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Minimum Energy Transmission over a Wireless
Channel with Deadline and Power Constraints
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Abstract—We consider optimal rate-control for energy-efficient
transmission of data, over a time-varying channel, with packet-
deadline constraints. Specifically, the problem scenario consists
of a wireless transmitter with B units of data that must be
transmitted by deadline T over a fading channel. The trans-
mitter can control the transmission rate over time and the
required instantaneous power depends on the chosen rate and
the present channel condition, with limits on short-term average
power consumption. The objective is to obtain the optimal rate-
control policy that minimizes the total energy expenditure while
ensuring that the deadline constraint is met. Using a continuous-
time stochastic control formulation and a Lagrangian duality
approach, we explicitly obtain the optimal policy and show that
it possesses a very simple and intuitive form. Finally, we present
an illustrative simulation example comparing the energy costs of
the optimal policy with the full power policy.

Index Terms—Energy, Delay, Rate control, Deadline, Wireless
channel, Quality of Service

I. INTRODUCTION

Real-time data communication over wireless networks, in-
herently, involves dealing with packet-delay constraints, time-
varying stochastic channel conditions and scarcity of re-
sources; one of the important resource constraint is the trans-
mission energy expenditure [1], [2]. In principle, for a point-to-
point wireless link, packet-deadline constraints can always be
met by transmitting at high rates, however, such an approach
leads to higher transmission energy cost. When the transmitter
has energy limitations, one can instead utilize rate-control
to minimize the energy expenditure. Clearly, minimizing the
energy cost has numerous advantages in efficient battery
utilization of mobile devices, increased lifetime of sensor
nodes and mobile ad-hoc networks, and efficient utilization
of energy sources in satellites.

In modern wireless devices, rate-control can be achieved
in many ways that include adjusting the power level, symbol
rate, coding rate/scheme, signal-constellation size and any
combination of these approaches. Furthermore, in some tech-
nologies, the receiver can detect these changes directly from
the received data without the need for an explicit rate-change
control information [6]. In fact, with present technology, rate-
control can be achieved very rapidly over time-slots of a
few millisecond duration [3], thereby, providing a unique
opportunity to utilize dynamic rate-control algorithms.
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Associated with a transmission rate, there is a correspond-
ing power expenditure which is governed by the power-rate
function. Specifically, a power-rate function is a relationship
which gives the amount of transmission power that would
be required to transmit at a certain rate for a given bit-error
probability. Two fundamental aspects of this function, which
are exhibited by most encoding/communication schemes and
hence are common assumptions in the literature [7]–[12], [16],
[18], are as follows. First, for a fixed bit-error probability
and channel state, the required transmission power is a non-
negative, increasing, convex function of the rate. This implies,
from Jensen’s inequality, that transmitting data at a low rate
over a longer duration is more energy-efficient as compared
to a high rate transmission. Second, the wireless channel is
time-varying which varies the convex power-rate curves as
a function of the channel state. As good channel conditions
require less transmission power, one can exploit this variability
over time by adapting the rate in response to the channel
conditions. Thus, we see that by intelligently adapting the
transmission rate over time, energy cost can be reduced.

In this paper, we consider the following setup: The transmit-
ter has B units of data that must be transmitted by deadline
T over a wireless fading channel. The channel state (which
is defined in Section II-B) is stochastic and modelled as a
Markov process. The transmission rate can be controlled over
time and the expended power depends on both the chosen rate
and the present channel condition. The transmitter has short-
term average power limits and the objective is to dynamically
adapt the rate over time such that the transmission energy
cost is minimized and the deadline constraint is met. To
address this problem, we consider a continuous-time stochastic
control formulation and utilize Lagrangian duality to obtain the
optimal policy. The optimal rate function takes the simple and
intuitive form, given as,

optimal rate = amount of data left * urgency of transmission

where the urgency functions can be computed offline as
the solution of a system of ordinary differential equations.
The problem described above is a canonical problem with
applications in a wide variety of settings. One of the primary
motivations is a real-time monitoring scenario, where data is
collected by the sensor nodes and must be transmitted to a
central processing node within a certain fixed time interval.
Energy-efficiency here translates into a higher lifetime of the
sensor devices and the network as a whole. Similarly, in
case of wireless data networks, mobile devices running real-
time applications such as video streaming and Voice-over-
IP generate data packets with deadline constraints on them.
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Minimizing the transmission energy cost here directly leads to
an efficient utilization of the limited battery energy. Finally,
for satellite networks, where there are stringent limitations
on stored energy, the above problem has significance for
applications involving delay-constrained data communication.

Transmission power and rate control are an active area
of research and have been studied earlier in the context of
network stability [15], [16], average throughput [17], average
delay [7], [12] and packet drop probability [18]. However,
this literature considers “average metrics” that are measured
over an infinite time horizon and hence do not apply for
deadline constrained data. As data services over wireless
networks are evolving and real-time applications are being
introduced, there is a strong need for addressing communi-
cation issues associated with packet delays. In particular, with
strict deadlines, rate adaptation simply based on steady-state
probability distribution of the channel states does not suffice
and one needs to take into account the system dynamics over
time, thus introducing new challenges and complexity into
the problem. Recent work in this direction includes [5], [8]–
[11]. The work in [8] studied offline formulations under non-
causal knowledge of the future channel states and devised
heuristic online policies using the optimal offline solution.
The authors in [9] studied several data transmission problems
using discrete-time Dynamic Programming (DP). However, the
problem that we consider in this work becomes intractable
using this methodology, due to the large state space in the
DP-formulation or the well-known “curse of dimensionality”.
The works in [5], [10], [11] studied formulations without
channel fading and in particular, in the work in [5] we used
a calculus approach to obtain minimum energy policies with
general arrival curves and quality-of-service constraints. This
paper generalizes our earlier work in [13] by incorporating
explicit short-term average power constraints which arise in
practice due to limitations on energy consumption in batteries.
As compared to [13], the additional complexity arising due to
power constraints is addressed here using a Lagrange duality
approach in combination with a stochastic control formulation.
Part of the work in this paper has been presented earlier in
[14].

The rest of the paper is organized as follows. In Sec-
tion II, we give a description of the problem setup, while,
in Section III, we utilize techniques from stochastic optimal
control and Lagrange duality to obtain the optimal policy. In
Section IV, we give simulation results illustrating the gains
achieved by the optimal policy, and, finally in Section V we
conclude the paper.

II. PROBLEM SETUP

We consider a continuous-time model of the system and
assume that the rate can be varied continuously in time.
Clearly, such a model is an approximation of a communica-
tion system that operates in discrete time-slots, however, the
assumption is justified since in practice the time-slot durations
are on the order of 1 msec [3], and much smaller than packet
delay requirements which are on the order of 100’s of msec.
Thus, one can view the system as operating in continuous-
time. Such a model is advantageous as it makes the problem
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Fig. 1. Modulation scheme considered in [16] as given in the table. The
corresponding plot shows the least squares monomial fit, 0.043r2.67, to the
scaled piecewise linear power-rate curve.

mathematically tractable and yields simple solutions, which
can be applied in practice, in a straightforward manner, by
evaluating the rate functions at discrete time-slots, as done for
the simulations in Section IV.

