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Abstract—Transmission rate adaptation in wireless devices
provides a unique opportunity to trade-off data service rate
with energy consumption. In this paper, we study optimal rate-
control to minimize the transmission energy expenditure subject
to strict deadline or other quality-of-service (QoS) constraints.
Specifically, the system consists of a wireless transmitter with
controllable transmission rate and with strict QoS constraints
on data transmission. The goal is to obtain a rate control
policy that minimizes the total transmission energy expenditure
while ensuring that the QoS constraints are met. Using a novel
formulation based on cumulative curves methodology, we obtain
the optimal transmission policy and show that it has a simple and
appealing graphical visualization. Utilizing the optimal “offline”
results, we then develop an online transmission policy for an
arbitrary stream of packet arrivals and deadline constraints, and
show, via simulations, that it is significantly more energy efficient
than a simple head-of-line drain policy. Finally, we generalize
the optimal policy results to the case of time-varying power-rate
functions.

Index Terms—Energy efficiency, Delay constraints, Quality of
Service, Rate control, Network calculus, Wireless.

I. I NTRODUCTION

Services envisioned in modern communication systems ex-
tend beyond traditional voice communication to enhanced
data applications such as video and real-time multimedia
streaming, high-throughput data access and Voice-over-IP[1].
Invariably, meeting the quality-of-service (QoS) requirements
for these applications translates into stricter packet-delay and
throughput constraints. Wireless systems also generally have
strict limitations on energy consumption thereby necessitating
efficient utilization of this resource [2]. For example, minimiz-
ing energy consumption leads to improved battery utilization
for mobile devices, increased lifetime for sensor nodes andad-
hoc networks, and better utilization of limited energy sources
in satellites. Since in many scenarios transmission energy
constitutes a significant portion of the total energy expenditure
for wireless nodes [2], it is imperative to minimize this cost
to achieve significant energy savings; henceforth, in this paper
we will focus solely on transmission energy expenditure.

A. Motivation and Summary

Modern wireless devices are equipped with rate-adaptive
capabilities [3], [4] which allows the transmitter to adjust
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the transmission rate over time. This is achieved in various
ways that include adjusting the power level, symbol rate,
coding scheme, constellation size and any combination of
these approaches. Associated with a rate, there is a correspond-
ing power expenditure which is governed by the power-rate
function. Specifically, a power-rate function is a relationship
which gives the amount of transmission power that would
be required to transmit at a certain rate. Keeping the bit-
error probability fixed, it is widely known that for most
encoding schemes the required power is a convex function of
the rate [7]–[10], [12], [14], [17]. This implies, from Jensen’s
inequality, that transmitting data at a low rate and over a
longer duration has less energy cost as compared to a fast
rate transmission. However, with QoS constraints taken into
consideration, a low rate transmission may not always be
able to meet these constraints; thus, there is a tradeoff ! In
this work, we seek to obtain the optimal rate-control policy
that minimizes the transmission energy expenditure while also
ensuring that the strict QoS constraints are met.

We consider a transmitter with data arrivals that have strict
QoS constraints such as individual packet deadlines, finite
buffer or other service constraints. We represent the arrivals
as a cumulative curve (known as the arrival curve) and model
the QoS constraints using the concept of aminimum departure
curve. The minimum departure curve helps translate fairly
general QoS constraints into a simple and graphical form.
Using this model, we first consider a time-invariant power-rate
function and obtain the optimal policy under the knowledge
of the arrival curve. The optimal policy has a simple and
appealing graphical visualization as discussed later. Using the
optimal solution, a heuristic online policy is developed which
does not require prior knowledge of the arrival process; the
online policy is shown to be energy-efficient via simulations.
Finally, in the latter half of the paper, we extend the results
to a setup involving a time-varying power-rate function.

