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Abstract—This paper considers the link capacity require-
ment fora N x N mesh-torus network under a uniform all-
to-all traffic model. Both primary capacity and spare capac-
ity for recovering from link failures are examined. In both

cases, we use a novel method of “cuts on a graph” to obtain
lower bounds on capacity requirements and subsequently

find algorithms for routing and failure recovery that meet

scheme isless flexible in handling failures [1, 2, 3].

We investigate the optimal spare capacity placement
problem based on mesh-torus topology which is essential
for the multisatellite systems. An n x n mesh-torus is a
two-dimensiona (2-D) n-ary hypercube and differs from
a binary hypercube in that each node has a constant num-

these bounds. Finally, we quantify the benefits of path based ber of neighbors (4), regardless of n. For the remainder of

restoration over that of link based restoration; specifically,
we find that the spare capacity requirement for a link based
restoration scheme is nearlyN times that for a path based
scheme.

I. INTRODUCTION

Thetotal capacity required by a satellite network to sat-
isfy the demand and protect it from failures contributes
significantly to its cost. To maximize the utilization of
such a network, we explore the minimum amount of spare
capacity needed on each satellite link, so as to sustain
the original traffic flow during the time of a link failure.
In general, for alink failure, restoration schemes can be
classified as link based restoration, or path based restora-
tion. In the former case, affected traffic (i.e. traffic that
is supposed to go through the failed link) is rerouted over
a set of replacement paths through the spare capacity of
a network between the two nodes terminating the failed
link. Path restoration reroutes the affected traffic over a
set of replacement paths between their source and desti-
nation nodes [1, 2, 3, 5, 6]. The obvious advantages of
using the link restoration strategy are simplicity and abil-
ity to repidly recover from failure events. However, as we
will show later, the amount of spare capacity needed for
the link based scheme is significantly greater than that of
path based restoration since the latter has the freedom to
reroute the complete source-destination using the most ef-
ficient backup path. On the other hand, the path restoration
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the paper, we will refer to this topology simply as a mesh.
In particular, we are interested in the scenario where every
node in the network is sending one unit of traffic to every
other node (also known as complete exchange or all-to-all
communication) [7]. This type of communication model
is considered because the exact traffic pattern is often un-
known and an all-to-all model is frequently used as the
basis for network design. Even in the case of a predictable
traffic pattern, links of a particular satellite will experience
different traffic demand as the satellite flies over different
location on earth. Thus, each link of that satellite must sat-
isfy the maximum demand. Again, al-to-al traffic model
helps capturing this effect. Hence we also assume that
each satellite link has an equal capacity. Our results, while
motivated by satellite networks[9, 10, 11], are equally ap-
plicable to other networks with a mesh topology such as
multi-processor interconnect networks[12, 13, 14] and op-
tical WDM mesh networks [2, 3]. Furthermore, while our
results are discussed in the context of an n x n mesh for
simplicity, they can betrivially extended to amore general
n X m topology.

When using the path restoration schemes, the restora-
tion can be performed at the global level by rerouting all
the traffic (both those affected or unaffected by the link
failure) in anetwork. However, thislevel of restoration re-
quires recomputing a new path for each source-destination
pair, thus it isimpractical if arestoration time limit isim-
posed or when disruption of existing calls is unacceptable.
We can also perform path restoration at the local level by
rerouting only the traffic which is affected by the link fail-
ure. Obviously, the local level reconfiguration will require
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at least as much spare capacity as the global level recon-
figuration since the former is a subset of the latter. Never-
theless, as we show in section 1V, the lower bound on the
spare capacity needed, using global level reconfiguration,
can be achieved by using local level reconfiguration.

To obtain the necessary minimum spare capacity, our
approach isto first find the minimum capacity, say C}, that
each link must have in order to support the al-to-all traf-
fic. We then obtain a lower bound, (5, for the capacity
needed on each link to satisfy the all-to-all traffic when
one of the links fails. Consequently, the minimum spare
capacity needed, Cjypqre, Should be greater than the differ-
ence of C, and C4. Since we do not restrict the reconfig-
uration (global level or local level) used to calculate Gy;
Cy — C isalower bound on Cgp,ye, both at global level
and local level. We will show that this lower bound on
Cspare 1S achievable by using a path based restoration al-
gorithm at alocal level. Thus, the minimum spare capac-
ity needed using path restoration strategy is Cpqre. Table
| summarizes capacity requirements under link based and
path based restoration.

Communication on a mesh network has been studied in
[4, 11, 14]. In[4], the authors consider processors commu-
nicating over a mesh network with the objective of broad-
casting information. The work in [11] presents routing al-
gorithm generating minimum propagation delay for satel-
lite mesh networks. In [14], the authors propose new algo-
rithms for all-to-all personalized communication in mesh-
connected multiprocessors. These papers mentioned so far
did not look into capacity provisioning and spare capacity
requirement of the mesh network.

