shown to be NP-complete. To understand in
more detail the complications that the WMA adds to these
problems, we must examine the relative energy cost func-
tions with and without the WMA.

Consider an arbitrary directed subgraph of the energy cost
graph P (i.e. an achievable topology). Let us first consider
the case without the WMA. We can express the aggregate
energy cost for this subgraph as simply the sum of all the
weights on all links belonging to P. That is,

W(P)= Y wiy (2)
(4,4)€P
where w;; is the energy cost of transmitting from node i
to node j, given in (1).
Under this cost function and in the absence of the WMA
finding k minimum energy disjoint paths between a source-



destination pair corresponds to finding a minimum energy
subgraph P such that P is made up of the edges belonging
to these k disjoint paths. One can find such a subgraph
by solving the traditional minimum weight k disjoint paths
problem on the energy cost graph using standard disjoint
paths algorithms [10, 11, 12].

With the wireless multicast advantage, the energy cost
function becomes a function of a node-based metric, where
due to the WMA, only maximum weight outgoing edges
contribute to the aggregate energy cost. That is,

E(P) =" T(x) (3)

zeP

where T'(z) is the transmission power of node z, i.e. T'(x) =
maz{ws; : (z,j) € P}.

This node-based cost function is different from the usual
link-based cost functions for which traditional graph algo-
rithms were developed. Additionally, in the context of the
k disjoint paths problem, the solution found no longer cor-
responds exactly to the k disjoint S-D paths, P. In general,
depending on the transmission powers assigned to each node,
our solution is actually a subgraph of the energy cost graph
that contains P, where due to the WMA, various edges in
the subgraph may not contribute any additional energy cost.
It is this property that we exploit to lower the overall energy,
E(P).

For the remainder of the paper, we refer to the quantity
in (2) as aggregate weight, and the quantity in (3) as ag-
gregate energy. The distinction between weight and energy
is an important one, as it underscores a major difference
between general networks and wireless networks. In graph
terms, weight is an edge-based metric, that assumes that
the addition of any edge (7,7) into a solution topology P
contributes w;; to W (P), regardless of its endpoint nodes i
and j. Calculating W (P) is therefore tantamount to simply
summing the weights of all edges in P. Energy however, is a
node-based metric, in that the cost contributed to &(P) by
the addition of an edge (i,j) into P, depends both on the
transmitting node i and the weights of its outgoing edges al-
ready in P . This is due to the WMA, whereby nodes need
only expend energy corresponding to the maximum weight
outgoing edge (i.e. the transmission power). All other edges
are obtained for “free”.

3. MINIMUM ENERGY NODE-DISIOINT
PATHS

The minimum energy k node-disjoint S-D paths prob-
lem can be stated as follows: Given an Energy Cost Graph
G = (V,E) with weights w;; and source-destination pair
S,D € V, find a set of k node-disjoint S-D paths, P =
{p1,p2,...,pr}, such that &(P) is minimized.

An example of a k node-disjoint path topology is shown
in figure 3. Observe that since the k paths are node-disjoint,
all nodes in P other than S and D have exactly one outgoing
edge and S has exactly k outgoing edges. Hence it is clear
that the source node is the only node at which the wireless
multicast advantage (WMA) can be exploited for energy
savings. Thus the energy cost equation from (3) can be
re-written in the following manner:

Figure 3: Example of k node-disjoint source-
destination paths. Dashed lines indicate edges
achieved for “free”.

EP) = T(S) + >, T()

zEPa#S

T(S) + >, wy (4)

(i,j)EP,i#S

where T'(S) is the transmission power of the source node.

The form of this equation exposes the fact that this prob-
lem is closely related to the minimum weight k-node-disjoint
paths problem discussed earlier. In particular, let us set the
source transmission power, T(S), to be a constant value,
Ts < &maz- This is reflected in the energy cost graph by re-
moving all edges between the source and nodes that cannot
be “reached” with a transmission power of T's. Moreover,
since we have already expended the transmission energy cost
of T's, the WMA indicates that all edges between the source
and nodes that can be “reached” contribute no additional
energy cost. We reflect this change in the energy cost graph
by setting the weights of these edges to 0.

Once we apply these changes, it is clear that given a
source transmission power T'(S) = Tg, the problem of find-
ing k node-disjoint paths that minimize (4) amounts to run-
ning a minimum weight k node-disjoint paths algorithm
(e.g. Suurballe’s algorithm [10]) on the modified energy cost
graph. What remains is to determine the optimal value of
T(S), that results in the overall minimum energy solution.
The STPS algorithm presented below is an algorithm that
searches over all relevant values of T(S), evaluating (4) at
each step. Finally, the overall minimum energy solution is
extracted, which are the minimum energy k node-disjoint
paths.