B. Related Work

Transmission rate adaptation/control is an active area of
research in communication networks in various different con-
texts. Adaptive network control and scheduling have been
studied in the context of network stability [16]–[19], average
throughput [20]–[23], average delay [7], [14] and packet drop
probability [15]. This literature considers “average metrics”
that are measured over an infinite time horizon and hence do
not directly apply for delay constrained and real-time data.
Incorporating packet deadlines and other strict QoS constraints
introduces new challenges and complexity in the problem;
recent work in this direction includes [8]–[12].
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The work in [8] studied the problem of a known stream
of packet arrivals that must be transmitted by a common
deadline using minimum energy. In [12], the problem was
extended by allowing different energy functions for different
packets, where, the authors proposed the MoveRight algorithm
that eventually converges to the optimal solution; however,
the actual analytical form of the optimal solution was not
obtained. In [10], the authors considered batch arrivals and
packet deadlines as the QoS metric and utilized filtering
techniques to obtain an energy efficient transmission policy.
In this paper, we provide a simple yet general framework for
the QoS constrained energy minimization problem from which
these earlier results can be recovered back as special cases
(see Section III-C). The work in [11] has a different context
wherein the transmitter can recover back partial energy lost
while it is in the idle state, whereas in [9], the authors studied
several data transmission problems using Dynamic Program-
ming. The dynamic programming methodology, however, in
most cases leads to numerical solutions without much insights.

Within a different context in [25], the problem of trans-
mitting stored video file from a server to a client over a
network was considered. Utilizing buffering at the client,
the optimal policy was obtained that minimizes the bit-rate
variability. Strikingly, the mathematical formulation inthe
work of [25] has similarities to that considered in this paper,
hence, the optimal policies share various properties such
as the shortest path feature (albeit with different contextual
meanings). However, the solution methodology in [25] is
based on a majorization technique which is only suitable
for discrete data models. In contrast, our approach is based
on continuous-time convex optimization, and applies to both
discrete and fluid data models. Moreover, in this paper, we
also develop the optimal solution for a time-varying power-
rate relationship, which was not addressed in the stored video
context. In another context, [26] studied the problem of job
scheduling for dynamically variable voltage processor where
similar properties (such as the shortest path property of the
optimal solution) were observed. Finally, part of the results
presented in this paper have appeared in our preliminary work
in [6].

The rest of the paper is organized as follows. In Section II
we present the system model; in Section III we present
the optimal policy for the case of time-invariant power-rate
function, and finally, in Section IV we generalize the setup
and consider a time-varying power-rate function.

II. SYSTEM MODEL

We consider a continuous-time model and assume that
rate can be varied continuously in time. Such a model is
an approximation of an actual system, but the assumption
is justified, since in practice the communication slots over
which rate-control can be done are of the order of 1 msec
duration [3], and much smaller than packet delay requirements
which are typically on the order of 100’s of msec. The
advantage of such a model is that it makes the problem that we
consider mathematically tractable and also provides a simple
and intuitive graphical visualization of the optimal solution.

da
ta




da
ta




0


arrival curve


min. departure

curve


departure

curve


Fig. (a)

time t


arrival curve


departure curve


min. departure

curve


0

Fig. (b)


time t


Fig. 1. Data flow model: (a) Fluid arrival model, (b) Packetizedarrival
model

The results thus obtained can then be applied to a discrete-
time system in a straightforward manner by simply evaluating
the solution at the discrete-time slot boundaries.

A. Data Flow Model

To describe the flow of data into the system, we utilize
a cumulative curves methodology [13], [24]. This model
applies to a general setting where data could arrive in packets
(packetized model) or in a continuum of bits (fluid model). Let
A(t), D(t) and Dmin(t) denote the arrival curve, departure
curve and the minimum departure curve respectively; these
are assumed to be right-continuous functions and are defined
as follows.

Definition 1: (Arrival Curve) An arrival curve A(t), t ≥
0, t ∈ R, is the total number of bits that have arrived in time
interval [0, t].

Definition 2: (Departure Curve)A departure curveD(t),
t ≥ 0, t ∈ R, is the total number of bits that have departed
(served) in time[0, t].

In case of a fluid arrival model,A(t) is a continuous
function, whereas, for a packet arrival model it is a piecewise-
constant function as depicted in Figure 1. To ensure that the
transmitter does not transmit more than the data that has
arrived to the queue, we require thatD(t) ≤ A(t). We refer
to this constraint as thecausality constraint. Now, to model
the quality-of-service constraints we introduce a new notion
of a “minimum departure curve” which is defined as follows.

Definition 3: (Minimum Departure Curve)Given an ar-
rival curve A(t), a minimum departure curveDmin(t) is a
function such thatDmin(t) ≤ A(t),∀t ≥ 0, and is defined as
the cumulative minimum number of bits that if departed by
time t would satisfy the quality-of-service requirements.