To proceed, in the next section, we describe the transmission
model, followed by the Markov model for the channel evolu-
tion and finally give a detailed description of the mathematical
formulation of the problem.

A. Transmission Model

Let h(t) denote the channel gain between the transmitter and
the receiver, P (t) the transmitted signal power and P rcd(t)
the received signal power at time t. We make the common
assumption [7], [8], [10]–[12], [16] that the required received
signal power for reliable communication (with a fixed bit-error
probability) is convex in the rate, i.e. P rcd(t) = g(r(t)). Since
the received signal power is given by, P rcd(t) = |h(t)|2P (t),
the required transmission power to achieve rate r(t) is given
by,

P (t) =
g(r(t))

c(t)
(1)

where c(t) is defined as, c(t)M=|h(t)|2, and g(r) is a non-
negative, convex, increasing function for r ≥ 0. The quantity
c(t) is referred to as the channel state at time t. Its value
at time t is assumed known through channel measurement
(based on receiver feedback, pilot measurement or other so-
phisticated schemes) but evolves stochastically in the future.
It is worth emphasizing that the power-rate relationship in
(1) encompasses much more generality than discussed above.
For example, c(t) could represent a combination of stochastic
variations in the system and (uncontrollable) interference from
other transmitter-receiver pairs, as long as the power-rate
relationship obeys (1).

The function g(r) depends on the transmission scheme
utilized (modulation, coding, etc.), and there is no single
analytical expression that describes all the schemes. The
Shannon formula, a generally used model [8] for which
g(r) takes an exponential form, applies for the ideal coding
scenario. In this paper, we consider a simplification and
take g(r) within the class of monomial functions, namely,
g(r) = krn, n > 1, k > 0 (n, k ∈ R). While this assumption
restricts the generality of the solution to any transmission
scheme, it has several justifications which make the results still
meaningful. In particular, in the low SNR, low rate regime of
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operation, Shannon’s formula is well-approximated as a linear
function and thus can be approximated by the monomial class
of functions considered. More generally, even for practical
transmission schemes, one can obtain a good approximation
of g(r) to the form krn. As an example, consider the QAM
modulation scheme considered in [16] and reproduced here
in Figure 1. The table gives the rate and the normalized
signal power per symbol, where d represents the minimum
distance between signal points and the scheme is designed
for error probabilities less than 10−6. The plot gives the least
squares monomial fit to the transmission scheme, and it can
be seen that the monomial approximation is fairly close over
the range of rates considered in this example. Lastly, the
monomial approximation lends itself to mathematical analysis
which yields useful insights that can be applied in practice to
develop simple heuristics. As a note, without loss of generality,
throughout the paper we take the constant k = 1, since, any
other value of k simply scales the energy cost without affecting
the optimal policy results.

B. Channel Model

We consider a time-homogeneous, first-order, discrete state
space, Markov process for the channel state c(t). Markov
processes constitute a large class of stochastic processes that
exhaustively model a wide set of fading scenarios and there
is substantial literature on these models [19]–[22] and their
applications to communication networks [22], [23].

Denote the channel stochastic process as C(t) and the state
space as C. Let c ∈ C denote a particular value of the channel
state and {c(t), t ≥ 0} be a sample path. Starting from state
c, the channel can transition to a set of new states (6= c) and
this set is denoted as Jc. Let λcc̃ denote the channel transition
rate from state c to c̃, then, the sum transition rate at which
the channel jumps out of state c is, λc =

∑
c̃∈Jc

λcc̃. Clearly,
the expected time that C(t) spends in state c is 1/λc and one
can view 1

λc
as the coherence time of the channel in state c.

Now, define λM=supc λc and a random variable, Z(c), as,

Z(c)M=

{
c̃/c, with probability λcc̃/λ, c̃ ∈ Jc

1, with probability 1− λc/λ
(2)

With this definition, we obtain a compact description of the
process evolution as follows. Given a channel state c, there
is an exponentially distributed time duration with rate λ after
which the channel state changes. The new state is a random
variable which is given as C = Z(c)c. Clearly, from (2) the
transition rate to state c̃ ∈ Jc is unchanged at λcc̃, whereas
with rate λ − λc there are indistinguishable self-transitions.
This is a standard uniformization technique and there is no
process generality lost with the new description as it yields
a stochastically identical scenario. The representation simply
helps in notational convenience.

The other technical assumptions in the model are as follows.
The channel state space, C, is a countable space (it could be
infinite), and C ⊆ R+. The states c = 0,∞ are excluded from
C since each of this state leads to a singularity in (1). The set
Jc, ∀c, is a finite subset of C. Transition rate λc, ∀c is bounded
which ensures that λ defined as the supremum is finite. For all

c, the support of Z(c) lies in [zl, zh], where 0 < zl ≤ zh < ∞.
This ensures that C(t) does not hit 0 or ∞, a.s. (almost surely),
over a finite time interval.

Example: As an example, consider a two-state channel
model with values cb and cg . These represent a two level quan-
tization of the physical channel gain, where, if the measured
channel gain is below a threshold the channel is considered
as “bad” and c(t) is assigned an average value cb, otherwise
c(t) = cg for the “good” condition. Let the transition rate from
the good to the bad state be λgb and from the bad to the good
state be λbg . Let γ = cb/cg, and using the earlier notation,
λ = max(λbg, λgb). For state cg we have,

Z(cg) =

{
γ, with probability λgb/λ

1, with probability 1− λgb/λ
(3)

To obtain Z(cb), replace γ with 1/γ and λgb with λbg in (3).

C. Problem Formulation

As mentioned earlier, the transmitter has B units of data
and a deadline T by which the data must be sent. Let x(t)
denote the amount of data left in the buffer and c(t) be the
channel state at time t. The system state can be described as
(x, c, t), where the notation means that at time t, we have
x(t) = x and c(t) = c. Let r(x, c, t) denote the chosen
transmission rate for the corresponding system state (x, c, t).
Since the underlying process is Markov, it is sufficient to
restrict attention to transmission policies that depend only on
the present system state [26]. Clearly then, (x, c, t) is a Markov
process.

Given a policy r(x, c, t), the system evolves in time as
a Piecewise-Deterministic-Process (PDP) as follows. We are
given x(0) = B and c(0) = c0. Until t1, where t1 is the
first time instant after t = 0 at which the channel changes,
the buffer is reduced at the rate r(x(t), c0, t). Hence, over the
interval [0, t1), x(t) satisfies the ordinary differential equation,

dx(t)
dt

= −r(x(t), c0, t) (4)

Equivalently, x(t) = x(0) − ∫ t

0
r(x(s), c0, s)ds , t ∈ [0, t1].

Then, starting from the new state (x(t1), c(t1), t1) until the
next channel transition we have, dx(t)

dt = −r(x(t), c(t1), t),
t ∈ [t1, t2); and this procedure repeats until t = T is reached.