3.1 Source Transmit Power Selection (STPYS)
Algorithm

The STPS algorithm takes as input an energy cost graph
G = (V,E), the number of desired node-disjoint paths k,
and a source-destination pair, S, D € V. Moreover, assume
S has M outgoing edges'mi, ma, ... ,mus, ordered such that
w(m;) > w(m;) < ¢ > j, where w(m;) is the weight of the
edge m;. Its output is the set of k minimum energy node-
disjoint paths, Prin.-

M < N—1, with equality if and only if &nae is large enough
such that S can directly reach every node in the graph.



Initialize:  Let 7;(S) represent the current iteration
source transmission power, corresponding to the ¢ closest
nodes “reached” by S. Initialize ¢+ = k and thus 7;(S) =
w(my). Note that starting with ¢ < k would be fruitless, as
the existence of k node-disjoint paths requires at least k out-
going edges from the source. Finally, let &,:n represent the
overall energy cost of the k minimum energy node-disjoint
paths, Ppin. Initialize &mnin to co.

Step 1: Construct a new graph G;, where GG; is a modi-
fied version of the energy cost graph that reflects all possible
network topologies given the current iteration source trans-
mission power, T;(S). Accordingly, let G; be equal to G,
except remove the edges miy1,Miy2,... ,ma, and set the
weights of the edges m1, m2, ... ,m; equal to 0.

Step 2: Run a minimum weight k node-disjoint S-D
paths algorithm on G;. Let P; and W (F;) represent the
solution k paths found by the algorithm and their aggregate
weight, respectively. If given the current T;(S), k-disjoint
paths cannot be found by the minimum-weight algorithm,
then set W (P;) = co and continue.

Step 3: Evaluate the following condition: If W (P;) +
TZ(S) < Emin, then set &nin = W(Pz) + TZ(S) and Ppin =
P,;. This ensures that &nin and Pin always correspond to
the overall minimum energy k node-disjoint paths.

Step 4: Increment ¢ = ¢+1 and correspondingly increase
the source transmission power, i.e. T;11(S) = w(miy1).
Repeat steps 1-4 until 4 > M, at which point all relevant
T(S) will have been considered, and the overall minimum
energy k node-disjoint paths, Pni, determined.

The proof that the STPS algorithm actually finds an op-
timal set of minimum energy k node-disjoint paths follows
from (4), as we basically perform a brute force search over
all relevant T'(S). Clearly the only relevant values of T'(S)
are ones that can be used to reach its neighbouring nodes,
i.e. the weights of its outgoing edges in G.

A visual example of the operation of the algorithm with
k = 2, run on the energy cost graph of figure 1, is shown in
figure 4. The first iteration of the algorithm is illustrated
in figure 4(a), in which the modified energy cost graph, re-
flective of the initial source transmission power T5(S) = 85
is shown. Also shown are the node-disjoint paths found by
the minimum weight algorithm given the particular value
of T'(S). In figure 4(c) we see the minimum energy node-
disjoint paths are found when we set T'(S) such that we
reach the destination in one hop. This is an excellent exam-
ple of using long range transmissions (i.e. WMA) to extract
energy savings, as even though we pay a heavy energy cost
(i.e. 733) to achieve the direct link between the source and
destination, we realize that by doing so we obtain the high
cost (i.e. 400) first link on the second path for “free”.

Of course setting T'(S) to its maximum value does not
always work, and it is important to clarify why we must
indeed iterate over all relevant values of T'(S). The key
factor here is the tradeoff between the current value of T'(S)
and the aggregate weight of the paths found by the minimum
weight algorithm in step 2 of the STPS algorithm (i.e. given
the current 7'(S) value). Consider two different values of
T(S), T, and Ty, such that T, < T,. We know that given
T(S) = Ty, we can always find the exact same paths that we
could given T'(S) = Tq, as edges are added to the modified
energy cost graph when T'(S) is increased. Moreover, since
given T'(S) = Ty the corresponding energy cost graph has a
“richer” topology than if T'(S) = T,, we may even be able

to find “better” (i.e. lower aggregate weight) paths. This
may lead to the false reasoning that increasing 7'(S) can
only decrease the overall aggregate energy. However, higher
values of T'(S) can result in higher energy consumption. An
example where increasing T'(S) does not lower the aggregate
energy can be seen in figures 4(a) and 4(b), where the overall
energy of the paths found with T'(.S) = 400 is actually higher
than those found with T'(S) = 85 (i.e 1367 vs. 1257). This is
despite the fact that the aggregate weight of the paths found
with T'(S) = 400 is lower than those found with T'(S) = 85
(i.e. 967 vs. 1172).

