
ESC-TR-96-119 

Technical Report 
1035 

Scheduling Algorithms for Message 
Transmission Over the GBS Satellite System 

E. Modiano 

11 August 1997 

Lincoln Laboratory 
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

LEXINGTON, MASSACHUSETTS 

Prepared for DARPA under Air Force Contract F19628-95-C-0002. 

Approved for public release; distribution is unlimited. 

/\DA3ZS^7 



This report is based on studies performed at Lincoln Laboratory, a center for research 
operated by Massachusetts Institute of Technology. This work was sponsored DARPA/ 
ISO under Air Force Contract F19628-95-0002. 

This report may be reproduced to satisfy needs of U.S. Government agencies. 

The ESC Public Affairs Office has reviewed this report, and 
it is releasahle to the National Technical Information Service, 
where it will be available to the general public, including 
foreign nationals. 

This technical report has been reviewed and is approved for publication. 

FOR THE COMMANDER 

*& 
Gary 'Vutungian 
Administrative Contracting Officer 
Contracted Support Management 

Non-Lincoln Recipients 

PLEASE DO NOT RETURN 

Permission is given to destroy this document 
when it is no longer needed. 



MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
LINCOLN LABORATORY 

SCHEDULING ALGORITHMS FOR MESSAGE TRANSMISSION 
OVER THE GBS SATELLITE SYSTEM 

E. MODIANO 

Group 66 

TECHNICAL REPORT 1035 

11 AUGUST 1997 

Approved for public release; distribution is unlimited. 

LEXINGTON MASSACHUSETTS 



ABSTRACT 

This paper addresses scheduling algorithms for message transmissions over a satellite 
broadcast system. The system is expected to deliver messages of widely varied length. Our 
objective is to find a scheduling algorithm that exhibits good delay performance for messages of 
all sizes. We show that classical scheduling algorithms such as First-Come-First-Serve and 
Round-Robin perform poorly in this environment. We study two alternative schemes. The first 
gives preemptive priority to the message with the Shortest Remaining Processing Time (SRPT). 
This scheme is known to minimize overall average message delays, but results in 
disproportionately large delays for long messages. The second scheme serves messages based on a 
dynamic priority function, where the priority of a message varies based on how long the message 
has been in the system as well as its length. This scheme results in somewhat larger overall 
average delays, but it is more fair to long messages. 

111 



TABLE OF CONTENTS 

Abstract iii 
List of Illustrations vi 

1. INTRODUCTION 1 

2. SCHEDULING ALGORITHMS 3 

2.1 First-Come-First-Serve 3 
2.2 Round-Robin 3 
2.3 Bucket Scheduling 4 
2.4 Shorter Messages Preempt (SMP) 5 
2.5 Shortest Remaining Processing Time (SRPT) 5 
2.6 Dynamic Scheduling 5 

3. PERFORMANCE ANALYSIS 7 

4. CONCLUSION 15 

APPENDIX: A SIMULATION ANALYSIS OF THE BUCKET SCHEME 17 

REFERENCES 21 



LIST OF ILLUSTRATIONS 

Figure Page 
No. 

1 The BADD-GBS system 1 

2 A bucket scheduling scheme with round-robin server 4 

3 Delay vs. packet size for a load of 50%, dominated by small messages 9 

4 Delay vs. packet size for a load of 50%, dominated by large messages 9 

5 Delay vs. packet size for a load of 50%, evenly divided between large and 
small messages 10 

6 Delay vs. packet size for a load of 90%, dominated by small messages 10 

7 Delay vs. packet size for a load of 90%, dominated by large messages 11 

8 Delay vs. packet size for a load of 90%, evenly divided between large and 
small messages 11 

9 Delay vs. packet size for a load of 99%, dominated by small messages 12 

10 Delay vs. packet size for a load of 99%, dominated by large messages 12 

11 Delay vs. packet size for a load of 99%, evenly divided between large and 
small messages 13 

12 Delay vs. packet size for a load of 80%, evenly divided among four 
message sizes 13 

Al        The bucket scheme with two message sizes where large messages 
dominate the load 18 

A2        The bucket scheme with two message sizes where the load is evenly 
distributed between small and large messages 18 

A3        The bucket scheme with two message sizes where small messages 
dominate the load 19 

A4        The bucket scheme with four message sizes 19 

VII 



1.   INTRODUCTION 

This report addresses scheduling algorithms for message transmissions over a satellite broadcast 
system. This problem is motivated by the need to design a message transfer protocol for the Battlefield 
Awareness Data Dissemination (BADD) system. BADD is an information dissemination system that is 
being designed to efficiently transfer battlefield information over the "one-way" Global Broadcast 
Service (GBS). A view of the BADD-GBS system is shown in Figure 1. In this system, messages are sent 
over the Defense Information Systems Network (DISN) to the BADD/GBS transmit site, where they are 
scheduled for transmission. Once received at the BADD/GBS receive site, they are disseminated to their 
respective destination. The scheduling algorithms considered here focus exclusively on the transmission 
of messages over the satellite which takes place at the BADD/GBS transmit site. 