Path based and link based restoration schemes have been
extensively researched [1, 2, 3, 5]. In [1], the authors
study and compare spare capacity needed by using link
based and path based schemes. The work of [5] provides
amethod for capacity optimization of path restorable net-
works and quantify the capacity benefits of path over link

Fig. 1. A 2-dimensiona 5-mesh.

restoration. In [2, 3], the authors examines different ap-
proaches to restore mesh-based WDM optical networks
from single link failures. In all the aforementioned pa-
pers, the spare capacity problem is formulated as an inte-
ger linear programming problem which is solved by stan-
dard methods. Our paper addresses the mesh structure for
which we can get aclosed form results for the spare capac-
ity.

The structure of this paper isasfollows. Section Il gives
necessary definitions and statement of the problem. In sec-
tion 111, alower bound on C; is given along with arouting
algorithm achieving this lower bound. The lower bound
C> is presented also. We then show in section |V that the
lower bound on Cgpre, C2 — C, can be achieved by a
path based restoration algorithm. Section V concludes this

paper.

Il. PRELIMINARIES

We start out with a description of the network topology
and traffic model, and follow it with a sequence of formal
definitions and terminology that will be used in subsequent
sections.

Definition 1: The 2-dimensiona N-mesh is an undi-
rected graph G = (V, E), with vertex set

V= {C_i | a= (al,ag) and ay,ag € ZN},

where Z denotes the integers modulo NV, and edge set

-,

{(a,b) | 35 such that a; = (b; = 1) mod N
and a; = b; fori # j,4,5 € {1,2}}.

The above definition is from [7]. A 2-dimensional N-
mesh has a total of N? nodes. Each node has two neigh-
bors in the vertical and horizontal dimension, for a total
of four neighbors. We associate each satellite with a fixed

E =



node, (a1, az2), in the mesh. Undirected edges of the mesh
are also referred to as links. Fig. 1 shows a 2-dimensional
5-mesh. The notion 2-dimensional oco-mesh is used to de-
note the case where N isarbitrarily large, and it isthe same
as an infinity grid.

Definition 2: A cut (S,V — S)inagraph G = (V, E)
is partition of the node set V' into two nonempty subsets, a
set S and itscomplement V' — S.

Here the notation Cut-Set(S,V — S) = {(@,b) €
E|d@e S,beV — S} denotes the set of edges of the
cut (i.e. the set of edges with one end node in one side of
the cut and the other on the other side of the cut).

Definition 3: Thesize of aCut-Set(S, V —.5) isdefined
asC(S,V —8) =| Cut-Set(S,V — 9) |.

For G = (V, E) and P(V') denote the power set of the
set V (i.e. the set of all subsets of V). Let P, (V') denote
the set of all n-elements subsets of V.

Definition 4: Let G = (V, E) be a2-dimensional N-
mesh, the function ey : ZT — Z T isdefined as

min C(S,V - 8).
SEPn(V)

The function ey (n) returns the minimum number of
edges that must be removed in order to split the 2-
dimensional N-mesh into two parts, one with n nodes and
the other with N? — n nodes. Similarly, e« () is defined
to be the minimum number of edges that must be removed
in order to split the co-mesh into two digjoint parts, one of
which containing n nodes.

To achieve the minimum spare capacity, we consider the
shortest path algorithm. Shortest paths on 2-dimensional
N-mesh are associated with the notion of cyclic distance
which we will define next [8].

Definition 5: Given three integers, 4, j, N, the cyclic
distance between i and j modulo N is given by

8N(TL) =

Dy (i,j) = min{(i — j) mod N), (j — i) mod N)}.

[11. CAPACITY REQUIREMENT WITHOUT LINK
FAILURES

To obtain the necessary capacity, ', that each link must
have in order to support the al-to-al traffic without link
failure, we first provide a lower bound on C;. An ago-
rithm achieving the lower bound will also be presented.
For the proof of the lower bound on C}, we are aware of
the existance of a simpler proof (using Proposition 1 in
[4]) than the one we described below. However, the cut
method we used here will help us find the lower bound,
C5, on the minimum capacity needed on each link in the
event of a link failure. Therefore, we decide to use the
same cut method consistently in proving the lower bound
on C; and the lower bound Cs.

A. A Lower Bound on the Primary Capacity

Corner Node

Wn Leaf Node

— |
[ ]

Wn
Fig. 2. Representation of corner node and leaf node.

