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Abstract— In this paper, we provide and study a general frame-
work that facilitates the development of distributed mechaisms
to achieve full utilization of multi-hop wireless networks. In par-
ticular, we describe a generic randomized routing, scheding and
flow control scheme that allows for a set of imperfections inte
operation of the randomized scheduler to account for potenal
errors in its operation. These imperfections enable the dégn of
a large class of low-complexity and distributed implementéions
for different interference models. We study the effect of sah
imperfections on the stability and fairness characteristts of the
system, and explicitly characterize the degree of fairnesachieved
as a function of the level of imperfections. Our results reval the
relative importance of different types of errors on the oveall
system performance, and provide valuable insight to the dégn
of distributed controllers with favorable fairness characeristics.

In the second part of the paper, we focus on a specific
interference model, namely the secondary interference ma,
and develop distributed algorithms with polynomial commun-
cation and computation complexity in the network size. Thisis
an important result given that earlier centralized throughput-
optimal algorithms developed for such a model relies on the
solution to an NP-hard problem at every decision. This resus
in a polynomial complexity cross-layer algorithm that achieves
throughput optimality and fair allocation of network resou rces
amongst the users. We further show that our algorithmic ap-
proach enables us to efficiently approximate the capacity igion
of a multi-hop wireless network.

Index Terms— Multi-hop Wireless Networks, Network Op-
timization, Randomized Algorithms, Congestion Control, Fair
Allocation, Throughout-optimal Scheduling, Dynamic Rouing.

|. INTRODUCTION

There has been considerable recent interest in devel
ing network protocols to achieve the multiple objectiveS

In their seminal work, Tassiulas and Ephremides developed
a joint routing-scheduling algorithm that stabilizes tlegvwork
whenever the arrival rate of the exogenous flows are within
the stability (capacity) region. In [42], Tassiulas showkdt
randomized algorithms can be used to achieve maximum
throughput in input queued switches with linear computa-
tional complexity. To improve the exponentially high delay
performance of [42], [19] introduced randomized algorithm
for switches. Other research, for example, [24], [36], [39]
[32], [1], [16], [37], [38], have contributed to the analgsof
centralizedthroughput optimal policies in wireless networks.

In this work, we provide a scheduling-routing algorithm
combined with a congestion controller for a general system
model whereby multi-hop flows are considered. Following the
approach of [29], we allow various types of errors to occur
during the scheduling operation, which facilitates theigles
of distributed implementations. One of the main contribos
of the paper is the explicit characterization of the effett o
different types of errors on the overall performance. Aiddi
ally, this paper contributes to the study of resource atlona
in multi-hop wireless networks in several fundamental ways

First, we propose a generic cross-layer mechanism with
three components: a randomized scheduling component and a
routing component (implemented by the network nodes) aimed
at allocating resources to the flows efficiently; and a dual
congestion control component (implemented at the sources)
aimed at regulating the flow rates to achieve fairness. Tii-fac
tate distributed implementation, several types of impxitas
are allowed in the scheduler, as in [29]. In this work, we
ther add a routing component to the framework to optiynall
eer multi-hop traffic, and a congestion control component

of throughput maximization and fair allocation of resogrcdnat regulates the flow rates to achieve fair division of the

among competing users. Much of the work in wireless commU=> R
Hfility-maximization framework of Kelly et al. [22], [23]red

nication networks has focused on centralized control arsd
developedthroughput-optimabolicies (e.g. [43], [32], [16]).
However, these policies do not directly lend themselvedge
tributed implementation, which is essential in practicetHis

paper, we provide a class of randomized routing, schedulifiy
and flow control algorithms that achieve throughput-optim
and fair resource allocations that is amenable to distibu

[gsources among flows, whefairnessis defined using the

further improved in subsequent works [27], [46], [40].

d Second, we study the proximity of the achieved rate alloca-

tion with generic cross-layer scheme to the fair allocatamd
plicitly characterize the performance loss as a functibn
the imperfections of the underlying scheduler. Moreover, b

irevealing the relative importance of different types ofoesr

implementation with polynomial communication and comp 2" the performance, our analysis also yields principles for

tation complexity.
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efficient design of distributed network controllers.
Third, for the secondary interference mogete show that
our cross-layer mechanism can be implemented via disgtibut

1In the secondary interference model, two links interfer¢hiéy share a
node or if there is a link that connects any of the end nodeketwo links.
This interference model prevents real world issues sucheakitiden terminal
problem (see [33]).



algorithm. This approach involves the operation of two ggu over each link inC unless there is interference. We refer to the
tial algorithms. A novel feature of these algorithms is theflow that enters the network at nodaggj\lfeaves it at nodéas
operation on an appropriately constructed conflict gragte TFlow-(n, d). We let X[t] = (Xr(ld) [t]) denote the vector
use of the conflict graph leads to a partitioning of the nekywor ) _ ] ne/\(fd) )
whereby the decisions can be made independently in differ&h arrivals to the network in slat with X [t] corre.spo(gflmg
partitions. Moreover, the operations on the conflict graph ct0 the arrivals for Flowtn, d). We use the notation:, "[(]

be mapped into network level operations using the spec‘%lddeno'[e ther(‘inean flow rate of Flowx,d) in slot ¢, i.e.,
structure of the problem. These distributed algorithmsamby ~ Zn [t] = E[X\"[t]]. Then, themean flow rate of Flown, d)
achieve throughput-optimal and fair allocations, but dlawe is defined aszl) = limp o s 2\P[t] whenever it
polynomial communication and computation complexity. ~ €xists.

Finally, our policy suggests an algorithmic method of es- We consider a general interference model specified by a
timating the stability region of multi-hop wireless netwsy set of link-pairs thatinterfere with each other, i.e., when
which is otherwise a very difficult task to characterize. their concurrent transmissions collide. We assume thataf t

This work differs from our earlier relevant works [12], [13] interfering links are activated in a slot, both transmissio
[14] in that: [12] studies the performance cross-layer athm fail. Note that this includes a large class of graph-théoret
with a pick-and-compare scheduler, but without any errotgterference models considered in the scheduling liteeatu
and does not propose any specific implementable algorith(®;g. the primary interference model [35], [26], [44], [}

[13] proposes a low-complexity algorithm, but still doest ndhe secondary interference model [2], [45], [7]).

allow for any errors; [14] allows for errors but only allows We useS[t] = (Su.m)[t]), <. to denote a linkalloca-
single-hop traffic and thus has no routing component. Othiégen vector(or schedulg at timet¢, andS to denote theset of
related works include [11], [28], [26], [44], which developfeasible allocationsvhere a feasible allocation is a set of links
distributed algorithms that guarant&e% utilization of the in which no two links interfere with each other. We introduce
stability region for a primary interference moéleWhile the notationS((Z?m) to distinguish packets destined for different
distributed implementation of these algorithms is possiblnodes: at any given slat, S(Z)m [t] € {0,1} is 1 if link
this comes at the cost of sacrificing a significant portion (E;l,m) serves a packet destined for nadién that slot, and)
the capacity of the network (see, for example, [6]. [5]): A§therwise. This implies thaf",_ (@ [t] = S [£], fOr
more general interference models are considered, even mgﬁe(n m) €N (n,m) '

of the capacity of the network needs to be sacrificed for ,, ’

distributed implementation (e.g., [45], [7]). For exampiethe destination. We IeQﬁld) [t] denote the length of the queue at

case of a secondary interference model with the gnid tomlo%oden destined for nod€ at the beginning of slat Evolution
distributed implementation can only guarantee5% of the of Q(d) (] whenn +# d satisfies

capacity of the network. [29] also used [42] to develop

At each node, a buffer (queue) is maintained for each

distributed schedulers by utilizing Gossip mechanisms. QW t+1] < (Q(d) ] — g [ ])+
More recently, the throughput performance of greedy max- " AN 0“;(") (1)
imal matching schedulers are investigated for generatfarte + X,(ld) [t] + Sl.(nzn) [t],

ence models and geometric graphs ([20]), which proves th 4
1/6 of the stability region is guaranteed to be achievable k‘)’{/ ere(y)” = max(0,y). Also,
such schedulers. In other recent works ([21], [4]), disiiéol Sl.(szn) [t] & Z S((Z)n) [t]

schedulers are proposed with attractive delay charatitstis (k:(kmyer)