INFORMATION 
SOURCES 

BADD/GBS 
rev site 

DESTINATIONS 

Figure I.  The BADD-GBS System. 

Similar scheduling problems have been studied extensively in the context of processor sharing. 
Much of the theory behind scheduling algorithms has been developed in that context and applies well to 
the problem of scheduling of message transmissions. Our focus, here, however, is on finding scheduling 
algorithms that are suited to the BADD/GBS system. Therefore, in this paper we do not attempt to derive 
optimality scheduling results, but rather to describe and analyze, often through simulation, practical 
scheduling schemes that are suited to the BADD/GBS system. 

The BADD system is expected to deliver messages of widely varied length. Messages vary from 
the very short (e.g., 100 bytes) to extremely long image files that exceed several Gbits in length. It is this 
wide variability in message lengths that makes message scheduling both very important as well as a 
challenge. To illustrate the significance of the problem, consider what happens when a First-Come-First- 
Serve (FCFS) service discipline is employed and a short packet arrives immediately after a very long 1 
Gbyte file. When operating over a 10 Mbps channel, the short message (which may represent a short 
status message or a protocol control packet) will have to wait almost 15 minutes before it is delivered, at 
which point it may be totally outdated. 



The situation depicted above may be remedied by a simple priority scheduling where these very 
short messages receive preemptive priority over the long messages. However, while such a priority 
mechanism may work well with just two file sizes of extreme values it may not be easy to extend to more 
general cases. For example, how would one handle a 100 Mbit file when it arrives after a 1 Gbyte file; 
should it have to wait the 15 minutes? If not, would it be fair to interrupt the long file with for almost two 
minutes in order to transmit the shorter file? 

A first look at scheduling algorithms was taken in reference [1]. Three scheduling algorithms 
(First-Come-First-Serve, Round-Robin, and Priority Transmissions with interruptions) were compared in 
terms of efficiency, delay and storage requirements. In this note we extend the results from [1] to other 
scheduling algorithms and by considering additional performance criteria. 

Scheduling algorithms can be measured against a number of performance criteria. The most 
obvious is average delay; both overall average delay as well as average delay offered to different traffic 
classes. Another important performance measure is "fairness". As depicted in the previous paragraph a 
FCFS scheduling policy would be unfair to short files. While there is no universal definition for fairness, 
a scheduling algorithm can be considered fair if the service time received by a file is proportional to the 
length of the file. Yet another, less obvious, performance measure is the variability in delay between 
messages of similar size. In this report we describe a number of scheduling algorithms and compare their 
performance using the measures described above. 

In addition, there are other considerations for a scheduling algorithm. For example, certain 
messages may convey timely information, such as protocol control information, that must be delivered 
within certain time limits. In this note we do not address this problem explicitly, but only point out that 
such messages may be best served by giving them higher priority over other messages. Another 
consideration for messages transmitted over military communication resources is the military precedence 
class. However, again, we do not address this issue explicitly but rather only consider the problem of 
scheduling within a precedence class. 

Finally, as a matter of practical interest, the scheduling algorithm has to be implemented at the 
BADD/GBS transmit site. This approach is primarily dictated by the need to be compatible with the 
current GBS system where messages are first transferred to the GBS server and then are scheduled for 
transmission. As a first design, we view this scheduling protocol as a higher layer protocol (e.g., 
application layer), where the application, in this case the BADD message transfer protocol, is responsible 
for scheduling the message transmissions over a single GBS link. In the future, it will be interesting to 
consider scheduling algorithms that schedule messages at the network layer, beginning at their source all 
the way to their destination, rather then only over the GBS link. 