We conclude this section by addressing the issue of com-
plexity. The worst case complexity of the STPS algorithm,
as presented above, is O(kN®). This is because the algo-
rithm iterates M — k + 1 times, where M = N — 1 in the
worst case (i.e. &mae is sufficiently high such that the source
can reach all nodes in the graph in one hop), and in each
iteration we run a minimum weight node-disjoint paths algo-
rithm whose complexity is O(kN?). The result is an overall
worst case complexity of O(kN?). Note that we could have
initialized ¢ = M, and worked our way down to ¢ = k. In do-
ing this, in step 3 if k node-disjoint paths did not exist given
the current energy cost graph we can immediately terminate
the algorithm and declare the optimal solution as the cur-
rent Pp,in. Even with this improvement however, the worst
case complexity remains O(kN?).

4. MINIMUM ENERGY LINK-DISJOINT
PATHS

The minimum energy k link-disjoint S-D paths problem
can be stated similarly to the minimum energy k node-
disjoint S-D paths problem, as follows: Given an Energy
Cost Graph G = (V, E) with weights w;; and source-destin-
ation pair S, D € V, find a set of k link-disjoint S-D paths,
P = {p1,p2,...,pr}, such that &(P) is minimized.

We start by noting that finding minimum energy link-
disjoint paths is a much harder problem than the node-
disjoint variant. The main reason for this is the difference
in complexity of the aggregate energy cost functions, which
in both cases is given by (3). However, recall that in the
node-disjoint case, as we saw in (4), T'(z) = maz{wsz; :
(z,j) € P} simplified to T'(z) = wg; for all nodes x other
then the source node. This reduced the minimum energy
node-disjoint paths problem to one of finding the optimal
source transmission power, T'(S).

In the case of link-disjoint paths however, any node in
the resultant topology P can have up to k outgoing edges.
The implication of this is that energy savings can be real-
ized at potentially many nodes (i.e. any node with multiple
outgoing edges), and we therefore need to find the optimal
transmission power, T'(z), for every node x in P. Clearly,
we cannot use the approach of searching over all relevant
transmission powers for every node, as this type of brute
force search would be exponentially complex and thus in-
tractable.

We therefore need an alternative approach to finding k
minimum energy link-disjoint paths in polynomial time. To
this end, we start with & = 2, and try and simplify the
problem by exploiting properties of a pair of link-disjoint
paths, P = {p1,p2}. We first define the notion of a “common
node”, which is a node that is “common” to both paths and
therefore has exactly 2 outgoing edges. Next, we define the
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(a) i =2, Tu(S) = 85, &(P2) = 85 + 1172 = 1257
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(b) i = 3, T5(S) = 400, &(Ps) = 400 + 967 = 1367
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(c) i =4, Tu(S) = 733, &(Py) = 733 + 317 = 1050

Figure 4: Operation of STPS algorithm when run
on the energy cost graph of figure 1. In this exam-
ple, the minimum energy node-disjoint S-D paths
are those in figure 4(c).

s

Figure 5: Example of a pair of link-disjoint paths
expressed as the union of a set of node-disjoint path
pairs.

S(cy C;

ordered set of common nodes, C(P) = {ci,c2,... ,cz} as
follows: If we trace along either of the paths in P, starting
from S towards D , the first common node (after S, which
we define as c¢1) encountered is c2, the next is c3, and so
forth. As a matter of semantics, the destination node is
not considered a common node per se, but for notational
convenience is defined as cz41. This is because even though
it belongs to both paths, it has no outgoing edges. This
means that it does not transmit, and can be ignored in our
energy calculations. It is important to note that it is only at
the common nodes where we can exploit the WMA to realize
energy savings. If we apply the common node analogy to the
node-disjoint problem, clearly the source node is the only
“common node”, i.e. C(P) = {S}.

We can now make the critical observation that any set of
two link-disjoint source-destination paths can be represented
as the union of node-disjoint path pairs between successive
common nodes. This is shown in figure 5, where we see that
the pair of link-disjoint paths P can be broken into the cor-
responding set of 2 node-disjoint paths between successive
common nodes. We use the notation 3’ to represent the
pair of node-disjoint paths between node i and node j belong-

. . A CiyCi
ing to P. We can thus re-express P, ie. P=U;_, 75 ',
where c¢i,c2... ,cz are the common nodes. Moreover, we

can also re-express the aggregate energy cost of P, as

£(P) =Y 607 ©)

These observations, coupled with the following theorem
make up what we refer to as the Common Node Decompo-
sition, and it forms the basis of our solution to finding the
pair of minimum energy link-disjoint S-D paths.

