
1

Distributed Cross-Layer Algorithms for the Optimal
Control of Multi-hop Wireless Networks

Atilla Eryilmaz, Asuman Ozdaglar, Devavrat Shah, and EytanModiano

Abstract— In this paper, we provide and study a general frame-
work that facilitates the development of distributed mechanisms
to achieve full utilization of multi-hop wireless networks. In par-
ticular, we describe a generic randomized routing, scheduling and
flow control scheme that allows for a set of imperfections in the
operation of the randomized scheduler to account for potential
errors in its operation. These imperfections enable the design of
a large class of low-complexity and distributed implementations
for different interference models. We study the effect of such
imperfections on the stability and fairness characteristics of the
system, and explicitly characterize the degree of fairnessachieved
as a function of the level of imperfections. Our results reveal the
relative importance of different types of errors on the overall
system performance, and provide valuable insight to the design
of distributed controllers with favorable fairness characteristics.

In the second part of the paper, we focus on a specific
interference model, namely the secondary interference model,
and develop distributed algorithms with polynomial communi-
cation and computation complexity in the network size. Thisis
an important result given that earlier centralized throughput-
optimal algorithms developed for such a model relies on the
solution to an NP-hard problem at every decision. This results
in a polynomial complexity cross-layer algorithm that achieves
throughput optimality and fair allocation of network resou rces
amongst the users. We further show that our algorithmic ap-
proach enables us to efficiently approximate the capacity region
of a multi-hop wireless network.

Index Terms— Multi-hop Wireless Networks, Network Op-
timization, Randomized Algorithms, Congestion Control, Fair
Allocation, Throughout-optimal Scheduling, Dynamic Routing.

I. I NTRODUCTION

There has been considerable recent interest in develop-
ing network protocols to achieve the multiple objectives
of throughput maximization and fair allocation of resources
among competing users. Much of the work in wireless commu-
nication networks has focused on centralized control and has
developedthroughput-optimalpolicies (e.g. [43], [32], [16]).
However, these policies do not directly lend themselves to dis-
tributed implementation, which is essential in practice. In this
paper, we provide a class of randomized routing, scheduling
and flow control algorithms that achieve throughput-optimal
and fair resource allocations that is amenable to distributed
implementation with polynomial communication and compu-
tation complexity.

Atilla Eryilmaz is with the Ohio State University{eryilmaz@ece.osu.edu}.
Asuman Ozdaglar, Devavrat Shah, and Eytan Modiano are with the Mas-
sachusetts Institute of Technology{{asuman, devavrat, modiano}@mit.edu}.
This work was supported by: DTRA grant HDTRA1-08-1-0016; the Control-
Based Mobile Ad-Hoc Networking (CBMANET) Program under DARPA
subcontract no. 060786; and ARO Muri grant number W911NF-08-1-0238.

In their seminal work, Tassiulas and Ephremides developed
a joint routing-scheduling algorithm that stabilizes the network
whenever the arrival rate of the exogenous flows are within
the stability (capacity) region. In [42], Tassiulas showedthat
randomized algorithms can be used to achieve maximum
throughput in input queued switches with linear computa-
tional complexity. To improve the exponentially high delay
performance of [42], [19] introduced randomized algorithms
for switches. Other research, for example, [24], [36], [39],
[32], [1], [16], [37], [38], have contributed to the analysis of
centralizedthroughput optimal policies in wireless networks.

In this work, we provide a scheduling-routing algorithm
combined with a congestion controller for a general system
model whereby multi-hop flows are considered. Following the
approach of [29], we allow various types of errors to occur
during the scheduling operation, which facilitates the design
of distributed implementations. One of the main contributions
of the paper is the explicit characterization of the effect of
different types of errors on the overall performance. Addition-
ally, this paper contributes to the study of resource allocation
in multi-hop wireless networks in several fundamental ways.

First, we propose a generic cross-layer mechanism with
three components: a randomized scheduling component and a
routing component (implemented by the network nodes) aimed
at allocating resources to the flows efficiently; and a dual
congestion control component (implemented at the sources)
aimed at regulating the flow rates to achieve fairness. To facili-
tate distributed implementation, several types of imperfections
are allowed in the scheduler, as in [29]. In this work, we
further add a routing component to the framework to optimally
steer multi-hop traffic, and a congestion control component
that regulates the flow rates to achieve fair division of the
resources among flows, wherefairness is defined using the
utility-maximization framework of Kelly et al. [22], [23] and
further improved in subsequent works [27], [46], [40].

Second, we study the proximity of the achieved rate alloca-
tion with generic cross-layer scheme to the fair allocation, and
explicitly characterize the performance loss as a functionof
the imperfections of the underlying scheduler. Moreover, by
revealing the relative importance of different types of errors
on the performance, our analysis also yields principles for
efficient design of distributed network controllers.

Third, for the secondary interference model1, we show that
our cross-layer mechanism can be implemented via distributed

1In the secondary interference model, two links interfere ifthey share a
node or if there is a link that connects any of the end nodes of the two links.
This interference model prevents real world issues such as the hidden terminal
problem (see [33]).

2

algorithm. This approach involves the operation of two sequen-
tial algorithms. A novel feature of these algorithms is their
operation on an appropriately constructed conflict graph. The
use of the conflict graph leads to a partitioning of the network,
whereby the decisions can be made independently in different
partitions. Moreover, the operations on the conflict graph can
be mapped into network level operations using the special
structure of the problem. These distributed algorithms notonly
achieve throughput-optimal and fair allocations, but alsohave
polynomial communication and computation complexity.

Finally, our policy suggests an algorithmic method of es-
timating the stability region of multi-hop wireless networks,
which is otherwise a very difficult task to characterize.

This work differs from our earlier relevant works [12], [13],
[14] in that: [12] studies the performance cross-layer algorithm
with a pick-and-compare scheduler, but without any errors
and does not propose any specific implementable algorithm;
[13] proposes a low-complexity algorithm, but still does not
allow for any errors; [14] allows for errors but only allows
single-hop traffic and thus has no routing component. Other
related works include [11], [28], [26], [44], which develop
distributed algorithms that guarantee50% utilization of the
stability region for a primary interference model2. While
distributed implementation of these algorithms is possible,
this comes at the cost of sacrificing a significant portion of
the capacity of the network (see, for example, [6], [5]). As
more general interference models are considered, even more
of the capacity of the network needs to be sacrificed for
distributed implementation (e.g., [45], [7]). For example, in the
case of a secondary interference model with the grid topology,
distributed implementation can only guarantee12.5% of the
capacity of the network. [29] also used [42] to develop
distributed schedulers by utilizing Gossip mechanisms.

More recently, the throughput performance of greedy max-
imal matching schedulers are investigated for general interfer-
ence models and geometric graphs ([20]), which proves that
1/6 of the stability region is guaranteed to be achievable by
such schedulers. In other recent works ([21], [4]), distributed
schedulers are proposed with attractive delay characteristics.

The rest of the paper is organized as follows. In Section II,
we describe the system model and our goal. In Section III, we
describe a generic randomized scheme for scheduling-routing-
congestion control, and prove its throughput-optimality and
fairness properties. In Section V, we use the randomized
scheme to design and analyze distributed algorithms for the
secondary interference model. Finally, in Section VI we pro-
vide simulation results.

Throughout the paper, we denote the dot product of two
vectors, sayX andY, as 〈 X,Y〉.

II. SYSTEM MODEL AND GOAL

Consider a wireless network that is represented by an
undirected graph,G = (N ,L), which has a node setN (with
cardinalityN), a link setL (with cardinalityL). We assume a
time slotted system with synchronized nodes, where each slot
is long enough to accommodate a single packet transmission

2In the primary interference model, each feasible allocation consists of links
that do not share a node, i.e. each feasible allocation is amatching.

over each link inL unless there is interference. We refer to the
flow that enters the network at noden and leaves it at noded as

Flow-(n, d). We let X[t] =
(

X
(d)
n [t]

)d∈N

n∈N
denote the vector

of arrivals to the network in slott with X(d)
n [t] corresponding

to the arrivals for Flow-(n, d). We use the notationx(d)
n [t]

to denote themean flow rate of Flow-(n, d) in slot t, i.e.,
x

(d)
n [t] = E[X

(d)
n [t]]. Then, themean flow rate of Flow-(n, d)

is defined asx̄(d)
n = limT→∞

1
T

∑T−1
t=0 x

(d)
n [t] whenever it

exists.
We consider a general interference model specified by a

set of link-pairs thatinterfere with each other, i.e., when
their concurrent transmissions collide. We assume that if two
interfering links are activated in a slot, both transmissions
fail. Note that this includes a large class of graph-theoretic
interference models considered in the scheduling literature
(e.g. the primary interference model [35], [26], [44], [6],or
the secondary interference model [2], [45], [7]).

We useS[t] =
(

S(n,m)[t]
)

(n,m)∈L
to denote a linkalloca-

tion vector(or schedule) at timet, andS to denote theset of
feasible allocationswhere a feasible allocation is a set of links
in which no two links interfere with each other. We introduce
the notationS(d)

(n,m) to distinguish packets destined for different

nodes: at any given slott, S(d)
(n,m)[t] ∈ {0, 1} is 1 if link

(n,m) serves a packet destined for noded in that slot, and0
otherwise. This implies that

∑

d∈N S
(d)
(n,m)[t] = S(n,m)[t], for

all (n,m) ∈ N .
At each node, a buffer (queue) is maintained for each

destination. We letQ(d)
n [t] denote the length of the queue at

noden destined for noded at the beginning of slott. Evolution
of Q(d)

n [t] whenn 6= d satisfies

Q(d)
n [t+ 1] ≤

(

Q(d)
n [t] − S

(d)
out(n)[t]

)+

+X(d)
n [t] + S

(d)
in(n)[t],

(1)

where(y)+ = max(0, y). Also,

S
(d)
in(n)[t] ,

∑

{k:(k,n)∈L}

S
(d)
(k,n)[t]

is a shorthand for the maximum number of packets that can
be internally routed to noden that are destined for node
d. Similarly, S(d)

out(n)[t] ,
∑

{m:(n,m)∈L} S
(d)
(n,m)[t] are the

maximum number of packets that can leave noden and are
destined for noded. When,n = d, we setQ(d)

d [t] = 0, for all
t, because in that case the packets have already reached their
destination.