2.   SCHEDULING ALGORITHMS 

In this section, a number of scheduling algorithms are described. These algorithms can schedule 
the messages based on message characteristics such as length, the amount of time that the message has 
been in the system and the amount of service so far received by the message. The majority of algorithms 
that are considered schedule messages once, when they arrive, based on message characteristics. Such 
scheduling algorithms are called "static" because the priority of a message does not change in time. Also 
considered are scheduling algorithms that alter a message's priority value based on the amount of time 
that the message has spent in the system, or the amount of service already received by the message. 
These scheduling algorithms are called "dynamic" for the obvious reason. Finally, scheduling algorithms 
can be either preemptive, where message transmissions can be interrupted by higher priority messages, 
or non-preemptive. Both preemptive and non-preemptive algorithms are considered. 

2.1 First-Come-First-Serve 

A simple and intuitive scheduling algorithm is a FCFS algorithm. FCFS is a non-preemptive, static 
algorithm. In FCFS, messages are sorted based on their time of arrival and are served, to completion, in 
order of arrival. As discussed in the introduction, FCFS has the obvious shortcoming of being unfair to 
short messages. This will be shown explicitly in the next section. One interesting fact about FCFS 
scheduling is the simplicity of the analysis. FCFS scheduling algorithm can be modeled using an M/G/l 
queueing system, for which closed form results on average delays are readily available in closed form 
[2,3]. These FCFS results can be used as a basis of comparison for the various algorithms. Eq.(l) gives 
the average message delay for a system using FCFS scheduling. 

XX2       — 
£>       = + X (1) 

FCFS     2(1-p) 

where X is the message service time (e.g., transmission time), / is the message arrival rate and r is the 
channel utilization. Therefore the above expression gives the average message delay in terms of the first 
and second moments of the message transmission times. Of course, the message transmission times are 
simply the message length divided by the transmission rate of the channel. 

2.2 Round-Robin 

In a round-robin, scheme messages are broken down into small "cells" (e.g., ATM cells) and are 
served one cell at a time in a round-robin fashion, rotating among the messages. Inherently, round-robin 
schemes are preemptive, though not based on some pre-defined priority. A round-robin scheme 
overcomes the shortcoming of FCFS because the short message would not have to wait for the complete 
transmission of a long message. However, round-robin has other shortcomings in that it results in 
unnecessarily large delays in situations where there are many messages in the system. More about the 
performance of round robin will be said in the next section. Just as with FCFS, average delay results for 
round-robin scheduling are available in closed form [4]. Eq.(2) gives the average delay for round-robin 
scheduling. The "fairness" of round-robin scheduling can be immediately seen from the equation where 
the average delay is clearly proportional to the message length. 



DRR = 1-p 
(2) 

where again/) is the channel utilization andXis the message transmission time. 

2.3     Bucket Scheduling 

Bucket scheduling schemes are a variant of round-robin schemes which attempt to rectify the 
problem that arises when pure round-robin is used with a large number of files. In bucket scheduling, 
messages are sorted into buckets based on their size and the buckets are served in a round-robin manner. 
Once again the messages are divided into cells and the buckets are served a number of cells at a time. 
The number of cells served from each bucket can vary between buckets. A general bucket scheme is 
shown in Figure 2. Each of the buckets contains messages of a given size or range of sizes and the server 
serves each bucket in a round robin fashion; serving Di cells from bucket i. Bucket schemes are of 
particular interest because in the preliminary GBS system a bucket scheme was employed. That scheme 
used 3 buckets, one for urgent data, one for short messages (less than 50Mbytes) and one for messages 
larger than 50Mbytes. The server dwelled on the urgent bucket for up to 1000 cells and on the short and 
long buckets for 2 and 1 cells respectively. This in effect gave the urgent data almost preemptive priority 
over the rest of the data. 

The difficulty in designing a bucket scheme is that there are so many possibilities for the number 
of buckets, the range of packet sizes that are input to the buckets and the dwell times on the buckets. 
Also, unfortunately, bucket schemes are difficult to analyze in closed form and their analysis requires the 
use of simulation, further limiting our ability to gain insight into the system. As will be discussed in the 
next section we were able to obtain some idea about the performance of bucket scheme by considering a 
limited number of cases for which we could find the ideal bucket scheme through the use of simulation. 
More on the performance of these schemes will be said in the next section. 

FILES 
SERVER 

ROUND-ROBIN 

DWELL ON BUCKET n FOR Dn CELLS 

Figure 2. A bucket scheduling scheme with round-robin server. 



2.4 Shorter Messages Preempt (SMP) 

SMP is a simple preemptive priority scheme where shorter messages receive preemptive priority 
over long messages. In this scheme all messages are broken down into cells and every cell is "tagged" 
with a priority value that is equal to the length of the original message to which the cell belongs. The 
server then serves the cells, one at a time, giving highest priority to the cell with the smallest tag value. 
This, in effect, amounts to giving shorter messages preemptive priority over longer ones. 