The rest of the paper is organized as follows. In Section {§ 4 shorthand for the maximum number of packets that can

we describe the system model and our goal. In Section Ill, W@ internally routed to node. that are destined for node
describe a generic randomized scheme for schedulingaguti ; Similarly g [f] 2 Z{ (nmyec) S((d) ] are the
: ! m:(n,m)e n,m

congestion control, and prove its throughput-optimalida 1\avimum nurrfgte(?)of packets that can leave nadand are

fairness properties. In Section V, we use the randomizggstined for nodd. When.n — d. we setQEld)[t] — 0. for all

scheme 1o _deS|gn and analyze <_j|str|bu_ted algonthms for t ,eoecause in that case the packets have already reached their
secondary interference model. Finally, in Section VI We-PrQyastination

vide simulation results. Next, we introduce the concepts of network stability and
Throughout the paper, we denote the dot product of t‘"f%\pacity region

vectors, sayX andY, as(X,Y).
II. SYSTEM MODEL AND GOAL

DefinitionTl Stability): A given queue, sa@%‘i), is stable
. 1= . .
Consider a wireless network that is represented by zlafnh;rpnfipf ;E[Q% [d] < co. The network isstableit all
undirected graphg = (V, £), which has a node sét” (with queues are stable; anmhstableotherwise.

cardinality V), a link set£ (with cardinality L). We assume a  Definition 2 Capacity [Stability] Region C): The capac-
time slotted system with synchronized nodes, where each §t9 (stability) regionC is the set of(;zﬁld))mde/\/ > 0 for which
is long enough to accommodate a single packet transmissifre exists an algorithm that can stabilize the net#ork

2|n the primary interference model, each feasible allocationsists of links SNote that, under this definition, the capacity region is none, i.e., if
that do not share a node, i.e. each feasible allocationnigtehing X € C, theny < X (component-wise) must also be ¢h



Given the general model described above, our goal is to diecision is updated at the beginning of each stage, and ts kep

sign distributed algorithms that achieve throughput+optity

and fair allocation of the network resources amongst thesflow Definition 3 Generic Cross-layer Scheme):The

Following the extensive literature on the topic (e.g. [43P],
[32], [15]) we call a policythroughput-optimaif it can support

unmodified throughout the stage.

Cross-
layer algorithm
randomized scheduler

with imperfections characteri

is composed of three components:

a
zed

any mean flow rate in the capacity region without violating thhy the parameters(d,~,v); a routing component that

network stability.

To define fairness we use the “utility maximization” frame
work of economics: with each flow, say Flod), we
wherebyZ/{md(:EﬁLd)) is a measure of the utility gained by Flow-
(n,d) for the mean flow rate'”). We assume, based on the
law of diminishing returns, that the functiéf, 4(-) is concave
and non-decreasing for all flows. Then, a mean flow rate vec
x is referred to as #air allocation if it is an optimal solution
of the convex optimization problem:

X € arg max Z Uy, a(2D). 2
xec n,deN

Hence, a fair allocation is a mean flow rate vector th
maximizes the aggregate utility over all flows in the networl
It is known that by defining/, 4(-) appropriately, different

types of fairness, such as proportional or max-min fairnes
can be achieved ([22], [23], [27], [40], [15], [31], [25]).

Ill. GENERIC CROSSLAYER SCHEME

In this section, we provide the description of a gener
congestion control-routing-scheduling scheme that aelsie
the throughput-optimality and fairness goals of Sectiof He
scheme combines ideas from recently studied congestion ¢
trollers designed for wireless networks (e.g. [15], [3D6],
[41], [8]), and the randomized scheduling strategy inticetl
by Tassiulas in his seminal work [42]. Our algorithm not onl
extends the use of randomized scheme of [42] to multi-h
networks with general interference models, but also efilithe
parallel use of a dual congestion controller to achievenéss.

The generic scheme is composed of three components:
scheduling and routing components that are implemented
the network, and the congestion control component that
implemented by the users (or the sources of the flows). T|
scheduling component builds on two algorithms: one, callg
Pick, which randomly picks a feasible allocation satisfying
specific condition [see Eq. (5) below]; and the other, callg
UPDATE, which contains a network-wide comparison operg
tion [see Eq. (6) below]. In the operation ofdk and UPDATE
algorithms, we allow for various types of imperfections an
relaxations to accommodate errors and to facilitate tisteid

steers packets towards optimal paths; and a conge
controller component that regulates the amount

stion
of

. T _ injected traffic into the network to maximize the network
associate a utility functiod/,, 4(-), of the mean flow rates utilization. Next, we describe each of these components.

SCHEDULING(d, v, %) COMPONENT. The scheduling com
2 ponent determines the service rates of all the links
the network, namelyS[t], by performing the following
tooperations

e At staget, for each link(n,m) € L, we define itsveight
as

Wnmlt] = Wonmltl 2 max| QW1 - Q1] (3)

which is also referred to as tmeaximum differential backlog
at([32], [16]) of link (n, m).
e Let theoptimum feasible allocatiogw [t] for W be

= argmax( W[t],S)

ses =% Ses
= argmax{ Q[t], Sout — Sin), (4)
Ses

whereS,,; andS;,, are defined subsequent to (1).
e PiCcK: Scheduler randomly pickany feasible allocation
R[t] € S, that satisfies, for some fixedl> 0,

C

on

P(R[] =Sw [t]) > 6,  for all W[ andt.  (5)

e UPDATE: The schedule for time, S[¢] is updated such
y that it satisfies

O ((Qt], Sout[t] — Sinlt]) =

max {(Q[t], Sout[t — 1] —
the (1 =(Q[t], Rout[t
bjor some~, ¢ € [0,1).

in[t]),

S
“Ra)>1-v, O

n

IS

h&OUTING COMPONENT. Once the link rate vecto8[t] is
sdgdetermined by the scheduler, the router determines w
a packets to transmit over them.

de Letd* = d* 2 argmax, ’QS{” 1] — QP[1)]. Then,
it Q%‘i;m)[t] > Qﬁ,f;m)[t] : ServesS(, )[t] packets from
QL) 10 Q) and

— if Q%d"m)[t] < Qﬁ‘f"’m)[t] : ServeS(, m)[t] packets from

nich

implementations. We will comment on the nature of theg

el 1o QL.

imperfections and relaxations after the description of the Before describing the congestion controller component, we
cross-layer scheme. The routing component determineshwhiemark that the paramete(s,,) in the above scheduler
packets to be served over which links so as to optimize thewpture different type of imperfections and relaxatiods:
routes. Finally, the congestion controller component stdju relaxes the constraint of picking the optimum feasible al-

the rate of injected traffic into the network to fully utilizee
resources, i.e., to solve (2).

location in each iteration, hence significantly reduces
complexity of this operationy captures the potential errors

the
in

The scheme operates stages each stage containing athe computation of the total weight of the randomly selected
finite number of time slots where the number of slots is schedule; and captures the potential errors in the comparison
design choice. The scheduling-routing and congestionrgbntof the weights of the previous and the random scheduler.



