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An adaptive algorithm for optimizing the packet size used in
wireless ARQ protocols

Eytan Modiano ∗

MIT Lincoln Laboratory, Lexington, MA 02420-9108, USA

We develop an algorithm that allows an ARQ protocol to dynamically optimize the packet size based on estimates of the channel
bit-error-rate. Our algorithm is particularly useful for wireless and satellite channels where the bit-error-rates tend to be relatively high
and time variable. Our algorithm uses the acknowledgment history to make estimates of the channel bit-error-rate, based on which the
optimal packet size can be chosen. We develop a Markov chain model for the analysis of the system, under static channel conditions,
and show that the algorithm can achieve close to optimal performance using a history of just 10,000 bits. We also use the Gilbert–Elliott
two-state Markov channel to model dynamic channel conditions. We show, through simulation, that the algorithm performs well even
under rapidly changing channel conditions. Finally, we discuss a maximum likelihood approach for choosing the packet size, which
performs almost optimally but is much easier to implement.

1. Introduction

Automatic Repeat Request (ARQ) protocols are de-
signed to remove transmission errors from data communi-
cations systems. When used over relatively high bit-error-
rate links (e.g., 10−5 or higher) such as wireless or satellite
links, their performance is sensitive to the packet size used
in the transmission. This is because when too large a packet
size is employed, there is an increased need for retransmis-
sions, while too small a packet size is inefficient because
of the fixed overhead required per packet. When an ARQ
scheme is to be used at the link layer over a relatively high
error-rate link, the packet size should be chosen based on
the error-rate. When a perfect retransmission algorithm is
employed,1 the optimal packet size to be used by the data
link protocol is given by [5,8]

kopt =
−h ln(1− p)−

√
−4h ln(1− p) + h2 ln(1− p2)
2 ln(1− p)

,

(1)
where p is the known channel bit-error-rate and h is the
number of overhead bits per packet.2 Unfortunately, how-
ever, it is often not possible to know the channel bit-error-
rate in advance; further, for some channels the bit-error-
rate varies with time. This is particularly the case for radio
and satellite channels where signal fading and interference
are unpredictable and time varying. There has been some
work on developing link layer ARQ schemes that are par-
ticularly efficient for high-error-rate channels [6,7]. In [9] a
Go-Back-N ARQ scheme is developed that alters the mode

∗ Opinions, interpretations, conclusions and recommendations are those of
the author and are not necessarily endorsed by the United States Air
Force.

1 A perfect retransmission algorithm is one that only retransmits packets
that are in error and can continuously transmit new packets as long as no
errors occur. The selective repeat protocol [1] is an example of a perfect
retransmission algorithm.

2 These bits are used for control, error detection, and framing (e.g., flags).

of operation based on estimates of channel conditions. The
approach in [9] uses a multiple copy transmission mode
when the channel appears to be error prone and ordinary
Go-Back-N when the channel conditions appear to be good.
Another common approach to this problem is to vary the
channel transmission rate based on the quality of the link, so
that a constant, acceptable, bit-error-rate is obtained. Here
we are concerned with situations where that approach is not
available and we focus on adapting the size of the packets
based on estimates of the channel conditions.

Designers of data link protocols for wireless channels
typically choose a packet size that would work with the
worst acceptable bit-error-rate. Figure 1 shows the opti-
mal packet size for different bit-error-rates. As can be seen
from the figure, with a bit-error-rate of 10−3 the optimal
packet size is about 200 bits. If a much larger packet size
were used the efficiency of the protocol would drop dra-
matically. Therefore, in order to operate at a bit-error-rate
of 10−3 a packet size of a few hundred bits should be used.

Figure 1. Optimal packet size vs. bit-error-rate.
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Unfortunately this packet size makes inefficient use of the
channel when the channel bit-error-rate is much lower.