The performance of this scheme can be approximated with that of a pure preemptive priority 
scheme. A pure preemptive priority scheme is one where the shorter messages would preempt longer 
ones as soon as they arrive. This scheme is slightly different because the preemption occurs only at the 
end of transmission of a cell. With cell sizes that are relatively small compared to the message size the 
analysis of pure preemption provides a good approximation to the cell based scheme. The delay results 
for pure preemptive priority are given in [2,3]. 

Suppose that messages arrive in finite number of length's Xj Xn and arrival rates // ln   Also 
assume without loss of generality that Xj < X2 <....< Xn then it is clear that packets of length Xj have 
higher priority than packets of length X; when i < j and lower priority when i > j. The average delay, 
including service time, for messages of length Xfr is given by, 

D. = ^— ^ '  (3) 
*    (1-P,— -/v.Xl-P,— -Pk) 

where p, = XtX, and Rk =2_, ktXf 12. In Section 3 we will apply this result to the analysis of the 

SMP scheme. 

2.5 Shortest Remaining Processing Time (SRPT) 

A slight variation on the SMP scheme which is known to result in better performance, is a 
scheduling algorithm that serves the message with the shortest remaining processing (in this case 
transmission) time. With this scheme, if a message is being served and a shorter message arrives, the 
longer message will continue to receive service if the amount of time remaining to completion is smaller 
than the shorter message. It can be shown that this scheme minimizes overall average delay for all 
scheduling schemes [4], However, since this scheme is very similar to SMP and is known to result in 
smaller delays, we can use the results of SMP scheduling to provide an upper-bound on the delay for the 
SRPT scheme. 

2.6 Dynamic Scheduling 

Dynamic scheduling schemes alter the message's priority value based on how long it has been in 
the system and how much service it has received. The SRPT scheme described above is a simple 
example of a dynamic scheme because a message priority increases as it is being served. The dynamic 
scheme that we consider here is slightly more elaborate. A "priority" function is used to assign messages 



their priority values. At each iteration of the algorithm, the scheduler serves one cell from the highest 
priority message and recalculates the priority of all of the messages. 

The difference between dynamic scheduling schemes is in the structure of the priority function 
used. We examined two priority function, both of which take into account the length of the message and 
the amount of time that the message has been in the system. The two priority functions q\(t) and q2(t) 
are given by eq.(4) and eq.(5) respectively. 

ql(t) = —r (4) 
t-x 

I 
q2{t) = {t-x)-l-s (5) 

where / is the current time, t is the message arrival time, / is the message length and s is the amount 
of service already received (all measured in cells). As can be seen eq.(4) and eq.(5) both functions give 
higher priority to short messages and increase the priority for messages that have been in the system for a 
long time. In addition, the second function also reduces the priority of messages that already have 
received some service. A more complete description of these dynamic scheduling schemes is given in 
[5]. 

Unfortunately, the performance of these schemes cannot be easily computed analytically; as a 
result we resorted to simulation to analyze the behavior of these schemes. Complete details of the 
simulation results are also available in [5]. In Section 3 we summarize these performance results and 
compare them to the performance of the static schemes. 



3. PERFORMANCE ANALYSIS 

In this section we study the behavior of the different scheduling schemes in terms of average 
delays. For three of the five schemes we were able to obtain closed form expressions for delay. However, 
the bucket schemes and the dynamic schemes were not analytically tractable. To analyze those we 
resulted to simulation. The simulation was written both in plain C code as well as using the Opnet and 
BONES network simulation tools. The simulation was performed in these different environments 
primarily to compare the environments and evaluate available commercial simulation products. Here we 
will just present the simulation results. 

All of the scheduling algorithms described in Section 2, with the exception of the bucket scheme, 
can be analyzed either in closed form expression (FCFS, SMP, RR) or through simulation (Dynamic 
scheme). For the bucket scheme the analysis is complicated by the choice of parameters, such as the 
number of buckets and the dwell on each bucket. In this simplified situation, with only two traffic 
streams, an obvious choice is to use two buckets; one for large messages and one for small messages. 