Next, we introduce the concepts of network stability and
capacity region.

Definition 1 (Stability): A given queue, sayQ(d)
n , is stable

if lim sup
T→∞

1

T

T−1
∑

t=0

E[Q(d)
n [t]] <∞. The network isstableif all

queues are stable; andunstableotherwise.
Definition 2 (Capacity [Stability] Region C): The capac-

ity (stability) regionC is the set of(x̄(d)
n)n,d∈N ≥ 0 for which

there exists an algorithm that can stabilize the network3.

3Note that, under this definition, the capacity region is monotone, i.e., if
x ∈ C, theny ≤ x (component-wise) must also be inC.

3

Given the general model described above, our goal is to de-
sign distributed algorithms that achieve throughput-optimality
and fair allocation of the network resources amongst the flows.
Following the extensive literature on the topic (e.g. [43],[39],
[32], [15]) we call a policythroughput-optimalif it can support
any mean flow rate in the capacity region without violating the
network stability.

To define fairness we use the “utility maximization” frame-
work of economics: with each flow, say Flow-(n, d), we
associate a utility functionUn,d(·), of the mean flow rates
wherebyUn,d(x̄(d)

n) is a measure of the utility gained by Flow-
(n, d) for the mean flow ratēx(d)

n . We assume, based on the
law of diminishing returns, that the functionUn,d(·) is concave
and non-decreasing for all flows. Then, a mean flow rate vector
⋆
x is referred to as afair allocation if it is an optimal solution
of the convex optimization problem:

⋆
x ∈ arg max

x∈C

∑

n,d∈N

Un,d(x̄(d)
n). (2)

Hence, a fair allocation is a mean flow rate vector that
maximizes the aggregate utility over all flows in the network.
It is known that by definingUn,d(·) appropriately, different
types of fairness, such as proportional or max-min fairness,
can be achieved ([22], [23], [27], [40], [15], [31], [25]).

III. G ENERIC CROSS-LAYER SCHEME

In this section, we provide the description of a generic
congestion control-routing-scheduling scheme that achieves
the throughput-optimality and fairness goals of Section II. The
scheme combines ideas from recently studied congestion con-
trollers designed for wireless networks (e.g. [15], [31], [26],
[41], [8]), and the randomized scheduling strategy introduced
by Tassiulas in his seminal work [42]. Our algorithm not only
extends the use of randomized scheme of [42] to multi-hop
networks with general interference models, but also utilizes the
parallel use of a dual congestion controller to achieve fairness.

The generic scheme is composed of three components: the
scheduling and routing components that are implemented by
the network, and the congestion control component that is
implemented by the users (or the sources of the flows). The
scheduling component builds on two algorithms: one, called
PICK, which randomly picks a feasible allocation satisfying a
specific condition [see Eq. (5) below]; and the other, called
UPDATE, which contains a network-wide comparison opera-
tion [see Eq. (6) below]. In the operation of PICK and UPDATE

algorithms, we allow for various types of imperfections and
relaxations to accommodate errors and to facilitate distributed
implementations. We will comment on the nature of these
imperfections and relaxations after the description of the
cross-layer scheme. The routing component determines which
packets to be served over which links so as to optimize their
routes. Finally, the congestion controller component adjusts
the rate of injected traffic into the network to fully utilizethe
resources, i.e., to solve (2).

The scheme operates instages, each stage containing a
finite number of time slots where the number of slots is a
design choice. The scheduling-routing and congestion control

decision is updated at the beginning of each stage, and is kept
unmodified throughout the stage.

Definition 3 (Generic Cross-layer Scheme):The cross-
layer algorithm is composed of three components: a
randomized scheduler with imperfections characterized
by the parameters(δ, γ, ψ); a routing component that
steers packets towards optimal paths; and a congestion
controller component that regulates the amount of
injected traffic into the network to maximize the network
utilization. Next, we describe each of these components.

SCHEDULING(δ, γ, ψ) COMPONENT: The scheduling com-
ponent determines the service rates of all the links in
the network, namelyS[t], by performing the following
operations
• At staget, for each link(n,m) ∈ L, we define itsweight
as

W(n,m)[t] = W(m,n)[t] , max
d

∣

∣

∣
Q(d)
n [t] −Q(d)

m [t]
∣

∣

∣
,(3)

which is also referred to as themaximum differential backlog
([32], [16]) of link (n,m).

• Let theoptimum feasible allocation
⋆

SW [t] for W be
⋆

SW [t] ∈ arg max
S∈S

∑

l∈L

wl[t]Sl ≡ arg max
S∈S

〈 W[t],S〉

= arg max
S∈S

〈 Q[t],Sout − Sin〉, (4)

whereSout andSin are defined subsequent to (1).
• PICK : Scheduler randomly picksany feasible allocation
R[t] ∈ S, that satisfies, for some fixedδ > 0,

P(R[t] =
⋆

SW [t]) ≥ δ, for all W[t] and t. (5)

• UPDATE: The schedule for timet, S[t] is updated such
that it satisfies
P (〈Q[t],Sout[t] − Sin[t]〉 ≥

max {〈Q[t],Sout[t− 1] − Sin[t]〉,
(1 − γ)〈Q[t],Rout[t] − Rin[t]〉}) ≥ 1 − ψ,

(6)

for someγ, ψ ∈ [0, 1).

ROUTING COMPONENT: Once the link rate vectorS[t] is
determined by the scheduler, the router determines which
packets to transmit over them.
• Let d⋆nm = d⋆mn , arg maxd

∣

∣

∣
Q

(d)
n [t] −Q

(d)
m [t]

∣

∣

∣
. Then,

– if Q(d⋆

nm
)

n [t] ≥ Q
(d⋆

nm
)

m [t] : ServeS(n,m)[t] packets from

Q
(d⋆

nm
)

n to Q(d⋆

nm
)

m , and
– if Q(d⋆

nm
)

n [t] < Q
(d⋆

nm
)

m [t] : ServeS(n,m)[t] packets from

Q
(d⋆

nm
)

m to Q(d⋆

nm
)

n .

Before describing the congestion controller component, we
remark that the parameters(δ, γ, ψ) in the above scheduler
capture different type of imperfections and relaxations:δ
relaxes the constraint of picking the optimum feasible al-
location in each iteration, hence significantly reduces the
complexity of this operation;γ captures the potential errors in
the computation of the total weight of the randomly selected
schedule; andψ captures the potential errors in the comparison
of the weights of the previous and the random scheduler.

4

The imperfections included in the scheduling component are
likely to occur when randomized or distributed methods are
employed to perform these operations.

DUAL CONGESTIONCONTROL COMPONENT:
• Let Q denote the queue-length vector at the beginning of
staget. Then, each node, sayn, generatesX(d)

n [t] packets
to be transmitted to noded, for eachd, such that

X(d)
n [t] =

{

U ′−1
n,d

(

Q
(d)
n [t]

K

)}M

0

, (7)

whereM andK are positive scalars, and{z}ba is used to
denotemin(max(z, a), b).
Notice that (7) is equivalent to solving

X(d)
n [t] = argmax

y∈[0,M]

(

KUn,d(y) − y Q(d)
n [t]

)

, (8)

and also, note that if there exists no flow fromn to d, we
can defineUn,d(·) ≡ 0 to getX(d)

n ≡ 0.

Our goal in this work is to understand the effect of the
imperfections captured by(δ, γ, ψ) parameters on the optimal-
ity (or fairness) characteristics of the cross-layer mechanism.
Our framework covers various schedulers that are introduced
in the literature (e.g. [42], [29], [34]). In particular, [34]
yields a scheduler for the first-order interference model with
γ = 1/m, andψ = 0, wherem is a design parameter. Also,
[29] contain algorithms withγ = ψ = 0, as well as gossip-
based algorithms with arbitrarily smallγ, ψ parameters. None
of these works, however, contain a study of the cross-layer
scheme with congestion control. Hence, our analysis of the
generic cross-layer scheme will be directly applicable to all
these cases. In Section V, we will introduce a new algorithm
that is applicable to higher order interference models, anduse
our results to show that it achieves optimality using operations
that grow polynomially with the number of nodes.

IV. A NALYSIS

In this section, we study the throughput-optimality and
fairness properties of the proposed generic cross-layer scheme.
Our analysis relies on the notions ofε-relaxed stability region
andε-fair allocation, which we define next.

Definition 4 (ε-relaxed stability region,C(ε)):

C(ε) , {x ≥ 0 : (x̄(d)
n + ε)n,d∈N ∈ C}.

Definition 5 (ε-fair allocation,
⋆
x (ε)):

⋆
x (ε) = arg max

x∈C(ε)

∑

n,d

Un,d(x̄(d)
n)

Note that asε ↓ 0, we have
⋆
x (ε) →⋆

x . Let us define a new
state,Y := (Q,S), which forms a Markov Chain under our
generic cross-layer scheme.

In the following theorem, we focus on the scheduling-
routing component of the algorithm by assuming that the
mean flow rates lie inside theε-relaxed stability region. Here,
we assume that the arrivals are inelastic, i.e., their statistics
are not modified throughout the operation of the scheduling-
routing component. Later, we will add the congestion control
component into the framework.

Theorem 1:Assume thatX(d)
n [t] is independent and iden-

tically distributed (i.i.d.) 4 for all t and flows with

E

[

(

X
(d)
n

)2

[1]

]

≤ A < ∞. Assume thatε > 0 is chosen

such that ε
dmax

> γ
2 +
√

ψ
δ(1−ψ) , wheredmax is the maximum

degree of the network, andδ, ψ, andγ are the parameters of
the generic cross-layer scheme.