The imperfections included in the scheduling component areTheorem 1:Assume thaty (¥ [t] is independent and iden-

likely to occur when randomized or distributed methods atially distributed (i.i.d.) 4 for all ¢t and flows with

employed to perform these operations. B {(Xr(ld))Q [1]} < A < oo Assume that > 0 is chosen
DuAL CONGESTIONCONTROL COMPONENT. -

e Let Q denote the queue-length vector at the beginning Gfuch that -——<— > I+ /% whered,,q., iS the maximum

d d7na’1¢ 6(1 w)7
staget. Then, each node, say, generatest,\" [t] packets degree of the network, ani¢, and~ are the parameters of
to be transmitted to ﬂOd@7 for eaChd7 such that the generic Cross_|ayer scheme.
(d)[t] Let the Lyapunov functiod/(Y) be defined ad/(Y) =
— n 2
X = {Ur/z,dl < % )}O ; QDY (QS{”) = ||Q||2. Then, for any mean arrival vector:=
n,d
where M and K are positive scalars, ant}? is used to (E[X,(L‘i)[l]]) en € C(e), the scheduling-routingd, v, v)
. n,de
den_Otemln(maX_(% (I)a_b)- _ policy guarantees, for some finitg,
Notice that (7) is equivalent to solving
AVT(Y) 2 EV(Y[t+T)) - V(Y[H]) | Y] =Y
y€[0,M]

_ e _ay_|_¥ (d)
= CT(dmz 2 5(1—¢)>ZQ" o

and also, note that if there exists no flow fromto d, we o

can defind/, 4(-) = 0 to get X\” = 0.

Our goal in this work is to understand the effect of th
imperfections captured by, -, 1) parameters on the optimal- Proof: The proof is moved to the Appendix. -

ity (or fairness) characteristics of the cross-layer magra. . . : .
. : An immediate consequence of Theorem 1 is provided next.
Our framework covers various schedulers that are introdluce . h .
Corollary 1: The generic cross-layer algorithm stabilizes

in the literature (e.g. [42], [29], [34]). In particular, 4B . . : o
yields a scheduler for the first-order interference modehwi®" rafic with a mean flow rate vector lying inside

v =1/m, andy = 0, wherem is a design parameter. Also,C (dmaw (% +VP/(6(1 w)))) :

[29] contain algorithms withy = ¢ = 0, as well as gossip- Proof: Pick ¢ to be larger but arbitrarily close to
based algorithms with arbitrarily smajl ) parameters. None @maz(7/2 + /¥/(6(1 — ¥))). Then, from Theorem 1, we
of these works, however, contain a study of the cross-lay@ave

scheme with congestion control. Hence, our analysis of the T

generic cross-layer scheme will be directly applicable lto a AVt( )(Y) = _E/Zled) + Bi,

these cases. In Section V, we will introduce a new algorithm m.d

that is applicable to higher order interference models,w® for some s’ > 0. This shows that the Foster-Lyapunov
our results to show that it achieves optimality using operet criterion is satisfied (see e.g. [3]2, and therefore we maseh
that grow polynomially with the number of nodes. lim supy_, o ZtT—_ol S d]E[led ] < oc. =
The scheduling-routin{g component of the above algorithm
. ) o is based on [42] whereby the existing feasible allocation is
In this section, we study the throughput-optimality angompared to a randomly picked feasible allocation, and the
fairness properties of the proposed generic cross-laymse. one with the larger total weight is implemented in the next
Our analysis relies on the notions ofelaxed stability region stage. The same strategy is also used in a recent work [29]
ande-fair allocation, which we define next. which develops another deterministic distributed aldnifor
Definition 4 ¢-relaxed stability regionC(e)): the primary interference model, and randomized algorithms
2 rx>0: (2@ . _ based on gossiping techniques that are applicable to more
Defi ..6(5)5 ¢ .{x ”_ _(x" " + E)_ aen €CY general interference models. In other works (e.g. [26], [6]}
efinition 5 ¢-fair allocation, x (¢)): [45], [34], [20]), low complexity implementations have lee
% () = arg maxZu d(a_:(d)) proposed at the expense of different levels of efficiencg los
%eC(e) e for the primary interference model. But, many of these tssul
’ are not applicable in the higher interference models si@nar
state,Y := (Q, S), which forms a Markov Chain under our The neXt theorem studies the impact O.f the parame_t_ers
(6,7, ) in the proposed cross-layer mechanism on its stability

generic cross-layer scheme. . o : S
In the following theorem, we focus on the schedulin and fairness characteristics. Earlier works in this cantexg.

routing component of the algorithm by assuming that t g1, [15], [26], [41]) are applicable only to the case of a

L . . centralized scheduler. Below, we extend these resultsen th
mean flow rates lie inside therelaxed stability region. Here, . . . .
we assume that the arrivals are inelastic, i.e., theirssiedi presence of a randomized scheduling-routing componeht wit

are not modified throughout the operation of the schedulin'ér-lperfec“ons'

routing component. Later, we will add the congestion cdniro 4The assumption of i.i.d. arrivals is not critical to the si#. The same
component into the framework. results continue to hold for processes with mild ergodigitgperties ([17]).

where B; is a bounded positive number, ands a positive
Bonstant.

IV. ANALYSIS

Note that ag | 0, we havex () —xX . Let us define a new



Theorem 2:For any generic cross-layéb, v,v) scheme, wherex (¢) is defined in Definition 5.
there exists finite COﬂStantéZl, Cs, such that: for any > 0 Proof: [Lemma 1] Note that the congestion control mech-

for whic —*Y _ we have o pickay (@) (@
S1—9)° anism picksX,, ’[t] to solve (8). Since:,, € [0, M], we have
_d) that X% [t] satisfies
Z 0\ < OiK, ©
(n,d)EN? K Z Un (XDt + 7)) — (Qt + 7], X[t + 7])
*(d) C
(n,d)EN? (n.d)eN’ >K Y Unal®, ()= (QIt+7],% (o),
1 T—1 n,dGN
A - (d
Whereqn h;‘f;" tz; E[Qn71], for all 7. [ ]
. We use Lemma 1 in the previous expression to get
andz!? 2 hm Z E[X AV;(T) (Y)
Proof: The proof utilizes the Lyapunov-based analysis T_1
and the technique introduced in [31] together with Theorem 1 < 9K Z E Z U a(X D[t 4+ 7)) | Y[t]
Recall thatY = (Q,S), and that the definition of the N =0 |nden B
Lyapunov function introduced in Theorem 1 i§(Y) = (@)
2
Don d ( 5{1)) Then, by using the same arguments as in the —2TK ;Nu"=d(xn (£))
n,de.

derlvatlon of (16) and (17), it can be shown that

AV (Y) +2ze[ Qlt +7].% (¢)
N EY(W + I - VRN Y = Y] +Sinlt + 7] = Souelt + 7] | Y[t]] (11)
< ZE[V(Y[t—%—r—l—l])—V(Y[t—i—r] | Y[t] = Y] +T (b1 + by)

< 2215 Qlt + 7], Sint + 7] + X[t + 7] T-1
< 2K B Y Una(XP[t+7]) | Y[H]
—Sout[t +7) | Y[t] = Y]+ T(b1 + b2), =0 |nmden
for some finite constantshy,b, that were introduced _ITK Z Up.a(T *(d) (€))
in the proof of Theorem 1. Next, we add and sub- n.deN

Wit4+ 7)) | Y[t]=Y]|, and

tract 2KZIE Z Up (X

n,deN

£ Y Y
(- [ S

re- arrange the terms to get 9B1 + T(b + b
AV;(T)(Y) +2B;1 + T(by + ba),
where the last inequality follows from the application of
< 92K Z E Z Un.o(X D[t +7]) | Y]t] Theorem 1 to (11).
n.deN Next, we take the expectation of both sides of the inequality
_ to eliminate the conditioning, and then take the telesappin
_9 Z E[E Z Uy o( XDt + 7)) — sum of P suchT-step drifts to obtain
=0 ndeN E[V(Y[PT]) = V(Y[0])]
(Qlt + 7, X[t + 7)) | Y[t +7]] | Y[A] -