At time T , the data that missed the deadline (amount x(T ))
is assigned a penalty cost of τg(x(T )/τ)

c(T ) for some τ > 0. This
peculiar cost can be viewed in the following two ways. First,
it simply represents a specific penalty function where τ can be
adjusted and in particular made small enough1 so that the data
that misses the deadline is small. This will ensure that with
good source-coding, the entire data can be recovered even if
x(T ) misses the deadline. Second, note that τg(x(T )/τ)

c(T ) is the
amount of energy required to transmit x(T ) data in time τ
with the channel state being c(T ). Thus, τ is the small time
window in which the remaining data is completely transmitted
out assuming that the channel state does not change over that
period. In fact, viewing T + τ as the actual deadline, τ then

1For g(·) strictly convex, making τ smaller increases the penalty cost.
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models a small buffer window in which unlimited power can
be used to meet the deadline, albeit at an associated cost.

Let P denote the maximum power limit of the transmitter,
a restriction imposed by the hardware and battery limitations.
This limit would translate into a constraint of the form
g(r(x(t),c(t),t))

c(t) ≤ P,∀t ∈ [0, T ). However, imposing such a
strict constraint that must be satisfied at all times and on all
the channel sample paths makes the problem intractable. To
overcome this difficulty, we partition the interval [0, T ] into
multiple periods and impose an average power constraint in
each of the periods. Such a constraint is less restrictive and
the optimization is over a much bigger class of policies. Let
the interval [0, T ] be partitioned into L equal periods2, where
the value of L is fixed based on the hardware limitations.
Then, over each partition the power constraint requires that
the expected energy cost, E

[∫
1

c(s)g(r(x(s), c(s), s))ds
]
, is

less than P (T/L), i.e. we require,

E

[∫ kT
L

(k−1)T
L

g(r(x(s), c(s), s))
c(s)

ds

]
≤ PT

L
, k = 1, . . . , L

(5)
Note that T/L is the duration of each partition interval and
[ (k−1)T

L , kT
L ) is the kth interval, k = 1, . . . , L. Clearly, by

varying L, the duration of the partition interval can be varied
and the power constraint can be made either more or less
restrictive.

Let Φ denote the set of all transmission policies, r(x, c, t),
that satisfy the following,

(a) 0 ≤ r(x, c, t) < ∞, (non-negativity of rate)
(b) r(x, c, t) = 0, if x = 0 (no data left to transmit)3.

We say that a policy r(x, c, t) is admissible, if r(x, c, t) ∈ Φ
and additionally if it also satisfies the power constraints as
given in (5).

Denote the optimization problem as (P), we can now
summarize it as follows,

(P) inf
r(·)∈Φ

E

[∫ T

0

1
c(s)

g(r(x(s), c(s), s))ds +
τg(x(T )

τ )
c(T )

]

subject to E

[∫ T
L

0

1
c(s)

g(r(x(s), c(s), s))ds

]
≤ PT

L

...

E

[∫ T

T (L−1)
L

1
c(s)

g(r(x(s), c(s), s))ds

]
≤ PT

L

All the expectations above are conditional on the starting
state (x0, c0)4. For the analysis, we will keep the general
notation x0 but its value in our case is simply x0 = B.
Note that problem (P) as stated above has at least one
admissible solution since a policy that does not transmit any

2Extensions to arbitrary sized partitions is fairly straightforward but such a
generality is omitted for mathematical simplicity.

3We also require that r(x, c, t) be locally Lipschitz continuous in x (x > 0)
and piecewise continuous in t. This ensures that the ODE in (4) has a unique
solution.

4To avoid being cumbersome on notation, we will throughout represent
conditional expectations without an explicit notation but rather mention the
conditioning parameter whenever there is ambiguity.

data and simply incurs the penalty cost is an admissible policy.
Furthermore, as shown in Appendix C, this simple policy has
a finite cost and hence the minimum value of the objective
function above is finite.

III. OPTIMAL POLICY

In order to solve problem (P), we consider a Lagrange
duality approach. The basic steps involved in such an approach
are as follows: (a) form the Lagrangian by incorporating
the constraints into the objective function using Lagrange
multipliers, (b) obtain the dual function by minimizing over the
primal space, and (c) maximize the dual function with respect
to the Lagrange multipliers. Finally, we need to show that
there is no duality gap, that is, maximizing the dual function
gives the optimal cost for the constrained problem. There
are, however, important subtleties in problem (P). First, the
domain of the rate functions r(·) is a functional space which
makes (P) an infinite dimensional optimization, and, second,
(P) is a stochastic optimization and by this we mean that there
is a probability space involved over which the expectation is
taken. We now present the technical details of the various steps
mentioned above.

A. Dual Function

Consider the inequality constraints in (P) and re-write them
as follows,

E

[∫ kT
L

(k−1)T
L

g(r(·))
c(s)

ds

]
− PT

L
≤ 0, k = 1, . . . , L (6)

Let ν̄ = (ν1, . . . , νL) be the Lagrange multiplier vector for
these constraints and since these are inequality constraints,
the vector ν̄ must be non-negative, i.e. ν1 ≥ 0, . . . , νL ≥ 0.
The Lagrangian function is then given as,

H(r(·), ν̄) =E

[∫ T

0

g(r(·))
c(s)

ds +
τg(x(T )

τ )
c(T )

]

+
L∑

k=1

νk

(
E

[∫ kT
L

(k−1)T
L

g(r(·))
c(s)

ds

]
− PT

L

)
(7)

Re-arranging the above equation, it can be written in the form,

H(r(·), ν̄) =E

[∫ T

0

(1 + ν(s))g(r(·))
c(s)

ds +
τg(x(T )

τ )
c(T )

]

−(ν1 + . . . + νL)
PT

L
(8)

where ν(s) takes value νk over the kth partition interval, i.e.
ν(s) = νk, s ∈ [ (k−1)T

L , kT
L ).

The Dual function, denoted as L(ν̄), is defined as the infi-
mum of the Lagrangian function H(r(·), ν̄) over r(x, c, t) ∈
Φ. Thus, we have,

L(ν̄) = inf
r(·)∈Φ

H(r(·), ν̄) (9)

A point to note here is that the policies r(x, c, t) over which
the above minimization is considered do not have to satisfy the
power constraints, though the other requirements still apply.



5

This is because the short term power constraints (violation)
have been added as a cost in the objective function of the
dual problem. Thus, the Lagrangian in (9) is minimized over
the set Φ without the power constraints.

A well-known property of the dual function is that for a
given Lagrange vector ν̄ ≥ 0, the dual function L(ν̄) gives a
lower bound to the optimal cost in (P). This standard property
is referred to as weak duality and it applies in our case as well.
Let J(x0, c0) denote the optimal cost for problem (P) (i.e. the
minimum value of the objective function) with (x0, c0) being
the starting state, we then have the following result.

Lemma 1: (Weak Duality) Consider problem (P) and let
(x0, c0) be the starting state at t = 0. Then, for all ν̄ ≥ 0, we
have, L(ν̄) ≤ J(x0, c0).

Proof: This is a standard result and the proof is omitted
for brevity but can be found in [4].

We, next, proceed to evaluate the dual function L(ν̄) by
solving the minimization problem given in (9).