The function Dmin(t) can be viewed as the constraint
function, such that in order to satisfy the QoS requirementsthe
departure curveD(t) must satisfyD(t) ≥ Dmin(t). Thus, in
a compact way the QoS and the causality constraints can be
expressed as,Dmin(t) ≤ D(t) ≤ A(t), ∀t. Note that the
definition of Dmin(t) hides the implicitly assumed service
discipline (the order in which data is served), as the above
model looks at the data flow only in a cumulative sense. As we
show next, through a few illustrative examples, that a number
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Fig. 2. QoS Examples: (a) Packet deadline constraint ofd, (b) Buffer
constraint ofB.

of commonly used QoS constraints can be modelled within
this framework.

Deadline Constraint: Consider a set of packet arrivals ac-
cording to an arrival curveA(t) and letd be the individual
deadline constraint on the incoming data. To obtainDmin(t)
set,Dmin(t) = 0, t ∈ [0, d) andDmin(t) = A(t − d), t ≥ d;
now, following an earliest-deadline-first service discipline such
that the departure curve satisfiesDmin(t) ≤ D(t) ≤ A(t), ∀t,
it is easy to see that the deadline constraints will all be met.
Thus, here,Dmin(t) is simply a time-shifted version ofA(t)
as shown in Figure 2(a). As a generalization, suppose that
the data has variable deadlines and these deadlines are in the
increasing order in which the bits arrive. Consider a packet
arrival model and let{ti} denote the arrival epochs,{di}
the deadlines and{bi} the sizes of the data packets. Then,
Dmin(t) is a piecewise constant function with jumps at times
{ti +di} and the sizes of the jumps being{bi}. Along similar
lines as above, one can also obtainDmin(t) for a fluid arrival
model.

Buffer Constraint: Consider a buffer constraint ofB, i.e. the
queue size must not exceedB,∀t ≥ 0. For an arrival curve
A(t) and a departure curveD(t) the buffer size at any time
t is given byb(t) = A(t) − D(t). Sinceb(t) ≤ B, we have
D(t) ≥ max[A(t)−B, 0]. Thus, we see that, following a first-
come-first-serve service discipline, the minimum departure
curve must beDmin(t) = max[A(t) − B, 0] as shown in
Figure 2(b). It is easy to incorporate a time varying buffer
constraintB(t) as well.

Service-Curve Constraint: The notion of service curves
forms an integral part of network calculus theory [24]. Given
a service curveβ(t) and an arrival curveA(t), the quantity
A(t)⊗β(t) represents the minimum data that must flow out of
the system, where⊗ is convolution in the min-plus algebra.
Therefore, under network calculus theory, given any service
curveβ(t), the minimum departure curve can be obtained as
Dmin(t) = A(t) ⊗ β(t).

Thus, we see that a wide variety of QoS constraints can be
abstracted by constructing the appropriate minimum departure
curve.

B. Transmission Model

Let P (t) denote the required transmission power to reliably
transmit at rater(t) at timet. We assume the following power-

rate relationship,
P (t) = g(r(t), t) (1)

where the functiong(r, t) is a convex increasing function with
respect to the first argument (rate) andg(r, t) ≥ 0 for r ≥
0,∀t. The relationship in (1) is a general transmission model
for most encoding schemes and has been widely studied in the
literature in various forms [7]–[12], [14], [15]. As an example,
the well-known Shannon formula for the power per bit gives
the following relationship [8],P = N0W (2r/W − 1); in case
of other coding schemes the Shannon formula gives a lower
bound on the power per bit.

Given the relationship in (1), the transmission energy ex-
penditure of a departure curveD(t) over time interval[0, T ]
is given by,

E(D(t)) =

∫ T

0

g(D′(t), t)dt (2)

where D′(t) is the derivative1 at time t; it gives the trans-
mission rate at that instant and the termg(D′(t), t) gives the
instantaneous transmission power.

Throughout the paper, our focus will be on the time in-
terval [0, T ] for some finiteT , and with finite deadline/QoS
constraints. Thus, we deal with energy minimization over a
finite time interval rather than considering an infinite time
horizon, as done in much of the literature on power-rate
adaptation which studies average performance metrics. Since a
departure curve specifies the transmission rate and vice-versa,
we will use the terms departure curve and transmission policy
interchangeably.

III. T IME-INVARIANT POWER-RATE FUNCTION

We first consider the case of a time-invariant power-rate
function and assume in this section thatP (t) is only a function
of r(t), i.e. P (t) = g(r(t)). Such an assumption models a
static channel or a slow fading wireless channel where over
[0, T ] the channel gain does not change appreciably over time.
This is a good model for wireless LAN or fixed wireless
network scenarios.