Let the Lyapunov functionV (Y) be defined asV (Y) =
∑

n,d

(

Q(d)
n

)2

= ‖Q‖2
2. Then, for any mean arrival vectorλ :=

(

E[X
(d)
n [1]]

)

n,d∈N
∈ C(ε), the scheduling-routing(δ, γ, ψ)

policy guarantees, for some finiteT,

∆V
(T)
t (Y) , E [V (Y[t+ T]) − V (Y[t]) |Y[t] = Y]

≤ −cT
(

ε

dmax
− γ

2
−
√

ψ

δ(1 − ψ)

)

∑

n,d

Q(d)
n +B1,

whereB1 is a bounded positive number, andc is a positive
constant.

Proof: The proof is moved to the Appendix.
An immediate consequence of Theorem 1 is provided next.

Corollary 1: The generic cross-layer algorithm stabilizes
any traffic with a mean flow rate vector lying inside
C
(

dmax

(

γ
2 +

√

ψ/(δ(1 − ψ))
))

.

Proof: Pick ε to be larger but arbitrarily close to
dmax(γ/2 +

√

ψ/(δ(1 − ψ))). Then, from Theorem 1, we
have

∆V
(T)
t (Y) ≤ −ε′

∑

n,d

Q(d)
n +B1,

for some ε′ > 0. This shows that the Foster-Lyapunov
criterion is satisfied (see e.g. [3]), and therefore we must have
lim supT→∞

1
T

∑T−1
t=0

∑

n,d E[Q
(d)
n [t]] <∞.

The scheduling-routing component of the above algorithm
is based on [42] whereby the existing feasible allocation is
compared to a randomly picked feasible allocation, and the
one with the larger total weight is implemented in the next
stage. The same strategy is also used in a recent work [29]
which develops another deterministic distributed algorithm for
the primary interference model, and randomized algorithms
based on gossiping techniques that are applicable to more
general interference models. In other works (e.g. [26], [7], [6],
[45], [34], [20]), low complexity implementations have been
proposed at the expense of different levels of efficiency loss
for the primary interference model. But, many of these results
are not applicable in the higher interference models scenarios.

The next theorem studies the impact of the parameters
(δ, γ, ψ) in the proposed cross-layer mechanism on its stability
and fairness characteristics. Earlier works in this context (e.g.
[31], [15], [26], [41]) are applicable only to the case of a
centralized scheduler. Below, we extend these results in the
presence of a randomized scheduling-routing component with
imperfections.

4The assumption of i.i.d. arrivals is not critical to the analysis. The same
results continue to hold for processes with mild ergodicityproperties ([17]).

5

Theorem 2:For any generic cross-layer(δ, γ, ψ) scheme,
there exists finite constants,C1, C2, such that: for anyε > 0

for which ε
dmax

> γ
2 +

√

ψ
δ(1−ψ) , we have

∑

(n,d)∈N 2

q̄(d)n ≤ C1K, (9)

∑

(n,d)∈N 2

Un,d(x̄(d)
n) ≥

∑

(n,d)∈N 2

Un,d
(

⋆
x

(d)

n (ε)

)

− C2

K
, (10)

whereq̄(d)n , lim sup
T→∞

1

T

T−1
∑

t=0

E[Q(d)
n [t]],

and x̄(d)
n , lim

T→∞

1

T

T−1
∑

t=0

E[X(d)
n [t]].

Proof: The proof utilizes the Lyapunov-based analysis
and the technique introduced in [31] together with Theorem 1.
Recall that Y = (Q,S), and that the definition of the
Lyapunov function introduced in Theorem 1 is:V (Y) =
∑

n,d

(

Q
(d)
n

)2

. Then, by using the same arguments as in the
derivation of (16) and (17), it can be shown that
∆V

(T)
t (Y)

, E [V (Y[t+ T])− V (Y[t]) |Y[t] = Y]

≤
T−1
∑

τ=0

E [V (Y[t+ τ + 1]) − V (Y[t+ τ] | Y[t] = Y]

≤ 2

T−1
∑

τ=0

E [〈Q[t+ τ],Sin[t+ τ] + X[t+ τ]

−Sout[t+ τ]〉 |Y[t] = Y] + T (b1 + b2),

for some finite constantsb1, b2 that were introduced
in the proof of Theorem 1. Next, we add and sub-

tract 2K
T−1
∑

τ=0

E





∑

n,d∈N

Un,d(X(d)
n [t+ τ]) | Y[t] = Y



 , and

re-arrange the terms to get
∆V

(T)
t (Y)

≤ 2K

T−1
∑

τ=0

E





∑

n,d∈N

Un,d(X(d)
n [t+ τ]) |Y[t]





−2

T−1
∑

τ=0

E[E[K
∑

n,d∈N

Un,d(X(d)
n [t+ τ]) −

〈 Q[t+ τ],X[t+ τ]〉 |Y[t+ τ]] |Y[t]]

−2

T−1
∑

τ=0

E [〈Q[t+ τ],Sout[t+ τ] − Sin[t+ τ] |Y[t]]

+T (b1 + b2)

Lemma 1:

E[K
∑

n,d∈N

Un,d(X(d)
n [t+ τ])

−〈Q[t+ τ],X[t+ τ]〉 | Y[t+ τ]]

≥ K
∑

n,d∈N

Un,d(
⋆
x

(d)

n (ε)) − 〈 Q[t+ τ],
⋆
x (ε)〉,

where
⋆
x (ε) is defined in Definition 5.

Proof: [Lemma 1] Note that the congestion control mech-

anism picksX(d)
n [t] to solve (8). Since

⋆
x

(d)

n ∈ [0,M], we have
thatX(d)

n [t] satisfies

K
∑

n,d∈N

Un,d(X(d)
n [t+ τ]) − 〈Q[t+ τ],X[t+ τ]〉

≥ K
∑

n,d∈N

Un,d(
⋆
x

(d)

n (ε)) − 〈 Q[t+ τ],
⋆
x (ε)〉,

for all τ.
We use Lemma 1 in the previous expression to get
∆V

(T)
t (Y)

≤ 2K
T−1
∑

τ=0

E





∑

n,d∈N

Un,d(X(d)
n [t+ τ]) | Y[t]





−2TK
∑

n,d∈N

Un,d(
⋆
x

(d)

n (ε))

+2

T−1
∑

τ=0

E

[

〈 Q[t+ τ],
⋆
x (ε)

+Sin[t+ τ] − Sout[t+ τ] |Y[t]] (11)

+T (b1 + b2)

≤ 2K

T−1
∑

τ=0

E





∑

n,d∈N

Un,d(X(d)
n [t+ τ]) | Y[t]





−2TK
∑

n,d∈N

Un,d(
⋆
x

(d)

n (ε))

−2cT

(

ε

dmax
− γ

2
−
√

ψ

δ(1 − ψ)

)

∑

n,d

Q(d)
n [t]

+2B1 + T (b1 + b2),

where the last inequality follows from the application of
Theorem 1 to (11).

Next, we take the expectation of both sides of the inequality
to eliminate the conditioning, and then take the telescoping
sum ofP suchT -step drifts to obtain
E [V (Y[PT]) − V (Y[0])]

≤ 2K

PT−1
∑

k=0

E





∑

n,d∈N

Un,d(X(d)
n [k])



 (12)

−2KPT
∑

n,d∈N

Un,d(
⋆
x

(d)

n (ε)) (13)

−2cTρ

P−1
∑

p=0

∑

n,d

E[Q(d)
n [pT]] + 2B1P (14)

+PT (b1 + b2), (15)

where we defineρ :=
(

ε
dmax

− γ
2 −

√

ψ
δ(1−ψ)

)

. Noting that

V (Y) ≥ 0 for all feasibleY, and re-arranging the terms in

6

this expression, we can obtain

1

P

P−1
∑

p=0

∑

n,d

E[Q(d)
n [pT]]

≤
K
∑

n,d

Un,d(M) +
B1

T
+

(b1 + b2)

2
+

E[V (Y[0])]

2PT

ρc

Also noting thatQ(d)
n [t + k] ≤ Q

(d)
n [t] + kMdmax for each

n, d, we have

1

T

T−1
∑

τ=0

∑

n,d∈N

E[Q(d)
n [pT + τ]] ≤ MTN2dmax,

which, when combined with the previous inequality, yields

lim sup
P→∞

1

PT

PT−1
∑

k=0

∑

n,d∈N

E[Q(d)
n [k]]

≤ lim sup
P→∞

P−1
∑

p=0

∑

n,d

E[Q(d)
n [pT]] +MTN2dmax

≤
K
∑

n,d∈N

Un,d(M) +
B1

T
+

(b1 + b2)

2

ρc
+MTN2dmax

≤ C1K,

for someC1 whenK is large enough.
Next, we re-organize the terms in (12)-(15) in a different

way to obtain

1

PT

PT−1
∑

k=0

E





∑

n,d∈N

Un,d(X(d)
n [k])





≥
∑

n,d∈N

Un,d(
⋆
x

(d)

n (ε)) −
B1

T
+ (b1+b2)

2 − E[V (Y[0])]
2PT

K
.

Also revoking Jensen’s inequality, we have

1

PT

PT−1
∑

k=0

E





∑

n,d∈N

Un,d(X(d)
n [k])





≤
∑

n,d∈N

Un,d
(

1

PT

PT−1
∑

k=0

E[X(d)
n [k]]

)

.