Tofind alower bound on C}, we state the following lem-
mas which will prove to be useful tools in the subsequent
sections. First, we give a brief explanation of the termi-
nology and notation used in the lemmas and their proofs.
For G = (V, E) defined as an infinite mesh, an inner edge
(i,j)ofaset W C Vis(i,j) € Esuchthai €¢ W
and j € W. A corner node x of the set W is defined
to be anode x € W such that two of its four neighbor-
ing nodes are also in the set W while the other two arein
W. And of those two neighboring nodes in W, they form
a 90° angle with respect to node z (as shown in Fig. 2).
Similarly, a leaf node x of set W is defined to be a node
x € W such that three of its four neighboring nodes are
in W, and the last oneisin W . When al nodesin W are
connected, we use the term shape of the set W to refer to
the collective shape of nodes in . For example, we say
that the shape of the set shown in Fig. 3(a) is square and
the shape of the set in Fig. 3(b) is rectangular. Lastly, we
use the term  minimum set W), to refer any set such that

C(Wn, Wn) = £co(n).
l

O0—0—0

@ ()

Fig. 3. Anillustration of the square shape and the rectangular
shape.

Lemmal: Let G = (V,E) be an infinite mesh. An
arbitrary set W,, € V such that e (n) = C(W,,, W,)
must satisfy the following properties:

1. Vo € Wy,,3y € W, such that (z,y) € E. In other
words, nodes in W,, should be connected.



2. Nodes in W,, should be clustered together to form a

rectangular shape (including square) if possible.

3. ex(n) isan even number for all n € Z*.

4. e£4(n) isamonotonically nondecreasing function of 7.
Proof. Property (1) is easy to show. If there exists

anode s € W, such that s is not connected to any other

nodes in W,,, simply discarding s and adding a new node

which is connected to nodes of W,, will result in asmaller

C(W,,W,), acontradiction to the definition of 5, (n).

To show (2), suppose the set W, is not clustered to-
gether to form arectangular shape, then by grouping nodes
into rectangle will decrease C'(W,,, W,,). Again, we have
a contradiction.

Property (3) is true because we have C(W,, W,) =
4n — 2(number of inner edge in W,,), for any set of W,,.
Therefore, e (n) will always be an even number.

To show that e (n) is a nondecreasing function, sup-
pose there exists k € Z* such that m; = exo(k + 1) <
Eo(k) = mo Where eoo (k + 1) = C(Wyy1, Wii1). The
set W1 must contain a corner node, say a; or a leaf
node, say b. If node a or node b is removed from Wy, 1,
the resulting set, say W, will have k£ nodes remaining.
We get C(W}, W) < m; which contradicts the fact that
£co(k) = mg > my. Thus, property (4) istrue. |

Lemma?2: Let G = (V, E) bean infinite mesh, then
£0o(n?) = 4n
and

4n +2 for
4n +4 for

9 1<k<n
€00 (m +k):{ n+l1<k<2on+1
for n,k € ZT where Z denotes the set of positive inte-
ger.

The above lemma gives the minimum number of edges
that must be removed from £ in order to split a specified
number of nodes from the mesh. Intuitively, the set of n
nodes to be removed from the mesh must be clustered to-
gether.

Proof: We will show e, (n?) = 4n, Vn € Z*, and
the set of n? nodes must be arranged in a square shape in
order to achieve the minimum size of the cut. From the
properties of the minimum set in the previous lemma, we
know the minimum set has to be clustered in arectangular
shape. Suppose we have a set of n? nodes arranged in the
rectangular form shown in Fig. 4. We know that ab = n?
for somea,b € Z and size of thecut is2(a+b). Minimiz-
ing thesize of thecut resultsina = b = n. Theuniqueness
of a square configuration can be shown by inspection. To
show that e, (n?2 + k) = 4n + 2 for 1 < k < n, we prove

Fig. 4. An arrangement of n2 nodesin rectangular shape.

that eoo (n? + k) > 4n + 2 for 1 < k < n. Then, by con-
struction, e (n?+k) = 4n+2for 1 < k < n. From prop-
erty (4) and the uniqueness of the square configuration, we
seethat eoo(n? + 1) > £40(n?) = 4n. From property (3),
Eco(n? + 1) # 4n + 1. Therefore, e (n? + 1) > 4n + 2.
By the monotonicity of ex(+), eco(n? + k) > 4n + 2 for
1 < k < n. To show achievahility, we first arrange the
n? nodes in square. Then, connecting the extra k& nodes
around the square will yield e, (n? + k) = 4n + 2 for
1<k <n.

Showing that eoo(n? + k) = 4n+4forn+1 <k <
2n + 1 can be done similarly. |

Corollary 1: For e.,(n) defined in above lemma,
Exo(n) >4y/n for ne Zt.