Evaluating the dual function: The approach we adopt to
evaluate the dual function is to view the problem in L stages
corresponding to the L partition intervals and solve for the op-
timal rate functions in each of the partitions with the necessary
boundary conditions at the edges. An immediate observation
from (8) shows that the effect of the Lagrange multipliers is to
multiply the instantaneous power-rate function g(r(·))

c(s) with a
time-varying function (1+ν(s)). Thus, the difference over the
various intervals is in a different multiplicative factor to the
cost function, which for the kth interval is, 1+ν(s) = 1+νk.
Intuitively, the Lagrange multipliers re-adjust the cost function
which causes the data transmission to be moved among the
various time-periods. For example, if νk > νl, then it becomes
more costly to transmit in the kth period than the lth period
and this has the effect of (relatively) increasing the data
transmission in the lth period.

Since (9) involves a minimization over r(·) for fixed La-
grange multipliers ν̄, the second term in (8), i.e. (ν1+...+νL)PT

L ,
is irrelevant for the minimization and we will neglect it for
now. Define,

Hr
ν (x, c, t) = E

[∫ T

t

(1 + ν(s))g(r(·))
c(s)

ds +
τg(x(T )

τ )
c(T )

]
(10)

Hν(x, c, t) = inf
r(·)∈Φ

Hr
ν (x, c, t) (11)

where the expectation in (10) is conditional on the state
(x, c, t). In simple terms, Hr

ν (x, c, t) is the cost-to-go function
starting from state (x, c, t) for policy r(·) and Hν(x, c, t)
is the corresponding optimal cost-to-go function. Relating
back to (8), Hr

ν (x0, c0, 0) is the expectation term in (8) and
Hν(x0, c0, 0) is the minimization of this term over r(·) ∈ Φ.
Clearly from (8) and (9), having solved for Hν(x, c, t), we
then obtain the dual function as simply,

L(ν̄) = Hν(x0, c0, 0)− (ν1 + . . . + νL)PT

L
(12)

Finally, in the process of obtaining Hν(x, c, t), we also obtain
the optimal rate function that achieves the minimum in (11).

Now, to proceed, focus on the kth partition interval so that
t ∈ [ (k−1)T

L , kT
L ) and consider a small interval [t, t+h), within

this partition. Let some policy r(·) be followed over [t, t + h)
and the optimal policy thereafter, then using Bellman’s prin-
ciple [24] we have,

Hν(x, c, t)=min
r(·)

{
E

[∫ t+h

t

(1 + νk)g(r(x(s), c(s), s))
c(s)

ds

]

+EHν(xt+h, ct+h, t + h)
}

(13)

where xt+h is short-hand for x(t + h) and the expectation is
conditional on (x, c, t). The left side in the equation above
is the optimal cost if the optimal policy is followed right
from the starting state (x, c, t), whereas on the right side,
the expression within the minimization bracket is the total
cost with policy r(·) being followed over [t, t + h] and the
optimal policy thereafter. Removing the minimization gives
the following inequality,

Hν(x, c, t) ≤ E

∫ t+h

t

(1 + νk)g(r(x(s), c(s), s))
c(s)

ds

+ E [Hν(xt+h, ct+h, t + h)] (14)

Hν(x, c, t) ≤ E

∫ t+h

t

(1 + νk)g(r(x(s), c(s), s))
c(s)

ds

+ E [Hν(xt+h, ct+h, t + h)] (15)

Dividing by h in (15) and taking the limit h ↓ 0 gives,

ArHν(x, c, t) +
(1 + νk)g(r)

c
≥ 0 (16)

The above inequality follows since,
E

∫ t+h
t

(
(1+νk)g(r(·))

cs

)
ds

h →
(1+νk)g(r)

c , where r is the value of the transmission rate at
time t, i.e. r = r(x, c, t). The term ArHν(x, c, t) is defined as
ArHν(x, c, t)M= limh↓0

EHν(xt+h,ct+h,t+h)−Hν(x,c,t)
h and this

quantity ArHν(x, c, t) is called the differential generator of
the Markov process (x(t), c(t)) for policy r(·). Intuitively, it
is a natural generalization of the ordinary time derivative for
a function that depends on a stochastic process. An elaborate
discussion on this topic can be found in [24]–[26]. For our
case, using the time evolution as given in (4), the quantity
ArHν(x, c, t) can be evaluated as,

ArHν(x, c, t)=
∂Hν(x, c, t)

∂t
− r

∂Hν(x, c, t)
∂x

+λ(Ez[Hν(x,Z(c)c, t)]−Hν(x, c, t)) (17)

where Ez is the expectation with respect to the Z(c) variable;
Z(c) is as defined in (2). Now, in the above steps from (14)-
(16), if policy r(·) is replaced with the optimal policy r∗(·),
equation (16) holds with equality and we get,

Ar∗Hν(x, c, t) +
(1 + νk)g(r∗)

c
= 0 (18)

Hence, for a given system state (x, c, t), the optimal transmis-
sion rate, r∗, is the value that minimizes (16) and the minimum
value of the expression equals zero. Over the kth partition
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interval with t ∈ [ (k−1)T
L , kT

L ), we thus get the following
Optimality Equation,

min
r∈[0,∞)

[
(1 + νk)g(r)

c
+ ArHν(x, c, t)

]
= 0 (19)

Substituting ArHν(·) from (17), we see that (19) is a partial
differential equation in Hν(x, c, t), also referred to as the
Hamilton-Jacobi-Bellman (HJB) equation,

min
r∈[0,∞)

{ (1 + νk)g(r)
c

+
∂Hν

∂t
− r

∂Hν

∂x

+λ(Ez[Hν(x,Z(c)c, t)]−Hν(x, c, t))
}

= 0 (20)

The boundary conditions for Hν(·) are as follows. At t = T ,
Hν(x, c, T ) = τg( x

τ )

c , since starting in state (x, c) at time T ,
the optimal cost simply equals the penalty cost. At each of
the partition interval, t = kT/L, we require that Hν(·) be
continuous at the edges, so that the functions evaluated for
the various intervals are consistent.

We now solve the above optimality PDE equation to obtain
the function Hν(x, c, t), and the corresponding optimal rate
function denoted as r∗ν(x, c, t) (the subscript ν is used to indi-
cate explicit dependence on the Lagrange vector ν̄). Theorem I
summarizes the results while an intuitive explanation of the
optimal rate function is presented later. Before proceeding
further, we need some additional notations regarding the
channel process. Let there be m channel states in the Markov
model and denote the various states c ∈ C as c1, c2, . . . , cm.
Given a channel state ci, the values taken by the random
variable Z(ci) are denoted as {zij}, where zij = cj/ci. The
probability that Z(ci) = zij is denoted as pij . Clearly, if there
is no transition from state ci to cj , pij = 0.

Theorem I: (General Markov Channel) Consider the min-
imization in (11) with g(r) = rn, (n > 1, n ∈ R). For
k = 1, . . . , L and t ∈

[
(k−1)T

L , kT
L

)
(kth partition interval),

we have,

r∗ν(x, ci, t) =
x

fk
i (T − t)

, i = 1, . . . , m (21)

Hν(x, ci, t) =
(1 + νk)xn

ci(fk
i (T − t))n−1

, i = 1, . . . , m (22)

For a fixed k, the functions {fk
i (s)}m

i=1 , s ∈[
(L−k)T

L , (L−k+1)T
L

]
are the solution of the following

ordinary differential equation (ODE) system,

(fk
1 (s))′ = 1 +

λfk
1 (s)

n− 1
− λ

n− 1

m∑

j=1

p1j

z1j

(fk
1 (s))n

(fk
j (s))n−1

(23)

...