Combining these two results as lettingP → ∞, we have
∑

n,d∈N

Un,d(x̄(d)
n) ≥

∑

n,d∈N

Un,d(
⋆
x

(d)

n (ε)) − C2

K
,

wherex̄(d)
n is as defined in the statement of the theorem, and

C2 is a bounded number. This completes the proof.
Theorem 2 reveals the effect of the errors and relaxation

in the operation of the scheduler. In particular, we see that,
whenγ = ψ = 0, andδ > 0, the cross-layer scheme achieves
optimal performance. Also, we observe that the effect ofψ
can be detrimental unless it is significantly smaller thanδ.
In comparison, the effect ofγ appears to be milder if it can
be made small. Ideally, we would like to design schedulers

with γ = ψ = 0 in which case optimal performance can be
guaranteed. In the next section, we propose one such scheduler
that is applicable to second order interference model, but can
also be extended to higher order interference models.

V. A LGORITHM DESIGN

In Section III, we studied the throughput and fairness prop-
erties of a cross-layer mechanism that can be applied to a large
class of interference models. We observed that a scheduler
with δ > 0, and γ = ψ = 0 achieves optimal performance.
In this section, we focus on the secondary interference model
and outline a distributed low-complexity algorithm with these
parameters. We will also note a modification to our algorithm
that yieldsγ > 0.

Our approach, which inherits its main components from
[42], involves the sequential operation of two algorithms,
which we refer to as PICK and COMPARE: The PICK algorithm
is a randomized, distributed algorithm that yields a feasible
scheduleR[t] satisfying (5) in finite time. The COMPARE

algorithm compares the total weights of the old scheduleS[t]
with the new scheduleR[t] according to (6) in a distributed
manner. An important feature of the COMPARE algorithm is
the use of the conflict graph of the two schedules. On the
conflict graph, a spanning tree can be constructed in a dis-
tributed manner and used for comparison of the weights of the
two schedules in polynomial time. The conflict graph enables
a natural partitioning of the network, whereby decisions can
be made independently in different partitions in a distributed
manner. As we will show, the operations on the conflict graph
can be mapped to the actual network operations owing to the
special structure of the problem.

The schedule used for packet transmissions is updated
at the beginning of each stage. Throughout a stage, packet
transmissions are performed according to the schedule updated
at the beginning of that stage. In parallel with the packet
transmissions, PICK and COMPARE algorithms are imple-
mented. Since the same medium is shared, the data packet
transmissions can collide with the control messages generated
by these algorithms. To prevent such collisions, time is divided
into two intervals, namely thecontrol signalling interval(CSI)
during which control messages are locally communicated,
and thedata transmission interval(DTI) during which data
packets are transferred (see Figure 1). Notice that both PICK

and COMPARE algorithms operate during CSI, while queue-
lengths are updated during DTI. It is assumed that all the
nodes are synchronized to the same CSI/DTI division of time.
This assumption can be relaxed by adding a buffer interval
between CSI and DTI to accommodate propagation delays.
Alternatively, the control signalling can be performed over
an orthogonal channel through frequency division. Finally,
we assume that each transceiver can perform carrier sensing
during transmission without the need to decode its reception5.

It is important to note that in our algorithm the overhead
introduced by the control signalling can be made arbitrarily

5This assumption is not critical, but simplifies the PICK algorithm descrip-
tion and analysis. When it is relaxed, the first step of the algorithm need to
be modified to let each transceiver transmit randomly to a random neighbor
without sending a previous RTS.

7

Fig. 1. Division of time into data transmission and control signalling
intervals.

small by increasing the length of a stage to a high enough
value. This fact follows from thefixedamount of control mes-
sages required by our algorithmper stage. Thus, the number
of control messages versus the data messages in a stage can
be made negligible by increasing the stage duration. This will
naturally result in slower convergence, but the stability and
fairness results of Theorem 2 will continue to hold.

We assume that each node has a unique ID number picked
from a totally ordered set. LetID(n) denote the ID number
of noden. Then, unique ID numbers can be assigned to links,
denoted byID(n,m) = ID(m,n) for link (n,m). This
assumption is essential for each node (and link) to identify
its neighboring nodes (and links), and will be used in the
distributed implementation of our algorithms.

A. PICK Algorithm

In this section, we present a distributed algorithm that
randomly picks a feasible allocationR with the property that
any feasible allocation has a positive probability of being
chosen as required by (5). In the description of the algorithm,
when we say a nodewithdraws, we mean that the node stops
its search for a feasible link during the current stage, but
continues to listen to other transmissions. The algorithm makes
sure that each node has a positive probability of attempting
transmission at the beginning of the algorithm. The idea is to
send Ready-to-Send (RTS) and Clear-to-Send (CTS) packets
including the ID numbers of the nodes in order to create a
feasible allocation. By appending ID numbers to the RTS/CTS
packets, the algorithm enables each node to have a list of
those links in its local neighborhood that are picked by the
algorithm.

Definition 6 (PICK Algorithm): At every noden ∈ N per-
form the following steps:

(A1) In step 1, with probability pn ∈ [α, 1) for some
α ∈ (0, 1), n transmits a (RTS) message.

(A1a) If n senses another transmission during its (RTS)
transmission, it withdraws.

(A2a) If n does not sense another transmission, in step2,
it chooses one of its neighbors, saym, randomly with equal
probabilities, and transmits (RTS,ID(m)).

(A2b) If m observes a collision, it withdraws.
(A3a) If m getsn’s message, in step3, it sends back a

(CTS) message.
(A3b) If m senses another transmission during its (CTS)

transmission, it withdraws.
(A3c) If n observes an idle, it withdraws.
(A4a) If m does not sense another transmission during its

(CTS) transmission, in step4, it transmits (CTS,ID(n,m)).
(A4b) If n does not receivem’s response, it withdraws.

(A5) In step5, n transmits (CTS,ID(n,m)), and the link
betweenn andm is activated; link(n,m) is added toR. ⋄

The algorithm assures between steps (A1) and (A2a), that
no two transmitters are neighboring each other; at (A2b), that
no transmitter is a neighbor to a receiver; between (A3a) and
(A4a), that no two receivers are neighbors. Finally, during
(A4a) and (A5), the picked link is announced to the neighbors
of the receiver and the transmitter, respectively.

Notice that the algorithm need not result in amaximal
feasible allocation6 at its termination. This does not influence
the results of Theorem 2, but will have an effect on the rate of
convergence of the algorithm. With a simple modification, the
above algorithm can be extended to obtain a maximal feasible
allocation and hence better convergence properties.

Proposition 1: The above PICK algorithm satisfies
(i) The resultingR is a feasible allocation.
(ii) It takes at most5 transmissions per node to terminate.
(iii) The probability of picking any feasible allocation is

at least (min(α, 1 − α)/dmax)
N

> 0, where dmax is the

maximum degree7 of G. In particular, since
⋆

SW [t] is a

feasible schedule, we haveP(R[t] =
⋆

SW [t]) ≥ (min(α, 1 −
α)/dmax)

N > 0.
(iv) At the termination, for any link(n,m) ∈ L, all the

neighbors ofn andm are aware of(n,m)’s state, i.e., know
whether(n,m) is in R or not.

Proof: Step (A1a) assures that if two neighboring nodes
attempt to transmit, they sense each other and withdraw. In
Step (A2b), the event that more than one neighbors of a
node are attempting to transmit is detected, and in that event
all of the transmitters withdraw from transmission in Step
(A3c). Finally, step (A3b) guarantees that two neighbors do
not become receiving ends of two different links. Thus, all the
events that leads to interfering links are eliminated in these
steps, and the resulting allocation must be feasible, which
proves (i). Claim(ii) follows immediately from the construction
of the algorithm.

To prove Claim(iii), note that if the initially picked set of
links in steps (A1) and (A2a) happen to be feasible, they are
not eliminated throughout the algorithm, because the algorithm
is designed to eliminate only those links that interfere with
each other. Thus, we are interested in finding a lower bound
on the probability of picking a given feasible schedule, say
W ∈ S, at the start. Thus, we need to have exactly|W |
nodes, one from each link inW choose to transmit in step (A1)
(which happens with probabilityα|W |), and all the remaining
nodes must be silent (which happens with probability≥ (1−
α)N−|W |). If each of those nodes which chose to transmit,
picks its outgoing link that lies inW for transmission in
step (A2a) (which happens with probability≥ (α/dmax)

|W |),
then the resulting schedule will be exactlyW. Hence, the
probability that PICK yields a given feasible scheduleW is
≥ (α/dmax)

|W |(1 − α)N−|W | ≥ (min(α, 1 − α)/dmax)
N ,

where the last step follows fromdmax ≥ 1.

6A maximal feasible allocation is a set of links to which no new link that
does not interfere with any of the existing links can be added.

7deg(n) , |{m ∈ N : (n, m) ∈ L, or (m, n) ∈ L}|.

8

Claim(iv) follows from the fact that the links that are
activated are announced to neighboring nodes via the message
(CTS, ID(n,m)), and therefore all the neighbors know the
IDs of the activated links in their two hop neighborhood.

We note that this algorithm does not depend on the queue-
lengths, which greatly simplifies its implementation, because
no queue-length information exchange is necessary between
neighboring nodes. Further, due to part (iii), the best allocation
must also have a positive probability. This fact together with
parts (i)-(iii) prove that the algorithm is actually sufficient for
Theorem 2 to hold. At the end of PICK, R gives a feasible
allocation, that is known only locally. In particular, due to
part (iv) of Proposition 1, every node knows those links of its
neighbors that are inR.

B. COMPARE Algorithm

In this section, we propose and analyze a distributed al-
gorithm that compares the total weight associated with two
feasible schedules,S[t] and R[t], with local control signal
transmissions, and choose the one with the larger weight as
the schedule to be used during the next stage. We note that
this algorithm also applies to interference models other than
the secondary interference model. In the following, we will
omit the time index for ease of presentation.