Proof: The statement is obviously true for n such
that n = k2 for some k& € ZT. Now consider the case
where n # k? for Vk € ZT. Let m be the largest integer
such that m? < n. From Lemma 1, we then have

n—m?>m = ex(n)=4m+4
n—m?<m = ex(n)=4m+2

So for n such that (m + 1)2 > n > m? + m, we have
dm+4 = 4/(m + 1)? > 4y/n. Similarly, for n such that
m?+m >n >m?, wehavedm + 2 = 4,/(m + )2 >

4vm?2 +m > 4y/n. Thus, ex(n) > 4y/n for
ZT.

n €
[ |

Corollary 2: Let G = (V, E)) be an infinite mesh with
an arbitrary link failure, then

Exo(n?) =4n —1
and

dn +1 for
4n +3 for

Eoo(n +k)_{ n+l1<k<2on+1
for n,k € ZT where Z denotes the set of positive inte-
ger.

Proof: The proof of this corrollary follows similar
steps to those used in the proof of the lemma. By including
the failed link in the cut set, the number of edges needed



to be removed for this new topology is one less than that
of regular infinite mesh (without link failure). |

So far the function e, (n) has been the focus of our dis-
cussion. Since the satellite network that we model is a
2-dimensional N-mesh, itisessential to know ey (n). Ina
2-dimensional N-mesh, a horizontal row of nodes (a ver-
tical column of nodes) forms a horizontal (vertical) ring.
When n is very small compared to N, splitting a set of
n nodes from the N-mesh is similar to cutting the set of
n nodes from oo-mesh; more precisely, e, (n) = en(n).
The ring structure of the 2-dimensional IN-mesh does not
affect the minimum size of acut when n isrelatively small.
Nevertheless, when n is large, taking advantage of the
ring structure of the 2-dimensional IN-mesh will result in
en(n) < oo(n).

Now, let’s define the following sets:

2
Al 5{1,2, ey i},
4
2 2

Ay ={z |z € {NT—i—l,... ,NT}and(wmodN) # 0},

N2

ASE{$|$E{T+1"" ,NTQ}and(wmodN)zo},
01 ={1,2,... ,N24_1},
OZE{$|$€{N2_1+].,... ,N22+1}

and (z mod N) # 0}, and
Oy =(w |z (2L ,N22+1}

and (z mod N) = 0}.

Lemma3: Let G =
mesh, for N even,

(V,E) be a 2-dimensional N-

Exo(n) for ne A
en(n) =< 2N+2 for ne€ A
2N for neA;
for NV odd,
Exo(n) for ne O
en(n)=¢ 2N +2 for ne O,
2N for ne O3

Proof: From Fig. 5, we see that ey (n) < 2N Vn
such that (n mod N) = 0 and ey(n) < 2N + 2 if
(n mod N) # 0. For n small, ex(n) = ex(n). When
n = NTZ + kfork > l,wehzalvegoo(NT2 + k) > 2N +2.
Therefore, we can use the splitting method in Fig. 5, which
will result in acut size of 2NV + 2, to separate the two sets.
For N odd, eo0 (221 4 1) = e (Mpd)2 + N1 4 1) =

Fig. 5. Ways of splitting the V-mesh into two digoint parts.

4(¥=L) +4 = 2N + 2. Again, we can use the method in
Fig. 5 to separate the sets. [ |

Theorem 1: On a 2-dimensional N-mesh, the mini-
mum capacity, C', that each link must have in order to sup-
port all-to-all traffic is at least ¥* for NV even, and Y°-¥
for N odd.

Proof: Consider a fixed n between 1 and N? — 1.
Theideaisto use a cut to separate the network (N-mesh)
into two digoint parts, with one part containing n nodes
and the other containing N> — n nodes. Based on the
all-to-all traffic model, we know the exact amount of traf-
fic, Ceross = 2n(N? — n), that must go through the cut.
Therefore, from max-flow min-cut theorem [15] we know
that ssimply dividing C.,,ss by the minimum size of cutset
en(n) will give usa lower bound on Ci, and let’s call this
bound B,,. It implies that each link in the network must
have capacity of at least B,, in order to satisfy the all-to-all
traffic demand. This prompts usto find B, which isthe
maximum of B, over al n € {1,... ,N%2 — 1}. We say
that BS: . is the best lower bound for C; in the sense that

it is greater or equal to any other lower bound for (.
For N even, let

BYL. =

max

max [LV “- ”)"] )

nefl,...,N2-1} en(n)

= e [T



A [2(N2 — n)n] ’

neds | 2N + 2
2(N? —n)n
28X it (2
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The casefor N odd isthe same except that A;, A5, and A3
in (2) are replaced by O, O, and O5. Solving the maxi-
mization problem, we get

N N3
{ maxgaev 22N+ 4 }

o, Zg;,jl) N2 N} for N odd
where a, («,) in the above equation is the result of the
first term of equation (2) for N even (odd). Here, explicit
evaluation of «, and «, is unnecessary. Instead, by using
Corollary 1, an upper bound on a, and «, will be sufficient
for us to solve the maximization problem. Since ex,(n) >
4,/n for n € Z*, the following equation holds:

RO for N even

max

max

[Q(N2 —n)n] [Q(N2 —n)n]
e = max |———— | < max |———
neA; 8OO(TL) nezt 8OO(TL)
< 2(N? —n)n 3N3 < N3
max = —
T nezt 4v/n 16 4
a, < X2=N can be shown similarly. Thus, we have
G _ ]\f’ for N even
ma NN for N odd

Corollary 3: On a 2-dimensional N-mesh with an ar-
bitrary link failed, the lower bound, &, on the minimum
capacity that each Iink must have in order to support all-
to-all traffic is ( = for N even, and ﬁ for N
odd.