A. Problem Formulation

Consider an arrival curveA(t) and assume that this curve is
known over the interval[0, T ]. Based on the QoS requirements,
one can construct the minimum departure curveDmin(t) as
discussed in Section II. Now givenA(t) and Dmin(t), a
departure curveD(t) which represents how data is transmitted
is said to beadmissibleif it satisfies both the causality and
the QoS constraints; i.e.Dmin(t) ≤ D(t) ≤ A(t), t ∈ [0, T ].
The energy minimization problem is to obtain the admissible
departure curve with the least energy expenditure. Mathemat-
ically, this can be stated as follows,

min
D(t)∈Γ

E(D(t)) =

∫ T

0

g(D′(t))dt (3)

subject to Dmin(t) ≤ D(t) ≤ A(t), t ∈ [0, T ]

1Throughout the paper, at points of non-differentiability,D′(t) is taken as
the right-derivative, and the right-derivative is assumed to exist for all t.
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Fig. 3. Cumulative curves for theBT -problem.

Without loss of generality, we takeDmin(0) = 0,D(0) = 0,
and Dmin(T ) = A(T ), where the last equality simply states
that all the data must depart byT . For the above problem, we
also require thatD(t) belongs to the setΓ, whereΓ consists of
all non-decreasing, continuous functions with bounded right-
derivative for all t ∈ [0, T ] and with D(0) = 0. The non-
decreasing assumption follows from the cumulative nature of
the departure curves, the continuity assumption is naturalas
any discontinuity would imply instantaneous transmissionof
non-zero amount of data which is practically infeasible and
finally, the bounded right-derivative assumption ensures that
the rate and the energy cost in (3) are finite. Furthermore,
if one makes the natural assumption that there is no data
that arrives and needs to be transmitted instantaneously, then,
admissible departure curves exist.

B. Optimality Properties

In this section, we present the optimality criterion and the
various properties of the optimal departure curve. To motivate
the discussion, consider the following simple example: the
transmitter hasB units of data that must be transmitted by
deadlineT using minimum energy. We refer to this as the
“BT -problem”. This example sheds important insights into the
problem and also serves as a building block for the general
problem.

BT -problem: The two curvesA(t) and Dmin(t) for this
problem are as follows. Since there are no new arrivals and
the queue hasB units of data at the beginning, the arrival
curve is A(t) = B, ∀t ∈ [0, T ]. Furthermore, there is no
minimum data transmission requirement until the deadline
T , at which point all the data must be transmitted; hence,
Dmin(t) = 0, t ∈ [0, T ) andDmin(T ) = B. The admissibility
criterion specialized to this case thus becomes0 ≤ D(t) ≤ B
and D(T ) = B. Figure 3 is a schematic diagram of these
curves which also depicts a few admissible departure curves.

We claim that the optimal policy is constant rate transmis-
sion at rateB/T , i.e. (Dopt)′(t) = B

T andDopt(t) = Bt
T , t ∈

[0, T ], whereDopt(t) denotes the optimal departure curve. To
see why this is true consider the following integral versionof
Jensen’s inequality [27].

Lemma 1: Let f(t), p(t) be two functions defined fora ≤
t ≤ b such thatα ≤ f(t) ≤ β andp(t) > 0, with p(t) 6≡ 0. Let
φ(u) be a convex function defined on the intervalα ≤ u ≤ β;

then

φ

(

∫ b

a
f(t)p(t)dt
∫ b

a
p(t)dt

)

≤

∫ b

a
φ(f(t))p(t)dt
∫ b

a
p(t)dt

(4)

with strict inequality ifφ() is strictly convex anda 6= b, α 6= β.
Proof: See [27].

Now, consider an admissible departure curveD(t) and make
the following substitution in the above lemma,p(t) = 1, φ() =
g(), f() = D′(), a = 0 andb = T . This gives,

g

(

∫ T

0
D′(t)dt
∫ T

0
dt

)

≤

∫ T

0
g(D′(t))dt
∫ T

0
dt

(5)

g

(

D(T ) − D(0)

T

)

T ≤

∫ T

0

g(D′(t))dt (6)

g (B/T )T ≤

∫ T

0

g(D′(t))dt (7)

The left hand side in (7) is the total energy cost of the constant
rate transmission policy at rateB/T , while, the right hand side
is the total cost of any other admissible departure curve. The
inequality in (7) thus proves the optimality claim.