THEOREM 1. Let P* = {p},p5} be a pair of optimal min-
imum energy link-disjoint S-D paths with corresponding set
of common nodes, C(P*) = {ci,c5,...,cz}. Then, Vi,i =
1,2,...,7Z, the ’y;f*’ciﬂ node-disjoint path pairs are mini-
mum energy node-disjoint path pairs.

ProOOF. Consider a pair of successive common nodes in

c¥ ek . . ..
P*, ¢f and ¢jy;. Suppose 7p. ‘*' is not a pair of minimum
C . . ciie
energy node-disjoint paths, i.e. there exists 7}3”/ ‘1 such

ek e* ck ek . crctf
that &(v,/ 1) < E(yps ). Hence, replacing v,
cieiva
’

» will reduce the aggregate energy cost of the

with
paths.
In order to complete our proof, we must also show that

the new S-D paths that result from replacing vy, ' with



fy;",’c"“ are also link disjoint. This subtlety arises because

the pair of node disjoint paths, fy;",’c"“ could potentially

int*erfect with some of the other node disjoint path pairs
N2 9T § 4 i comprising P*. However, we show that if
such an intersection took place, then a cycle would form that
could be removed to further reduce the aggregate energy cost
of the link disjoint S-D paths. This contradicts the assertion
that P* are minimum energy link-disjoint S-D paths; and
the Theorem is shown.

To see this, suppose such an intersection exists. That is,

it1 €5oC+1

a node w exists such that w € 7}6;/’c and w € ypg. )

j #i. Let P’ be the new set of paths that result from re-
laci ciieiva i Cit
placing vp. P

can trace two paths in P’ towards the destination; pll and
p;. Without loss of generality, let pll take the form, p'1 =
{S,...,¢i,..
the remaining edges in P’. We first note that both pll and
p; are S-D paths, except that p/l contains a cycle starting
from node w that can be removed. The result s the new
pair of link-disjoint S-D paths with the cycle in p; removed.
Since the energy cost of the cycle must be strictly positive,
its removal further reduces the cost of the S-D path pair.
Here it should be noted that the energy cost of the cycle
could not have been masked by the WMA, since the WMA
only applies to links outgoing from a common node, while
the cycle must contain at least one node that is not a com-
mon node. Similarly, it can Pe shown that if multiple*in*ter—
sections occur between v, “** and a subset of the v, 7+,
they form multiple cycles that can similarly be eliminated
by removing each cycle individually. [

with v . Starting from the source, we

!
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The common node decomposition reduces the minimum
energy link-disjoint path pair problem in the following way.
Instead of looking for optimal transmission powers for every
node, the problem is reduced to finding the optimal ordered
set of common nodes and minimum energy node-disjoint
paths between them. We know that there are N(N — 1)
distinct node pairs in the graph and from our discussion
in the previous section, we know how to find minimum en-
ergy node-disjoint paths between them in polynomial time.
Therefore, all that remains is to find the optimal ordered set
among these N(N — 1) minimum energy node-disjoint path
pairs, whose union results in the pair of minimum energy
link-disjoint source-destination paths. This can be accom-
plished by a brute force search over all possible combinations
of minimum energy node-disjoint path pairs. However, such
a search would be computationally difficult, as there are
O(2N2) such combinations.

Fortunately, Theorem 1 and (5) allow us to express the ag-
gregate energy cost of a pair of minimum energy link-disjoint
S-D paths, as the sum of the energy costs of minimum en-
ergy node disjoint paths between the common nodes. Hence
we can efficiently find the optimal common node decompo-
sition, using a graph-based approach as follows. We define
a new graph where the weight of an edge (4, j) corresponds
to the energy cost of the minimum energy node-disjoint path
pair between nodes 1 and j. We then note that because (5)
expresses the aggregate energy of a pair of link-disjoint S-
D paths in the new graph as an additive link-based metric,
the optimal common node decomposition can be found by

running a simple shortest path algorithm (e.g. Dijkstra) on
the new graph. Note that an edge must be defined for every
node pair (4,J), as any node in the graph could potentially
belong to the optimal common node decomposition. Thus
finding the shortest path from S to D in this new graph cor-
responds to finding the set of minimum energy node-disjoint
path pairs whose union result in a pair of minimum energy
link-disjoint S-D paths. Additionally, the nodes belonging
to the shortest S-D path, H = {S,ha,... ,hz, D}, are the
ordered set of optimal common nodes. The last step, con-
structing the optimal link-disjoint solution P, is done by
concatenating the appropriate h; — h;+1 node-disjoint path
pairs. The algorithm is detailed below.