Unfortunately, there is no simple way to determine the optimal dwell setting on each bucket. 
Therefore we simulated the bucket scheme with a number of different dwell settings on the buckets in an 
effort to find the dwell settings that achieves the best performance. A summary of the simulation results 
is presented in the appendix. What we generally found was that the best dwell setting for a scheme with 
two buckets is to dwell for much longer on the short message bucket than on the long message bucket. A 
dwell setting of 10:1 or 100:1 almost always yielded the best results. One interesting observation is that 
dwelling on the long message bucket for more than one cell almost always yielded longer average delays. 
This is because it resulted in larger delays for the short messages. In general, a scheduling scheme that 
serves short messages first results in better average delay. Essentially this is what we found here as well. 
The results presented for the bucket scheme, here, only show the performance with the best dwell setting 
that we could find. 

In Section 2 we presented 2 possible priority functions for use with the dynamic scheme. Our 
simulation results show that the priority function of eq.(4) was generally superior to that of eq.(5). 
Therefore here we only show the performance of the dynamic scheme using the priority function of 
eq.(5). The results of the simulation study of the dynamic scheme with the two different priority 
functions are presented in [5]. An interesting extension to this work would be to study the performance 
of the dynamic scheme with various other priority functions. 

The primary objective of the analysis is to examine the performance of the scheduling algorithms 
when the mix of incoming traffic consists of messages of widely varied sizes. To obtain insight into this 
behavior we start by considering a situation where only two message sizes exist. Small messages 
(consisting of one cell) and large messages (consisting of 100 cells). We then proceeded to evaluate the 
performance of the schemes under three channel loading conditions; medium loading of 50%, high 
loading of 90% and very high loading of 99%. Results for light loading conditions are not presented 
because under light loading conditions the delay at the server is minimal and therefore the performance 
of the scheduling algorithm is of little consequence. For each of the loading situation we considered three 
traffic mixes. An even mixing where half the load comes from small messages and half from large 



messages; a mixing where most of the load is from small and finally a mix where most of the load is 
from large messages. In addition we considered a situation with an 80% load and files of 4 different 
sizes. All together this amounts to 10 different loading combinations. The results obtained for these 
different loading situations and their interpretations are shown in Figures 3 to 12. 

Figures 3-5 compare the performance of the algorithms under medium loading conditions (50% 
load). We see from the figures that the SMP, bucket and dynamic schemes all perform essentially the 
same. The RR and FCFS schemes perform substantially worse. This is because in the latter two schemes 
short messages, which dominate the load, sometimes have to wait for long messages. This results in 
longer average delays. Notice, however, that FCFS results in substantially better delay results for long 
packets. Also, results for FCFS are omitted in certain situations because they are far worse than the other 
schemes and the large delay numbers are far off the scale and cannot be displayed on the graph. 

Figures 6-8 compare the performance of the algorithms under heavy loading conditions (90% 
load). The results are very similar to those obtained under medium loading. The SMP, bucket and 
dynamic schemes generally perform better than the FCFS and RR schemes. The dynamic scheme 
performed slightly worse for small packets when there is a heavy load of large packets. This is because 
when a large packet is in the buffer for a long time it may receive priority over small packets, resulting in 
large delays for small packets. FCFS performs best for long packets, but has an overall high average 
delay. This is because it offers essentially the same performance to small and large messages and while 
this delay is good for the large messages it is very high for short messages. Again, in many instances we 
omit the FCFS results because the large delay offered to short packets is way off the scale and cannot be 
displayed on the graph. 

Figures 9-11 compare the algorithms under very heavy loading (99% load). Under extremely 
heavy loading conditions overall delays are relatively large. However, the results obtained are still 
interesting because they give us insight into the behavior of the system at a time when the system is 
generally busy. Under these circumstances the difference between scheduling schemes is more 
noticeable. What we see from the figures is that RR and FCFS yield an overall poor performance. Again 
the SMP, bucket and dynamic schemes perform similarly and the dynamic scheme, while overall is sub- 
optimal, offers a compromise between a SMP scheme which is biased toward small messages and a 
FCFS which is biased toward large messages. 

Finally Figure 12 compares the performance of the algorithm with four different message sizes 
(1,10,100, and 1000 cell messages) and an 80% load evenly divided between the messages. For all 
messages except the largest, the SMP scheme performed best. The bucket scheme was almost as good, 
but we note that finding an optimal dwell setting was non trivial. In this case a dwell setting of 100 on 
the small bucket, 4 on the bucket of 10 cell messages, 2 on the bucket of 100 cell messages and a single 
dwell on the 1000 cell messages bucket. This setting was determined by simulating a large number of 
alternative settings. Another interesting observation is that the dynamic scheme, although not optimal in 
overall delay, offers fairness in the sense that all messages receive a similar transfer rate. This fairness is 
also present in the RR scheme, but there the overall performance is very poor. 