< 2K 3 B[S Uy a(XSV[H]) (12)

—2ZE [t + 7], Sout[t + 7] — Sin[t + 7] | Y[t]] k=0 [ndeN ( )

* d
—2KPT U, € 13
T+ 1) ndzejN a@, (€) (13)

Lemma 1:
—2cTp » Y EQW[pT)) + 2B, P (14)
K Z Und t+T]) p=0 n,d
n,deN +PT (b1 + b2), (15)
—(Q[t+ 7], X[t +7]) | Y[t + 7]]
x(d ; — e ;

> K Z Und(xfl) ) — (Qlt+7].% (©), where we definep := ( =— — % — ,/ﬁ) . Noting that

V(Y) > 0 for all feasibleY, and re-arranging the terms in



this expression, we can obtain

P-1
= 3 S BT

p=0 n,d

B, by + b2 E[V(Y][0
RSt o By ) | EVCYIO)

pc

Also noting thatQ'? [t+ k] < QLY [t] + kMd,q. for each
n,d, we have

—Z > EQWPT +7]] < MTN?dmas,

7=0 n,deN
which, When combined with the previous inequality, yields
PT—1
() [k
tmsup 7 > Y EIQ!
k=0 n,deN
< hmsup Z ZE d) [pT]] + MTN?d,0x
—0 p=0 n,d
By | (by +b)
K dZE:NundM t
< n +MTN2dmam
pe
< 1K

for someC; when K is large enough.

with v = ¢ = 0 in which case optimal performance can be
guaranteed. In the next section, we propose one such senedul
that is applicable to second order interference model, ant ¢
also be extended to higher order interference models.

V. ALGORITHM DESIGN

In Section Ill, we studied the throughput and fairness prop-
erties of a cross-layer mechanism that can be applied t@a lar
class of interference models. We observed that a scheduler
with 6 > 0, and~vy = ¢ = 0 achieves optimal performance.
In this section, we focus on the secondary interference imode
and outline a distributed low-complexity algorithm withette
parameters. We will also note a modification to our algorithm
that yields~ > 0.

Our approach, which inherits its main components from
[42], involves the sequential operation of two algorithms,
which we refer to as Bk and GMPARE: The Rck algorithm
is a randomized, distributed algorithm that yields a felasib
scheduleR[t] satisfying (5) in finite time. The GMPARE
algorithm compares the total weights of the old schedli¢
with the new schedul®|[t] according to (6) in a distributed
manner. An important feature of theo®PARE algorithm is
the use of the conflict graph of the two schedules. On the
conflict graph, a spanning tree can be constructed in a dis-
tributed manner and used for comparison of the weights of the
two schedules in polynomial time. The conflict graph enables
a natural partitioning of the network, whereby decisions ca
be made independently in different partitions in a distiéou

Next, we re-organize the terms in (12)-(15) in a differenfanner. As we will show, the operations on the conflict graph

way to obtain

PT-1
PT Z E nge:jvund (X D))
T s oy B g g
n,deN

Also revoking Jensen’s inequality, we have

PT—1

E Up a(X D K]
PT—1
Zun,d< ZE XDk )

n,deN
Combining these two results as lettiiy— oo, we have

% (d) C
Z unyd(jgzd)) = Z Un,a(,, (5))_%7

n,deN n,deN

can be mapped to the actual network operations owing to the
special structure of the problem.

The schedule used for packet transmissions is updated
at the beginning of each stage. Throughout a stage, packet
transmissions are performed according to the scheduleegda
at the beginning of that stage. In parallel with the packet
transmissions, K and GMPARE algorithms are imple-
mented. Since the same medium is shared, the data packet
transmissions can collide with the control messages gtatera
by these algorithms. To prevent such collisions, time isdeigt
into two intervals, namely theontrol signalling intervaCSI)
during which control messages are locally communicated,
and thedata transmission interva{DTI) during which data
packets are transferred (see Figure 1). Notice that batk P
and GMPARE algorithms operate during CSI, while queue-
lengths are updated during DTI. It is assumed that all the
nodes are synchronized to the same CSI/DTI division of time.
This assumption can be relaxed by adding a buffer interval
between CSI and DTI to accommodate propagation delays.
Alternatively, the control signalling can be performed ove

whereiﬁf) is as defined in the statement of the theorem, amah orthogonal channel through frequency division. Finally

Cs is a bounded number. This completes the proof. =

we assume that each transceiver can perform carrier sensing

Theorem 2 reveals the effect of the errors and relaxatidiring transmission without the need to decode its receptio
in the operation of the scheduler. In particular, we see, that It is important to note that in our algorithm the overhead
when~ = = 0, andd > 0, the cross-layer scheme achievestroduced by the control signalling can be made arbityaril

optimal performance. Also, we observe that the effect)of
can be detrimental unless it is significantly smaller than
In comparison, the effect of appears to be milder if it can

5This assumption is not critical, but simplifies thecR algorithm descrip-
tion and analysis. When it is relaxed, the first step of therdlygm need to
be modified to let each transceiver transmit randomly to @aamneighbor

be made small. Ideally, we would like to design schedulesighout sending a previous RTS.



S is updated for Stage-i S is updated for Stage-(i+1) (A5) In Step 5, n transmits (CTS,[D (Tl, m)), and the link

J betweenn andm is activated; link(n,m) is added taR. <
(CSI;  DTI H

N}CSI DTI iCSI:( DTI
= - * e The algorithm assures between steps (A1) and (A2a), that
no two transmitters are neighboring each other; at (A2f@} th

. o o o o no transmitter is a neighbor to a receiver; between (A3a) and

ililltgérvlails. Division of time into data transmission and contragnslling (Ada), that no two receivers are neighbors. Finally, during
(Ada) and (A5), the picked link is announced to the neighbors
of the receiver and the transmitter, respectively.

small by increasing the length of a stage to a high enoughNotice that the algorithm need not result innaaximal

value. This fact follows from théixedamount of control mes- feasible allocatiohat its termination. This does not influence

sages required by our algorithper stage Thus, the number the results of Theorem 2, but will have an effect on the rate of

of control messages versus the data messages in a stageceamergence of the algorithm. With a simple modificatior, th

be made negligible by increasing the stage duration. THis wibove algorithm can be extended to obtain a maximal feasible

naturally result in slower convergence, but the stabilibd a allocation and hence better convergence properties.

fairness results of Theorem 2 will continue to hold. Proposition 1: The above KK algorithm satisfies

We assume that each node has a unique ID number pickedi) The resultingR is a feasible allocation.

from a totally ordered set. LekD(n) denote the ID number (i) It takes at mosb transmissions per node to terminate.

of noden. Then, unique ID numbers can be assigned to links, (i) The probability of picking any feasible allocation is

denoted byID(n,m) = ID(m,n) for link (n,m). This at least(min(c,1 — @) /dmaz) > 0, Where dpq, is the

assumption is essential for each node (and link) to identiffaximum degrek of G. In particular, sinceSw [t] is a

its neighboring nodes (and links), and will be used in thﬁeas'ble schedule. we hal® R/t =Sw [£]) > (mi 1—
distributed implementation of our algorithms. a)/C; W Ol.J  we ha®(Rf] =Sw [f]) = (min(e,

Stage- i

(iv) At the termination, for any link(n,m) € L, all the

A. PICK Algorithm . ! .
) ) o ) neighbors ofn andm are aware ofn,m)’s state, i.e., know
In this section, we present a distributed algorithm thghether(n,m) is in R or not.