(fk
m(s))′ = 1 +

λfk
m(s)

n− 1
− λ

n− 1

m∑

j=1

pmj

zmj

(fk
m(s))n

(fk
j (s))n−1

(24)

The following boundary conditions apply: if k = L, fL
i (0) =

τ(1 + νL)
1

n−1 ,∀i and if k = 1, .., L − 1, fk
i

(
(L−k)T

L

)
=

(
1+νk

1+νk+1

) 1
n−1

fk+1
i

(
(L−k)T

L

)
, ∀i. The dual function in (12)

is then given as (let c0 = cj , for some j ∈ {1, . . . , m}),

L(ν̄) =
(1 + ν1)xn

0

cj(f1
j (T ))n−1

− (ν1 + . . . + νL)PT

L
(25)

Proof: See Appendix A.

The above solution can be understood as follows. For
each partition interval, k, there are m functions {fk

i (s)}m
i=1

corresponding to the respective channel states. The subscript
in the notation for f refers to the channel state index while the
superscript refers to the partition interval. Now, given that the
present time t lies in the kth interval, the optimal rate function
has the closed form expression x

fk
i (T−t)

as given in (21), while
Hν(·) is as given in (22). The functions {fk

i (s)}m
i=1 for the kth

interval are the solution of the ODE system in (23)-(24) over
s ∈

[
(L−k)T

L , (L−k+1)T
L

]
with the initial boundary condition

given as, fk
i

(
(L−k)T

L

)
=

(
1+νk

1+νk+1

) 1
n−1

fk+1
i

(
(L−k)T

L

)
, ∀i.

This ensures that Hν(x, c, t) is continuous at the interval
edges, t = kT

L . For the Lth interval the boundary condition
is, fL

i (0) = τ(1 + νL)
1

n−1 , ∀i; this ensures that at t = T ,
Hν(x, ci, T ) = (1+νL)xn

ci(fL
i (0))n−1 = xn

ciτn−1 , same as the penalty
cost function for g(r) = rn (as required).

The functions {fk
i (s)} can be evaluated starting with k = L

and the initial boundary condition fL
i (0) = τ(1 + νL)

1
n−1 ,

to obtain {fL
i (s)}m

i=1 over s ∈ [
0, T

L

]
. Having obtained

{fL
i (s)}m

i=1, then consider, k = L − 1, and using the
earlier mentioned boundary conditions obtain {fL−1

i (s)}m
i=1,

s ∈ [
T
L , 2T

L

]
. Proceeding backwards this way, we obtain all

the functions {fk
i (s)}.

In full generality, the ODE system in (23)-(24) can be easily
solved numerically using standard techniques and as shown in
Lemma 3 in the Appendix, the system has a unique positive
solution. Furthermore, this computation needs to be done only
once before the system starts operating and {fk

i (s)} can be
pre-determined and stored in a table. Once {fk

i (s)} are known,
the closed form structure of the optimal policy in (21) warrants
no further computation.

Constant Drift Channel: Theorem I gives the dual function
and the optimal-rate results for a general Markov channel
model. By considering a special structure on the channel
model, which we refer to as the “Constant Drift” channel,
the functions {fk

i (s)} can be evaluated in closed-form.
Under this channel model, we assume that the expected

value of the random variable 1/Z(c) is independent of the
channel state, i.e. E[1/Z(c)] = β, a constant. Thus, starting
in state c, if c̃ denotes the next transition state we have
E

[
1
c̃

]
= E

[
1

Z(c)

]
1
c = β

c . This means that if we look at
the process 1/c(t), the expected value of the next state is
a constant multiple of the present state. We refer to β as
the “drift” parameter of the channel process. If β > 1, the
process 1/c(t) has an upward drift; if β = 1, there is no
drift and if β < 1, the drift is downwards. As a simple
example of such a Markov model, suppose that the channel
transitions at rate λ > 0 and at every transition the state either
improves by a factor u > 1 with probability pu, or worsens
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by a factor 1/u with probability pd (= 1 − pu). Thus, given
some state c > 0 the next channel state is either uc or c/u,
and, E[1/Z(c)] = pu/u + upd. Hence, the drift parameter is
β = pu/u + upd.

There are various situations where a constant drift channel
model is applicable over the time scale of the deadline interval.
For example, when a mobile device is moving in the direction
of the base station, the channel has an expected drift towards
improving conditions and vice-versa. Similarly, in case of
satellite channels, changing weather conditions such as cloud
cover makes the channel drift towards worsening conditions
and vice-versa. For cases when the time scale of these drift
changes is longer than the deadlines on the data, a constant
drift channel model serves as an appropriate model.

Theorem II: (Constant Drift Channel) Consider the mini-
mization in (11) with g(r) = rn and the constant drift channel
model with parameter β. For k = 1, . . . , L, t ∈ [ (k−1)T

L , kT
L ),

Hν(x, c, t) =
(1 + νk)xn

c(fk(T − t))n−1
(26)

r∗ν(x, c, t) =
x

fk(T − t)
(27)

Let η = λ(β−1)
n−1 , then 5,

fk(T − t) = τ(1 + νk)
1

n−1 e−η(T−t)

+
1
η

{ L−k−1∑

j=0

(
1 + νk

1 + νL−j

) 1
n−1

e−η(T−t)
(
e

η(j+1)T
L − e

ηjT
L

)}

+
1
η

(
1− e−η((T−t)−(L−k) T

L )
)

(28)

The dual function in (12) is given as,

L(ν̄) =
(1 + ν1)xn

0

c0(f1(T ))n−1
− (ν1 + . . . + νL)PT

L
(29)

Proof: See Appendix B.

Thus, from above, we see that the constant drift channel
model admits a closed-form solution of the dual function and
the optimal rate.

B. Strong Duality

In Theorems I and II, we fixed a Lagrange vector ν̄ and
obtained the dual function L(ν̄) and the optimal rate function
that achieves the minimum in (11). Now, from Lemma 1,
given a Lagrange vector ν̄ ≥ 0, the dual function is a
lower bound to the optimal cost of the constrained problem,
P . Thus, intuitively, it makes sense to maximize L(ν̄) over
ν̄ ≥ 0. Theorem III below states that strong duality holds, i.e.
maximizing L(ν̄) over ν̄ ≥ 0 gives the optimal cost of P ,
and furthermore, the optimal rate function r∗(x, c, t) for the
constrained problem P is the same as r∗ν(x, c, t) obtained in
Theorem I with ν̄ = ν̄∗ (where ν̄∗ is the maximizing Lagrange
vector).

5For k = L the summation term in (28) is taken as zero.

As in Lemma 1, let J(x0, c0) denote the optimal cost of
(P) with the initial state (x0, c0) at t = 0, where x0 = B and
c0 ∈ C. We then have the following result.

Theorem III: (Strong Duality) Consider the dual function
defined in (9) for ν̄ ≥ 0, we then have,

J(x0, c0) = max
ν̄≥0

L(ν̄) (30)

and the maximum on the right is achieved by some ν̄∗ ≥ 0. Let
r∗(x, c, t) denote the optimal transmission policy for problem
(P), then, r∗(x, c, t) is as given in (21) for ν̄ = ν̄∗.