Proof: The proof of this corollary is similar to the
proof of Theorem 1. We still use the max-flow min-cut
theorem to compute the best lower bound G,. In this case,
we have

2(N? — n)n]
B¢ = max Rt 3
maw ne{l,...,N2-1} [ en(n) —1 &)
[2(N? —n)n]
= max< max |[——— |,
n€Ar | EOO(TL) -1 ]
. [2(N? —n)n]
max | ——
neAs _2N+2—1_ ’
[2(N? — n)n]
n 4
neds | 2N — 1 } @)

Notice the difference between

the above eguations and

equations (1) and (2) in the proof of theorem 1. Because

6

of the failed link, the denominator of (3) is changed to
en(n) — 1 by Corollary 2.
Solving the maximization problem, we get

N4 N4
RO _ max {ae, SENTI) JON= 1)} for N even
maxr ~ N4_1 NZ(N 1)
Max | Qos 55N 3RN=T) } for N odd

where «, («,) in the above equation is the result of the
first term of equation (4) for N even (odd). Again, explicit
evaluation of «, and «, is unnecessary. Instead, by using
4y/n — 1 > 3.5y/n ¥n > 5, an upbound on «, and «,
will provide us the essentia information to solve the max-
imization problem. Since e, (n) > 4y/nforn € Z*, the
following equation holds

2(N? —n)n 2(N? —n)n
0 = max |————— | < max |—————
neA; 8OO(TL) —1 nezt Eoo(n) —1
2(N? —n)n 2(N? —n)n
< max max )
ne{l, 4} €co(n) —1 " n>5  3.5\/n
N4
S N1
a, < Eé )) can be shown similarly. Thus, we have
4
5O _ { ?V(gl(]‘{,v 7 for N even
SENT) for N odd

B. Algorithm Achieving the Lower Bound on C;

In this section, we show that the lower bound on C; can
be achieved by using a simple routing algorithm called the
Dimensional Routing Algorithm. As we have mentioned
earlier, the routing algorithm will use the shortest path be-
tween source and destination nodes. Below isadescription
of the Dimensional Routing Algorithm:

1. From the source node 5 = (p1, p2), move horizontally
in the direction of shortest cyclic distance to the destina
tion node ¢ = (qi, ¢2); if there is more than one way to
route the traffic, pick the one that moves in the (+) direc-
tion (mod N), i.e. (p1,p2) — ((p1 + 1) mod N,p3) —
((p1 + 2) mod N,ps) — -+ — (q1, p2). Route the traffic
for Dy (p1,q1) hops where Dy (p1, ¢1) denotes the short-
est cyclic distance (hops) between 5" and ¢ in horizontal
direction.

2. Move vertically in the direction of shortest cyclic dis-
tance to the destination node; if there is more than one way
to route the traffic, pick the onethat movesin the (+) direc-
tion (mod V). Route the traffic for Dy (p2, g2) hopswhere
Dy (p2, g2) denotes the shortest cyclic distance (hops) be-
tween p'and 7' in vertical direction.



That is, the routing path will include the following
nodes, p' = (p1,p2) — (q1,p2) — (q1,42) = 4. The
above algorithm ensures the existence of a unique shortest
path between every node p’ and ¢ regardless of whether N
iseven or odd, and consequently, facilitates the analysis of
link load.

Fig. 6. Anillustration of traffic flow into node ¢ by using Di-
mensional Routing Algorithm.

Theorem2: Let G = (V, E) be a 2-dimensional N-
mesh, by using the Dimensional Routing Algorithm above,
to satisfy the al-to-all traffic, the maximum load on each
link is 2 for N even and 22~ for N odd.