randomly picks a feasible allocatidR with the property that Proof: Step (Ala) assures that if two neighboring nodes

any feasible allocation has a positive probability of beingitempt to transmit, they sense each other and withdraw. In
chosen as required by (5). In the description of the algarijth Step (A2b), the event that more than one neighbors of a
when we say a nodeithdraws we mean that the node stops,qde are attempting to transmit is detected, and in thatteven
its search for a feasible link during the current stage, by of the transmitters withdraw from transmission in Step

continues to listen to other transmissions. The algorithakes (A3c). Finally, step (A3b) guarantees that two neighbors do

sure that each node has a positive probability of attemptifg hecome receiving ends of two different links. Thus, fad t
transmission at the beginning of the algorithm. The ideais Lyents that leads to interfering links are eliminated inséhe

send Ready-to-Send (RTS) and Clear-to-Send (CTS) packglsys and the resulting allocation must be feasible, which

including the ID numbers of the nodes in order to create g,yes (i). Claim(ii) follows immediately from the consttion
feasible allocation. By appending ID numbers to the RTS/CTJ the algorithm.

packets, the algorithm enables each node to have a list o 0 prove Claim(iii), note that if the initially picked set of

those links in its local neighborhood that are picked by tr]ﬁ]ks in steps (A1) and (A2a) happen to be feasible, they are

a'go”t_h.”?- ) not eliminated throughout the algorithm, because the ahgar
Definition 6 Q,D'CK Algorithm): At every noden € " per- is designed to eliminate only those links that interferehwit

form the following stgps: . each other. Thus, we are interested in finding a lower bound
(A1) In step1, V\_”th probability p, € [a,1) for some on the probability of picking a given feasible schedule, say

@ € (0,1), n transmits a (RTS) message. L W € S8, at the start. Thus, we need to have exadily]|
(Ala) If n senses another transmission during its (RT§hges; one from each link " choose to transmit in step (A1)

transmission, it withdraws. o (which happens with probability!"V'!), and all the remaining
(A2a) If n does not sense another transmission, in &teP 5 4es must be silent (which happens with probabiity1 —

it chooses one of its neighbors, say randomly with equal a)N=IWI). If each of those nodes which chose to transmit,

probabilities, and transmits (RTSSD_(m)_)- picks its outgoing link that lies i/ for transmission in
(A2b) If m observ,es a coII|S|on3 it WIthdl_’aWS. step (A2a) (which happens with probabil@(a/dmam)w‘),
(A3a) If m getsn’s message, in step, it sends back a yhen the resulting schedule will be exactly. Hence, the

(CTS) message. o . robability that Pck yields a given feasible schedul& is
(A3b) If m senses another transmission during its (CT ) (0/dmaz) V(1 — )N > (min(e, 1 — @)/dmas)V,

transmission, it withdraws.
(A3c) If n observes an idle, it withdraws.
(A4a) If m does not sense another transmission durlng Its6A maximalfeasible allocation is a set of links to which no new link that

(CTS) transmission, in stef it transmits (CTS,/D(n,m)).  does not interfere with any of the existing links can be added
(A4b) If n does not receiven’s response, it withdraws. Tdeg(n) £ |{m € N': (n,m) € L, or (m,n) € L}|.

where the last step follows fromh,,,, > 1.



Claim(iv) follows from the fact that the links that are
activated are announced to neighboring nodes via the messag . ~
(CTS, ID(n,m)), and therefore all the neighbors know the , AR RS
IDs of the activated links in their two hop neighborhoods : 7T 1

We note that this algorithm does not depend on the queue- . e —
lengths, which greatly simplifies its implementation, hesa . )
no queue-length information exchange is necessary between
neighboring nodes. Further, due to part (iii), the bestcallimn
must also have a positive probability. This fact togethethwi . I
parts (i)-(iii) prove that the algorithm is actually sufcit for
Theorem 2 to hold. At the end ofi€k, R gives a feasible
allocation, that is known only locally. In particular, due t rig. 2. sx10 grid network example with two feasible schedules indicated
part (iv) of Proposition 1, every node knows those links ef itby solid and dashed bold links. The conflict graph decompdses 6
neighbors that are iiR. disconnected components.

B. COMPARE Algorithm
. . o dash-dotted thin lines to connect the links of the two schedu
"_1 this section, we propose and _analyze a_dlstnbu_ted #at interfere with each other. In general, it is not neagssa
gorlt.hm that compares the total vv_e|ght associated ‘_N'th ™Rat the conflict graph be connected. For example, in Figure 2
feasible schedules3[t] and R|t], with local control signal ;e gpserve six disconnected components. The conflict graph

transmissions, and choose the one with the larger weight @gesnonding to the largest connected component is given |
the schedule to be used during the next stage. We note re 3, where links ir8 are drawn as circular dots, while
this algorithm also applies to interference models othenth; < i R are drawn as square dots

the secondary interference model. In the following, we will
omit the time index for ease of presentation.

The algorithm relies on constructing theonflict graph
associated wittS and R which contains information about

Remark 1:Disconnected components of the conflict graph
can decide on which schedule to use, independent of each
other. This is possible because by construction of the abnfli

) , ) ) : graph the resulting schedule is guaranteed to be feasible ev
interfering links in the two schedules. The conflict graphf the choices of two disconnected components are different

fQ’IES7R8). E_ r(lj\l(l7k£l/)'7 gf SRand R Cand be gene&atgd ﬁsThis decomposition contributes to the distributed natuire o
ollows™ Each link/ in 5 UR corresponds to a node in they, algorithm. Namely, the size of the graph within which
conflict graph, and if linkd; € S andi; € R interfere with

. the comparison is to be performed is likely to be reduced.
each other, an edge is drawn between the nodes correspon Bce that with this approach, the chosen schedule may be
to [y andls in the conflict graph. Note that, since bdshand

teasibl hedul links in. th h da combination of the two candidate schedul8sand R,
R are feasible schedules, no two links in the same schedyle., e gifferent connected components may prefer differe

EJS or R) can intgrferef inth each Otr?e(;’ Ile’ éhere is 30 _ed%%hedules. This merging operation will result in a schedule
etween two nodes of the same schedulg'inEvery node in 4 -+ is petter than botB and R.

G’ can compute its own weight [as defined in (3)], and has
list of its neighbors ing’ by part (iv) of Proposition 1. We will
develop the algorithms using the conflict graghand show
at the end of this section that the special structure enabxlesFlND SPANNING TREE procedure is to find, in a distributed

to map the operations to the gragh fashion, a spanning tree for each of the connected comp®nent
Our ComMPARE Algorithm is composed of two procedures 2 sp 9 o

that are implemented consecutivelyiNB SPANNING TREE in the conflict graph. In our model, every node in the conflict

, . L -
and COMMUNICATE & D ECIDE. The FIND SPANNING TREE graph g corresponds_to an undirected link in the or|_g|nal
: . raphG, and has a unique D In order to compare two link
procedure finds a spanning tree for each connected compongn ; . i
S, we use lexicographical orderity

of G’ in a distributed fashion. Then, theOCBIMUNICATE & our distributed FND S . d is based
DEecIDE procedure exploits the constructed tree structure to ur distributed D SPANNING TREE procedure IS base
token generation and forwarding operations. For the con-

communicate and compare the weights of the two schedu%} i ‘ ing t ¢ least ok ds o b
in a distributed manner. struction of a spanning tree, at least one token needs to be

