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Abstract - Network restoration is often done at the
electronic layer by rerouting traffic along a redundant path.
With Wavelength Division Multiplexing (WDM) as the
underlying physical layer, it is possible that both the primary
and backup paths traver se the same physical links and would
fail simultaneously in the event of a link failure. It is
therefore critical that lightpaths are routed in such a way that
a single link failure would not disconnect the network. We
call such a routing survivable and develop algorithms for
survivable routing of a logical topology. First, we show that
the survivable routing problem is NP-complete. We then
prove necessary and sufficient conditions for a routing to be
survivable and use these conditions to formulate the problem
as an Integer Linear Program (ILP). Due to the excessive
run-times of the ILP, we develop simple and effective
relaxations for the ILP that significantly reduce the time
required for finding survivable routings. We use our new
formulation to route various logical topologies over a number
of different physical topologies and show that this new
approach offers a much greater degree of protection than
alternative routing schemes such as shortest path routing and
a greedy routing algorithm. Finally, we consider the special
case of ring logical topologies for which we are able to find a
significantly simplified formulation. We establish conditions
on the physical topology for routing logical rings in a
survivable manner.

. Introduction

This paper deals with the problem of routing logica
links (lightpaths) on a physical network topology in such a (
way that the logical topology remains connected in the
event of single physical link failures (e.g., fiber cut). This
is a relatively new view on the Routing and Wavelength
Assignment (RWA) problem, that we believe to be critical
We call this

to the design of WDM-based networks.
version of the RWA problemsurvivable RWAIn a WDM
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assignment (RWA) problem. In this version of the problem, the
set of lightpaths, defined by the logical topology, is known in
advance. In this context various researchers have developed
RWA algorithms with the goal of minimizing network costs,
including number of wavelengths required, number of
wavelength converters, fiber use, dtt]. Since with WDM
each physical fiber link can support many lightpaths (as many as
there are wavelengths on the fiber), orthe lightpahs are
routed on the physical topology, it is possible (or in fact, likely)
that two or more lightpaths would share the same physical link.
Hence, the failure of a single physical link, can lead to the
failure of multiple links in the logical topology. Since protected
logical topologies are often designed to withstand only a single
link failure, it is possible that a single physical link failure could
leave the logical topology disconnected.

As a simple illustrative example, consider the logical and
physical topologies shown in Figure 1. The logical topology is
a ring with nodes ordered 1-3-4-5-2-1. Clearly, such a ring
topology is 2-connected, and would remain connected if one of
its links failed. The 5 logical links of this ring can be routed on
the physical topology as shown in Figure la, where each
physical link is labeled with the logical link that traverses it.
For example logical link (1,3) traverses physical links (1,5) and
(5,3). As can be seen from the figure, no physical link supports
more than one logical link. Hence, the logical ring would
iemain protected even in the event of a physical link failure.

(4.5)

network the logical topology is defined by a set of nodes

and lightpaths connecting the nodes while the physical

a) Physical topology b) Logical topology

topology is defined by the set of nodes and the fiber

connecting them.

topologies of the networks, one important question is how

Given the logical and physicalFigure 1. Survivable routing of a logical topology on a physical

topology.

to embed the logical topology onto the physical topology. Alternatively, had we routed logical link (1,3) on physical
This leads to a static version of the routing and wavelengtinks (1,2) and (2,3) the routing would no longer be survivable
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because physical link (1,2) would have to support botHowever, when a network is used to support best effort internet
logical links (1,3) and (2,1) hence its failure would leavéraffic, guaranteeing connectivity may suffice. This approach,
the logical topology disconnected. Furthermore, for manyn which we first reported in [17,18], is relatively new in the
logical topologies, no survivable routings can be foundield of WDM network protection. A similar design goal was
For example, if the logical topology was a ring with nodesonsidered in [7], where heuristic algorithms were developed in
ordered 1-4-2-3-5-1 then it can be easily seen that woder to minimize the number of source destination pairs that
routing exists that can withstand a physical link failurewould become disconnected in the event of a physical link
Hence, it is clear that although the logical topology of th&ailure. The algorithm in [7] uses tabu search procedures to find
network may be connected, once it is embedded on top di§joint alternate paths for all of the lightpaths.