Proof: The Dimensional Routing Algorithm ensures
one unique path between a source and destination pair.
Thus, in order to compute the maximum load on a link,
we need only count the (maximum) number of pairs of
nodes that communicate through a specific link. Without
loss of generality, consider the link £ in Fig. 6. We see
that ten units of traffic heading for node ¢ must go through
Iy~ By the symmetry of the mesh topology and Dimen-
sional Routing Algorithm, five units of traffic heading for
node d must go through I since five units of traffic head-
ing for node ¢ go through [;-. Extending this argument, we
see from Fig. 6 that an additional ten units of traffic des-
tined for node b and five units of traffic headed to node @
must communicate through /.. Again, by symmetry, the
total load on any link of the graph (denoted by 7)), in the
caseof N =5,isT; =5+ 10+ 10+ 5 = 30. In generdl,
for N odd, we have the following formula:

N-1

2 N3 - N
Ty=2N > i= a—
i=1

F%r N even, using the same routing algorithm, we get I} =
N
==, [ |
)
Clearly, using the Dimensional Routing Algorithm, we
see that the lower bound of link capacity in the Theorem 1
is achieved. Now, with the minimum link capacity needed

(C1) and the lower bound of link capacity for mesh with a
failed link (C3) computed, we are able to derive the min-
imum spare capacity that each link must have in order to
sustain the all-to-all traffic during the time of alink failure.

V. CAPACITY REQUIREMENT FOR RECOVERING
FROM A LINK FAILURE

Under the condition of an arbitrary link failure, we in-
vestigate the spare capacity needed to fully restore the
origina traffic, using thelink based restoration method and
path based restoration method.

A. Link Based Restoration Strategy

Consider that an arbitrary link, Iz (connecting nodes
i and v), failed in the 2-dimensional N-mesh. We know
from the previous section that there are X"~ (X2) units
of traffic on [z have to be rerouted for N odd (even).
Sincethe link based restoration strategy is used here, these
N°—N' units of traffic in and out of node @ have to be
rerouted through the remaining three links connecting to
node u (I;7 is aready broken). We then have the follow-

ing theorem:

Theorem 3. Using link based restoration strategy in the
event of a link failure, the minimum spare capacity that
each link must have in order to support the al-to-all traffic

is N?’IEN for N odd and Jf—; for N even.

Proof: By using link based restoration scheme, a

. . 3_
lower bound on spare capacity is % for N odd and

le_; for N even from the argument stated in the previous
paragraph. To show achievability, werefer to Fig. 7. Since
the restoration paths are disjoint, we can reroute% of the
affected traffic through each of the three digoint paths.
Hence, the lower bound is achieved. [ |

3 digoint restoration paths

Fig. 7. Restoration paths using link based recovery scheme.



B. Path Based Restoration Strategy
B.1 Lower Bound on the Minimum Spare Capacity

Theorem 4: On a 2-dimensional N-mesh with an arbi-
trary failed link, the minimum spare capacity, Cspqre, that
each link must have in order to support al-to-al traffic is
at least 4(2N for N even, and ;VTA{) for N odd.

Proof: From Theorem 2, for aregular 2-dimensional
N-mesh, we know that the capacity that each link must

have in order to satisfy all-to-all traffic isNT3 for N even,
and °=N for N odd. In case of an arbitrary link faiI-
ure, from Corollary 3, at least a capacity of

(2N 1)
(m) is needed on each link to sustain the original
traffic flow for IV even (odd). We need to have an extra
capacity of Cspere > Co —Cy on each link. Thus, we have

N4 N3 N3

C > { 22N-T) T 4 T 1(2N-1) for N even
spare — N2(N2-1 3 3
2(§N71)) - = 4%Nﬁ) for N odd
[ |

B.2 Algorithm Using Minimum Spare Capacity

In this section, we will show thaI the minimum spare
capacity needed on each link is BN for N even and

2N 1
4@ = NI) for N odd. In other words, the lower bound in
Theorem 4 is tight. We show the achievability by present-
ing aprimary routing algorithm, and subsequently, a path-
based recovery algorithm which fully restores the original
traffic by using the minimum spare capacity in case of a
link failure. We focus on the case of N odd for simplicity.
To show the achievability for N even, adifferent set of pri-
mary routing algorithm and recovery algorithm is needed

(not presented in this paper).

Fig. 8. Routing path of the Rotational Symmetric routing al-
gorithm. Rotating the graph by 90° does not change the
configuration.

First, we describe the primary routing agorithm that
we call Rotational Symmetric Routing Algorithm, or RS
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Routing Algorithm, used to route the all-to-all traffic. We
use the RSRouting Algorithminstead of the Dimensional
Routing Algorithm as our primary routing algorithm be-
cause the former simplify the construction and analysis of
the restoration algorithm. Specifically, with the Dimen-
sional Routing Algorithm, the traffic routes on horizon-
tal and vertical links are not symmetric; hence a different
restoration algorithm would be required for vertical and
horizontal link failure. In contrast, the RS Routing Algo-
rithm is symmetric and vertical or horizontal link failure
can betreated using the samerecovery algorithm. The case
of ahorizontal link failure is the same as the vertical link
failure if we rotate the topology by 90° (shown in Fig. 8).