4.1 Optimal Common Node Decomposition
(OCND) Algorithm

The OCND algorithm takes as input an “Energy Cost
Graph” G = (V, E), and a source-destination pair, S, D € V.
Its output are the minimum energy 2 link-disjoint S-D paths,
P ={p1,p2}.

Step 1: Construct a graph G* = (V, E*) such the weight
of every edge (i,5) € E*,i # j is equal to &(v,}),), i.e. the
aggregate energy cost of the minimum energy 2 node-disjoint
i-j paths. This amounts to running the STPS algorithm for
every distinct node pair in G.

Step 2: Run a minimum weight (shortest) S-D path
algorithm (e.g. Dijkstra) on G*, resulting in a minimum
weight path H = {hi, ha,... ,hz, D}, where hy = S. The
set H represents the ordered set of common nodes that make
up the optimal common node decomposition.

Step 3: Construct the solution minimum energy link-
disjoint source-destination paths, P = {p1,p2}, by concate-
nating the minimum energy node-disjoint h;-h;+1 path pairs,
1=1,2,...,Z.

The optimality of the OCND algorithm follows directly
from Theorem 1. An example of its operation, run on the
energy cost graph of 6(a) is illustrated in figure 6. The con-
struction of G* in the first step of the algorithm is illustrated
in figure 6(b), along with the shortest S-D path in G* from
step 2. It is important to note that not all edges in G* are
shown. This was done for legibility, but in general G* is a
complete graph, where edges are defined in both directions.
Finally, figure 6(c) shows the solution minimum energy link-
disjoint paths, whose aggregate energy in this case is 922.

We next address the issue of complexity of the OCND
algorithm. Step 1 is clearly the most complex step, as we
must run the STPS algorithm N (N — 1) times. This results
in an overall complexity of O(kN®) which is high, but a
vast improvement over an exponentially complex brute force
search approach.

Note that the notion of common node decomposition can-
not be easily extended to k > 2 disjoint paths. This is
because when k > 2 a node may be common to a subset (as
opposed to exactly 2, for k = 2) of the paths. The result
of this is that in general, k link-disjoint paths cannot be de-
composed into a concatenation of node-disjoint paths. We
were not able to find an optimal polynomial time algorithm
for the minimum energy link-disjoint problem for k > 2,
however in the following section we present efficient heuris-
tic algorithms that find energy-efficient link-disjoint paths
for general k.
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(a) Original Network and corresponding “Energy
Cost Graph”
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(b) Shortest S-D path in Transformed Graph (i.e.
Optimal Common Node Decomposition). The
weight of each edge corresponds to the energy cost
of the minimum energy node-disjoint path pair be-
tween its two end points.
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(¢) Minimum Energy link-disjoint S-D Path Pair.
&(P) = 149 + 773 = 922 for these paths

Figure 6: Operation of OCND algorithm, with o =2
and &nar = T0°.

5. LOWER COMPLEXITY HEURISTICS

Although both the STPS and OCND find minimum en-
ergy solutions in polynomial time, their respective running
times of O(kN?) and O(kN®) are still quite high. Moreover,
the OCND algorithm only finds a pair of minimum energy
link-disjoint paths, which is not sufficient when a greater
number of link-disjoint paths are required. To address these
concerns, we present three sub-optimal heuristic algorithms
that find energy-efficient disjoint paths in O(kN?) running
time. All three algorithms have extremely similar node and
link-disjoint versions, but for brevity only the link-disjoint
versions are presented.

5.1 Heuristic 1: Naive Dijkstra Algorithm

This algorithm is a very basic algorithm that finds link-
disjoint paths. It entails running Dijkstra’s shortest path
algorithm k times on the energy cost graph G, where after
each run, links belonging to the last path found are removed,
ensuring link-disjointness among the k paths. As a final
step, we remove redundant transmissions at every common
node of the paths found by applying the WMA (i.e. nodes
with multiple outgoing edges need only expend transmission
power once, corresponding to the weight of the maximum
weighted outgoing edge). Note that the algorithm does not
take into account the benefits of the WMA in searching for
the paths. Although, after finding the disjoint paths the
WMA is applied to reduce the energy cost of the paths.