a WDM physical network, it may no longer withstand & |, this paper we present a new approach for investigating the
physical link failure (e.g., fiber cut). problem of routing lightpaths of a logical topology on a given
In the context of virtual private networks, the customephysical topology so that the logical topology can withstand a
might request from the network provider that theiphysical link failure. In section Il we formulate the problem
lightpaths be routed in such a way that no single physicahd establish a necessary and sufficient condition to ensure
link failure would leave their VPN disconnected. Onesurvivable routing. This condition, leads to some interesting
simple way to achieve this goal is to route the lightpaths $asights into the survivable routing problem and prove that the
that no two lightpaths share a physical link. Thissurvivable lightpath routing problem is NP-complete. In
seemingly simple solution by itself is difficult to obtain. Insection Il we give an ILP formulation for the survivable routing
fact, it was shown in [15, 20] that the related problem gfroblem. We also present low complexity heuristics for the
finding node/link disjoint paths for a collection of ksurvivable routing problem and compare the performance of
source-destination pairs is NP-complete. Furthermore, thtsese heuristics to that of the full ILP solution. In section IV we
simplified solution can be wasteful of resources. For marfgcus our attention on establishing bi-directional logical rings on
logical topologies, some of the lightpaths can be routdtie physical topology. The logical ring case leads to a simplified
together while maintaining survivability. ILP formulation that more easily renders a solution. We also
Of course, there has been a significant body of work f#evelop necessary conditions on the physical topology for
the area of optical network protection [2-7,14,16]. Mosgnabling survivable routings for logical rings. ~Finally, we use
previous work in WDM network protection is focused orPur ILP formulation to solve the survivable routing problem for
restoration mechanisms that restore all lightpaths in tif@me example networks and compare our results to alternative
event of a physical link failure. Link based restoratio@PProaches.
recovers from a link failure by restoring the failed physical 1. Problem formulation

link, hence simultaneously restoring all of the associated 1,4 physical topology of the network consists of a set of
lightpaths [2,3,6]. This is often done using optical 100Psg4es N = {1..N} and a set of edges E where (ij) is in E if a link
back protection [2,3,5]. In contrast, path based protecti}ists hetween nodes i and j. We assume a bi-directional
restoreg each of the lightpaths mdepeqdently, by finding Bysical topology, where if (i,j) is in E so is (j,i). Furthermore,
alternative end-to-end path for each lightpath [2,3,14]. e assume that a failure (cut) of (i,j) will also result in a failure
many cases it is indeed necessary to restore all failgd iy  This assumption stems from the fact that the physical
lightpaths. ~However, in other cases some level Gfyor carrying the link from i to j is typically bundled together
protectlpn IS prowdeq in the electronic layer an‘ii/vith that from j to i. Furthermore, in some systems the same
restoration at the physical Iay_er may not ,be Necessaphar is used for communicating in both directions. Lastly, we
For example, when the electronic layer consists of SONEJ g me that WDM is employed and each physical link (fiber) is
rings, single link failures can be recovered througRgnapie of supporting W wavelengths in each direction.

loopback protection at the electronic layer. In this case, he loical | £ 1h K be d ibed b
providing protection at both the optical and electronic The ogica topology of t e.networ can be described by a
t of logical nodes Nand logical edges E where N is a

layers is somewhat redundant. Another less obviod§ 2 .
example is that of packdtaffic in the internet where subset of N and an edge (s.t) is iniEboth s and t are in Nand

multiple electronic layer paths exist between the souréger? exists a Iﬁg'C?I c:'nk between thim'l (_3|v|en al logical

and destination and the internet protocol (IP) automaticalffP°!09y. we wish to find a way to route the logical topology on

recovers from link failures by rerouting packets. the physical topology such that the logical topology remains
connected even in the event of a physical link failure.

In such cases, a less stringent requirement may beI d logical link he physical |
imposed on the network — for example that the network n order to route a logical link (s,t) on the physical topology

remain connected in the event of a physical link failurdNe must find a corresponding Iightpat.h on the physical
This approach, of course, is not suitable for all situationg‘?pc’logy between nodes s and t. Such a lightpath consists of a

For example, when a network is carrying high priorit)?et of physical links connecting nodes s and t as well as

traffic with Quality of Service and protection guarantees, ﬁvavelengths along those links. If wavelength changers are

may still be necessary to provide full restoration‘?“/allable then any wavelength can be used on any link.



However, without wavelength changers, the sampghysical links used to route the various logical links. The
wavelength must be used along the route. In this paper fedlowing Theorem gives a necessary and sufficient condition
assume that either wavelength changers are availablefara routing of a logical topology to be survivable.

that the number of wavelengths exceeds the number of Theorem 1:A routing is survivablef and only iffor every
lightpaths. ~ This assumption allows us to ignore thgyt.set CS(S,NS) of the logical topology the following holds.
wavelength continuity constraints and focus only omgt E(st) be the set of physical links used by logical link (s,t),

survivable design. i.e., E(s,t) = {(i,j) L E for which fift:l}. Then, for every cut-
Let fijStzl if logical link (s,t) is routed on physical link ga¢ CS(S,NS),

(i,j) and O otherwise. Now in order to find a routing for the n E(S, t) =0

logical topology, we must find a route for every logical :

link (s,t) in §. In this paper we consider bi-directional (SOOCSS N- 9

logical topologies where if (§ O E_ so is (t,s).