RS routing algorithm

Each node @ in a 2-dimensional N-mesh has a pair of
integers (a1, as) associated with it. To route one unit of
traffic from the source node p'to the destination node ¢, do
the following:

1. Change coordinate and compute the relative position
of the destination node with respect to the source node.
Specifically, shift the source node to (0,0) by applying
the transformation 7;. Here, the transformation Tj; :

Zy x Zy — Zy x Zy is defined asd = Ty(q) =
Ts(q1,q2) = (dy,d2), wherefor i = 1,2
( G =P .
if =5~ <q—pi <5
d = (¢i — pi) mod N,
‘ if —(N—-1)<g—p <2+
—([= (QZ pi)] mod N),
[ i <g-pi<N-1

Here, (—n) mod p is defined as p — n mod p if 0 <
n mod p < p. Thus, we will have T;(p) = (0,0). Fig. 9
illustrates this transformation.

2. Divide the nodes of the 2-dimensional N-mesh into
four quadrants with the source node as the origin (shown
inFig. 9). Specficaly, let

Q1= {(a,b) |a,be Zn
andogagN_l,0<b§N_1},

Q= {(a,b) |a,be Zn
and—N_1§a<0,—N_1§b§0},

Qs = {(a,b)|a,be Zy
and—N_lgago,—N_lgb<0},and

Q4= {(a,b) |a,be Zx
and0<a§N2_1,—N2_1§b§0}.



Destination Node ()

Source Node (p)

a3 Destination Node (q)

Source Node (p) Q4

Fig. 9. Change of coordinate by using transformation 7.

3. If d = Ty(§) € (Q1 U Q3), route the traffic vertically
in the direction of shortest cyclic distance to the destina
tion node by Dy (p2, ¢2) hops. Then, route the traffic hor-
izontally in the direction of shortest cyclic distance to the
destination node by Dy (p1, q1) hops.

If d = Tj(7) € (Q2 U Qy), route the traffic horizontally in
the direction of shortest cyclic distance to the destination
node by Dy (p1, q1) hops. Then, route the traffic vertically
in the direction of shortest cyclic distance to the destina
tion node by Dy (p2, g2) hops.

Now, considering all traffic that has a particular node ¢
astheir destination, their routing paths are rotational sym-
metric by the above algorithm. That is, rotating all of the
routing paths by an integer multiple of 90° will result in
having the same original routing configuration. This idea
is best illustrated by Fig. 8. RS routing algorithm also
achieves the lower bound on C;. The proof is straight-
forward and thus omitted here.

Our goa here is to recover the original traffic flow by
adding an extra amount of capacity, which is equal to the
lower bound calculated in Theorem 4, on each link. Now,
we present an example to illustrate the key ideas of the
recovery algorithm. Without loss of generaity, suppose
that link /_; failed in the 2-dimensional 7-mesh shown in
Fig. 10(a). We need to find all possible source destination

JE N ) S

A3 L4 A4

Primary Routing
Path

Restoration Routing Path

(b)

Fig. 10. Routing path of the restoration algorithm

pairs (S-D pairs) that are affected by the failed link first.
From the RSrouting algorithm, these S-D pairs can be de-
termined exactly. Specifically, |et the source node be 5 and
destination node bei. The set of failed traffic F is defined
asF = F, UF,UF3UFyU F5 U Fg where

o N -1
= {(g,E) | §e Ayandt € L4;DN(81,t1) < —
N -1
and DN(SQ,tg) < 2 },
o o - N -1
Fy, = {(8,5 | F§elyandt e A3;DN(81,t1) < T
N -1
and DN(SQ,tg) < 5 },
o o - N -1
F; = {(8,5 | §e Ayjandt € LQ;DN(Sl,tl) < T
N -1
and DN(SQ,tg) < 5 },
o o o N -1
F, = {(8,1?) | §€ Lyandt € Ay; Dy (s1,t1) < 5
N -1
and DN(SQ,tz) < 5 },
o o o N -1
Fs ={(5,t) | §€ Lyandt € Ly; Dy(s1,11) < 5
N -1
and DN(SQ,tz) < }, and
N -1

Fy = {(g,E) | §e Ly and te L4;DN(81,t1) <



N -1
2 -

In the 2-dimensional 7-mesh with a link failure, the sets
Ay, As, A3z, Ay, Lo and Ly are shown in Fig. 10(a). More
generally, with a failed vertical link connecting nodes
U = (v1,v2) and @ = (vy, (v2 + 1)modN), after taking
the transformation T}, we can define these sets as the fol-
lowing:

and DN(SQ,tz) <

N -1
Ay ={(a,b) |a,be Zyand1 < a < 5
N -1
1<bh< 5 +
N -1
Ay ={(a,b) | a,b € Zy and — <a< -1,
N -1
1<b <
<p< M1y
N —
Az ={(a,b) | a,b € Zy and — <a< -1,
N -1
-y <o<o,
N -1
Ay ={(a,b) |a,be Zyand1 <a < 5
N -1