The algorithms developed in this paper choose the packet
size based on the acknowledgment history of the most re-
cently transmitted packets. Given the number of packets
that required retransmission, an estimate of the channel bit-
error-rate is made, based on which a packet size is cho-
sen to maximizes the expected efficiency of the data link
protocol. All of the algorithms in this paper assume that
the sender uses a framing mechanism that accommodates
variable packet sizes, as is the case for most link-layer
framing mechanisms used in practice [1]. For example,
the High-Level Data Link Control protocol (HDLC) uses
flags for framing and the packet size can be arbitrary [8].
The receiver determines packet boundaries by searching for
successive flags in the data. Hence, no additional commu-
nication is required between the sender and the receiver for
the purpose of coordinating the packet size. Of course, a
framing overhead is always incurred and is accounted for
as a part of the fixed packet overhead (h).

This paper is organized as follows: In section 2 we de-
scribe an algorithm for choosing the packet size in such a
way that the efficiency of the protocol is maximized. In
section 3 we develop a Markov chain analysis for the algo-
rithm assuming static channel conditions and in section 4
we analyze the performance of the algorithm using a time
varying channel model. Finally, in section 5, we discuss
a simpler algorithm for choosing the packet size based on
maximum likelihood estimates of the channel bit-error-rate.

2. A maximum efficiency approach to choosing the
packet size

Given the retransmission history we wish to choose the
packet size such that the conditional efficiency of the pro-
tocol is maximized. To do so we must first derive an ex-
pression for the efficiency of the ARQ protocol given the
retransmission history. The expressions derived in this sec-
tion assume the use of an “optimal” ARQ protocol in that
only packets containing errors are retransmitted. This as-
sumption makes for a reasonable approximation when using
a protocol that attempts to retransmit only packets contain-
ing errors, such as the Selective Repeat Protocol (SRP) [1].
For a given channel error rate p, the efficiency of a protocol
that uses packets of size k is given by [5]

EFF =

(
k

k + h

)
1

(1− p)−(k+h)
, (2)

where k is the number of information bits, h is the number
of header bits in the packet and p is the channel bit-error-
rate. The first term of the above expression represents the
ratio of information bits to total bits in a packet, while
the second term represents the average number of trans-
mission attempts per packet. We can express the expected
efficiency of the protocol given, R, the number of retrans-
mission requests out of the last M packet transmissions, by
averaging the above expression over all possible values of

p and using the conditional distribution of p given R (as-
suming that p is constant over the period of interest). The
resulting expression is given by

EFFR(k) =

∫
p

k(1− p)k+h

(k + h)
P (p | R), (3)

where P (p | R), is the conditional probability of p given
that R out of the last M packets required retransmission.
We now wish to choose the value of k that maximizes
EFFR. To do so we must first express the conditional prob-
ability of p given R.

The conditional probability of p given R, P (p | R), can
be expressed as follows:

P [p | R] =
P [p,R]
P [R]

=
P [R | p]P [p]

P [R]
. (4)

Solving for the above conditional probability requires
knowledge of a prior distribution of p. In the absence of
a prior, we assume a uniform prior; that is P [p] = 1. In-
tuitively this amounts to having no prior knowledge of p.
This approach, in essence, is the same as a maximum like-
lihood approach where a uniform prior is assumed, except
that here we associate a cost function with the estimates
of p. With this approach we get

P [R] =

∫
p

P [R | p]P [p] =

∫
p

P [R | p]

and so

P [p | R] =
P [R | p]∫
p P [R | p]

. (5)

Given p, the probability that R packets contain errors and
therefore require retransmission is the probability that R
out of M packet are in error. Since packet errors are in-
dependent from packet to packet, this probability can be
expressed according to the binomial distribution with para-
meter E. E is the probability that a packet contains errors
and is given by

E = 1− (1− p)k̂+h, (6)

where k̂ is the packet size used in the previous M trans-
missions. Therefore P [R | p] can now be expressed as

P [R | p] =

(
M

R

)
ER(1−E)M−R. (7)

Combining equations (3)–(7), we can express the expected
efficiency of the protocol for a given value of R by

EFFR(k) =

∫
p

[
k(1− p)k+h

(k + h)
×

(
M
R

)
ER(1−E)M−R∫

p

(
M
R

)
ER(1−E)M−R

]
.

(8)
It is now possible to choose the value of k, the block size
to be used in future transmissions, so that the efficiency of
the protocol is maximized. This can be done by choosing
the value of k that maximizes equation (8) for a value of R
that is equal to the number of retransmission requests that
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Figure 2. Optimal packet size based on retransmission history of the 50
previous 1000 bit packets.

occurred during the previous M transmissions. Of course,
the value of E used in equation (8) should be chosen in
accordance with equation (6) using the packet size k̂ used
in the previous M transmissions.