Furthermore, we assume that (s,t) and (t,s) follow the sa

route. That is, if (s,t) traverses physical link (i,j) then (t,

The above condition requires that no single physical link is
ffared by all logical links belonging to a cut-set of the logical
. . L . '\ “topology. In other words, not all of the logical links belonging
traverses link (j,i). For simplicity of notation we descrlb. 0 a cut-set can be routed on the same physical link. This

the logical topology as a set of unordered node pai o ) .
representing the bi-directional logical links. ThereforeE%ndltlon must hold for all cut-sets of the logical topology. To

implicit in finding & route from s to t is also the route frorrErove the theorem we must show that the above condition is
P 9 oth necessary and sufficient. Necessity is obvious because if

t to s. For simplicity, we present this paper in the conte)&t.

of bi-directional physical and logical topologies: howevera ere exists a physical link that carries all of the logical links

o . ; . elonging to a cut-set, failure of that link would leave the
it is str_alghtforward to generalize our results to directe etwork disconnected. To see that the condition is also
topologies. sufficient, notice that the removal of any physical link leaves at

In this work we are concerned with finding routingseast one logical link in each cut-set of the logical topology
that are survivable. We call a routisgrvivableif the  connected. Hence the network must still be connecmed.
failure of any physical link leaves the (logical) networknotice that it is a direct result of the above theorem that if the
connected. Of course, a routing cannot possibly hggical topology was not redundant then no routing could be
survivable if the underlying logical topology is notsyrvivable. This is because if the logical topology was not
redundant. ~ The logical topology is redundant (i.e., Zedundant then at least one cut-set must exist with size equal to
connected) if the removal of any logical link does no{, The failure of the corresponding link would leave the
cause the topology to be disconnected. The followingpology disconnected. Theorem 1 can be generalized to
theorems, give some simple yet useful necessary agfected topologies, by applying the directed version of
sufficient conditions for survivability in a network. FirstMenger's Theorem and considering cut-sets on a directed
we must define the following notions: topology.

A cutis a partition of the set of nodes N into two parts
S andS= N- S. Each cut defines a set of edges consistiftheorem 2: The survivable routing problem is NP-complete.
of those edges in E with one endpoint in S and the other in
N-S. We refer to this set of edges as the cut-set associaRrdof: The problem is clearly in clearly in NP because we can
with the cut <S,N-S>, or simply/CSS,N-S). Let always check that a given routing is survivable in polynomial
|CS(S,N— S{)equal the size of the cut-set <S,N-S>; thatime by successively removing links and checking for
is, the number of edges in the cut-set. The followingonnectedness. To show that the problem is NP complete we
Lemma, also known as Menger's Theorem [12], relates tfgovide a simple transformation from the k-edge disjoint paths
connectivity of a network to the size of its cut-sets. problem in undirected graphs to the survivable routing problem.

Lemma 1:A logical topology with set of hodes, Nind Since th.e fqrmer is a known NP-compIete pro.blem [20], a
set of edges Eis 2-connected if and only if every non_polynom|al time solution for the survivable routing problem

trivial cut <S,N-S> has a corresponding cut-set of Sizgvould also give a polynomial time solution to the k —disjoint

paths problem.
greater than or equal to 2, Given an undirected graph G = (V,E) and an arbitrary

Proof: (see [12]) Necessity is due to the fact that if an},mber of node pairs (st,)...(S.t), the k-edge disjoint paths

cut-set consists of only a single link, removal of that linly ghjem asks do their exist k edge disjoint paths in G, one per
would leave the topology disconnected. Sufficiency is gyqe pair.

direct result of the max-flow min-cut theorem.

Consider a routing for a logical topology given by theThis problem can be easily transformed into an instance of the
assignment of values to the \/ariabug]gt for all physical survivable routing problem as follows. Consider the graph G =
links (i,j) and logical links (s,t), which correspond to thdV:E) and an arbitrary number of node paifs ... (S.t). We



form the graph G' by adding new "fictitious” nodes and  otherwise. Clearly >0 implies that there exists a physical
connecting them to the source and destination nodes of thle K bet des i and i. When the logical link bi
k node pairs as shown in figure 2 for the case of k=4. Let INk-between nodes 1 and |. en the logical links are bi-

' : ; directional, implicit in finding a route from s to t is also the
G' be the new physical topology. We form the following . .
simple ring logical topology, G shown in figure 2 for the route from t to s. Using standard network flow formulation

= L finding a route from s to t amounts to routing a unit of flow
case of k=4, consisting of nodes N{s,,s,, $,S, .
S* Sty tul, t*.1,%) and links B.={(s1.t1), (s2,t2), from node s to node t [10]. This can be expressed by the

* * % * following set of constraints on the value of the flow variables
(s3,t3), (S4,t4), (s1,s1%), (s4,51%),(s2*,52),(s2*,53), . . . .
(t1,t1%),(t2,t1%),(t3,t2%),(t4,t2*)}. Now, it is easy to see associated with the logical link (s.1).
that finding a survivable routing for,®n G', would solve gl if S=i
the link disjoint path problem in the original graph G. fst_ fst = 0 1 if t =i
First notice that no two links of the logical topology can . ij . i -0 - 1
share a physical link. This is because the survivable JSLUDEE  JstUIDE HO otherwise (1)
routing must route {(s1,s1%), (s4,s1*), (s2*,s2), (s2*,s3),
(t1,t1%), (t2,t1%), (t3,t2%), (t4,t2*)} using the 01 N.

corresponding physical links (there is no alternative way to
get to s1* , s2* ,t1* , t2* without using those links). Hence,
the solution to the survivable routing problem must yield
disjoint paths between (s1,t1), (s2,t2), (s3,t3), (s4,t4) in th
original graph G=