Proof: See Appendix C.

For the maximization in (30), the dual functions are given
in Theorems I (general markov channel) and II (constant drift
channel). It can also be shown using a standard argument
that the dual function is concave [27] which makes the
maximization much simpler since there is a unique global (and
local) maxima. Using a standard gradient search algorithm the
vector ν̄∗ can be obtained numerically and this computation
needs to be done offline.

C. Optimal Policy for (P)
The optimal policy for problem (P) can now be obtained

by combining Theorems I and III and is given as follows. For
k = 1, . . . , L and t ∈ [ (k−1)T

L , kT
L ) (kth partition interval),

r∗(x, ci, t) = r∗ν∗(x, ci, t) =
x

fk
i (T − t)

, i = 1, . . . ,m

(31)
where the functions {fk

i (s)} are evaluated with ν̄ = ν̄∗.
As mentioned earlier, the computation for ν̄∗ and {fk

i (s)}
needs to be done offline before the data transmission begins.
In practice, if the transmitter has computational capabilities,
these computations can be carried out at t = 0 for the given
problem parameters, otherwise, the ν̄∗ and {fk

i (s)} can be pre-
determined and stored in a table in the transmitter memory.
Having known {fk

i (s)}, the closed form structure of the op-
timal policy as given in (31) warrants no further computation
and is simple to implement. At time t, the transmitter looks
at the amount of data in the buffer x, the channel state c, the
partition interval k in which t lies, and computes the rate for
that communication slot as simply x

fk
i (T−t)

.
The solution in (31) provides several interesting observa-

tions and insights as follows. At time t, the optimal rate is
a linear function of x, hence, as intuitively expected, the rate
is proportionately higher when there is more data left in the
queue. For a given channel state ci and time t, the slope of
this function is given as 1

fk
i (T−t)

, thus, in some sense we can
view the quantity 1

fk
i (T−t)

as the “urgency” of transmission
under the channel state ci and with time (T − t) left until
the deadline. This view gives a nice separation form for the
optimal rate:

optimal rate = amount of data left * urgency of transmission

Another interesting observation can be made if we set λ = 0
(no channel variations), P = ∞ (no power constraints) and
set τ = 0 (infinite penalty cost for missing the deadline).
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Fig. 2. Total cost comparison of the optimal and the full power policy.

Clearly with P = ∞ the Lagrange vector ν̄∗ = (0, . . . , 0) and
the optimal rate function takes the form r∗(x, ci, t) = x

T−t .
Thus, under no power constraints and no channel variations,
the optimal policy is to transmit at a rate that just empties
the buffer by the deadline. This observation is consistent with
previous results in the literature for non-fading/time-invariant
channels [5], [8], [10].

IV. SIMULATION RESULTS

In this section, we consider an illustrative example and
present energy cost comparisons for the optimal and the Full
Power (FullP) policy. In FullP policy, the transmitter always
transmits at full power, P , and so given the system state
(x, c, t) the rate is chosen as, r(x, c, t) = g−1(cP ) = (cP )1/n,
for g(r) = rn. The simulation setup is as follows. The
channel model is the two-state model as described earlier in
Section II-B, with parameters λbg = 1, λgb = 3/7, cg = 1 and
cb = 0.2; thus, λ = max(λbg, λgb) = 1 and γ = cb/cg = 0.2.
It can be easily checked that with the above parameters,
in steady state the fraction of time spent in the good state
is 0.7 and 0.3 in the bad state. The deadline is taken as
T = 10 and the number of partition intervals as L = 20.
The power-rate function is, g(r) = r2 and the value of τ in
the penalty cost function is taken as 0.01 which is 0.1% of
the deadline; thus, a time window of 0.1% is provided at T .
To simulate the process, the communication slot duration is
taken as dt = 10−3 implying that there are T/dt = 10, 000
slots over the deadline interval. For each slot, the transmission
rate is computed as given by the corresponding policy and the
total cost is obtained as the sum of the energy cost over the
time-slots plus the penalty cost. Expectation is then taken as an
average over 104 sample paths. Let {fk

g (s), fk
b (s)}L

k=1 denote
the f(·) functions for channel states cg and cb respectively;
these are computed using a standard ODE solver wherein ν̄∗

is evaluated using a standard function maximizer in MATLAB
and these computations are carried out offline before the
system operation.

Figure 2 is a plot of the expected total cost of the two
policies with the initial data amount B varied from 1 to 10.
The value of P is chosen such that at B = 5, even with
bad channel condition over the entire deadline interval, the
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entire data can be transmitted at full power. This implies, P =
1
γ (5/T )2 = 1.25 (5/T is the rate required to serve 5 units in
time T ). Thus, B ≤ 5 gives the regime in which full power
always meets the deadline and B > 5 is the regime in which
data is left out which then incurs the penalty cost. It is evident
from the plot that the optimal policy gives a significant gain
in the total cost (note that the y-axis is on a log scale) and
at around B = 1, FullP policy incurs almost 10 times the
optimal cost. Thus, we see that dynamic rate adaptation can
yield significant energy savings.

For a particular value of B, taken as B = 10, the functions
{fk

g (T − t), fk
b (T − t)}L

k=1 are plotted in Figure 3. The index
k = 1, . . . , L denotes the partition interval, and since L = 20,
each partition is of size 0.5 time units. It can be seen from the
plot that fk

g (T − t) ≤ fk
b (T − t), which implies that given x

units of data in the buffer the optimal rate x
fk

g (T−t)
is higher

under the good channel state cg than the bad channel state
cb. This is intuitively expected since the optimal policy must
exploit the good channel condition which has a lower energy
cost and transmit more data in this state.

Figure 4 is a plot of the buffer state x(t) over time for the
parameter values as stated earlier with B = 10. The solid
curve is the average value of x(t) in time, while the other two
curves are the x(t) values for two illustrative sample paths.
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From the plot, we see that the average buffer size is a smooth,
monotonically decaying function with an almost linear decay.
On each sample path, however, the buffer size goes through
stages of faster decay which correspond to good channel
state and higher rate transmission, and slower decay which
correspond to the bad channel state where the transmission
rate is lower.

V. CONCLUSION

We considered energy-efficient transmission of data over a
wireless fading channel with deadline and power constraints.
Specifically, we addressed the scenario of a wireless trans-
mitter with short-term average power constraints, having B
units of data that must be transmitted by deadline T over a
fading channel. Using a novel continuous-time optimal-control
formulation and Lagrangian duality, we obtained the optimal
transmission policy that dynamically adapts the rate over time
and in response to the channel variations to minimize the
transmission energy cost. The optimal policy is shown to have
a simple and intuitive form, given as,

optimal rate = amount of data left * urgency of transmission

The work in this paper and the approach adopted open
up various interesting research directions involving deadline-
constrained data transmission over wireless channels. One
of the natural extensions is to consider a network scenario
involving control of multiple transmitter-receiver pairs when
there are deadline constraints on data transmission.
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APPENDIX A
PROOF OF THEOREM I – General Markov Channel

Consider first the Lth partition interval, i.e. k = L. The
system state space for this interval is (x, c, t) ∈ [0, B] × C ×[

(L−1)T
L , T

)
and over this period, (21) and (22) take the form,

r∗ν(x, ci, t) =
x

fL
i (T − t)

, i = 1, . . . ,m (32)

Hν(x, ci, t) =
(1 + νL)xn

ci(fL
i (T − t))n−1

, i = 1, . . . , m (33)

The Hamilton-Jacobi-Bellman (HJB) equation over this period
is given as in (20) with νk = νL. To prove optimality of the
above functional forms, we need the following verification
result from stochastic optimal-control theory [24]. It states
that if we can find a functional form Hν(x, ci, t) that satisfies
the HJB equation and the boundary conditions then it is the
optimal solution.