5.2 Heuristic 2: Link-Disjoint Min-Weight
(LD-MW) Algorithm

This algorithm uses a minimum weight k link-disjoint S-D
paths algorithm on the energy cost graph G, to find k link-
disjoint paths, P = {p1,p2,...,pr}.- The final step is the
removal of redundant transmissions at every common node
belonging to the paths. What is key to note here is that the
LD-MW algorithm (similar to the Naive Dijkstra algorithm)
does not consider the WMA when finding paths. However,
once the paths are found, they are post-processed and any
incidental WMA benefit is realized. An interesting property
of both node and link-disjoint versions of this heuristic is
that they produce solutions whose resultant overall energy
is k-approximate to the optimal minimum energy solution.
The proof for this is given in [19]. As an example, when
run on the Energy Cost Graph of figure 6(a), the pair of
disjoint paths found by the LD-MW algorithm have total
energy cost 1063, compared to an energy cost of 922 of the
solution found by the OCND algorithm.

5.3 Heuristic3: WMA Enhanced link-dig oint
Shortest Path (LD-ESP) Algorithm

The LD-ESP algorithm is an enhancement to the Naive
Dijkstra algorithm discussed above. The enhancement is as
follows. After each iteration 4, for every node v along the last
path found, p;, modify its outgoing edges to all neighbours
7, (v,7), as follows: wf,j = max{O,min{wf};l,ij - wgk}},
where wf,]- refers to the weight of edge (v,j) after the i*"
iteration, ng refers to the original weight (i.e. from the
original energy cost graph) of the edge (v,j), and (v, k) is
the outgoing edge from node v which belongs to p;.

This enhancement allows the algorithm to incorporate the
WMA after choosing a path in the current iteration. It does
this by modifying the weights on the outgoing edges from the
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Figure 7: Comparison between energy-efficient
node-disjoint algorithms

nodes along the last path found, such that they represent the
new incremental power (i.e. wy; —wy;) needed to add those
edges in a future iteration. The solution paths found by the
LD-ESP algorithm when run on the energy cost graph of
figure 6(a) are identical to those found by the OCND algo-
rithm, shown in figure 6(c). However, while in this specific
example the LD-ESP found the optimal solution, in general
the LD-ESP does not find optimal solutions. In the specific
case of k = 2, it can be shown that if the path selected in the
first iteration belongs to the optimal solution, then the LD-
ESP algorithm is guaranteed to find the optimal solution.
However, if the initial path is not in the optimal solution,
the LD-ESP (similar to the Naive Dijkstra) algorithm can
have arbitrarily bad performance.

6. RESULTS

In this section we compare the performance of the algo-
rithms discussed in this paper. We focus on three main
aspects: (a) The performance difference between the opti-
mal algorithms and the sub-optimal heuristics, (b) The en-
ergy cost of multipath routing along link-disjoint paths vs.
node-disjoint paths, and (c) The incremental energy cost of
adding paths (i.e. additional reliability).

We simulate networks of a varying number of nodes, NN,
placed randomly within a 50x50 plane. We use o = 2 and
Emaz = 100%. Note that setting &nas in this way results in
every node being able to reach every other node in one hop
(if it transmits at a sufficiently high power level). Finally, for
each plot shown, the results are averaged over 100 randomly
generated network instances.

We begin with the evaluation of the various node-disjoint
Algorithms (we refer to the node-disjoint versions of LD-
MW and LD-ESP as ND-MW and ND-ESP respectively).
Figure 7 shows the average energy cost of the various algo-
rithms vs. the number of nodes in the graph. We first ob-
serve that both incarnations of the dijkstra algorithm (i.e.
node-disjoint naive dijkstra and ND-ESP) are the least en-
ergy efficient. We expect bad performance from the naive
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Figure 8: Comparison between energy-efficient link-
disjoint algorithms

dijkstra algorithm because it does not attempt to capture
the wireless multicast advantage in its search for disjoint
paths. The ND-ESP algorithm however, takes into account
the WMA at the source node, but like the naive dijkstra
algorithm does not minimize the aggregate paths weight.
Therefore in the node-disjoint case, even though the ND-
ESP may achieve maximum energy savings at the source
node, we see that in general this energy savings is far lower
than the additional energy expended due to the (weight)
sub-optimal paths it finds. Finally, we see that the perfor-
mance gain of the optimal STPS algorithm over the ND-MW
algorithm is highest for low values of N. This is because in
“sparse” (in terms of number of nodes per unit area) graphs,
it is more likely that every node, including the source, will
be forced to take longer range hops, resulting in a greater
overall expenditure of energy (this can be seen in figure 7 as
&(P) for all algorithms decreases with increasing N). The
consequence of this is that for such graphs, the STPS al-
gorithm can maximally exploit energy savings at both the
source node (WMA) as well as along the paths (weight).