> eg 

So 
• SMP 

n Bucket (10:1) 

n Dynamic 

• RR 

• FCFS 

MESSAGE SIZE 

LARGE 
(X100) 

S = 1 CELL (0.49 LOAD) 
L = 100 CELLS (0.01 LOAD) 

Figure 3. Delay vs. packet size for a load of 50%, dominated by small messages. The dwell setting 
for the bucket scheme is shown in the legend as (10:1) representing a dwell of 10 cells 

on the small message bucket and 1 cell on the large message bucket. 

HI LU 
D ^ O 

AVG 
(X100) 

SMALL 

MESSAGE SIZE 

LARGE 
(X100) 

• SMP 
c Bucket (10:1) 

• Dynamic 

• RR 

SFCFS 

S = 1 CELL (0.01 LOAD) 
L = 100 CELLS (0.49 LOAD) 

Figure 4. Delay vs. packet size for a load of '50%, dominated by large messages. 



< H 
LU UJ 

o 

AVG SMALL LARGE 
(X100) 

• SMP 

D Bucket (10:1) 

• RR 

• Dynamic 

MESSAGE SIZE S = 1 CELL (0.25 LOAD) 
L = 100 CELLS (0.25 LOAD) 

Figure 5. Delay vs. packet size for a load of 50%, evenly divided between large and small messages. 

AVG SMALL 

MESSAGE SIZE 

LARGE 
(X100) 

• SMP 

• Bucket (10:1) 
• RR 

SFCFS 

• Dynamic 

S = 1 CELL (0.89 LOAD) 
L = 100 CELLS (0.01 LOAD) 

Figure 6. Delay vs. packet size for a load of 90%, dominated by small messages. 

10 



if) 

it 

• SIMP 

• Bucket (10:1) 

• RR 

• FCFS 

• Dynamic 

AVG 
(X100) 

SMALL LARGE 
(X100) 

PACKET SIZE S = 1 CELL (0.01 LOAD) 
L = 100 CELLS (0.89 LOAD) 

Figure 7. Delay vs. packet size for a load of 90%, dominated by large messages. 

So 

AVG SMALL LARGE 
(X100) 

MESSAGE SIZE 

• SMP 

• Bucket (10 1) 

• RR 

• Dynam ic 

S = 1 CELL (0.45 LOAD) 
L = 100 CELLS (0.45 LOAD) 

Figure 8. Delay vs. packet size for a load of 90%. evenly divided between small and large messages. 

II 



AVG SMALL 

MESSAGE SIZE 

LARGE 
(X100) 

• SMP 

• Bucket (1000:1) 

• RR 

mFCFS 

a Dynamic 

S = 1 CELL (0.98 LOAD) 
L = 100 CELLS (0.01 LOAD) 

Figure 9. Delay vs. packet size for a load of 99%, dominated by small messages. 

100 
90 

80 

70 

60 

~ 50 
>• w 

<;j  40 
go30- 

20 

10- 

0 

H 

• SMP 

DBucket(10:1) 

• RR 

• Dynam ic 

mFCFS 

AVG                SMALL              LARGE 
(X100)                                           (X100) 

MESSAGE SIZE 
S 
L 

= 1 
= 1( 

CELL (0.01 LOAD) 
)0 CELLS (0.98 LOAD) 

Figure 10. Delay vs. packet size for a load of 99%, dominated by large messages. 

12 



Figure 11. Delay vs. packet size for a load of 99%, evenly divided between small and large messages. 

rig 

• SWP 

n Bucket (100:42:1) 

• RR 

• Dynamic 

AVG     1 CELL       10 100 1000 
CELLS   CELLS    CELLS 
(X10)     (X100)    (X1000) 

ALL SIZES RECEIVE 0.2 LOAD 

Figure 12. Delay vs. packet size for a load of 80%. evenly divided among four message sizes. 

13 



4. CONCLUSION 

We evaluated a number of scheduling schemes. Of those, Short-Message-Preempt (SMP) generally 
offered the best average delay. The bucket scheme also resulted in good delays, but we found it difficult 
to optimally design. The dynamic scheme sometimes resulted in good average delays and appears to be 
more "fair" in the delay that it offers messages of different sizes; however, it offered inconsistent 
performance and for some traffic conditions it results in very large delays. Classical schemes such as 
round-robin and first-come-first-serve generally resulted in very large delays. 