Lemma 2: (Verification Result) ( [24], Chap III, Theorem
8.1) Consider the Lth partition interval and let Hν(x, c, t)
defined on (x, c, t) ∈ [0, B] × C ×

[
(L−1)T

L , T
]
, solve the

equation in (20) with the boundary conditions Hν(0, c, t) = 0
and Hν(x, c, T ) = τg( x

τ )

c . Then,

1) Hν(x, c, t) ≤ Hr
ν (x, c, t), ∀ r(·) ∈ Φ
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2) Let r∗ν(x, c, t) ∈ Φ be such that r∗ν is the minimizing
value of r in (20), then, r∗ν(x, c, t) is an optimal policy,
Hν(x, c, t) is the minimum cost-to-go function and,

Hν(x, c, t) = E

[∫ T

t

g(r∗ν(x(s), c(s), s))
c(s)

ds +
τg(x(T )

τ )
c(T )

]

(34)

By verifying the requirements in the above lemma, we
now show that (32) and (33) are the optimal solution for
the Lth interval. First note that g(r) = rn and from the
boundary conditions on fL

i (s) in Theorem I, we have fL
i (0) =

τ(1 + νL)
1

n−1 , ∀i. Using this it is easy to check that the
boundary conditions Hν(0, c, t) = 0 and Hν(x, c, T ) = τg( x

τ )

c
are satisfied.

Now, substituting (32) and (33) into the PDE equation in
(20) gives,

(1 + νL)xn

ci(fL
i (T − t))n

+
−(1 + νL)xn(1− n)(fL

i )′(T − t)
ci(fL

i (T − t))n
−

x

fL
i (T − t)

n(1 + νL)xn−1

ci(fL
i (T − t))n−1

+ λ

m∑

j=1

pij

zijci

(1 + νL)xn

(fL
j (T − t))n−1

−

λ
(1 + νL)xn

ci(fL
i (T − t))n−1

= 0

Cancelling out (1+νL)xn

ci , simplifying the above and setting
s = T − t gives the following ODE system (note, t ∈[

(L−1)T
L , T

]
implies that s = (T − t) ∈ [0, T/L]),

(fL
i (s))′ = 1 +

λfL
i (s)

n− 1
− λ

n− 1

m∑

j=1

pij

zij

(fL
i (s))n

(fL
j (s))n−1

,

i = 1, . . . , m (35)

Thus, from above we see that r∗ν(·) and Hν(·) as given in
(32) and (33) respectively, would satisfy the optimality PDE
equation if the functions {fL

i (s)}m
i=1, s ∈ [0, T/L], satisfy the

above ODE system with the boundary conditions fL
i (0) =

τ(1 + νL)
1

n−1 ,∀i. The following lemma shows that indeed
such a set of positive functions exists and also that they are
unique.

Lemma 3: (Existence and Uniqueness of the ODE so-
lution in (35)) The ODE system in (35) with the boundary
conditions fL

i (0) = τ(1 + νL)
1

n−1 , ∀i, has a unique positive
solution for s ∈ [0, T/L].

Proof: The proof is omitted for brevity but can be found
in [4]

This completes the verification that Hν(x, c, t) as given in
(33) satisfies the optimality PDE equation. Furthermore, it is
easy to check that the rate r∗ as given in (32) is the minimizing
value of r in (20) (take the first derivative with respect to r and
set it to zero). The admissibility of r∗ν(x, c, t) follows by noting
that the functional form in (32) is continuous and locally
Lipschitz in x, continuous in t and satisfies r∗ν(0, c, t) = 0.
Thus, we have verified all the requirements in Lemma 2 and
this completes the proof that (32) and (33) give the optimal
solution over the Lth partition interval.

Now, consider the (L−1)th partition interval, i.e. k = L−1.
The system state space for this interval is (x, c, t) ∈ [0, B]×
C ×

[
(L−2)T

L , (L−1)T
L

)
and over this period, equations (21)

and (22) take the form,

r∗ν(x, ci, t) =
x

fL−1
i (T − t)

, i = 1, . . . , m (36)

Hν(x, ci, t) =
(1 + νL−1)xn

ci(fL−1
i (T − t))n−1

, i = 1, . . . , m (37)

Suppose that we start with a system state in the (L−1)th parti-
tion interval. Once we reach the Lth interval, i.e. t = (L−1)T

L ,
we know from the preceding arguments that (33) gives the
minimum cost and (32) gives the optimal rate to be followed
thereafter. Thus, for the optimization over the (L − 1)th

interval, we can abstract the Lth interval as a terminal cost
of Hν

(
x, ci, (L− 1)T/L

)
= (1+νL)xn

ci(fL
i (T/L))n−1 , applied at t =

(L−1)T
L . The minimization problem in (11) over the (L−1)th

interval is therefore identical to that over the Lth interval (dis-
cussed earlier) except that we now have a different boundary
condition given as, Hν(x, c, (L − 1)T/L) = (1+νL)xn

ci(fL
i (T/L))n−1 .

Using the functional form in (37), this boundary condition

translates into fL−1
i

(
T
L

)
=

(
1+νL−1
1+νL

) 1
n−1

fL
i

(
T
L

)
,∀i (as

outlined in the Theorem I statement). Now, following an
identical set of arguments as done for the Lth partition interval,
it is easy to check that (36) and (37) give the optimal solution
over the (L− 1)th interval.

Finally, recursively going backwards and considering the
partition intervals, k = L − 2, L − 3, . . . , 1, it follows that
(21) and (22) with the boundary conditions as in the Theorem
statement, give the optimal solution. This completes the proof.