The set of constraints above are flow conservation
constraints for routing one unit of traffic from node s to node t.
Equation (1) requires that equal amounts of flow due to
Efightpath (s,t) enter and leave each node that is not the source or
destination of (s,t). Furthermore, node s has an exogenous input
G of 1 unit of traffic that has to find its way to node t. There are
many possible combinations of flow variable values that can

\ satisfy the constraint of eq.(1)Any feasible solutiorto eq.(1)

has a route from s to t embedded in it. It is easy to see that if in

s1 1 addition we required that the path length be minimized (i.e.,

@ b= "@ min Zfijm subject to (1)) , the solution would also be the
t2 )
N

b .
( s2 (h1E
; unigue shortest path [11, p.73]. Now in order to find a

@“p‘ 3 survivable routing for the logical topology, we must find a route
NS

\ " for every logical link (s,t) in E Our problem formulation is
‘ﬂ’@ such that we only need to find the route for logical link (s,t) in
s4 { t4 one direction; implicit in that route is the route from (t,s) that
will follow the same physical links in the opposite direction.
Now, using Theorem 1, the connectivity requirement can be
expressed by the following constraint,
0G,j0 E

Figure 2. Logical topology for NP-completeness proof.
[11. Integer Linear Programming formulation

st st
N qu + <|CYS N - 9.
(s,)0CS,N- 9

The above constraint simply states that for all proper cuts of
logical topology, the number of cut-set links flowing on any

ngiven physical link, in either directignis less than the size of

qt’?e cut-set. This implies that not all logical links belonging to a
ut-set can be carried on a single physical link and immediately

atisfies Theorem 1.

If the number of wavelengths on a fiber is limited to W, a

pacity constraint can be imposed as follows,

Using Theorem 1, we are able to formulate the probleme
of survivable routing of a logical topology on a give
physical topology as an Integer Linear ProgrdirP).
Given a physical topology and a corresponding logic
topology, we wish to find a way to route the Iogica%
topology on the physical topology such that the logica
topology remains connected even in the event of a physi%%{

link failure.

In order to route a logical link (s,t) on the physical o
topology one must find a corresponding path on the ag,jd E, qué-t W.
physical topology between nodes s and t. Such a lightpath (s, )UE.

consists of a set of physical links connecting nodes s and t
as well as wavelengths along those links. Lf@sle if

' . . ' ' e ! Again, this is due to the fact that if logical link (s,t) occupies
logical link (s,t) is routed on physical link (i,j) and Ophysical link (i,j) in one direction; it also implicitly occupies
physical link (j,i) in the other direction.



There are a number of objective functions that one can For each, we generated 100 random, 2-conn&chegical
consider. Perhaps the simplest is to find a survivabtepologies and used the ILP to find optimal survivable routing
routing that uses the least capacity. That is, minimize tlom the NSFNET. Since we are mainly concerned with the
total number of wavelengths used on all links. Arsurvivable routing, in our implementation we ignored the
alternative formulation goal may be to minimize the totatapacity constraint. Obviously, if needed, the capacity
number of physical links used. Such an approach woubtnstraints can be easily incorporated into the solution. We also
lend itself to solutions that maximize physical link sharingompare our approach to the survivability provided by shortest
by the lightpaths. Here we focus on the first objective gfath routing for the same random logical topologies. In each
minimizing total number of wavelengths used and thease we checked to see if the shortest path solution yields a
optimal survivable routing problem can be expressed asirvivable routing. This was accomplished by individually

the following integer linear program. removing each physical link and verifying that the resulting
L t topology remained connected.
Minimize f? pology o .
.5 Our results are summarized in Table 1(a-c). Shown in the
(s, )0E, table are results for both the Shortest Path solution (labeled

Short path) and the ILP solution (labeled ILP). As can be seen

Subject to: from the table, the ILP was able to find a protected solution for
a) Connectivity constraints: for each pairevery one of the random logical topologies. In contrast, the
(st)inE: shortest path approach resulted in 86 out of 100 of the degree 3
01 if S=i logical topologies being unprotected. With higher degree
0 ) _ logical topologies, shortest path was able to protect more of the
Zfift— ijist =1 if t =i topologies, still 38 and 27 of the random degree 4 and 5
jst.(L))OE  jst.(JIDE HO otherwise topologies, respectively, .remalned unprotected.. However, as
expected, the ILP solution on average required both more
physical links and more total wavelengths (wavelength*links).
0o N. This difference in link requirements appears to be small and
b) Survivability constraints: well justified by the added protection that it provides.
0G,j)0 E Due to the large number of constraints, solving the ILP for
’ , large networks can be very difficult. Hence, it is interesting to
OST N explore possible relaxations of the ILP formulation that yield
survivable routings with reduced complexity. The most obvious
z fijSt + fj?t S|CSS, N - S| -1. relaxation is the Linear Programming (LP) relaxation where the
(sHOCSS,N- 9 integer constraints are removed. Unfortunately, however, the
. . LP relaxation leads to many non-integer solutions.
C) Capacity constraints

Alternatively we can explore relaxations that enforce only some
0G,j ) E, fSEW of the survivability constraints. For example, a simple relaxation

T that applies the survivability constraints only to cuts that include
a single node, wouldgrevent a single node from getting
disconnected in the event of a fiber cut. With this relaxation,
only N survivability constraints are needed and the ILP can be
solved easily.