To illustrate the definitions and operation of the algoriishmg

4Based on this remark, henceforth our algorithm will focus
on the decision of a single connected component.
1) FIND SPANNING TREE Procedure: The object of the

enerated within each connected component. This can be

. ) . N guaranteed by requiring every node in the conflict graph that
we consider the grid network depicted in Figure 2. In thlg the Iowesyt Ianum%er arr}:ong its neighbors to genperate a

network, nodes are located on the corner points of a grid, . .
S ) S . oken. Each token, carrying the ID of its generator, perfoam
each interior node has four links incident to it. To demaatstr : o
dﬁpth-flrst traversal (cf. [9]) within the connected comgohn

the construction of the conflict graph, suppose we are give
two feasible scheduleS,andR.. In the figure, solid bold links

! f %In [18], it hown that unique 1D ired to be abldirtd
belong to schedul8, while dashed bold links are R. We use n [18]. it was shown that unique IDs are required to be abléirtd a

spanning tree in a distributed fashion.
Owithout loss of generality, assumeD(n) < ID(m) and ID(i) <
8We useN’, I’ to denote the cardinalities 0¥, £’. Also, we will refer  ID(j) : If ID(n) < ID(i), thenID(n,m) < ID(i, ) for all m, j; and
to G'(S,R) simply asG’ for convenience. if ID(n) =1D(i) andID(m) < ID(j), thenID(n,m) < ID(i,j).



to construct a spanning tree. This token progressively adfishe same arguments are made repeatedly, this implies that
nodes into its spanning tree while avoiding the constractidhe whole subgraph must be empty. But, we know that the node
of cycles. An example is depicted in Figure 3 for the large#hhat generates the token is in the subgraph by default. Hence
connected component of Figure 2. we get a contradiction, and the subgraph must contain every

node within the connected component. The argument that the

minimum subgraph contains no cycles follows from the fact that every

to.l&‘z/,f node ACCEPTs only those tpken transmissions that do_ not
1 \./ &\4 form a cycle. Thus_, the resulting subgraph must be acyclic.

% [ Ry The procedure is constructed so that whenever a token

6\. \' with a larger ID crosses any node of the spanning tree being

T;l / cr?nsltructed byI a tokeﬂ with a smaller ID, thle tokendwith

‘o -® the larger ID along with its spanning tree is eliminated. By
7.,//'.8%?//7. 10 definition, a spanning tree has to contain every node and thus

3 all the tokens must meet with the spanning tree of the snalles
/./’ 1 token sometime. Therefore, by the end of the procedure, only

vl the spanning tree of the smallest token survives.

To compute the complexity, we take into account the com-
Fig. 3. A connected component of the conflict graph from witieh link  plexity of resolving potential collisions of tokens. It istrdiffi-
crossed is eliminated to obtain a spanning tree. The patiheofntinimum ¢yt to see that each such collision can be resolved(id,, ..
token is indicated with . The nod labeled withliers for fut . :

oKen IS Indicatea with arrows € noaes are labelea wi S TOor tuture message eXChangeS. Slnce, an Operatloﬁ)@zf ) Opera-

reference. . : max
tions must be performed fa&¥L’ times, we need)(d,,,.L’)

The above procedure focuses on the operation of a sin@jl”@e for the operation to complete. However, each node will
token generated at one of the nodes within the connec@dy transmitO(d,,,,) messages in the process only when
component. In general, there may be multiple tokens gesmérait is receiving and t_ransmitting a token. Since, there are at
within the same connected component. Each token attempt&gst O(N') tokens in the system, the number of messages
form its spanning tree labeled with its ID number (i.e. the Iiyansmitted by each node @8(d,,,, V') u
number of the token's generator). Since only one spanningVe note that the fND SPANNING TREE procedure that we
tree is required at the end of the procedure, our algorith#§scribed here is deterministic and achieves- 0 in the
is designed to keep the spanning tree with the smallest fgNtext of the generic cross-layer scheme of Definition 3.
number, while eliminating the others. This elimination if\ternatively, a randomized gossip style mechanism can be
performed when the token of a spanning tree enters a node #2fd that yields, > 0 (see [30]). Theorem 2 can be used to
has already been traversed by another token. If the incomm@derstand the fairness characteristics of both apprsache
token has smaller ID, then the token ignores the previousitok 2) COMMUNICATE & DECIDE Procedure: We use the
and continues the construction of its tree, and if its ID igPanning tree formed on the conflict graph to compare weights

larger, then it is immediately deleted. We have the follayinThe idea is to convey the necessary information from the

proposition for this algorithm. leaves up to the root of the tree (i.eO@MUNICATE Proce-
Proposition 2: Consider the conflict graph’ = (A7, £) dure) so that the schedule with the higher weight is chosen (c

and letd’  denote the maximum degree 6f. The Finp  (6)), and then send back the decision to the leaves (Ee.Be

max

SPANNING TREE Procedure finds a spanning tree of afProcedure). The GMMUNICATE & D ECIDE procedure can be

components of the conflict graph i(d’,,,, ') time', and ©xPlained in two parts as follows: _ o
with O(d’.._N’) message exchanges for eache A”. Also, COMMUNICATE: The leaves communicate their weights to

at the termination of the procedure, every nodes A” has their parents. If the parent is Biit adds its weight to the sum
a list of its neighbors in the constructed spanning tree. of the weights announced by its children. If, on the otherdhan

Proof: To prove that the constructed subgraph by tHLis in R it subtracts its weight from the sum of its children’s
smallest token is in fact a spanning tree, we need to show tHights. The resulting value becomes the new weight of the
every node is in the formed subgraph, and that the subgrdif€nt- Then, the parent acts as a leaf with the updated tveigh
contains no cycles. To argue that every node must be in {Rethe next iteration. This recursive update is repeated unt
subgraph, let us assume, to arrive at a contradiction, feare the root 'S reached. _
node, say’ € A, that is not in the subgraph but is within the DECIDE: At the end of WMMUNICATE, the weight of
connected component. If any of’s neighbors had held the the root of the spanning tree’wnl bR e Wi — Dier Wi
token at any time, then it must have attempted to forward th¢P€nding on whether the root's weight is positive or negati
token to =’ before it sends the token back to its parent. But® root decides or R, respectively, as the better schedule,
if a token attempt is made td, it will ACCEPT it because it @nd broadcasts its decision down the tree.
is the first time it encounters such an attempt. This argument™ €xample of this procedure is provided in Figure 4 for
implies that none of the neighbors gfcan be in the subgraph.the spanning tree given in Figure 3. We have the following

complexity result for this procedure.
11f(n) = O(g(n)) means that there exists a constant oo such that P rOposition 3: Consider the_ conflict grapi’ = (N, £'),
f(n) < cg(n) for n large enough. and letd! = denote the maximum degree Gf. The Com-

max
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5 458 » likely to be composed of multiple disconnected components,
Lo BN, . . . . .
m which increases the distributed nature of the algorithmvenE
P \\ though we did not pursue this direction here, this likelidoo
pf-- \bl can be increased by dynamically modifying the activation
o B e probabilities,{p, }», in the Rck Algorithm so that the picked
W I We W e W schedule has more disconnected components. This way, the
/ RN localized nature of the algorithm can be improved.
[ 10 nIR on: w;- wt '.wz} Wy,
b P i VI. SIMULATIONS
:R :R :,R :,R In this section, we provide simulation results for the
: . ’ ” distributed algorithms developed in Section V for the grid
topology (see Figure 2). We use the notat[ary] to refer to

the node at thé” row and;*"* column of the grid. Throughout,
Fig. 4. The iterative communication of the weights of the tsehedules we simulate utility functions of the fornb/; (x) = ~; log(z),
from the leaves to the root for the spanning tree of Figure 3. which corresponds to Weighted proportionally fair alldcat
(see [23], [40]).