- y<h<o,
Ly ={(a,b) |a,be Zy anda =0,

1<b< }, and
Ly={(a,b) |a,be Zyanda =0,
N -1
M g<a<o

A simple way for recovering a failed traffic is to reverse
its routing order. That is, if the primary routing scheme is
to route the traffic horizontally in the direction of shortest
cyclic distance first, the recovery algorithm will route the
traffic verticaly first (shown in Fig. 10(b)). Thus, traffic
that is supposed to go through the failed link will circum-
vent the failed link. Consider now the vertical links cross-
ing line « in Fig. 10(a) and the affected traffic in the set
Fy U F, U F3 U Fy. Rerouting (i.e. reversing the rout-
ing order) al of the affected trafficin i, U Fy, U F3 U Fy
through the vertical links crossing line o will add an ad-
ditional 12 units of traffic on each of these six vertical
links. Fig. 11(a) illustrates the recovering paths of the traf-
fic (originating from nodes o/, ¥, and /) in the set F},
which are being rerouted through the link /; ;. Recover-
ing paths for the traffic in 5, although not shown here, is
just aflip of Fig. 11(a) with respect to the line «.. Thetotal
amount of rerouted traffic in F; U F, added on link 13,
which is 12, exceeds the lower bound of spare capacity,

Cy — Cy = [%1 = 7. However, utilizing the ring
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structure of the mesh topology, we can reroute half of the
affected traffic through links crossing line 3 (illustrated in
Fig. 11(b)). This way, we have a total of six units traffic
through the link 7; 5 (three from F; and three from F3).
For the traffic in the set F5 U Fg, we can reroute half of
them (six units) through the link /;z. The remaining six
units of traffic can be routed evenly through the six verti-
cal links crossing line «.. Thus, we can restore the original
traffic flow by using only an additional ¢ — C; amount of
capacity on each vertical link.

ae [P B B
b &— ®h
c e oc

e : ;
g el TT—eyg

!
geol-TTe,

Fig. 11. Restoration path for the 2-dimensional 7-mesh

So far we have only discussed the load on avertical link.
Now, we will address the question of whether the addi-
tional traffic on each horizontal link will exceed G, — C;.
For example, on the link /5 ;- in Fig. 10(a), one may find
that the number of rerouted traffic from the set F{ U F5,
nine, exceeds Cy, —C = 7 after reversing the routing order
of the affected traffic. However, as we reroute the affected
traffic circumventing the failed link, we not only put an
additional nine units of traffic (5 € A, #'= dj onlink /5
but also take nine units of traffic (5 € I»,t € Lj) away
from link / I Overdl, we have zero additiona rerouted
traffic from the set 1 U F» go through link 5 ;. Never-
theless, traffic in the set F5 U Fy does add extra units of
traffic on the link [ . By rerouting half of the traffic in
F5 U Fg (six) through the link [zz (without using any hor-
izontal link), we can then distribute the rest of the traffic
in F5 U Fg (six) evenly, so as to satisfy the spare capacity
constraint.

Aswe have mentioned earlier, only the traffic in the set
U?Zl F; are being rerouted in our path based recovery al-
gorithm. Traffic which is unaffected by the failed link re-
mains intact in the recovery algorithm.

Lastly, we cannot include the full details of the path
based restoration algorithm in this paper due to space lim-



itation. For the same reason, we state the following the-
orem, which shows that the lower bound on the spare ca
pacit (Co — C7) isindeed achievable, without proof.

Theorem 5: On aZ2-dimensional N-mesh, to restore the
origina all-to-al traffic in the event of alink failure, we
need a spare capacity of -2>=~_ on each link for N odd

I2N-T)
and 4(#371) for N even by using the restoration algorithm.

V. CONCLUSION

This paper examines the capacity requirements for mesh
networks with all-to-all traffic. This study is particularly
useful for the purpose of design and capacity provision-
ing in satellite networks. A novel technique of cuts on a
graph is used to obtain atight lower bound on the capac-
ity requirements. This cut technique provides an efficient
and simple way of obtaining lower bounds on spare capac-
ity requirements for more general failure scenarios such as
node failures or multiple link failures.

Another contribution of this work is in the efficient
restoration algorithm that meets the lower bound on ca-
pacity requirement. Our restoration algorithm is relatively
fast in that only those traffic streams affected by the link
failure must be rerouted. Yet, our algorithm utilizes much
less spare capacity than link based restoration (factor of
N improvement). Furthermore, in order to achieve high
capacity utilization, our algorithm makes use of capacity
that is relinquished by traffic that is rerouted due to the
link failure (i.e. stub release [9]).

Interesting extensions include the consideration of node
failures, for which finding an efficient restoration ago-
rithm is challenging, as well as considering the impact of
multiple link failures. Finally, for the application to satel-
lite networks, it would also be interesting to examine the
impact of different cross-link architectures.
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