The above ILP can now be solved using a variety of e examined the performance of this rather naive algorithm
techniques. We implemented this ILP using the CPLEXnd found it to be surprisingly effective. The results of this

software package. CPLEX uses branch and boungimple relaxation are shown in Table 1 (labeled Relax -1). As
techniques for solving ILPs and is capable of solving ILPsan pe seen from the table, this simple relaxation found a
consisting of up to one million variables and constraintgyrvivable routing for all but 10 of the degree 3 logical

[13].  To illustrate the utility of this approach, wetgpologies and all of the degree 4 and 5 topologies. In addition,
implemented the ILP for the NSFNET physical topologyye to the reduced complexity of this relaxation we were able to
shown in Figure 3. We attempted to embed random hign this relaxation for 1000 randomly generated logical

directional logical topologies of degree 3, 4, and 5, whefgpologies of degrees 3, 4 and 5. Again, the relaxation found
we define a logical topology of degree k to be logicadyrvivable routings for all but 7% of the degree 3 topologies,
topology where every node has degree k. and for all 1000 of the degree 4 and 5 logical topologies. This

(s, )UE

d) Integer flow constraints:fijSt D{ O,Z}

2 After generating a random logical topology we first verified
that it is at least 2-connected before attempting to find a
survivable routing for it.



result can be explained by noting that for densely
connected networks, the "weakest" cuts are the single node
cuts. Enforcing the survivability constraints for those cuts
has a high likelihood of resulting in a survivable routing.
This also helps explain the fact that for the degree 3 logical
topologies some of the routings found by the relaxatiop
were not survivable, since the degree 3 topology is not .9
densely connected as degree 4 and 5. Hence, we conclud&
that this relaxation is effective when the node degrees are
large but would probably not be effective for routing
degree 2 logical topologies (i.e., ring logical topologies).

A simple extension of this approach enforces the
survivability constrains for small cut-sets only. The
intuition is that the smallest cut-sets are the most
vulnerable and hence protecting them will result in_a
survivable routing with high likelihood. For example, we Logical | Unprotected Ave. | Ave.
implemented a relaxation where the survivability
constraints were enforced only for cut-sets of size less than
or equal to degree of the logical topology plus one. Thidk.P 100 0 19.76| 46.07
set of constraints clearly includes all those cuts included-g
the previous relaxation, since all the single node cuts ara%'f'ort Path 100 86 1931 45.25
size equal to the degree.  With this new relaxatioRelax - 1 100 10 19.78 46.03
survivable routings were found for all 100 degree 3, 4 and
5 logical topologies: a noticeable improvement over th&elax-2 | 100 0 19.78  46.07
previous relaxation where survivable routings were not ] ] )
found for 10 of the degree 3 logical topologies.Table la. Embeddlng random degree 3 logical topologies on the
Furthermore, when we examined 1000 randomly generated NSFNET of Figure 3.
degree 3,4 and 5 logical topology, the new relaxation
found survivable routings for all but 3 degree 3 logical
topologies. The results for this relaxation are labeled
Relax - 2 on Table 1.

In Table 1d we compare the run-times of the different
relaxations when run on a Sun Sparc Ultra-10 computer:
Shown in the table are the average run-times for
embedding one logical topology. As can be seen from [the Top's solution links | A*links

Figure 3. The 14-node, 21 link NSFNET.

Top's | solution links | Ainks

Logical | Unprotected | Ave. | Ave.

table, the ILP resulted in relatively large run-times. Mare

importantly, the run-time of the ILP increased dramatica I}I/LP 100 0 20.30| 60.64

with the degree of the logical topology. While degre€l Short Path| 100 38 20.17 6047
logical topologies required only a few seconds, a degree-5

topology required nearly 20 minutes to solve the ILPRelax-1 | 100 0 20.30  60.64
Since this is a static design problem, 20 minutes may NRgjax - 2 | 100 0 20.300 6064
be prohibitive. Nonetheless, this dramatic increase in run-

time confirms our suspicion that the ILP approach may nqfpe 15, Embedding random degree 4 logical topologies on
scale well to larger networks. In contrast, both relaxations  {ho NSENET of Figure 3.

show a dramatic improvement in run-times and, more
importantly, the run-times increase only minimally with
the degree of the logical topology. This, of course, can| be Logical | Unprotected| Ave. Ave.
attributed to the fact that the relaxations, for the most part,

: . Top's | solution links A*links
consider only single node cuts and hence only depend on
the number of nodes in the topology. ILP 100 0 20.56 75.40
Short Path| 100 27 20.48| 75.31
Relax-1 | 100 0 20.56 75.40

Relax-2 | 100 0 20.56 75.40




Table 1c. Embedding random degree 5 logical topologies £+ <1
on the NSFNET of Figure 3. (st DELJ s ELJ _
ILP Relax-1| Relax-2 SULES
Degree - 3| 8.3s 1.3s 13s