The result for theBT -problem is fairly intuitive given the
convexity property of the power-rate function. Its practical
implication is interesting as it says that employing a complex
variable-rate policy does not provide any gains in the energy
expenditure; in fact, a constant-rate policy suffices. Another
observation is that wheng(·) is strictly convex, the inequality
in (7) is strict for any admissibleD(t) other than the constant-
rate policy. Hence, in this case the constant-rate policy isthe
unique optimal solution. On the other hand, for the case when
g(·) is linear, there is equality in (7) and all policies have the
same energy cost.

General Case:We now consider the general setup and as-
sume without loss of generality thatA(t) > Dmin(t), 0 < t <
T . Otherwise, if at some timete there is equality, the problem
can be divided into two sub-problems over time intervals[0, te]
and [te, T ] and each can be solved independently. The first
result, Theorem I, is a generalization of the result for the
BT -problem and it gives the criterion for the optimality of
a departure curve.

TheoremI: (Optimality Criterion) Let D(t) be an admis-
sible departure curve andL(t) be a straight line segment over
[a, b] that joins pointsD(a) andD(b), 0 ≤ a < b ≤ T . If L(t)
satisfiesDmin(t) ≤ L(t) ≤ A(t), and,L(t) 6≡ D(t), the new
departure curveDnew(t) constructed as,

Dnew(t) = D(t), t ∈ [0, a)

= L(t), t ∈ [a, b]

= D(t), t ∈ (b, T ]

satisfies,E(Dnew(t)) ≤ E(D(t)), where the inequality is strict
if g(.) is strictly convex.

The above theorem states that, if there exists any two points
on the curveD(t) that can be joined by a straight line without
violating the admissibility constraints, replacing that part of
D(t) with the straight line can only lower the energy cost. The
implication of this is that whenever admissible, it is optimal
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Fig. 4. Figure for Theorem I: (a) an admissible departure curve D(t) and
(b) the new curveDnew(t).

to transmit at a constant rate. A schematic diagram depicting
this is given in Figure 4. Henceforth, the criterion that along
a departure curve there does not exist any two points that can
be joined by a distinct admissible straight line will be referred
to as the“Optimality Criterion” .

Proof: First note that sinceL(t) is admissible, the new
curveDnew(t) is also admissible. Consider,

E(Dnew(t)) − E(D(t)) = E(L(t)) −

∫ b

a

g(D′(t))dt (8)

Over the interval[a, b], we know from the result of theBT -
problem thatL(t) has the least energy cost among all departure
curves that would transmit(D(b) − D(a)) amount of data
in time (b − a). Hence, from (5)-(7), we get,E(L(t)) −
∫ b

a
g(D′(t))dt ≤ 0 and the result follows.

Remark1: (Linear power-rate function) An interesting
special case arises when the power-rate relationship is linear,
i.e. P = κr where κ > 0 is a constant. In this case, the
integral value in (3) is the same for all admissible departure
curves and hence, all departure curves have the same energy
cost. Thus, with a linear power-rate curve it does not matter,
in terms of the energy cost, how data is transmitted as long
as the causality and the QoS constraints are met. However,
even in this special case of linear power-rate function, we will
see next that the departure curve that satisfies the optimality
criterion has appealing properties that make it a good candidate
transmission policy.

Henceforth, we consider the more interesting case of strictly
convexg(·) function. The next result shows that the optimal
departure satisfying the optimality criterion is unique.

TheoremII: (Uniqueness)Consider the optimization prob-
lem in (3) with g(·) being strictly convex. LetD̃(t) be
an admissible departure curve that satisfies the optimality
criterion, then, D̃(t) is unique and it minimizes the energy
cost in (3).

Proof: See Appendix A.

Throughout now, we will denote the admissible departure
curve satisfying the optimality criterion asDopt(t) and later
in Section III-C, give an algorithm for constructingDopt(t).
We now characterize the points in time at which the optimal
rate changes, i.e. points at which the slope (or the right-
derivative where non-differentiable) ofDopt(t) changes, either

T
0


t = b


t = c


t = a


A(t)


D
min
(t)


D(t)


time


Fig. 5. Example showing violation of Lemmas 2-4. The dotted lines show
that D(t) does not meet the optimality criterion.

continuously or in a discrete step. Denoting any such point as
t0, the following results are obtained2.