MUNICATE & D ECIDE procedure correctly finds the schedule Throughput evolution for 6x6 Network with 4 flows
with the larger weight inrO(d’,,,,. L) time. T
Proof: The algorithm is designed so that when nade
transmits its current sum to its parent, the value of the sum i -
the difference of the weights of scheddeandR only for the o
subtree rooted at’. Thus, the sum at the root of the spanning
tree is the difference of two weights of schedSlandR.. The
decision is a simple comparison of the sign of this sum. This
decision is broadcast to the children of the root, and helice a
the nodes in the connected component knows about the better
schedule and can switch to it by the end of the procedure.
The depth of the spanning tree can be at nidst’) and each b ]
collision resolution operation can take at méx.,, ,..) time. Number of Stages

max

. . e :
Thus, the whole algomhm terminates @(L dmaw) time. m Fig. 5. The throughput evolution of the 6x6 network fér= 100, v; = 0.5.

Notice that the complexity results in the propositions are

given in terms ofG’. We can translate them into bounds on e first consider a network of size 6x6, with four flows:
g through the following inequalitiesl’ < N2, d;,., < N.  Flow-1 from [1,1] to [6, 6], Flow-2 from [5, 2] to [6, 3], Flow-
Thus, combining Propositions 1-3 with Theorem 2 yields: 3 fom [5,5] to [5,1], and Flow4 from [4, 1] to [1,4]. Here,
Theorem 3:The distributed implementations ofi¢k and e are interested in the evolution of the throughputs of each
CoMPARE Algorithms designed for the secondary interferenggyw for K = 100 and v = 0.5 for eachi € {1,2,3,4}.
model asymptotically achieve throughput-optimality and-f The simulation results are depicted in Figure 5. We observe
ness withO(N?) time and O(N?) message exchanges pethat the throughputs of the flows converge to different value
node, per stage. U depending on their source-destination separation. Fanpha
We conclude the section with a few important remarks.  Flow-2 achieves the highest throughput since its source is
Remark 2:The algorithms we develop in this section operenly two hops from its destination. The fluctuations in the
ate over the conflict grapl’. The transformation of theseevolutions are due to the random nature of the algorithm,
operations into operations in the actual graphwould be which tracks the queue-length evolutions.
difficult for a general conflict graph. However, in our scéoar Next, we simulate a 10x10 network with two flows: Fldw-
the graph has a special structure that enables the mappfgm [1,1] to [8,9], and Flow2 from [9, 2] to [2, 10]. Here, we
The critical observation is that transmissions within esfiele  focus on the throughputs achieved for the flows as a function
schedule has no interference. Thus, links that f@nand of K with varying~; for each flow. We aim to observe the
R can perform operations iy’ by partitioning CSI (cf. mean flow rates as functions & and (v;,72). Notice that
Figure 1) into two disjoint time intervals. During the firsteach(+;,~2) combination corresponds to a different weighting
interval, only links that make uf communicate, while in the for the weighted-proportionally fair allocation. Thus,rfa
second interval only nodes that makeBpcommunicate. The fixed K, the throughputs corresponding to different, v-)
operation of each link can easily be mapped into operatiossmbinations actually outline thate regionthat the algorithm
at its two end nodes by assigning one node to each operatiathieves for thafl. Then, ask grows Theorem 2 implies that
who will then coordinate the operation. With such a separati this region grows at a decreasing rate, until it convergékeo
of time, the operations described for the conflict graph can btability regionC.
translated into operations in the actual network. We performed simulations foK varying from 10 to 100,
Remark 3:Recall from Remark 1 that the conflict graph iand (y1,v2) ranging from(0, 1) to (1,0) with v, +~v2 =1 at
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APPENDIX
V,Y,) _ . . . o
s We defined the notion of capacity (stability) region in

Definition 2. A characterization of this region in terms of

3 ’ L9 ] flow conservation and feasibility constraints is provided b
£ BT Tassiulas and Ephremides in their seminal work [43], which
2 8.2 is reproduced in the following proposition to be used in the
g T e | proof of Theorem 1.
T Proposition 4: Let G = (N, £) be a given network an§
\\K:m ] be the set of feasible allocations. The capacity (or staili
e k! k0 K0 K0 region C of the network is given by the set of vectors=
A (1Y, aenr for which there exists )m > 0 forall (n,m) €
£ andd € N, such that both the flow conservation constraints
Fig. 6. Throughputs of flows with varying’ and (v1,v2). at the nodes and the feasibility constraints are satisfied, i
(Cl) For alln € A" andd € N'\{n}, we have
each intermediate point. The simulation results are pexvid D 4 Z ;m) = Z Z((Z?m)v
in Figure 6. We observe that for a givek, the rate region k:(k,n)eL mi(n,m)€EL
is a convex region. Also, a& grows, the region expands at
a decreasing rate agreeing with our expectations. We furthe (C2) lz (Z((Z)m) + Z((;i) n))] € Conu(S). 12
note that with this algorithmic method, the stability regiof deN 7 " (nym)eL

a wireless network, that is otherwise difficult to find, can be
determined with high accuracy. Proof of Theorem 1:

While our work focuses on optimizing the long-term net- Before the start the proof, we note that it closely follows
work utilization metric, we note that, for many application the technique of [29], except that it is extended to multi-
delay is just as important a metric to optimize. We note thhbp flows and more general arrival processes. The multi-
the interference-limited nature of the medium along wita thhop extension adds a routing component to the mechanism
randomized implementations are causes of delay degradati@nd add some technical complications to the proof. More
Our simple, randomized algorithm is quite general, and igiportantly, in this work we further include congestion troh
oblivious to network structure and scheduling constraifity  (cf. Theorem 2) into the framework of [29] to investigate
low-complexity algorithm with such generality is unlikelythe fairness characteristics of the joint congestion aintr
to achieve low delay [10]. Yet, there is potential for delagcheduling and routing mechanism.
performance improvements, which constitutes the motwati We first derive an upper bound on the single-step mean drift

for our ongoing works in this direction. of th((la)Lyapunov functionAVt(l)(Y), foragivenY = (Q, S).
VII. CONCLUSIONS AV(Y)

We provided a framework for the design of distributed = E [[Q[t+1][3 — IQ[][13 | Y[¢]]
cross-layer algorithms for full utilization of multi-hopikeless (d g@ + (@)
networks. To that end, we first described a generic schegiulin < Z E (Q out(n) [t]) + X500
routing-congestion control mechanism that allows for masi ) -
imperfections and relaxations in its operation which ftatiés +5§d) [t]) — Q2 | Yt]
the design of distributed implementations. We studied the in(n) ]
stabil_ity and fairnes; _characteristic_s of the generics:-lle_ayer — ZE [( Sﬁiﬁ(n)[ ] + U(Su?‘,(n)[ ]+ X[y
algorithm, and explicitly characterized the effect of difint
type of imperfections on its performance. We saw that certai @ 2 1
types of imperfections are more detrimental than otherghvh +Sm (n) [t]) —(QW1)* 1 Y[t]
revealed the critical components in the design of algorihm @ -