A general, closed form, solution to the above maximiza-
tion problem is difficult to obtain; however, for specific val-
ues of M , R and k̂ equation (8) can be solved numerically.
An optimal value for k can now be found using numerical
search algorithms. Since the numerical evaluation of this
integral is very intensive, a comprehensive search for the
optimal value of k is not practical. Instead, a restricted
search using select values for k can be performed. Such a
search, for example, can consider values of k that are a mul-
tiple of 100; thereby significantly reducing the complexity
of the search. Such a restricted search has little impact on
the performance of the protocol since values of k that are
within 100 bits of the optimal block size should result in
near-optimal performance.

As an example, in figure 2 we plot the optimal packet
size when a history of 50 previously transmitted 1000 bit
packets is considered.

As can be seen from the figure, when the previous fifty
transmissions resulted in no errors the packet size can be
increased to 1500 bits. When one, two or three errors oc-
curred the packet size can be kept at 1000 bits and when
more than three errors occur the packet size is reduced.

3. The performance of the algorithm

It is interesting to compare the performance of this algo-
rithm to that obtained when the channel error probability is
known and the optimal packet size is chosen accordingly.
The performance of a single iteration of the algorithm can
be easily evaluated as follows. For a given value of p, the
distribution of R is expressed by equation (7) and the per-
formance of the algorithm can be evaluated. Let kopt(R)
be the optimal value of k chosen by the algorithm for a
given value of R. The efficiency of the algorithm with that
value of k can be computed according to equation (2). It
can then be averaged over the distribution of R given p
to yield the performance of the algorithm for a given value
of p. Figure 3 shows the performance of the algorithm with
various values of M and p, and a previous packet size of

Figure 3. Performance of algorithm for various values of p.

1000 bits. The curve labeled optimal represents the perfor-
mance of an algorithm that uses the optimal value of k for
the given value of p.

As can be seen from the figure the algorithm produces
near-optimal performance for values of p that are greater
than 10−4, with a history of just 10 packets. This is because
when p is large even a history of 10 packets (10,000 bits)
yields a sufficient number of errors to provide a reasonable
estimate of p. When p is smaller, more of a history is re-
quired to obtain a reasonable estimate. With values of p
around 10−7 a history of 100 packets is required to obtain
performance that is close to the optimal. However, it is
important to note that the performance of ARQ algorithms
is much more vulnerable to the packet size when the proba-
bility of error is high. That is, when the probability of error
is high the use of a large packet size can have a disastrous
effect on the performance of the algorithm; however when
the probability of error is low, small variations in the packet
size from the optimal size have minimal effects.

The above analysis considers only a single iteration of
the algorithm. Figure 3 shows the performance of the al-
gorithm with a previous packet size and a history of 10,
50 and 100 packets. Of course after this single iteration
a new packet size would be chosen and the next iteration
would use that new packet size. While the above analysis
shows the efficiency of the protocol with the new packet
size, it does not take into account the next iteration of the
algorithm. That is, the above analysis does not compute
the steady state performance of this algorithm.

To evaluate the steady state performance of the algo-
rithm we develop a Markov chain model for the system.
The state of the system is described by the packet size
being used. Since packet sizes can change during every
iteration, state transitions occur at the end of every itera-
tion. That is, a state transition can occur after a history
of M packets is observed. In order to keep the Markov
chain finite, we must limit the range of packet sizes. This,
in fact, poses no real limitation on the performance of the
algorithm because in practice a limit on the packet size is
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Figure 4. The system Markov chain with four states representing packet
sizes of 200, 500, 1000 and 1500 bits.

usually imposed. Figure 4 shows an example of the system
state Markov chain with 4 states representing a packet size
range of 200 bits to 1500 bits. As can be seen from the
figure, a transition is possible between any two states.