The algorithm relies on constructing theconflict graph
associated withS and R which contains information about
interfering links in the two schedules. The conflict graph,
G′(S,R) = (N ′,L′), of S and R can be generated as
follows8: Each link l in S ∪ R corresponds to a node in the
conflict graph, and if linksl1 ∈ S and l2 ∈ R interfere with
each other, an edge is drawn between the nodes corresponding
to l1 and l2 in the conflict graph. Note that, since bothS and
R are feasible schedules, no two links in the same schedule
(S or R) can interfere with each other, i.e., there is no edge
between two nodes of the same schedule inG′. Every node in
G′ can compute its own weight [as defined in (3)], and has a
list of its neighbors inG′ by part (iv) of Proposition 1. We will
develop the algorithms using the conflict graphG′ and show
at the end of this section that the special structure enablesus
to map the operations to the graphG.

Our COMPARE Algorithm is composed of two procedures
that are implemented consecutively: FIND SPANNING TREE

and COMMUNICATE & D ECIDE. The FIND SPANNING TREE

procedure finds a spanning tree for each connected component
of G′ in a distributed fashion. Then, the COMMUNICATE &
DECIDE procedure exploits the constructed tree structure to
communicate and compare the weights of the two schedules
in a distributed manner.

To illustrate the definitions and operation of the algorithms
we consider the grid network depicted in Figure 2. In this
network, nodes are located on the corner points of a grid, and
each interior node has four links incident to it. To demonstrate
the construction of the conflict graph, suppose we are given
two feasible schedules,S andR. In the figure, solid bold links
belong to scheduleS, while dashed bold links are inR.We use

8We useN ′, L′ to denote the cardinalities ofN ′,L′. Also, we will refer
to G′(S, R) simply asG′ for convenience.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

������������ ������������

Fig. 2. 8x10 grid network example with two feasible schedules indicated
by solid and dashed bold links. The conflict graph decomposesinto 6
disconnected components.

dash-dotted thin lines to connect the links of the two schedules
that interfere with each other. In general, it is not necessary
that the conflict graph be connected. For example, in Figure 2,
we observe six disconnected components. The conflict graph
corresponding to the largest connected component is given in
Figure 3, where links inS are drawn as circular dots, while
links in R are drawn as square dots.

Remark 1:Disconnected components of the conflict graph
can decide on which schedule to use, independent of each
other. This is possible because by construction of the conflict
graph the resulting schedule is guaranteed to be feasible even
if the choices of two disconnected components are different.
This decomposition contributes to the distributed nature of
the algorithm. Namely, the size of the graph within which
the comparison is to be performed is likely to be reduced.
Notice that with this approach, the chosen schedule may be
a combination of the two candidate schedules,S and R,
because different connected components may prefer different
schedules. This merging operation will result in a schedule
that is better than bothS andR.

Based on this remark, henceforth our algorithm will focus
on the decision of a single connected component.

1) FIND SPANNING TREE Procedure: The object of the
FIND SPANNING TREE procedure is to find, in a distributed
fashion, a spanning tree for each of the connected components
in the conflict graph. In our model, every node in the conflict
graph G′ corresponds to an undirected link in the original
graphG, and has a unique ID9. In order to compare two link
IDs, we use lexicographical ordering10.

Our distributed FIND SPANNING TREE procedure is based
on token generation and forwarding operations. For the con-
struction of a spanning tree, at least one token needs to be
generated within each connected component. This can be
guaranteed by requiring every node in the conflict graph that
has the lowest ID number among its neighbors to generate a
token. Each token, carrying the ID of its generator, performs a
depth-first traversal (cf. [9]) within the connected component

9In [18], it was shown that unique IDs are required to be able tofind a
spanning tree in a distributed fashion.

10Without loss of generality, assumeID(n) < ID(m) and ID(i) <
ID(j) : If ID(n) < ID(i), then ID(n, m) < ID(i, j) for all m, j; and
if ID(n) = ID(i) andID(m) < ID(j), thenID(n, m) < ID(i, j).

9

to construct a spanning tree. This token progressively adds
nodes into its spanning tree while avoiding the construction
of cycles. An example is depicted in Figure 3 for the largest
connected component of Figure 2.

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

X

token
minimum

6

3

10

5

2
4

7 8

11

9

12

1

Fig. 3. A connected component of the conflict graph from whichthe link
crossed is eliminated to obtain a spanning tree. The path of the minimum
token is indicated with arrows. The nodes are labeled with numbers for future
reference.

The above procedure focuses on the operation of a single
token generated at one of the nodes within the connected
component. In general, there may be multiple tokens generated
within the same connected component. Each token attempts to
form its spanning tree labeled with its ID number (i.e. the ID
number of the token’s generator). Since only one spanning
tree is required at the end of the procedure, our algorithm
is designed to keep the spanning tree with the smallest ID
number, while eliminating the others. This elimination is
performed when the token of a spanning tree enters a node that
has already been traversed by another token. If the incoming
token has smaller ID, then the token ignores the previous token
and continues the construction of its tree, and if its ID is
larger, then it is immediately deleted. We have the following
proposition for this algorithm.

Proposition 2: Consider the conflict graphG′ = (N ′,L′),
and letd′max denote the maximum degree ofG′. The FIND

SPANNING TREE Procedure finds a spanning tree of all
components of the conflict graph inO(d′maxL

′) time11, and
with O(d′maxN

′) message exchanges for eachn′ ∈ N ′. Also,
at the termination of the procedure, every noden′ ∈ N ′ has
a list of its neighbors in the constructed spanning tree.

Proof: To prove that the constructed subgraph by the
smallest token is in fact a spanning tree, we need to show that
every node is in the formed subgraph, and that the subgraph
contains no cycles. To argue that every node must be in the
subgraph, let us assume, to arrive at a contradiction, thereis a
node, sayz′ ∈ N ′, that is not in the subgraph but is within the
connected component. If any ofz′’s neighbors had held the
token at any time, then it must have attempted to forward the
token toz′ before it sends the token back to its parent. But,
if a token attempt is made toz′, it will ACCEPT it because it
is the first time it encounters such an attempt. This argument
implies that none of the neighbors ofz′ can be in the subgraph.

11f(n) = O(g(n)) means that there exists a constantc < ∞ such that
f(n) ≤ cg(n) for n large enough.

If the same arguments are made repeatedly, this implies that
the whole subgraph must be empty. But, we know that the node
that generates the token is in the subgraph by default. Hence,
we get a contradiction, and the subgraph must contain every
node within the connected component. The argument that the
subgraph contains no cycles follows from the fact that every
node ACCEPTs only those token transmissions that do not
form a cycle. Thus, the resulting subgraph must be acyclic.

The procedure is constructed so that whenever a token
with a larger ID crosses any node of the spanning tree being
constructed by a token with a smaller ID, the token with
the larger ID along with its spanning tree is eliminated. By
definition, a spanning tree has to contain every node and thus
all the tokens must meet with the spanning tree of the smallest
token sometime. Therefore, by the end of the procedure, only
the spanning tree of the smallest token survives.

To compute the complexity, we take into account the com-
plexity of resolving potential collisions of tokens. It is not diffi-
cult to see that each such collision can be resolved inO(d′max)
message exchanges. Since, an operation ofO(d′max) opera-
tions must be performed for2L′ times, we needO(d′maxL

′)
time for the operation to complete. However, each node will
only transmitO(d′max) messages in the process only when
it is receiving and transmitting a token. Since, there are at
mostO(N ′) tokens in the system, the number of messages
transmitted by each node isO(d′maxN

′).
We note that the FIND SPANNING TREE procedure that we

described here is deterministic and achievesγ = 0 in the
context of the generic cross-layer scheme of Definition 3.
Alternatively, a randomized gossip style mechanism can be
used that yieldsγ > 0 (see [30]). Theorem 2 can be used to
understand the fairness characteristics of both approaches.

2) COMMUNICATE & D ECIDE Procedure: We use the
spanning tree formed on the conflict graph to compare weights.
The idea is to convey the necessary information from the
leaves up to the root of the tree (i.e. COMMUNICATE Proce-
dure) so that the schedule with the higher weight is chosen (cf.
(6)), and then send back the decision to the leaves (i.e. DECIDE

Procedure). The COMMUNICATE & D ECIDE procedure can be
explained in two parts as follows:

COMMUNICATE : The leaves communicate their weights to
their parents. If the parent is inS it adds its weight to the sum
of the weights announced by its children. If, on the other hand,
it is in R it subtracts its weight from the sum of its children’s
weights. The resulting value becomes the new weight of the
parent. Then, the parent acts as a leaf with the updated weight
in the next iteration. This recursive update is repeated until
the root is reached.

DECIDE: At the end of COMMUNICATE, the weight of
the root of the spanning tree will be

∑

l∈S
wl −

∑

l∈R
wl.

Depending on whether the root’s weight is positive or negative,
the root decidesS or R, respectively, as the better schedule,
and broadcasts its decision down the tree.

An example of this procedure is provided in Figure 4 for
the spanning tree given in Figure 3. We have the following
complexity result for this procedure.

Proposition 3: Consider the conflict graphG′ = (N ′,L′),
and letd′max denote the maximum degree ofG′. The COM-

10

Fig. 4. The iterative communication of the weights of the twoschedules
from the leaves to the root for the spanning tree of Figure 3.

MUNICATE & D ECIDE procedure correctly finds the schedule
with the larger weight inO(d′maxL

′) time.
Proof: The algorithm is designed so that when noden′

transmits its current sum to its parent, the value of the sum is
the difference of the weights of scheduleS andR only for the
subtree rooted atn′. Thus, the sum at the root of the spanning
tree is the difference of two weights of scheduleS andR. The
decision is a simple comparison of the sign of this sum. This
decision is broadcast to the children of the root, and hence all
the nodes in the connected component knows about the better
schedule and can switch to it by the end of the procedure.
The depth of the spanning tree can be at mostO(L′) and each
collision resolution operation can take at mostO(d′max) time.
Thus, the whole algorithm terminates inO(L′d′max) time.