APPENDIX B
PROOF OF THEOREM II – Constant Drift Channel

The proof for this theorem is identical to that of the general
case in Theorem I except that now the functions {fk

i (s)} can
be evaluated in closed form. Therefore, to avoid repetition
we only present the details regarding the functions {fk

i (s)}.
As before, start with the Lth partition interval and suppose
that for all the channel states the fL

i (s) function is the same,
i.e. fL

i (s) = fL(s). The ordinary differential for fL(s) then
becomes,

(fL)′(s) = 1 +
λfL(s)
n− 1

− λ

n− 1
fL(s)


∑

j

pij

zij


(38)

= 1− λfL(s)
n− 1

(β − 1) (39)

where
∑

j
pij

zij
= E[1/Z(ci)] = β, ∀i, by the constant drift

channel assumption. The solution to the above ODE evaluated
over s ∈ [0, T/L] with the boundary condition fL(0) = τ(1+
νL)

1
n−1 is given as (let η = λ(β−1)

n−1 ),

fL(s) = τ(1 + νL)
1

n−1 e−ηs +
1
η

(
1− e−ηs

)
(40)

Clearly, for k = L, equation (28) is the same as (40) above
(set s = T − t).
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Now, consider the (L−1)th partition interval and following
the same argument as for the Lth partition interval, it is easy
to see that fL−1(s) satisfies the same ODE as given in (39).
This ODE must now be evaluated over s ∈ [

T
L , 2T

L

]
with the

following boundary condition,

fL−1

(
T

L

)
=

(
1 + νL−1

1 + νL

) 1
n−1

fL

(
T

L

)

= τ(1 + νL−1)
1

n−1 e−
ηT
L +

1
η

(
1 + νL−1

1 + νL

) 1
n−1 (

1− e−η T
L

)

Evaluating the ODE with the above boundary condition gives
fL−1(s) as follows,

fL−1(s)=τ(1 + νL−1)
1

n−1 e−ηs +
1
η

(
1 + νL−1

1 + νL

) 1
n−1

×
(
e−η(s−T

L ) − e−ηs
)

+
1
η

(
1− e−η(s−T

L )
)

(41)

Again for k = L− 1, equation (28) is the same as (41) above
with s = T − t. Recursing backwards and following the same
steps as earlier, it can be seen that fk(s) can be written in the
general form as given in (28).

APPENDIX C
PROOF OF THEOREM III – Strong Duality

The optimization problem (P) as stated earlier is given as,

(P) min
r(·)∈Φ

E

[∫ T

0

1
c(s)

g(r(x(s), c(s), s))ds +
τg(x(T )

τ )
c(T )

]
(42)

sub. to E

[∫ kT
L

(k−1)T
L

g(r(x(s), c(s), s))
c(s)

ds

]
≤ PT

L
, k = 1, .., L

Before proceeding to show strong duality holds, we first
interchange the expectations and the integrals and re-write the
above problem in a standard form as in [27]. But to do that,
we need the following. Let I[a,b](s) be the indicator function
for the interval s ∈ [a, b]; it is defined as,

I[a,b](s)
M=

{
1, if s ∈ [a, b]
0, otherwise

(43)

Also define,

Kr(s) M=
g(r(x(s), c(s), s))

c(s)
I[0,T ](s)

+g

(
x0 −

∫ T

0
r(x(t), c(t), t)dt

τ

)
1

c(T )
I[T,T+τ ](s)(44)

Let F (r(·)) denote the total cost for policy r(·) (i.e. the
objective function in (P)). From (42), it is given as,

F (r(·)) = E

[∫ T

0

1
c(s)

g(r(x(s), c(s), s))ds +
τg(x(T )

τ )
c(T )

]

(45)
Using (44), we can re-write the above as,

F (r(·)) = E

[∫ T+τ

0

Kr(s)ds

]
(46)

For any policy r(·) ∈ Φ, it is clear that Kr(s), s ∈ [0, T +τ ] is
a collection of non-negative random variables which depend
on the underlying channel stochastic process. Hence, using
Fubini’s theorem [28], we can interchange the expectation and
the integral which gives,

F (r(·)) =
∫ T+τ

0

E[Kr(s)]ds (47)

Similarly, we can interchange the expectation and the integral
for the power constraint inequalities in (42). Thus, we can now
re-write the optimization problem (P) as,

min
r(·)∈Φ

F (r(·)) (48)

subject to
∫ kT

L

(k−1)T
L

E

[
g(r(x(s), c(s), s))

c(s)

]
ds− PT

L
≤ 0,

k = 1, . . . , L

where F (r(·)) is as given in (47). Now, having written the
optimization problem (P) in the above form, the strong duality
result in [27] (Theorem 1, sec. 8.6, pp. 224) gives the results
as stated in Theorem III, which then completes the proof.
However, as a final step we need to verify the technical
conditions required in [27]. These are presented below with a
description of the technical requirement and the proof for its
validity in our case.

(1) F (r(·)) is a convex functional over r(·) ∈ Φ
Consider two policies r1(x, c, t), r2(x, c, t) ∈ Φ and let 0 ≤

α ≤ 1. Let r̃(x, c, t) = αr1(x, c, t) + (1− α)r2(x, c, t); since
r1(·), r2(·) ∈ Φ it is easy to check that r̃(·) also lies in Φ.
Now,

K r̃(s) =
g(r̃(x(s), c(s), s))

c(s)
I[0,T ](s)

+g

(
x0 −

∫ T

0
r̃(x(t), c(t), t)dt

τ

)
1

c(T )
I[T,T+τ ](s)

≤ α
{g(r1(x(s), c(s), s))

c(s)
I[0,T ](s)

+g

(
x0 −

∫ T

0
r1(x(t), c(t), t)dt

τ

)
1

c(T )
I[T,T+τ ](s)

}

+(1− α)
{g(r2(x(s), c(s), s))

c(s)
I[0,T ](s)

+g

(
x0 −

∫ T

0
r2(x(t), c(t), t)dt

τ

)
1

c(T )
I[T,T+τ ](s)

}

= αKr1(s) + (1− α)Kr2(s)

where the inequality above follows since g(r) is a convex
function of r. Thus, from above Kr(s) is a convex functional
over r(·) ∈ Φ and this implies that E[Kr(s)] is a convex
functional. It then directly follows that F (r(·)) is a convex
functional over r(·) ∈ Φ.

(2) Let Gk(r(·)) =
(∫ kT

L
(k−1)T

L

E
[

g(r(x(s),c(s),s))
c(s)

]
ds− PT

L

)
,

k = 1, . . . , L, then, Gk(r(·)) is a convex functional over
r(·) ∈ Φ. The proof for this is identical to the previous case
and omitted here for brevity.
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(3) Minimum cost for problem (P) is finite
To see this consider the simple policy which does not

transmit any data and only incurs the terminal cost. The total
cost for this policy is simply the expected penalty cost and is
given as,

total cost = E

[
g(x0/τ)

c(T )
τ

]
= τg

(x0

τ

)
E

[
1

c(T )

]

≤ τg
(x0

τ

) ∞∑

j=0

(
1

c0(zl)j

)
(λT )j

e−λT

j!

=
τ

c0
g

(x0

τ

)
e

λT
zl e−λT < ∞

The inequality above follows by first conditioning that the
channel makes j transitions over [0, T ], taking c(T ) = (zl)jc0,
where (zl)jc0 is the worst possible channel quality starting
with state c0 and making j transitions, and finally taking
expectation with respect to j (number of transitions, j, is
Poisson distributed with rate λT and zl > 0 is the least value
that any Z(c) can take). Now, since there exists an admissible
policy with a finite cost, it follows that the minimum cost over
all admissible r(·) is finite.

(4) Let Gk(r(·)) =
(∫ kT

L
(k−1)T

L

E
[

g(r(x(s),c(s),s))
c(s)

]
ds− PT

L

)
,

k = 1, . . . , L, then, a policy r(·) ∈ Φ exists such that
Gk(r(·)) < 0, ∀k (the interior-point policy). Take r(·) as
the policy that does not transmit at all and only incurs the
terminal cost.
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