We next explore the performance of the link-disjoint al-
gorithms, shown in figure 8. For the same reasons as in
the node-disjoint case, the link-disjoint version of the naive
dijkstra algorithm has the worst performance. However, in
contrast to the node-disjoint case, the LD-ESP algorithm ac-
tually outperforms the LD-MW algorithm. The reason for
this is that with link-disjoint paths, there are more oppor-
tunities for the LD-ESP algorithm to exploit the WMA (i.e.
at the common nodes). Therefore, while in the node-disjoint
case the energy saved at the source node was less than the
additional energy spent on weight sub-optimal paths, we see
that the opposite is true for link-disjoint paths. Moreover,
we see that with increasing N, the gap between the LD-ESP
and LD-MW algorithms widens, as with more nodes there
are even more potential common nodes where energy savings
can be realized. We also see this with the performance of the
OCND algorithm, as its relative performance also increases
with larger N.
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Figure 9: Comparison between pair of optimal node-
disjoint vs. link-disjoint paths

Figure 9 shows an energy cost comparison between op-
timal pairs of node and link-disjoint paths. Clearly, link-
disjoint paths are far more energy efficient than node-disjoint
paths, with the difference widening drastically with increas-
ing N (e.g. for N = 50, the optimal node-disjoint path pair
consumes 25% more energy than the optimal link-disjoint
path pair) . This obviously has great consequences when
one considers this in the context of reliability. While trans-
mission along node-disjoint paths is, from a reliability per-
spective, more desirable, figure 9 shows that it is much more
energy efficient to transmit along link-disjoint paths.

We finally explore the “cost of additional reliability”. Fig-
ure 10 shows an energy cost comparison between a single
path, found by dijkstra’s algorithm, up to 4 node disjoint
paths, found using the optimal STPS algorithm. Figure 11
shows an energy cost comparison between a single path up
to 4 link disjoint paths, where the 2 disjoint paths are found
using the optimal OCND algorithm, and the 3 and 4 disjoint
paths are found using the sub-optimal LD-ESP algorithm.
Note that our intuition about the WMA tells us that the
greater the number of paths, the more it can be exploited
for energy savings. However, this is counter-balanced by the
fact that additional paths tend to be longer than the shortest
path. In the node-disjoint case we see from Figure 10 that 4
node-disjoint paths seem to cost on average well over 4 times
the energy cost of a single path. This can be explained by
the fact that the energy savings attained at the source node
by additional exploitation of the WMA is counter-acted by
the additional cost of using longer and longer node-disjoint
paths (i.e. the second shortest path is longer than the short-
est path, etc.). In the case of link-disjoint paths however, we
see from figure 11 that the path pairs found by the OCND
algorithm are on average less than twice the cost of a sin-
gle path (e.g. for N = 50, the cost of the minimum energy
path pair is only 1.6 times the cost of the shortest path).
Moreover, for larger N, the savings seem to increase (albeit
marginally) as the number of paths increases.
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Figure 10: Incremental cost of adding additional
node-disjoint paths

7. DISTRIBUTED IMPLEMENTATION

In this section, we discuss issues regarding distributed im-
plementation of the centralized algorithms presented in this
paper. Such a discussion is important for most practical sit-
uations where global topology knowledge is not immediately
available to all nodes in the network. Moreover, distributed
implementation is important in instances where the topol-
ogy may be changing frequently. For the purposes of this
discussion, we assume that nodes have only local topology
knowledge, i.e. the weights of the outgoing edges in the en-
ergy cost graph. For example, this can be easily found by
each node employing a physical-layer probing mechanism
using incremental power level increases [29].

First, we note that the algorithms can be made “dis-
tributed” in the sense that any centralized algorithm can
be made distributed via some global topology dissemina-
tion mechanism (e.g. flooding or broadcast). Moreover,
such a distributed algorithm can be made robust to topol-
ogy change by periodically re-disseminating the topology in-
formation, re-running the algorithms locally upon change or
when appropriate. Of course, there may be situations where
one may not want to rely on such a dissemination mecha-
nism, and a “truly” distributed implementation, where nodes
need only to exchange information with their neighbours, is
desirable.