Lemma 2: At t0, Dopt(t) either intersectsA(t) or it inter-
sectsDmin(t); i.e. we haveDopt(t0) = A(t0) or Dopt(t0) =
Dmin(t0). Note, if there is a discontinuity inA(t) at t0 (jump
point for packetized data) thenDopt(t0) = A(t−0 ).

Lemma 3: Suppose that att0 we have Dopt(t0) =
Dmin(t0), then, the slope change must be negative.

Lemma 4: Suppose that att0 we haveDopt(t0) = A(t0)
(

or A(t−0 )
)

then the change in slope must be positive.

The proofs of the above lemmas are straightforward and
omitted for brevity. They can be easily understood from
Figure 5. Pointt = a corresponds to a point of rate change
and it violates Lemma 2. It is easy to see that aroundt = a
the optimality criterion is violated since an admissible straight
line segment exists (the dotted segment aroundt = a in the
figure). Similarly, pointst = b and t = c correspond to a
violation of Lemmas 3 and 4 respectively.

Among other properties, the optimal departure curve
Dopt(t) uses the least maximum transmission-power and has
the shortest length metric. The minimal maximum-power
property ofDopt(t) states that among all admissible departure
curves, if we look at the maximum instantaneous power
requirement over time,Dopt(t) curve has the least such
requirement. This is summarized in the theorem below.

TheoremIII: (Minimal Maximum Power) Given any ad-
missible departure curveD(t), the optimal departure curve
Dopt(t) satisfies,

max
t∈[0,T )

(Dopt)′(t) ≤ max
t∈[0,T )

D′(t) (9)

Equivalently,maxt∈[0,T ) P opt(t) ≤ maxt∈[0,T ) P (t), where
P (.) denotes the power expenditure over time.

Proof: See Appendix B

Remark2: The above theorem is very significant if we
impose an additional maximum power constraint in the op-
timization problem in (3). In this case, the problem is first
solved without the power constraint. If the optimal solution

2The notationf(x+) means limn→∞ f(x + ǫn) and f(x−) means
limn→∞ f(x − ǫn) with ǫn > 0, ǫn → 0.
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Fig. 6. String visualization for the optimal curve, (a) string lying between
A(t) andDmin(t); (b) Dopt(t) as taut string.

satisfies the maximum power constraint, we are done; other-
wise from Theorem III it follows that there does not exist any
other admissible departure curve that can satisfy the power
constraint and the constrained optimization problem has no
solution. Thus, we see thatDopt(t) is the unique curve that
satisfies the QoS constraints with both the least total energy
cost and the least maximum power requirement.

As mentioned earlier,Dopt(t) also has the shortest
length among admissible departure curves. More specifi-
cally, for any continuous, piecewise differentiable curve, its
total length using standard geometrical result is given as
∫ T

0

√

(1 + (D′(t))2)dt. The result below states thatDopt(t)
minimizes this metric.

TheoremIV: (Shortest Length) The optimal departure
curve Dopt(t) has the shortest length among all admissible
departure curves. Specifically, it minimizes the metric,

len(D(t))△

=

∫ T

0

√

(1 + (D′(t))2)dt (10)

Proof: SinceDopt(t) minimizes the integral in (3) for a
convex increasing functiong(·), the result follows by replacing
g(r) with g(r) =

√

(1 + r2).

C. Optimal Policy

In the last section, we presented the optimality criterion and
the various properties of the optimal curve. We now construct
the optimal departure curveDopt(t). However, before giving
the algorithmic description, it is instructive to considera
very insightful visualization. This graphical picture provides
a simple and intuitive way to understandDopt(t) and is
described next.

String Visualization: Consider a string restricted to lie be-
tweenA(t) and Dmin(t) (i.e. visualizeA(t),Dmin(t) curves
as hard boundaries for the string). Tie one end of the string at
the origin and pass the other end throughDmin(T ). If we now
make the string tight, its trajectory gives the optimal departure
curve3.