A simple variation of SMP that is known to improve on its performance is one that always serves 
the message with the shortest remaining processing time (SRPT). The SRPT scheme is known to 
minimize overall average delays over all possible scheduling schemes. The problem with both the SMP 
and SRPT schemes is that they can be unfair to the larger messages. However, none of the other schemes 
that we analyzed was able to improve performance for long messages without significantly increasing 
overall average delays. Furthermore, in network traffic, it is likely that short messages contain timely 
control information or interactive traffic; and therefore, reducing the short message delay can have added 
benefits in terms of network performance. We therefore believe that the SRPT scheme should be 
considered for scheduling messages over the BADD/GBS system. 

The results for the bucket scheme were good when the optimal bucket settings were used. 
However, it is not clear how to optimally design such a scheme. In a real system with a wide range of 
packet sizes it is not obvious how many buckets should be used and how to group messages into buckets. 
Further, it is difficult to find optimal dwell settings, and even if optimal dwell settings can be found, they 
vary based on the traffic load and traffic characteristics, so it is not possible to use one setting that 
performs well under all circumstances. 

The dynamic scheme has the promise of yielding good results for all traffic types. However, as it is 
defined now, it is clearly sub-optimal. It may be possible to make improvements to the dynamic scheme 
by altering the priority function. One possible alteration to the priority function is to account for cells 
already served. Another possibility is to change the slope of the function. Further work in this area would 
be needed in order to make the dynamic scheme an attractive alternative to the SMP scheme. 

Many aspects of the problem still remain to be looked at. The performance of the scheduling 
schemes under a more realistic and varied traffic load still needs to be examined. Other delay 
characteristics, beyond average delays, such as delay deviations need to be studied as well. While this 
report focused on average delay performance; other performance measures may be also be of interest. 
For example, some of the transmitted information contains timely information which may be 
meaningless if it is delivered late. Perhaps it would be of interest to design a scheduling algorithm which 
schedules transmission based on their transmission deadline. For such a scheme the performance criteria 
of interest would be the ratio of messages which miss their transmission deadline rather than average 
delay. The objective of the scheme would, of course, be to minimize this ratio. 

15 



APPENDIX: A SIMULATION ANALYSIS OF THE BUCKET SCHEME 

In this section we present a summary of the simulation analysis of the bucket scheme. In analyzing 
the bucket scheme we primarily focused on a system with two message sizes. One of 1 cell and the other 
of 100 cells. We used a bucket scheme with two buckets and simulated the scheme with various well 
combinations. Examples of our results are shown in Figures A1-A4. Also, in Figure A4 we show the 
results four a bucket scheme with four message sizes and four corresponding buckets. The analysis 
generally showed that the best results are obtained when we dwell for a longer time on the small message 
bucket. This is analogous to giving short messages preference. Some interesting observations can be 
made. For example, when the large messages dominate the load, very little can be done to affect the 
overall average delay. This is because the large message traffic dominates the overall average delay and 
there is nothing that can be done to reduce it. Still in that case short messages benefit from a longer dwell 
on the short message bucket. When the load is equally mixed between short and long messages or when 
the short messages dominate, the effect of giving short messages a longer dwell can be seen on the 
overall average delay. In general, a longer dwell on the short message bucket reduces average delay; but, 
of course, the effects diminish with increasing dwell time. Another important observation is that when 
the dwell on the long message bucket is increased (even to a dwell of 2 cells), the overall average delay 
increases. This is because of the increased delay that the short messages encounter in waiting for the 
added dwell on the long message bucket. So our basic conclusion for a system with 2 buckets is to dwell 
for one cell on the long message bucket and for a much larger number of cells (100, or 1000) on the short 
message bucket. 

Obtaining optimal dwell times for a system with more than two buckets gets rather complicated. In 
Figure A4 we show the performance of a system with four message sizes. In this case, after an extensive 
search of different settings, the best setting that we found was (100,5,2,1). This setting is not at all 
obvious, and even small deviations from it result in degraded performance. Unfortunately, for a system 
with multiple buckets we were not able to obtain a general strategy for setting the bucket dwell times 
which is one of the reasons that we find the bucket scheme difficult to generalize. 

17 



> 
< 
_1 
LU 
Q 

Q 
LU 
N 

cr o z 

10000 

1000 

100 

1(1:1) 

D(10:1) 

• (100:1) 

• (1:10) 

^ 
AVG 1 CELL 100 

CELLS 
LARGE 0.98 LOAD 
SMALL 0.01 LOAD 

Figure Al. The bucket scheme with two message sizes where large messages dominate the load. 
A dwell setting of(xl:x2), shown in the legend, represents a dwell ofx cells on the 

small message bucket and y cells on the large message bucket. 