The transition probability between any pair of states can
be easily obtained from equations (3)–(7), where the present
state is used for the previous packet size and the probability
of moving to any other state is equal to the probability of
having a value of R that would result in the correspond-
ing new packet size. So, for example, looking at figure 2
which represents transitions from state 1000, the proba-
bility of a transition from state 1000 to state 1500 is the
probability of having 0 or 1 packet errors in the previous
50 transmissions. That probability is easily computed from
equation (7). Once the transition probabilities between the
different states is determined the steady-state probability
of being in the different states can be easily computed by
solving the steady-state equation P × ps, where P is the N
by N state transition probability matrix, ps = (p1 · · · pN )
is the steady-state probability distribution of being in the
different states, and N is the number of states in the sys-
tem. This equation is solved by solving the above N linear
equations together with the fact that the sum of the state
probabilities is equal to 1. Once this distribution is known
the steady-state performance is given by

EFFsteady-state =
N∑
i=1

pi

(
ki

ki + h

)
1

(1− p)−(ki+h)
, (9)

where pi is the probability of being is state i, ki is the
corresponding packet size, p is the channel bit-error-rate
and h is the size of the fixed packet overhead.

This Markov model can now be used to analyze the
steady-state performance of the algorithm We apply this
analysis to a system with packet sizes ranging from 10
to 2000 bits in 10 bit increments. We limit the packet
size to 2000 bits because there is very little performance
improvement from using packets larger than 2000 bits. In
fact, 2000 bit packets are optimal for a bit-error-rate of 10−5

and result in a throughput of at least 96% when the bit-error-
rate is smaller than 10−5. The Markov chain for this system
has 200 states, corresponding to packet sizes in the range
of 10 to 2000 bits. We analyzed the steady-state behavior
of this Markov chain for bit-error-rates between 10−1 and

Figure 5. Performance of adaptive algorithm for a 10,000 bit observation
history.

10−6. Of course the performance is also a function of
the amount of transmission history that we observe during
each iteration. In figure 5 we plot the system performance
vs. the channel bit-error-rate for a transmission history of
10,000 bits and in figure 6 we plot the system performance
for a transmission history of 100,000 bits.3

As can be seen from both figures the adaptive algo-
rithm performs very close to optimally with a history of
just 10,000 bits. We notice that when the bit-error-rate is
very low or very high the adaptive system performs slightly
worse than optimal. While when the error-rate is in the
“middle range” the performance of the algorithm is nearly
optimal. We attribute this difference at the very low error-
rate to the fact that at such error-rates it is difficult to make
a reliable estimate of the error-rate with just 10,000 or even
100,000 bits of observation. At the high error-rate range
the difficulty in making a reliable estimate is that packets
are too large to make such an “unbiased” estimate. This is
because every packet contains 40 bits of header informa-
tion and so a packet cannot be made smaller than 50 bits.
Nonetheless, we see that the system performs very well
even in the absence of very good bit-error-rate estimates
at the high and low error-rate ranges. This is because the
performance of the algorithm in these ranges is not very
sensitive to the choice of packet size. For example, the
optimal packet size with an error-rate of 10−5 is 2000 bits
while with a rate of 10−6 it is about 6000 bits. However,
when a 2000 bit packet is used with an error-rate of 10−6

the resulting efficiency is still better than 98%. Conse-
quently, it is not necessary to obtain a very good estimate
of the error-rate but rather it is sufficient to establish that
the error-rate is in the low range or the high range. This
can be observed by looking at figure 7 where the aver-
age packet size used by the algorithm is plotted against the
error-rate.

3 We express the size of the transmission history in bits rather than packets
because in different states the packet size changes. We wanted to main-
tain the amount of time between state transitions constant and so we
fixed the transmission history in bits. The number of packets observed
between transitions, M , is equal to the smallest integer greater than the
transmission history divided by the packet size in the corresponding state.
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Figure 6. Performance of adaptive algorithm for a 100,000 bit observation
history.

Figure 7. Average packet size used by the adaptive algorithm.

Of course, these figures only represent the system’s per-
formance when the bit-error-rate is not changing. However,
in a wireless environment channel conditions are often time-
varying. In the next section we analyze the performance of
the algorithm under time varying channel conditions using
a two-state Markov channel model.