Notice that the complexity results in the propositions are
given in terms ofG′. We can translate them into bounds on
G through the following inequalities:L′ < N2, d′max < N .
Thus, combining Propositions 1-3 with Theorem 2 yields:

Theorem 3:The distributed implementations of PICK and
COMPARE Algorithms designed for the secondary interference
model asymptotically achieve throughput-optimality and fair-
ness withO(N3) time andO(N2) message exchanges per
node, per stage. �

We conclude the section with a few important remarks.
Remark 2:The algorithms we develop in this section oper-

ate over the conflict graphG′. The transformation of these
operations into operations in the actual graphG would be
difficult for a general conflict graph. However, in our scenario
the graph has a special structure that enables the mapping.
The critical observation is that transmissions within a feasible
schedule has no interference. Thus, links that formS and
R can perform operations inG′ by partitioning CSI (cf.
Figure 1) into two disjoint time intervals. During the first
interval, only links that make upS communicate, while in the
second interval only nodes that make upR communicate. The
operation of each link can easily be mapped into operations
at its two end nodes by assigning one node to each operation,
who will then coordinate the operation. With such a separation
of time, the operations described for the conflict graph can be
translated into operations in the actual network.

Remark 3:Recall from Remark 1 that the conflict graph is

likely to be composed of multiple disconnected components,
which increases the distributed nature of the algorithms. Even
though we did not pursue this direction here, this likelihood
can be increased by dynamically modifying the activation
probabilities,{pn}n, in the PICK Algorithm so that the picked
schedule has more disconnected components. This way, the
localized nature of the algorithm can be improved.

VI. SIMULATIONS

In this section, we provide simulation results for the
distributed algorithms developed in Section V for the grid
topology (see Figure 2). We use the notation[i, j] to refer to
the node at theith row andjth column of the grid. Throughout,
we simulate utility functions of the formUi(x) = γi log(x),
which corresponds to weighted proportionally fair allocation
(see [23], [40]).

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.05

0.1

0.15

0.2

0.25

Throughput evolution for 6x6 Network with 4 flows

Number of Stages

T
hr

ou
gh

pu
t a

ch
ie

ve
d

Flow−1
Flow−2
Flow−3
Flow−4

Fig. 5. The throughput evolution of the 6x6 network forK = 100, γi = 0.5.

We first consider a network of size 6x6, with four flows:
Flow-1 from [1, 1] to [6, 6], Flow-2 from [5, 2] to [6, 3], Flow-
3 from [5, 5] to [5, 1], and Flow-4 from [4, 1] to [1, 4]. Here,
we are interested in the evolution of the throughputs of each
flow for K = 100 and γi = 0.5 for each i ∈ {1, 2, 3, 4}.
The simulation results are depicted in Figure 5. We observe
that the throughputs of the flows converge to different values
depending on their source-destination separation. For example,
Flow-2 achieves the highest throughput since its source is
only two hops from its destination. The fluctuations in the
evolutions are due to the random nature of the algorithm,
which tracks the queue-length evolutions.

Next, we simulate a 10x10 network with two flows: Flow-1
from [1, 1] to [8, 9], and Flow-2 from [9, 2] to [2, 10]. Here, we
focus on the throughputs achieved for the flows as a function
of K with varying γi for each flow. We aim to observe the
mean flow rates as functions ofK and (γ1, γ2). Notice that
each(γ1, γ2) combination corresponds to a different weighting
for the weighted-proportionally fair allocation. Thus, for a
fixed K, the throughputs corresponding to different(γ1, γ2)
combinations actually outline therate regionthat the algorithm
achieves for thatK. Then, asK grows Theorem 2 implies that
this region grows at a decreasing rate, until it converges tothe
stability regionC.

We performed simulations forK varying from 10 to 100,
and(γ1, γ2) ranging from(0, 1) to (1, 0) with γ1 + γ2 = 1 at

11

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Throughput of Flow−1

T
ho

ug
hp

ut
 o

f F
lo

w
−2

K=10 K=20 K=40 K=60 K=80

K=100

(0,1) (.1,.9)
(.2,.8)

(.3,.7)

(.4,.6)

(.5,.5)

(.6,.4)

(.7,.3)

(.8,.2)

(.9,.1)

(γ
1
,γ

2
)

Fig. 6. Throughputs of flows with varyingK and (γ1, γ2).

each intermediate point. The simulation results are provided
in Figure 6. We observe that for a givenK, the rate region
is a convex region. Also, asK grows, the region expands at
a decreasing rate agreeing with our expectations. We further
note that with this algorithmic method, the stability region of
a wireless network, that is otherwise difficult to find, can be
determined with high accuracy.

While our work focuses on optimizing the long-term net-
work utilization metric, we note that, for many applications,
delay is just as important a metric to optimize. We note that
the interference-limited nature of the medium along with the
randomized implementations are causes of delay degradations.
Our simple, randomized algorithm is quite general, and is
oblivious to network structure and scheduling constraints. Any
low-complexity algorithm with such generality is unlikely
to achieve low delay [10]. Yet, there is potential for delay
performance improvements, which constitutes the motivation
for our ongoing works in this direction.

VII. C ONCLUSIONS

We provided a framework for the design of distributed
cross-layer algorithms for full utilization of multi-hop wireless
networks. To that end, we first described a generic scheduling-
routing-congestion control mechanism that allows for various
imperfections and relaxations in its operation which facilitates
the design of distributed implementations. We studied the
stability and fairness characteristics of the generic cross-layer
algorithm, and explicitly characterized the effect of different
type of imperfections on its performance. We saw that certain
types of imperfections are more detrimental than others, which
revealed the critical components in the design of algorithms.

Based on this foundation, we developed specific distributed
algorithms for the secondary interference model. For this
model, existing throughput-optimal strategies require that an
NP-hard problem be solved by a centralized controller at every
time instant. In this work, we showed that this is not necessary,
and full utilization of the network can be achieved with
distributed algorithms having only polynomial communication
and computational complexity.

An important byproduct of our approach is the use of the
developed cross-layer algorithms to find (with high accuracy)
the stability region of ad-hoc wireless networks, that are
otherwise difficult to characterize.

APPENDIX

We defined the notion of capacity (stability) region in
Definition 2. A characterization of this region in terms of
flow conservation and feasibility constraints is provided by
Tassiulas and Ephremides in their seminal work [43], which
is reproduced in the following proposition to be used in the
proof of Theorem 1.

Proposition 4: Let G = (N ,L) be a given network andS
be the set of feasible allocations. The capacity (or stability)
region C of the network is given by the set of vectorsr =

(r
(d)
n)n,d∈N for which there existsz(d)

(n,m) ≥ 0 for all (n,m) ∈
L andd ∈ N , such that both the flow conservation constraints
at the nodes and the feasibility constraints are satisfied, i.e.,

(C1) For alln ∈ N andd ∈ N\{n}, we have

r(d)n +
∑

k:(k,n)∈L

z
(d)
(k,n) =

∑

m:(n,m)∈L

z
(d)
(n,m),

(C2)

[

∑

d∈N

(

z
(d)
(n,m) + z

(d)
(m,n)

)

]

(n,m)∈L

∈ Conv(S). 12

Proof of Theorem 1:

Before the start the proof, we note that it closely follows
the technique of [29], except that it is extended to multi-
hop flows and more general arrival processes. The multi-
hop extension adds a routing component to the mechanism
and add some technical complications to the proof. More
importantly, in this work we further include congestion control
(cf. Theorem 2) into the framework of [29] to investigate
the fairness characteristics of the joint congestion control,
scheduling and routing mechanism.

We first derive an upper bound on the single-step mean drift
of the Lyapunov function,∆V (1)

t (Y), for a givenY = (Q,S).

∆V
(1)
t (Y)

= E
[

‖Q[t+ 1]‖2
2 − ‖Q[t]‖2

2 |Y[t]
]

≤
∑

n,d

E

[(

(

Q(d)
n [t] − S

(d)
out(n)[t]

)+

+X(d)
n [t]

+S
(d)
in(n)[t]

)2

− (Q(d)
n [t])2 |Y[t]

]

=
∑

n,d

E

[(

Q(d)
n [t] − S

(d)
out(n)[t] + U

(d)
out(n)[t] +X(d)

n [t]

+S
(d)
in(n)[t]

)2

− (Q(d)
n [t])2 |Y[t]

]

=
∑

n,d

E

[(

Q(d)
n [t] − S

(d)
out(n)[t] +X(d)

n [t]

+S
(d)
in(n)[t]

)2

− (Q(d)
n [t])2 |Y[t]

]

(16)

+
∑

n,d

2E

[

U
(d)
out(n)[t]

(

Q(d)
n [t] − S

(d)
out(n)[t] +X(d)

n [t]

+S
(d)
in(n)[t]

)

+
(

U
(d)
out(n)[t]

)2

|Y[t]

]

(17)

12Conv(A) denotes the convex hull of setA, which is the smallest convex
set that includesA. The convex hull is included in view of the possibility of
timesharing between feasible allocations.

12

whereU (d)
out(n)[t] denotes the amount of unused service by node

n to transmit packets of typed in slot t. Note thatU (d)
out(n)[t]

can be non-zero only whenQ(d)
n [t] is low. Also, since the

service rate over each link is upper-bounded by one,U
(d)
out(n)[t]

must also be upper-bounded by the maximum degreedmax of
the network. First, we show that (17) is upper-bounded.

(17) ≤
∑

n,d

(

2E

[

U
(d)
out(n)[t]Q

(d)
n [t] | Y[t]

]

+4dmax + 2λ(d)
n + d2

max

)

≤ N2(3d2
max + 6dmax) =: b1,

where, in the last step, we used the fact thatU
(d)
out(n)[t] ≤ dmax

and thatλ(d)
n ≤ dmax.

Next, we study (16). We can re-write it in inner-product
form after cancelations

(16) = 2E [〈 Q[t],Sin[t] + X[t] − Sout[t]〉
+‖Sin[t] + X[t] − Sout[t]‖2

2 | Y[t]
]

≤ 2E [〈 Q[t],Sin[t] + X[t] − Sout[t]〉 |Y[t]] + b2, (18)

whereb2 is a finite constant since: the service rate into or out
of any node is bounded bydmax; and the second moment of
the arrival process is assumed to be bounded.