100 

> 
< 
_J 
LU 
Q 

Q 
LU 
N 

DC 
o 
z 

• (1:1) 
a (10:1) 
• (100:1) 
• (1:10) 
D (10:10) 

AVG 1 CELL 100 
CELLS LARGE 0.49 LOAD 

SMALL 0.49 LOAD 

Figure A2. The bucket scheme with two message sizes where the load is 
evenly distributed between small and large messages. 

IS 



100 

C/) 

< 
HI 
Q 
D 
in 
N 

o 

1(1:1) D(10:1) 

1(100:1)    • (1000:1) 

1(1:10)      • (10:10) 

LARGE 0.01 LOAD 
SMALL 0.98 LOAD 

Figure A3. The bucket scheme with two message sizes where small messages dominate the load. 

1000 

• (1:1:1:1) 

• (1000:100:10:1) 

13(100:1:1:1) 

• (10:5:3:1) 

• (10:10:10:10) 

• (100:10:10:10) 

AVG 1    100   10K   1M 
CELL CELLS CELLS CELLS 

TOTAL LOAD 90% 

Figure A4. The bucket scheme with four message sizes. An 80% load is evenly distributed between 
the four message sizes. A dwell setting of(xI:x2:x3:x4) represents a dwell ofxl cells on the I cell bucket. 

x2 cells on the 100 cell bucket x3 cells on the 10K cell bucket and x4 cells on the 1M cell bucket. 

14 



REFERENCES 

[ 1 ] Steven Bernstein, unpublished manuscript. 

[2] Bertsekas and Gallager, Data Networks, Prentice Hall, 1992. 

[3] Kleinrock, Queueing Systems, Vol. 1, John Weily and Sons, 1976. 

[4] Kleinrock, Queueing Systems, Vol. 2, John Weily and Sons, 1976. 

[5] Mark Ibanez, unpublished manuscript. 

21 



REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 0704-0188 

Public reporting burden (or this collection ol information is estimated to average 1 hour per response, including the time tor reviewing instructions, searching existing data sources, gathering and maintaining the data needed, 
and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington 
Headquarters Services. Directorate tor Information Operations and Reports. 1215 Jefferson Davis Highway. Suite 1204. Arlington, VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Protect 
(0704-0188). Washington. DC 20503. 

1.  AGENCY USE ONLY (Leave blank) 2.   REPORT DATE 
11 August 1997 

3.   REPORT TYPE AND DATES COVERED 
Technical Report 

4.  TITLE AND SUBTITLE 

Scheduling Algorithms for Message Transmission Over the GBS Satellite System 

5.   FUNDING NUMBERS 

C — F19628-95-C-0002 
6.  AUTHOR(S) 

Eytan Modiano 

7.   PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Lineoln Laboratory, MIT 
244 Wood Street 
Lexington, MA 02173-9108 

8.   PERFORMING ORGANIZATION 
REPORT NUMBER 

TR-1035 

9.   SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

DARPA/IS0 
3701 N. Fairfax Drive 
Arlington, VA 22203-1714 

10.   SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

ESC-TR-96-119 

11. SUPPLEMENTARY NOTES 

None 

12a.   DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

12b.   DISTRIBUTION CODE 

13.   ABSTRACT (Maximum 200 words) 

This report addresses scheduling algorithms for message transmissions over a satellite broadcast system. This 
problem is motivated by the need to design a message transfer protocol for the Battlefield Awareness Data Dissemi- 
nation (BADD) system, which is being designed for the efficient transfer of battlefield information over the "one- 
way" Global Broadcast Service (GBS). 

Much of the theory behind scheduling algorithms has been developed in the context of processor sharing and 
applies well to the problem of scheduling message transmission. The focus here, however, is on finding scheduling 
algorithms that are suited to the BADD/GBS system. Therefore, this paper does not attempt to derive optimality 
scheduling results, hut rather to describe and analyze, often through simulation, practical scheduling schemes that 
are suited to the BADD/GBS system. 

14.   SUBJECT TERMS 15. NUMBER OF PAGES 
34 

16. PRICE CODE 

17.   SECURITY CLASSIFICATION 
OF REPORT 

Unclassified 

18.   SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19.   SECURITY CLASSIFICATION 
OF ABSTRACT 
Unclassified 

20. LIMITATION OF 
ABSTRACT 
Same as Report 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by AMSI Std. 239-18 
298-102 