4. Performance analysis under changing bit-error-rate
conditions

The performance analysis of the previous section as-
sumed that the channel bit-error-rate remained constant.
However, over a wireless medium channel conditions are
likely to be time varying due to fading. We model the
time varying channel using the well known Gilbert–Elliott
two-state Markov model [3,4]. The Gilbert–Elliott channel
is a two-state Markov chain, where each state represents
a binary symmetric channel (BSC), as shown in figure 8.
In the “good” state the BSC cross-over probability, PG, is
low and in the “bad” state the cross-over probability, PB,
is high. Transitions between the two states occur according
to an exponential random process of rate µG for transitions
from the “good” state to the “bad” state and µB for transi-
tions from the “bad” state to the “good” state. That is, the
amount of time that the channel remains in a given state
is exponentially distributed with an average value of 1/µB

Figure 8. The Gilbert–Eliott channel model.

for the “bad” state and 1/µG for the “good” state. This
model is commonly used to model fading channels such as
the Rayleigh channel [2,10]. A high bit-error-rate while in
the “bad” state is used to represent a channel fade, and a
lower error rate in the “good” state represents the channel
under normal conditions. The transition rates between the
“good” and “bad” states can be chosen according to the
statistics of the actual channel being modeled, where the
average amount of time spent in the “bad” state equals the
average duration of a fade and the average amount of time
spent in the “good” state equals the average amount of time
between fades. This approach has been shown to accurately
model the performance of a fading channel [10].

The Gilbert–Elliott model accounts for the time-correla-
tion between packet errors that results from the channel
being in a fade. Within a given channel state packet errors
are independent and equations (6)–(8) hold; however, they
do not hold when the channel transitions between states.
This is because when the channel is allowed to vary packet
errors are no longer independent. Nonetheless, the algo-
rithm of the previous section and equations (6)–(8) can still
be used to select a packet size. Of course, when errors are
not independent using this approach will sometimes (e.g.,
during state transitions) yield poor error rate estimates and
result in the use of a sub-optimal packet size. Therefore,
it is reasonable to expect that as long as channel transi-
tions do not occur too frequently the algorithm will usually
predict an appropriate packet size. It is during channel
transitions that the algorithm is likely to use a sub-optimal
packet size. In this section we wish to analyze the impact
of these channel transitions on the overall performance of
the algorithm.

In order to analyze the performance of the adaptive algo-
rithm with the above channel model we resort to simulation.
For the simulation we assume that in the “good” state the
bit-error-rate is 10−5 (PG = 10−5) and in a “bad” state the
bit-error-rate is 10−3 (PB = 10−3). We also assume that
the rate of transition between the two states is the same in
both directions (µ = µG = µB) with an average amount of
time between state transitions ρ = 1/µ.4

In figure 9 we plot the performance of the algorithm us-
ing a history of 50 packets (M = 50) and for values of ρ
between 0 and 5 seconds over a channel with transmission
rate R = 100, 000 bits-per-second (bps). We should point
out, however, that although the channel transition rate ρ is

4 With an exponential state transition rate of µ the average amount of time
spent in a state is equal to 1/µ.
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Figure 9. The efficiency of the protocol vs. the average amount of time
between channel state transitions.

expressed in seconds, the parameter that impacts the per-
formance of the algorithm is actually the average number
of bits between state transitions (b). Of course, for a chan-
nel rate Rc, the average number of bits between channel
transitions is simply b = ρRc. Hence, the results shown in
the figure also apply to other combinations of b and Rc that
yield the same value of ρ = b/Rc. For example, ρ = 1 sec-
ond over a 100,000 bps channel represents 100,000 bits be-
tween channel state transitions and is equivalent to ρ = 10
seconds over a 10,000 bps channel or ρ = 0.1 seconds over
a 1,000,000 bps channel. The performance of the algorithm
is therefore the same for any combination of Rc and ρ that
yield the same value of b. Consequently, we can make the
interesting observation that the algorithm reacts better to
channel variations with higher transmission rates.