Based on this foundation, we developed specific distributed = ZE [( — S 18] + XS1H]
algorithms for the secondary interference model. For this
model, existing throughput-optimal strategies requirat tn (d) (@
NP-hard problem be solved by a centralized controller atyeve +5in n)[ ]) — (@)1 YTt (16)
time instant. In this work, we showed that this is not necgssa ) (d) (@
and full utilization of the network can be achieved with + Z 21 [ out( n) (Q” 1 - Sout(n) 1]+ X571

distributed algorithms having only polynomial communioat )

and computational complexity. +5i(:(n) [t]) + (U;‘z(n) [t]) |Y[t]] 17)
An important byproduct of our approach is the use of the

developed cross-layer algorithms to find (with high accyyac 2Conv(A) denotes the convex hull of s, which is the smallest convex

the Sta_‘bi"W_ region of ad'hO(? wireless networks, that al&t that includest. The convex hull is included in view of the possibility of
otherwise difficult to characterize. timesharing between feasible allocations.
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WhereU(d)

ut(n )[ t] denotes the amount of unused service by nodéote that

n to transmit packets of typé in slot¢. Note thatUout(n)[ ] N X o (@ & (d)
can be non-zero only whe@'?” [t] is low. Also, since the (Q Sout — Sin) = ZQn (Sout(n) - Sm(n))
service rate over each link is upper-bounded by %i n) md @
must also be upper-bounded by the maximum dedyeg of _ Z Z g(n . (Qﬁ{i) _ Qﬁff))
the network. First, we show that (17) is upper-bounded. (nomyeL d '
*
an < > (2E[U5 1me 1| Y| (e
n,d (a) N
’ > ) Simymax QY — QLY
(d) 2 — (n,m) ’ n m
+4dmaz + 2)\ + dma;ﬂ) (n,m)eL !
< N?(3d? 6dmaz) =: b1, &(d) (d) _ o)
> ( maz T ) 1 > Z Zs(n,m) (Qn Qm )
(n,m)eL d
where, in the last step, we used the fact m(éiﬁ n) < dmax = (Q,Sout — Sin),

(d)
and thathn” < dpaa- where the inequalitya) follows from (4). Substituting this in
Next, we study (16). We can re-write it in inner-producthe previous expression yields
form after cancelations

<Q7§in +/\_ éout> S _€< Q11>
(16) = 2B [( Q[t], Sinlt] + X[t] — Sourt]) < ———(Q,Sou — Sin),
H[Sinlt] + X[t — Soult]]|3 | Y[£] *
< 2E[( Q[t], Sin[t] + X[t] — Sout[t]) | Y[t] + b2, (18) where the last inequality follows from the fact theib,:(,)
§m (n) < dmae for all n. We substitute this upper bound in

dmaw

whereb, is a finite constant since: the service rate into or ofd9) With the new notation¥'[t] := { Q[t], Sout[t] — Sint]),
of any node is bounded ¥,,..; and the second moment ofand U [t] = (Qlt], Sout [t]— Sin [t]), and ¥[t] :=
the arrival process is assumed to be bounded. ( Q[t], Rout[t] — Rin[t]).

Next, we study the expectation in (18) in further detail.
We omit the the time indek] in the following derivation for E[(Qt], Sinlt] + X[t] = Soutt]) | Y[t] = Y]
notational convenience. < — < \f; [t]+ &, [t] — W[t]

max

We use this bound in (18) and bound thestep mean drift as

E [< Qa Sin +X - Sout> | Y] = < Q7 Sin +A— Sout> (19) A‘/t(T) (Y)

*

+< Q7 Sin_ Sin _Sout+ Sout>

T-1
< —2dE STE[W [t +7]| Y]] = Y] + Tbs (20)
where §w is chosen according to (4). Sinck € C(e), =0
Propesmon 4 Jmplles the:;) thleere exists a non- +ZE 47— W[t | Y[ =Y] (1)
negative vector S = (S ) such that:
(n,m) (n,m)eL
lz (g((Z?m) n g((zl)n))] € Conv(S); and To bound (20) note that
deN (n,m)eL -1 *
ZIE trA Y =Y] > 3 (i)
7=0
AD 45D~ gD o ynd#n, ; ’
in(n) out(n) Z T \\J [t] - T_b37 (22)

2

which can be written compactly as = Sout — Sin — 1 in where the first inequality follows from the fact that in a ding
vector form, wherel is a vector of all ones. Substituting thistime slot, each queue can change by at most a bounded value,

into the first inner product in (19) yields. and therefore there exists a constantsuch that
|\IJ[T—|—1] ¥ [7]| < bs for any 7.
* * Next, we are interested in upper-bounding (21). For nota-
(Q:Sin +A=Sou) = (QSour — Sin) tional convenience, let us defiNgt] := [t]—¥[t]. Hence, we

—(Q, Sout — sm) —e(Q,1) are interested in upper—boundiﬁgf;} E[Vt+7]Y[t] = Y].



To that end, let us define

*

13

E[S75 Vit+7]1 Y[ = Y]

To = inf{r>0:R[t+7]=S[t+7], and * ol
(Q[t + 7], Sout[t + 7] — Sin[t +7]) s 2rvl (M * 6(1—y)T * 5)
> max ((Q[t + 7], Sin[t + 7 — 1] — Sout]t + 7 — 1)), +oTh, (# N sz) (24 4)T2s
(1= D(Qt + 7], Roust + 7] = Rant + 7))} oA =v)
Ty = inf{r > To: (Q[t + 7],Sout[t + 7] — Sin[t + 7]) Substi_tuting (22) in (20), and the previous upper bound into
<max ((Q[t + 7], Sin[t + 7 — 1] = Soue[t + 7 — 1]), (21) yields
(= QU7 Rowlt b r] = Ranlt 7D} av®y) < —orir (dm T~ S - %)

Thus, Ty is the first slot aftert when the randomly picked
scheduleR according to (5) is equal to the optimum schedule,
and (6) is satisfied; and} is the first slot aftefl;, when the
condition in (6) is violated. Note that in the interval betme
Ty andT1, the system is well-behaved, and no undesired event
such as that in (6) occurs. Finally, let us defifhg:= T —

€ Y 2
2 14+ = )T“b
+ (dmaz+ +2) 3

1 2
+2 (m + T ) Tbs + Thy

o X Letting T = —L—_, we have

min (7, T7) as the remaining time aftér; until the end ofT’ g Sp(1—v)’

slots, if any. The idea is to show that’if is sufficiently large, AVt(T) (Y)

the duration betweefi, and7; will dominate the interval of

durationT'. Next, we make this argument rigorous. * € v 0
< _ _ L

First note that for any- > 0, we have - 2w ] (dmaz 0(1—1v) 2 + B
* *
V[t+7] <20 [t+7] <2 [t] + 27b3. - _ £ v (d)

< — T o——\sa-9 2 %Q" + B,

Next, note that at = T;,, we have

<Q[t + T0]7 Sout [t + TO] - Sln [t + T0]>
> (1= )(Q[t + To], Sout [t + To]— Sin [t + To])

due to (6). This is the same as
(1]
V[t + Tp)

< [t + TO]

o
<y W [t] + 7 Tobs o
Using the fact that when € [Ty, T1] the system is well- 3
behaved (i.e. event (6) does not occur), we can further uppér

[

boundV|t + 7] for 7 € [Ty, T1] as 4]
(5]
(6]

V[t—i—T] = V[t-l—To] + V[t-l-T] — V[t-l—To]
o [t] + A Tobs

+(Ut+7]—- U [t+To])+ (V[t+ 7] — V[t + 7))
< AU [t] + (27 + To)bs,

<
(7]

where the last step follows from the sum of the previous twdf]
differences being upper-bounded®nbs. Hence, we can write
9]

T—1
SOVt 4] < 20W [f] + Ths) (min(To, T) + T)

7=0 [10]

oy U [T + (2 + 7)T2bs.
[11]

[12]

Note that we havéE[min(7,,T)] < 57—y SinceTp can be
bounded by a geometric random variable with param&ter
). Also, note thatP(Ty, >T)=1—-P(T1 <T)>1— T,
where the last step follows from union bound. Therefore, we
have the lower boun®[min(7,77)] > (1 — ¢T)T, which
implies E[T] < 4T2. Thus, we can write

3] A. Eryilmaz, A. Ozdaglar, and E. Modiano.

wherec and B; are bounded positive valued numbers for the
selectedl’. This completes our proof.
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