Next, we study the expectation in (18) in further detail.
We omit the the time index[t] in the following derivation for
notational convenience.

E [〈 Q,Sin + X − Sout〉 | Y] = 〈 Q,
⋆

Sin +λ−
⋆

Sout〉
+〈Q,Sin−

⋆

Sin −Sout+
⋆

Sout〉
(19)

where
⋆

SW is chosen according to (4). Sinceλ ∈ C(ε),
Proposition 4 implies that there exists a non-

negative vector Ŝ =
(

Ŝ
(d)
(n,m)

)d∈N

(n,m)∈L
such that:

[

∑

d∈N

(

Ŝ
(d)
(n,m) + Ŝ

(d)
(m,n)

)

]

(n,m)∈L

∈ Conv(S); and

λ(d)
n + Ŝ

(d)
in(n) = Ŝ

(d)
out(n) − ε, ∀n, d 6= n,

which can be written compactly asλ = Ŝout − Ŝin − ε1 in
vector form, where1 is a vector of all ones. Substituting this
into the first inner product in (19) yields.

〈 Q,
⋆

Sin +λ−
⋆

Sout〉 = 〈 Q, Ŝout − Ŝin〉
−〈Q,

⋆

Sout −
⋆

Sin〉 − ε〈 Q,1〉

Note that

〈 Q,
⋆

Sout −
⋆

Sin〉 =
∑

n,d

Q(d)
n

(

⋆

S
(d)

out(n) −
⋆

S
(d)

in(n)

)

=
∑

(n,m)∈L

∑

d

⋆

S
(d)

(n,m)

(

Q(d)
n −Q(d)

m

)

=
∑

(n,m)∈L

⋆

S(n,m) max
d

∣

∣

∣
Q(d)
n −Q(d)

m

∣

∣

∣

(a)

≥
∑

(n,m)∈L

Ŝ(n,m) max
d

∣

∣

∣
Q(d)
n −Q(d)

m

∣

∣

∣

≥
∑

(n,m)∈L

∑

d

Ŝ
(d)
(n,m)

(

Q(d)
n −Q(d)

m

)

= 〈Q, Ŝout − Ŝin〉,

where the inequality(a) follows from (4). Substituting this in
the previous expression yields

〈 Q,
⋆

Sin +λ−
⋆

Sout〉 ≤ −ε〈Q,1〉
≤ − ε

dmax
〈 Q,

⋆

Sout −
⋆

Sin〉,

where the last inequality follows from the fact that
⋆

Sout(n)

−
⋆

Sin(n)≤ dmax for all n. We substitute this upper bound in
(19) with the new notation:Ψ[t] := 〈 Q[t],Sout[t] − Sin[t]〉,
and

⋆

Ψ [t] := 〈 Q[t],
⋆

Sout [t]−
⋆

Sin [t]〉, and Ψ̃[t] :=
〈 Q[t],Rout[t] − Rin[t]〉.

E [〈 Q[t],Sin[t] + X[t] − Sout[t]〉 |Y[t] = Y]

≤ − ε

dmax

⋆

Ψ [t]+
⋆

Ψ [t] − Ψ[t]

We use this bound in (18) and bound theT -step mean drift as
∆V

(T)
t (Y)

≤ −2
ε

dmax

T−1
∑

τ=0

E[
⋆

Ψ [t+ τ] |Y[t] = Y] + Tb2 (20)

+

T−1
∑

τ=0

E[
⋆

Ψ [t+ τ] − Ψ[t+ τ] |Y[t] = Y] (21)

To bound (20) note that

T−1
∑

τ=0

E[
⋆

Ψ [t+ τ] |Y[t] = Y] ≥
T−1
∑

τ=0

(

⋆

Ψ [t] − τb3

)

≥ T
⋆

Ψ [t] − T 2

2
b3, (22)

where the first inequality follows from the fact that in a single
time slot, each queue can change by at most a bounded value,
and therefore there exists a constantb3, such that

|
⋆

Ψ [τ + 1]−
⋆

Ψ [τ]| ≤ b3 for any τ.
Next, we are interested in upper-bounding (21). For nota-

tional convenience, let us define∇[t] :=
⋆

Ψ [t]−Ψ[t]. Hence, we
are interested in upper-bounding

∑T−1
τ=0 E[∇[t+τ]|Y[t] = Y].

13

To that end, let us define

T0 = inf{τ ≥ 0 : R[t+ τ] =
⋆

S [t+ τ], and

〈Q[t+ τ],Sout[t+ τ] − Sin[t+ τ]〉
≥ max (〈Q[t+ τ],Sin[t+ τ − 1] − Sout[t+ τ − 1]〉,
(1 − γ)〈Q[t+ τ],Rout[t+ τ] − Rin[t+ τ]〉)}

T1 = inf{τ > T0 : 〈Q[t+ τ],Sout[t+ τ] − Sin[t+ τ]〉
< max (〈Q[t+ τ],Sin[t+ τ − 1] − Sout[t+ τ − 1]〉,
(1 − γ)〈Q[t+ τ],Rout[t+ τ] − Rin[t+ τ]〉)}.

Thus,T0 is the first slot aftert when the randomly picked
scheduleR according to (5) is equal to the optimum schedule,
and (6) is satisfied; andT1 is the first slot afterT0 when the
condition in (6) is violated. Note that in the interval between
T0 andT1, the system is well-behaved, and no undesired event
such as that in (6) occurs. Finally, let us defineT2 := T −
min (T, T1) as the remaining time afterT1 until the end ofT
slots, if any. The idea is to show that ifT is sufficiently large,
the duration betweenT0 andT1 will dominate the interval of
durationT. Next, we make this argument rigorous.

First note that for anyτ ≥ 0, we have

∇[t+ τ] ≤ 2
⋆

Ψ [t+ τ] ≤ 2
⋆

Ψ [t] + 2τb3.

Next, note that atτ = T0, we have

〈Q[t+ T0],Sout[t+ T0] − Sin[t+ T0]〉
≥ (1 − γ)〈Q[t+ T0],

⋆

Sout [t+ T0]−
⋆

Sin [t+ T0]〉

due to (6). This is the same as

∇[t+ T0] ≤ γ
⋆

Ψ [t+ T0]

≤ γ
⋆

Ψ [t] + γT0b3

Using the fact that whenτ ∈ [T0, T1] the system is well-
behaved (i.e. event (6) does not occur), we can further upper-
bound∇[t+ τ] for τ ∈ [T0, T1] as

∇[t+ τ] = ∇[t+ T0] + ∇[t+ τ] −∇[t+ T0]

≤ γ
⋆

Ψ [t] + γT0b3

+(
⋆

Ψ [t+ τ]−
⋆

Ψ [t+ T0]) + (Ψ[t+ τ] − Ψ[t+ τ])

≤ γ
⋆

Ψ [t] + (2τ + γT0)b3,

where the last step follows from the sum of the previous two
differences being upper-bounded by2τb3. Hence, we can write

T−1
∑

τ=0

∇[t+ τ] ≤ 2(
⋆

Ψ [t] + Tb3)(min(T0, T) + T2)

+γ
⋆

Ψ [t]T + (2 + γ)T 2b3.

Note that we haveE[min(T0, T)] ≤ 1
δ(1−ψ) sinceT0 can be

bounded by a geometric random variable with parameterδ(1−
ψ). Also, note thatP (T1 > T) = 1 − P (T1 ≤ T) ≥ 1 − ψT,
where the last step follows from union bound. Therefore, we
have the lower boundE[min(T, T1)] ≥ (1 − ψT)T, which
implies E[T2] ≤ ψT 2. Thus, we can write

E

[

∑T−1
τ=0 ∇[t+ τ] |Y[t] = Y

]

≤ 2T
⋆

Ψ [t]

(

ψT +
1

δ(1 − ψ)T
+
γ

2

)

+2Tb3

(

1

δ(1 − ψ)
+ ψT 2

)

+ (2 + γ)T 2b3

Substituting (22) in (20), and the previous upper bound into
(21) yields

∆V
(T)
t (Y) ≤ −2T

⋆

Ψ [t]

(

ε

dmax
− ψT − 1

δ(1 − ψ)T
− γ

2

)

+2

(

ε

dmax
+ 1 +

γ

2

)

T 2b3

+2

(

1

δ(1 − ψ)
+ ψT 2

)

Tb3 + Tb2

Letting T = 1√
δψ(1−ψ)

, we have

∆V
(T)
t (Y)

≤ −2T
⋆

Ψ [t]

(

ε

dmax
−
√

ψ

δ(1 − ψ)
− γ

2

)

+B1

≤ −cT
(

ε

dmax
−
√

ψ

δ(1 − ψ)
− γ

2

)

∑

n,d

Q(d)
n +B1,

wherec andB1 are bounded positive valued numbers for the
selectedT. This completes our proof.

REFERENCES

[1] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, R. Vijayakumar,
and P. Whiting. Scheduling in a queueing system with asynchronously
varying service rates.Probability in the Engineering and Informational
Sciences, 18:191–217, 2004.

[2] E. Arikan. Some complexity results about packet radio networks. IEEE
Transactions on Information Theory, 30:681–685, 1984.

[3] S. Asmussen.Applied Probability and Queues. Springer-Verlag, New
York, NY, 2003.

[4] M. Bayati, B. Prabhakar, D. Shah, and M. Sharma. Iterative scheduling
algorithms. InProceedings of IEEE INFOCOM, 2007.

[5] D. P. Bertsekas and J. N. Tsitsiklis.Parallel and Distributed Computa-
tion: Numerical Methods. Athena Scientific, Belmont, MA, 1997.

[6] L. Bui, A. Eryilmaz, R. Srikant, and X. Wu. Joint asynchronous
congestion control and distributed scheduling for wireless networks.
Proceedings of IEEE Infocom 2006.