Clearly, the throughput efficiency that the algorithm
achieves depends on the state of the channel. That is, when
the channel is in the “good” state we expect a much higher
throughput efficiency than when the channel is in the “bad”
state. We, therefore, plot the throughput efficiency for each
of the two states. As can be seen from the figure the al-
gorithm performs reasonably well even when the channel
bit-error-rate is changing rapidly (e.g., ρ = 0.5 seconds).
For comparison notice, from figure 3, that even under sta-
tic channel conditions and perfect knowledge of the chan-
nel error-rate the efficiency of an optimal ARQ protocol
is limited to about 0.65 with a bit-error-rate of 10−3 and
0.96 with a bit-error-rate of 10−5. The results in figure 9
show efficiency values that approach the optimal as ρ in-
creases. When the rate of change decreases (ρ increases),
the performance of the algorithm improves as expected.
The surprising result is that the overall performance of the
algorithm appears reasonably good (not far from optimal
performance) even when channel conditions are changing
rapidly.

In figure 10 we plot the average packet size used by the
algorithm vs. the average time between transitions. Again
for comparison notice, from figure 1, that under static
channel conditions and perfect knowledge of the channel
error-rate the optimal packet size is about 200 bits with a

Figure 10. Average packet size used by the algorithm.

bit-error-rate of 10−3 and 2000 bits with a bit-error-rate of
10−5. As can be seen from the figure as ρ increases the
packet size used while the channel is in the different states
approaches the optimal. When the channel is in the “good”
state (bit-error-rate of 10−5) the average packet size used
by the algorithm increases with average time between tran-
sitions. This is because as the amount of time the channel
remains in the “good” state increases the packet size is able
to approach the optimal packet size for the given chan-
nel error-rate. However, when the bit-error-rate changes
rapidly the algorithm yields smaller packet sizes reflecting
the effect of error-rate changes during some of the observa-
tion intervals. Similarly, when the bit-error-rate is 10−3, the
packet size decreases with average transition times. These
results reflect the fact that when the average transition time
is high, the algorithm can yield estimates of a stable bit-
error-rate and consequently use an appropriate packet size.
However, again, when the average transition time is low
the bit-error-rate is likely to vary during an observation in-
terval and consequently result in selecting a packet size that
is not optimal.

5. Using maximum likelihood estimates

In section 2 we selected the packet size based on an
estimate of the bit-error-rate that maximized the efficiency
of the protocol. That approach, in theory, should yield the
optimal results. Unfortunately, however, we were unable to
obtain a closed form solution to the optimization problem
and had to resort to a numerical evaluation. As a conse-
quence we were forced to look at a restricted set of values
for the packet size, somewhat limiting the performance of
the algorithm. In this section we present another approach
that yields a closed form, but sub-optimal, solution. This
approach is based on making a Maximum Likelihood Esti-
mate (MLE) of p, based on which the optimal packet size
is chosen according to equation (1).

The MLE for p given R retransmissions is the value
of p that maximizes the probability that R retransmissions
are required. That is, it is the value of p that maximizes
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equation (7). This maximization can be done by taking the
derivative of the log of equation (7) and setting it equal to
zero. Solving for p shows that, p̂, the maximum likelihood
estimate for p is

p̂ = 1−
(
M −R
M

)1/k

. (10)

This estimate can now be combined with equation (1) to
yield the optimal packet size based on the MLE for p.
While this MLE yields a closed form estimate of p, it tends
to overestimate p when many errors occur and underesti-
mate p when few errors occur. For example, when no errors
occur the MLE for p is zero, this estimate for p would yield
a very large packet size (infinite according to equation (1)).
The cost function approach of the previous section would
result in a more conservative packet size. At the other ex-
treme when all M packets are in error the MLE for p is 1.
This estimate is clearly biased because any value for p that
results in a probability of retransmission that is close to 1
would result in an estimate of p = 1. So, for example,
when a packet size of 106 bits is used with p = 10−3, the
probability of a retransmission is close to 1, R would almost
always equal N and the MLE for p would be 1. Clearly,
using the MLE estimates for p to choose an optimal packet
size is not appropriate. However, it may be possible to alter
the MLE approach in such a way that the above biases are
compensated for by restricting the packet size to a useful
range of packet sizes. So, for example, if the MLE of p
is 1, the algorithm can use a minimum packet size of say
200 bits and, similarly, the algorithm can eliminate very
low channel error estimates. That is, when no packets are
found to be in error the MLE of the bit-error-rate is zero.
Theoretically, this would imply an infinitely large packet
size. Since there is very little benefit from using a very
large packet size, the algorithm can be designed to allow
a maximum packet size of about 2000 bits which would
yield a better than 98% efficiency.