> That is, there can be at most one logical link routed on any
Degree-4| 2min.53sec{ 15s 15s given physical link. Note that since the logical links are bi-
Degree - 5| 19 min. 17se¢. 2.0s 20s directional, when route (s,t) uses physical link (i,j), implicitly it
Table 1d. Run-times of algorithms on Sun Sparc Ultra-104ses the link in both directions. Also note that since no two
lightpaths can share a physical link, the objective of minimizing
the total number of physical links and that of minimizing the
IV. Ring Logical topologies total number of wavelength*links used are in fact the same (in
) . L ) contrast to the general case where a physical link may be used
We can gain some additional insight into the surwvablsy multiple logical links). The optimal survivable routing

routing problem by considering special forms of theoniem for logical rings can be expressed as the following
logical topology. For example, the ring logical topologyinteger linear program:
which is the most widely used protected logical topology '

has a special structure that leads to a simpler problem Minimize fijSt
formulation. In this section we discuss the special case of (.0
embedding ring logical topologies on arbitrary physical (s, O0E
topologies :

polog Subiject to:

A unidirectional ring logical topology is an ordered set
of nodes (p.n) where (n n,;) isin g for O<i<L and (R,
n, is also in E. In a bi-directional ring, the reverse 01 if s=i
connections (fy, n) and (n,n.) are also in E Since we 0
focus on protected topologies, here we only consider bi- fijSI - fjiSt =1 if t =i
directional rings. Hence, for simplicity, we assume that all istTE  jst'TiyE HO
links are bi-directional and refer to the pair of links
connecting nodes;mnd n,, as (n, n,,). Implied in this
notation is that the pair of links between two nodes are O N.
treated as a single bi-directional link. Again, as in the
previous section we assume that both directions of the
logical links utilize the same physical links, but in opposite
directions. Recall that a routing of the logical topology is Z
survivableif the failure of any physical link leaves the (s,H0
(logical) network connected. The following corollary to o
Theorem 1 gives a necessary and sufficient condition for a oa,ju E
routing of a bi-directional logical ring to be survivable.

Corollary 1: A bi-directional logical ring is survivable

if and only if no two logical links share the same physical Again, the above ILP can now be solved using a variety of
link. search techniques. While general ILPs can be rather difficult to
Proof: It can be easily seen that every cut-set of theolve, this particular ILP is relatively simple. First notice that
ring logical topology contains exactly two links and everyithout the survivability constraints the ILP amounts to solving
pair of logical links share a cut-set, hence by Theorem 1 moshortest path problem. The addition of the survivability
two logical links can share a physical linm constraints makes the solution more difficult to obtain.
Corollary 1 leads to a significant simplification of theHowever, the total number of constraints used is small, relative
survivability constraints. In the general logical topology® the exponential number of constraints used in the general
case the survivability constraints were expressed in terri@Se, hence the above ILP can be solved very quickly. We were
of constraints on all of the cut-sets (notice that there can BBle to solve this ILRusing theCPLEX software package
as many as'? such cut-sets). For the ring topology theunning on a SUN SPARC Ultra 10 machine for 10 node rings
survivability constraint can be simply replaced by &0 less than a second.

capgcity constraint on the physical links. Specifically we 5 Necessary conditions for survivable routing
require,

a) Connectivity constraints: for each pair (s,t) in E

otherwise

b) Survivability constraints:

£+ flt<1
EE T E

c) Integer flow constraintst;* 0{0,3

In this section we develop some necessary conditions on the
physical topology to ensure survivable routing of ring logical



topologies. Clearly, it is not always possible to route én,n),(ns,n,")}, where nOS and fO(N-S). Since |N-§|S|,
logical topology on a given physical topology in a mannesuch a construction always exists. Figure 4 shows an example
that preserves the survivability of the logical topologywhere S contains 2 nodes and |[N-S| = 3. A ring with 4 links
For example, in the case of a ring, there may be instanaesversing the cut-set is constructed using the above procedure.
where we cannot find disjoint paths for all of the links. In
such cases some of the lightpaths will have to share a
physical link and the ring would not be survivable. It is
interesting to determine under what circumstances it will
be possible (or not possible) to find survivable routings.
Consider any random ring logical topology. For any cut
<S, N-S> of the physical topology, let [€S,N-S)| be the
number of physical links along this cut and |(SSN-S)|
be the number of logical links traversing the same cut.
Clearly, in order to be able to route the logical links along
disjoint physical paths, |G&,N-S)| must be greater than
or equal to |CYS,N-S)|. Hence, for a given logical
topology one requirement is that for all possible cuts of the
physical topology <S,N-S>, the following must hold,
|CS(S,N-S)|z |[CS (S,N-9)|. Figure 4. A logical ring that requires the maximum number
of cut-set links.