[7] P. Chaporkar, K. Kar, and S. Sarkar. Throughput guarantees through
maximal scheduling in wireless networks. InProceedings of the Allerton
Conference on Control, Communications and Computing, 2005.

[8] L. Chen, S. H. Low, M. Chiang, and J. C. Doyle. Jointly optimal
congestion control, routing, and scheduling for wireless ad hoc networks.
In Proceedings of IEEE Infocom, Barcelona, Spain, April 2006.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction
to Algorithms. M.I.T. Press, McGraw-Hill Book Company, London,
England, 2001.

[10] Shah D., Tse D. N. C., and Tsitsiklis J. N. Hardness of lowdelay
network scheduling.Submitted to IEEE Transactions on Information
Theory, 2009.

[11] J. Dai and B. Prabhakar. The throughput of switches withand without
speed-up. InProceedings of INFOCOM, 2000.

[12] A. Eryilmaz, E. Modiano, and A. Ozdaglar. Randomized algorithms for
throughput-optimality and fairness in wireless networks.In Proceedings
of IEEE Conference on Decision and Control, San Diego, CA, December
2006.

[13] A. Eryilmaz, A. Ozdaglar, and E. Modiano. Polynomial complexity
algorithms for full utilization of multi-hop wireless networks. In
Proceedings of IEEE Infocom, 2007.

14

[14] A. Eryilmaz, A. Ozdaglar, D. Shah, and E. Modiano. Imperfect
randomized algorithms for the optimal control of wireless networks.
In Proceedings of CISS, 2008.

[15] A. Eryilmaz and R. Srikant. Fair resource allocation inwireless
networks using queue-length based scheduling and congestion control.
In Proceedings of IEEE Infocom, volume 3, pages 1794–1803, Miami,
FL, March 2005.

[16] A. Eryilmaz and R. Srikant. Joint congestion control, routing and mac
for stability and fairness in wireless networks.IEEE Journal on Selected
Areas in Communications, special issue on Nonlinear Optimization of
Communication Systems, 14:1514–1524, August 2006.

[17] A. Eryilmaz, R. Srikant, and J. R. Perkins. Stable scheduling policies
for fading wireless channels.IEEE/ACM Transactions on Networking,
13:411–425, April 2005.

[18] R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed
algorithm for minimum-weight spanning trees.ACM Transactions on
Programming Languages and Systems, 5:66–77, 1983.

[19] P. Giaccone, B. Prabhakar, and D. Shah. Randomized scheduling
algorithms for high-aggregate bandwidhth switches.IEEE Journal on
Selected Areas in Communications, 21(4):546–559, 2003.

[20] C. Joo, X. Lin, and N. Shroff. Understanding the capacity region of the
greedy maximal scheduling algorithm in multi-hop wirelessnetworks.
In Proceedings of IEEE INFOCOM, 2008.

[21] K. Jung and D. Shah. Low delay scheduling in wireless networks. In
Proceedings of ISIT, 2007.

[22] F. P. Kelly. Charging and rate control for elastic traffic. European
Transactions on Telecommunications, 8:33–37, 1997.

[23] F. P. Kelly, A. Maulloo, and D. Tan. Rate control in communication
networks: Shadow prices, proportional fairness and stability. Journal of
the Operational Research Society, 49:237–252, 1998.

[24] I. Keslassy and N. McKeown. Analysis of scheduling algorithms that
provide 100% throughput in input-queued switches. InProceedings of
the Allerton Conference on Control, Communications and Computing,
2001.

[25] X. Lin and N. Shroff. Joint rate control and scheduling in multihop
wireless networks. InProceedings of IEEE Conference on Decision
and Control, Paradise Island, Bahamas, December 2004.

[26] X. Lin and N. Shroff. The impact of imperfect schedulingon cross-
layer rate control in multihop wireless networks. InProceedings of
IEEE Infocom, Miami, FL, March 2005.

[27] S. H. Low and D. E. Lapsley. Optimization flow control, I:Basic
algorithm and convergence.IEEE/ACM Transactions on Networking,
7:861–875, December 1999.

[28] M. Marsan, E. Leonardi, M. Mellia, and F. Neri. On the stability of
input-buffer cell switches with speed-up. InProceedings of INFOCOM,
2000.

[29] E. Modiano, D. Shah, and G. Zussman. Maximizing throughput in wire-
less networks via gossiping. InACM SIGMETRICS/IFIP Performance,
2006.

[30] D. Mosk-Aoyama and D. Shah. Computing separable functions via
gossip. InProceedings IEEE PODC, Denver, 2006.

[31] M.J. Neely, E. Modiano, and C. Li. Fairness and optimal stochastic
control for heterogeneous networks. InProceedings of IEEE Infocom,
pages 1723–1734, Miami, FL, March 2005.

[32] M.J. Neely, E. Modiano, and C.E. Rohrs. Dynamic power allocation
and routing for time varying wireless networks. InProceedings of IEEE
Infocom, pages 745–755, April 2003.

[33] L. Peterson and B. Davie.Computer Networks: A Systems Approach.
Morgan Kaufmann Publishers, Second edition, 2000.

[34] S. Sanghavi, L. Bui, and R. Srikant. Distributed link scheduling with
constant overhead, 2006. Technical Report.

[35] G. Sasaki and B. Hajek. Link scheduling in polynomial time. IEEE
Transactions on Information Theory, 32:910–917, 1988.

[36] D. Shah. Stable algorithms for input queued switches. In Proceedings of
the Allerton Conference on Control, Communications and Computing,
2001.

[37] D. Shah and D. J. Wischik. Optimal scheduling algorithms for input-
queued switches. InProceedings of IEEE INFOCOM, 2006.

[38] D. Shah and D. J. Wischik. Heavy traffic analysis of optimal scheduling
algorithms for networks, 2007. submitted for publication.

[39] S. Shakkottai and A. Stolyar. Scheduling for multiple flows sharing a
time-varying channel: The exponential rule.Translations of the AMS,
Series 2,A volume in memory of F. Karpelevich, 207:185–202, 2002.

[40] R. Srikant.The Mathematics of Internet Congestion Control. Birkhäuser,
Boston, MA, 2004.

[41] A. Stolyar. Maximizing queueing network utility subject to stability:
Greedy primal-dual algorithm.Queueing Systems, 50(4):401–457, 2005.

[42] L. Tassiulas. Linear complexity algorithms for maximum throughput
in radio networks and input queued switches. InProceedings of IEEE
Infocom, pages 533–539, 1998.

[43] L. Tassiulas and A. Ephremides. Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks. IEEE Transactions on Automatic Control,
36:1936–1948, December 1992.

[44] X. Wu and R. Srikant. Regulated maximal matching: A distributed
scheduling algorithm for multi-hop wireless networks withnode-
exclusive spectrum sharing. InProceedings ofIEEE Conference on
Decision and Control., 2005.

[45] X. Wu and R. Srikant. Bounds on the capacity region of multi-hop
wireless networks under distributedgreedy scheduling. InProceedings
of IEEE Infocom, 2006.

[46] H. Yaiche, R. R. Mazumdar, and C. Rosenberg. A game-theoretic
framework for bandwidth allocation and pricing in broadband networks.
IEEE/ACM Transactions on Networking, 8(5):667–678, October 2000.

Atilla Eryilmaz (S ’00-M ’06) received his M.S.
and Ph.D. degrees in Electrical and Computer Engi-
neering from the University of Illinois at Urbana-
Champaign in 2001 and 2005, respectively. Be-
tween 2005 and 2007, he worked as a Postdoctoral
Associate at the Laboratory for Information and
Decision Systems at the Massachusetts Institute of
Technology. He is currently an Assistant Professor
of Electrical and Computer Engineering at the Ohio
State University. His research interests include com-
munication networks, optimal control of stochastic

networks, optimization theory, distributed algorithms, stochastic processes and
network coding.

Asu Ozdaglar received the S.M. and the Ph.D.
degrees in electrical engineering and computer sci-
ence from the Massachusetts Institute of Technology,
Cambridge, in 1998 and 2003, respectively. Since
2003, she has been a member of the faculty of
the Electrical Engineering and Computer Science
Department at the Massachusetts Institute of Tech-
nology, where she is currently the Class of 1943
Career Development Associate Professor. She is also
a member of the Laboratory for Information and De-
cision Systems and the Operations Research Center.

She is the recipient of the MIT Graduate Student Council Teaching award, the
NSF Career award, and the 2008 Donald P. Eckman award of the American
Automatic Control Council. Her research interests includeoptimization theory,
with emphasis on nonlinear programming and convex analysis, game theory,
distributed optimization methods, and network optimization and control.

Devavrat Shah is currently an assistant professor
with EECS, MIT since Fall 2005. He is a member of
the Laboratory of Information and Decision Systems
(LIDS). He received his Ph.D. from the Computer
Science department, Stanford University in October
2004. He was a post-doc in the Statistics department
at Stanford in 2004-05. He was co-awarded the
IEEE INFOCOM best paper award in 2004 and
ACM SIGMETRIC/Performance best paper awarded
in 2006. He received 2005 George B. Dantzig best
disseration award from the INFORMS. He received

NSF CAREER award in 2006. His research interests include network al-
gorithms, stochastic networks, network information theory and statistical
inference.

Eytan Modiano received his M.S. and PhD degrees,
both in Electrical Engineering, from the University
of Maryland, College Park, MD, in 1989 and 1992
respectively. He was a Naval Research Laboratory
Fellow between 1987 and 1992 and a National
Research Council Post Doctoral Fellow during 1992-
1993. Between 1993 and 1999 he was with MIT
Lincoln Laboratory where he was the project leader
for MIT Lincoln Laboratory’s Next Generation In-
ternet (NGI) project. Since 1999 he has been on the
faculty at MIT; where he is presently an Associate

Professor. His research is on communication networks and protocols with
emphasis on satellite, wireless, and optical networks.