An MLE approach can be used by restricting the packet
size to fluctuate within a range of values that is appropriate
for the application. In many cases the range of interest is
between 10−3 and 10−7 with packet size range of between
200 bits and 2000 bits. The MLE can be used to provide
an estimate for the bit-error-rate based on which a packet
size in the above range can be chosen. The packet size is
generated according to equation (1) as follows:

KMLE =


2000, kopt > 2000,
kopt, 200 < kopt < 2000,
200, kopt < 200,

where kopt is the packet size generated by equation (1) us-
ing the MLE of the bit-error-rate. In figure 11 we plot the
packet size vs. the number of retransmission requests. It is
interesting to compare this figure to figure 2 where the same
was plotted for the maximum efficiency approach. As can
be seen from the two figures both approaches yield similar
packet sizes and as a result we can expect the performance

Figure 11. Optimal packet size based on retransmission history of the 50
previous 1000 bit packets.

of this “restricted” MLE approach to compare very favor-
ably with that of the maximum efficiency approach. The
main advantage of using this MLE approach is the ease
with which packet sizes can be computed and the resulting
simple implementation of the algorithm.

Again, the analysis leading to equation (10) assumed in-
dependent bit-errors. With a time varying channel bit-errors
may no longer be independent and the analysis no longer
holds. Using the Gilbert–Elliott model for a time-varying
channel yields independent bit-errors within each state, yet
errors are correlated over the entire channel. Hence equa-
tion (10) holds conditional on the state of the channel (i.e.,
while the channel remains in one state); however, it does not
hold when the channel transitions between states. Nonethe-
less, the algorithm and equation (10) can be used to provide
error-rate estimates and choose a packet size. Of course,
when errors are correlated, these estimates will sometimes
(e.g., during state transitions) result in the use of a sub-
optimal packet size. The same situation occurred with the
previous algorithm and it is for that reason that we needed to
resort to simulation in order to analyze the performance of
the algorithm. Since both the MLE approach and the max-
imum efficiency approach yield similar packet sizes for a
given number of retransmissions, their performance is very
similar even under time-varying conditions.

6. Conclusion

This paper presents an algorithm that adapts the packet
size used by a data link layer ARQ protocol based on esti-
mates of channel conditions. The algorithm was designed
to work efficiently with an “optimal” ARQ protocol such
as the Selective Repeat Protocol (SRP). An interesting ob-
servation that can be made as a result of this work is that
while the performance of ARQ protocols is sensitive to the
packet size used at different error-rates, it is not necessary
to have an accurate estimate of the channel error-rate in
order to choose a “good” packet size that yields nearly op-
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timal performance. It is this observation that allows our
algorithm to perform very well even with a short observa-
tion history. In fact, we found that very good performance
can be obtained with a history of just 10,000 bits.

An interesting aspect of the performance of the algorithm
is the performance with varying channel conditions. We
used a Markov channel bit-error-rate model where the chan-
nel can be in either a “good” state or a “bad” state. Simula-
tion results indicate that the algorithm performs well even
when the channel conditions are rapidly varying. How-
ever, the performance of the algorithm is best when chan-
nel conditions vary relatively slowly to the observation pe-
riod. Since an observation period of just 10,000 bits can
yield satisfactory results, we can conclude that the algo-
rithm would perform well when the average time between
changes in channel conditions is greater than the time it
takes to transmit about 50,000 bits. So, for example, with
a 9.6 Kbps channel, the bit-error-rate can change every few
seconds while still allowing the algorithm to perform well.
Even when the bit-error-rate changes more rapidly the algo-
rithm yields stable and satisfactory results but not as good
as those obtained under a slower rate of change.

Implementing the algorithm as described in section 2
would require a table lookup approach. This is because
choosing the next packet size requires a relatively compli-
cated computation. However, these computations can be
done in advance and stored in a table indicating for a given
packet size and retransmission history, what the next packet
size should be. Alternatively, we found that using a MLE
approach to making the error-rate estimates performs nearly
as well as the optimal approach. Since the MLE approach
yields simple closed form results it can be easily imple-
mented without the need for a table lookup mechanism.
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