The above condition is necessary, but not sufficient to

insure that a survivable routing exists for a particular rin_cllh 3 qf diti ¢ beddi I
eorem gives necessary conditions for embedding a

logical topology. ible logical ri hvsical tonol includi . f
There are situations where one may want to designpgsSI © logical fings on a physica’ topo’ogdy. Incltding fings o

hvsical | h I ible ring loai 1 e N. In general, one may want to embed rings of size smaller
physical topology that can support all possible fiNg 109IC3han N. In this case the required number of links in the physical
topologies. One such example may be a service provi 8

that regularly receives requests for ring topologies. Suc oIogy may be significantly reduced. The foIIovying Corollary
service provider may want to design the physical topolog% r)erlc'sll!zes Tfhe;o;zT 3_to acco'untblfor embedding all possible
of his network so that it can support all possible rings in aglca fings of siz& < N in a survivable manner.

survivable manner. Another possible situation is when the .

logical topology can be dynamically reconfigured [8,9] folcorollary 2: For a physical topology to support any
the purpose of load balancing. Here, again, one may W?Rp(ssm'leK node ring logical topology in a surwvab!e manner the
to ensure that the resulting topology can be routed inzallowmg must hold. For any cut of the physical topology
survivable manner. The following theorem provides -9

necessary condition on the physical topology for ICS(S N- $=2min( [$ N | /&D).

supporting all possible ring logical topologies in %The [K/2] term accounts for the number of nodes of the logical

survivable manner. ) . i }
] . ring that can be on either side of the cut. Proof of this corollary
Theorem 31n order for a physical topology to support;g essentially identical that of Theorem 3.

any possible ring logical topology in a survivable manner
the following must hold. For any cut of the physical

topology <S, N-S>, Shortest path boundinother simple yet useful lower bound
. on the number of links that the physical topology must contain
|CS>( S N- §§22m|n(] |$ N DS is obtained by observing that each link in the logical topology

ill use at least as many physical links as would be required if it
ere routed along the shortest path. Since no two logical links
n share a physical link, the number of physical links in the
%Hysical topology must obey the following inequality,

Theorem 3 says that for all cuts of the physicamj
topology, the number of physical links in the cut set mu
be greater than or equal to twice the number of nodes
the smaller side of the cut. The condition of Theorem 3
only a necessary condition. To prove its necessity we must |E| > |SF( S )|
show that there exists a ring logical topology that requires (s,?ﬁEL
2*min(|S|,IN-S|) physical links along the given cut. To
show the existence of such a topology we construct the \here, ISP(s,t) is the length, in physical links, of the
following ring. Suppose without loss of generality that s,shortest path from s to t.
achieves the minimum of (|S|,IN-S|) and let S contain
nodes n.n. Now, construct a logical ring consisting of
the following links:  {(n’,ny),(n,n), (n,,n,) ... B. Logical ring results



We implemented the ILP for embedding ring logicakurvivable routing for all 6 node logical topologies, but it could
topologies using the CPLEX software package. We knowot find a survivable routing for 61% of the 10 node rings. With
from the previous section that in order to embed randomshortest path routing, 53% of the 6-node ring logical topologies
ordered logical rings on a physical topology the physicavere left unprotected and 99% of the 10-node rings were left
topology must be densely connected. Hence, for thamprotected. As expected, the ILP was able to protect many
analysis in this section we consider the 6 and 10 nodeore of the logical topologies. Of course, this added protection
physical topologies of Figures 5 and 6. Both of theseomes at a price. Shortest path routing used an average of 7.2
topologies obey the conditions of Theorem 3 and everwavelengths*links for the 6-node rings and 15.5
node is of degree four. Furthermore, it can be shown thatvelengths*links for the 10 node rings, only slightly less than
both topologies are 4-connected. We therefore believe thhe number of links used by the ILP solution. However,
we should be able to find survivable routings for mosthortest path routing used significantly fewer physical links than
logical rings. the ILP solution. This is, of course, because shortest path

We attempted to embed all possible 6 and 10 nodeuting allows lightpaths to share a physical link, while the ILP
logical rings on the 6 and 10 node physical topologiesloes not. Also shown in the table is the number of links used by
Notice that there are 120 (5!) 6-node logical ringhe greedy algorithm. By definition, the greedy algorithm does
topologies and 362880 (9!) 10-node logical ringiot yield a routing when a protected solution is not found, thus
topologies. We used the ring ILP to determine survivabllie number of links used can only be calculated when a
routings for all of these topologies. In addition, we alsprotectedsolution is obtained. As expected, the greedy solution
considered two simple heuristic algorithms for routing thased more links than both the ILP and the shortest-path
lightpathS.  The shortest pathsolution where each solutions.
lightpath of the logical topology is routed along the
shortest path. Of course, in the case of shortest path, some
lightpaths may be routed along the same physical link. In
such cases, the shortest path approach would result in an
unprotected routing. A somewhat more sophisticated
approach is a greedy algorithm that routes lightpaths
sequentially using the shortest available path. In order to
prevent two lightpaths fronsharing a physical link,
whenever a physical link is used for routing a lightpath, it
is removed from the physical topology so that no other
lightpaths can be routed through it. Note that this greedy
algorithm is useful for embedding ring logical topologies
since rings require that no two logical links share a
physical link. Unfortunately a similar approach cannot be
used to embed arbitrary logical topologies since the
connectivity of the logical topology cannot be easily
determined by inspecting the routing of individual
lightpaths.