Fortunately, the algorithms presented in this paper lend
themselves to such a distributed implementation. To see
this, note that optimal algorithms for both the shortest
paths and minimum weight k disjoint paths problems have
efficient distributed implementations [23, 25, 26, 27]. As
discussed previously, the centralized versions of these algo-
rithms serve as basic building blocks for the centralized al-
gorithms presented in this paper. Similarly, the distributed
versions of these building block algorithms can be used to
construct distributed analogs to the STPS and OCND al-
gorithms. A brief high level description of those algorithms
follow:
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Distributed STPS: Similar to the centralized STPS al-
gorithm, run a distributed minimum weight k node-disjoint
paths algorithm M —k+1 times, in each iteration adding/rem-
oving outgoing edges from the source node. After each it-
eration, the algorithm keeps the lowest energy paths found
thus far as the current estimation of the minimum energy
node-disjoint paths. The algorithm both converges and ter-
minates after M — k + 1 iterations. Note that to conserve
total running time (at a cost of additional bandwidth), all
M — k41 instances of the distributed minimum weight dis-
joint paths algorithm are independent, and can thus be run
simultaneously. This would result in a total convergence
time equal to that of a single execution of the distributed
minimum weight k disjoint paths algorithm.

Distributed OCND: Over time, each node x collects in-
formation regarding the minimum energy node-disjoint path
pair between x and all other nodes y (e.g. by running a dis-
tributed STPS algorithm between x and y). Based on the
current information node x has, it can individually set new
edge weights on its outgoing edges (z,y) equal to the energy
cost of the minimum energy node-disjoint path pair between
x and y (analogous to the construction of the graph G* in the
centralized OCND algorithm). Finally, a distributed short-
est paths algorithm is periodically run on the current G*, re-
sulting in a current estimation of the optimal common node
decomposition, and thus the minimum energy link-disjoint
paths.

Similarly, it should be clear that the distributed imple-
mentation of the heuristic algorithms presented earlier fol-
low directly from the optimal distributed shortest paths and
minimum weight k disjoint paths algorithms.

Dealing with Topology Changes: In a wireless ad-
hoc network, the topology may change frequently. In part,
the disjoint paths algorithms developed in this paper are
designed to provide some resilience against such topological
changes. When a link or a node “fails”, the alternate paths
are there to keep the connection active.

However, once a link or node has failed, the connection,
while still active, is no longer supported by all of the original

disjoint paths. It is therefore necessary to “recompute” the
failed paths. One simple way to accomplish this is to find
a new set of disjoint paths. While this solution may not be
the most elegant, it is certainly feasible; especially because
the connection is still active and hence there is no urgency
in finding the new paths. An alternative approach, albeit
(energy) sub-optimal, is to simply find new additional paths
that consume the minimum amount of incremental energy.
An example of this approach are the two heuristics presented
in Section V based on the shortest path algorithms. This ap-
proach is computationally efficient as it only involves appli-
cations of a shortest-path algorithm. Moreover, it is also en-
ergy efficient as we observed in Section V. In particular, the
LD-ESP algorithm, which finds energy efficient link-disjoint
paths sequentially, performed very close to the optimal al-
gorithm.

8. CONCLUSION

In this paper, we presented a novel polynomial time al-
gorithm that finds a pair of minimum energy link-disjoint
paths in a wireless network. In addition, we presented an
optimal algorithm that solves the minimum energy k node-
disjoint paths problem in polynomial time, as well as fast,
but sub-optimal heuristics for both problems. Our results
show that link-disjoint paths consume substantially less en-
ergy than node-disjoint paths. We also found that the in-
cremental energy of additional link-disjoint paths is decreas-
ing. This finding is somewhat surprising due to the fact
that in general graphs additional paths are typically longer
than the shortest path. We determined that for the case of
node-disjoint paths, the energy savings due to the use of the
optimal algorithm (over a sub-optimal heuristic) was most
notable in sparse graphs (i.e., N small); while for the link-
disjoint case the energy savings were most notable in dense
graphs.

It should be noted that the algorithms presented in this
paper work for gemeral graphs, as long as the objective is to
minimize a node based aggregate metric of the form C(z) =
maz{wsz; : (z,j) € E}. The general nature of these al-
gorithms makes them applicable to other wireless environ-
ments where the energy radiation may not be symmetric and
the path losses between the nodes are not just a function of
the distance between them (e.g., due to the physical terrain
variations).

Lastly, although the algorithms presented in this paper
are centralized, they lend themselves to distributed imple-
mentation as well. We presented distributed versions of the
STPS and OCND algorithms. Further study of issues re-
lated to distributed implementation remain an important
area for future work.
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