Our results are summarized in Table 2. For the 6-node
physical topology, our ILP was able to find a survivable
routing for all 120 logical ring orders. The average
number of physical links used to route a logical topology
was 7.4. Also, since each physical link supports at most
one lightpath, the average number of wavelength*links
used was also 7.4. For the 10-node physical topology, our
ILP was not able to find a survivable routing for 9.3% of
the 362880 logical ring topologies. When a routing was
found, the average number of links used to route a logical
topology was 17.8. The greedy algorithm also found a

Figure 6. 10 node degree 4 physical topology.

% Notice that the relaxations developed in the previous
section cannot be applied here because a ring is not
densely connected and all cuts are of size 2. Hence,
relaxation 1 would be ineffective and relaxation 2 would
enforce all cut-set constraints.



Logical No protected Ave. Ave. S
Top's solution links Mlinks 00 | [P 0---"" ¢-nT
6 node-ILP 120 0 74 7.4 g sog-"""
6 node - SP 120 64 (53%) 6.4 72 8 701
6node-GR | 120 0 81 8.1 751 zz
10 node-ILP 362880 | 33760 (9%) 17.8 17.8 g s [ TEL e
10 node - SP | 362880 358952 (99%) 11.8 155 5 301 | ——e—oGreedy solution
10 node - GR | 362880 | 221312 (61%) 18.4 N/A § 20
101
Table 2. Embedding ring logical topologies on 6 and 0: . " " . o
10 node 3-connected physical topologies. Number of nodes in logical ring

Next we consider the 10-node physical topology of _ . _ .
Figure 6 and attempt to embed random logical ring Figure 7. Fraction of logical rlng.topolog|es that cgnnot be
topologies of various sizes. We attempted to embed 10,000 Protected on the 10 node physical topology of Figure 6.

random logical rings of each size between 5 and 10 nodes. For extremely large topologies, solving the Integer Linear

For each ring the set of nodes and their order was Choﬁgﬂagram may become difficult. Thus it is interesting to

at random.. Again: we compare the results (_)f our ”"_3 'Onderstand what can be obtained from the Linear Programming
those obtained using the shortest path routing algorith P) relaxation of the problem. The linear programming

and the greedy algorithm. In Figure 7 we plot the perce laxation will either find (1) that no solution exists, (2) a

of logical topplog|es for which we failed to. obtain 8solution with integer flows, or (3) a solution with non-integer
protected routing. As can be seen from the figure, W*,‘%ws. If the LP relaxation results in no solution, this is a simple
we use:i the ILP we were able t_o find a protected rout”Way to determine that there is no solution to the ILP either. If
for 100% of the Iog|cal.r|ngs of size 5 to 9, and fewer th,afhe LP relaxation finds an integer solution, then this solution
10% Of, the 10 node rings were left unprotected. NOt'(f\ﬁill also be the solution for the ILP. In the third case where the
that this latter number is consistent with t_he results 'P'P relaxation finds a non-integer solution, one must solve the
Table 2'_ prever, when shortest path r.outlng Was US§{p to determine a survivable routing. We solved the LP
the majority of the logical topologies were Ieftrelaxation for the 6-node and 10-node cases described above to
unprotected. The greedy approach was able to Protetliermine the effectiveness of the LP relaxation in solving the

more of the topologies, but not nearly as many as the_”":ﬁteger problem. In the 6-node case, 11.6% of the logical
In Figure 8 we plot the average number of physical lin pologies resulted in a non-integer solution. The remaining

used per logical topology. As can be seen from the ﬁgu_r%gisical topologies produced integer solutions. In the 10-node

t.he shortest path approaqh indeed uses fewer physqu e, 97% of the logical topologies for which the ILP was
Ilnks.. Hoyvever, at a relat|vgly §mal| cost in number o nable to find a survivable routing were also found to be
physical links, the ILP solution is gble to offer a muchpseagiple by the LP relaxation. Unfortunately, 57% of the ring
greater |evel qf protect|on.. Also notice thqt thg number q’ggical topologies produced non-integer solutions to the LP
wavelengths*links used with the ILP solution is the sam laxation. As mentioned above, determining a survivable

as the number of physmal links used. In cor]trast tr‘Pc:')uting for these logical topologies requires solving the ILP.
shortest path solution uses more wavelength*links than

physical links because some physical links were used to
support multiple lightpaths. As expected, the greed
approach used the most links. Also notice that in the ca
of the greedy approach, the average number of lin] 4
represents only those topologies for which a protecte
routing was found. Hence for those cases the number
physical links is the same as the number g
wavelengths*links.
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—@—ILP : physical links = wavelength*links

—— shortest path : physical links

Average number of links

—a— shortest path : wavelength*links

o N A O ®

—l— Greedy - Physical links

5 6 7 8 9 10

Number of nodes in logical ring

Figure 8. Average number of links used to embed ring logical
topologies on the 10 node physical topology of Figure 6.
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