Figure 6 is an illustration showing a generalA(t) and
Dmin(t) curve and the correspondingDopt(t) visualized as a
tight string. Intuitively, when the string is in the tight condition
it cannot be made tighter between any two points along its

3This observation was pointed out by Rene L. Cruz
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Fig. 8. (a) Construction of the first segment ofDopt(t) for Example 1, (b)
Construction of the second segment.

trajectory. This means that the optimality criterion must be
satisfied, because otherwise, the construction in Theorem I
would make the string tighter, thereby leading to a contradic-
tion. By the uniqueness result, it then follows that this must be
the optimal curve. Note that depending on the shape ofA(t)
and Dmin(t) curves, the curveDopt(t) consists of segments
of constant-rate transmission and/or segments where the rate is
varying continuously over time; see for example Figure 10(b),
where over time[a, b] and [c, d] the curve Dopt(t) has a
continuous rate change.

Examples: Using the above string visualization, we now
present a few illustrative examples for which the optimal
solution can be obtained in closed-form. Among these, the
first two examples have been studied earlier in the literature
[8], [10], and their solutions were obtained using a discrete-
optimization approach that was mathematically tedious. Byre-
formulating the problems within our framework, the solutions
can be obtained more easily from the graphical picture.

Example 1: [8]: Consider a sequence ofN packets arriv-
ing to the system in time[0, T ) with the first packet arrival at
time 0 and the rest arriving at times{ti}N−1

i=1 . The deadline
constraint is that all the packets must depart by timeT
(common deadline), whereT > tN−1. The curvesA(t) and
Dmin(t) for this problem are depicted in Figure 7 (where we
have settN = T ). From the string visualization it is easy
to see that the optimal departure curve consists of piecewise
linear segments with increasing slopes and the points at which
the slope changes, the optimal policy just empties the buffer
(see Fig.7).

Algorithmically, to construct the linear segments ofDopt(t)
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proceed as follows. LetAi denote the cumulative amount of
data arrived to the queue just before timeti (the total data
in the first i packets). Starting at time0, consider the straight
line segments that join the points(0, 0) (origin) and(ti, Ai)
(jump points ofA(t)). From among these choose the segment
with the minimum slope, i.e. the segment having slope equal
to the minimum overi of

(

Ai

ti

)

, as shown schematically in
Figure 8(a). Denoting the minimizing index asπ, the first
segment ofDopt(t) is then constant-rate transmission with

rate s1 = mini

(

Ai

ti

)

, from t = 0 until t = tπ. Starting at
tπ, the procedure is repeated by shifting the origin to the new
point (tπ, Aπ), as shown in Figure 8(b). Thus, the slopes of
the linear segments denoted as{s1, .., sq} can be computed
recursively as follows. Takel1 = 1, t0 = 0, A0 = 0 and
initialize m = 1; we then have,

sm = min
i∈{lm,..,N}

(

Ai − A(lm−1)

ti − t(lm−1)

)

(11)

lm+1 = 1 + arg min
i∈{lm,..,N}

(

Ai − A(lm−1)

ti − t(lm−1)

)

(12)

The above iteration stops whenlm+1 = N + 1. Intuitively,
the optimal policy follows a constant rate transmission until
points where the future arrivals are such that relative to the
deadline constraint, the transmission rate must be higher.

Example 2: [10]: ConsiderM data packets in the trans-
mitter buffer at time 0, with individual packets having a
deadline by which they must be transmitted. Let thejth packet
have bj units of data and a deadlinetj , j = 1, ..,M . The
packets in the queue are served in the earliest-deadline-first
order and for this case, theA(t) andDmin(t) curves can be
obtained as shown in Figure 9(a). Note that the structure of
this problem is the reverse of Example 1 and in some loose
sense one can regard these problems as “duals” of each other.
From the string interpretation, we see that the optimal policy
is a piecewise linear curve as shown in the figure, and as
compared to Example 1, the slopes of the linear segments are
now monotonically decreasing in time.

To obtain the segments ofDopt(t) proceed as follows. Let
Bj =

∑j
l=1 bl, whereBj denotes the cumulative data in the

first j packets. Starting at time0, consider the straight line
segments that join the points(0, 0) (origin) and(tj , Bj) (jump
points of Dmin(t)). From among these choose the segment
with the maximum slope, i.e. the segment having slope equal
to the maximum overj of

(

Bj

tj

)

. Denoting the maximizing

index as π, the first segment ofDopt(t) is constant-rate
transmission with rateBπ

tπ
from t = 0 until t = tπ. Starting at

tπ, the procedure is repeated by shifting the origin to the new
point (tπ, Bπ). Specifically, the slopes denoted as{s1, .., sq}
are obtained as follows. Takel1 = 1, t0 = 0, B0 = 0 and
initialize m = 1, we then have,

sm = max
j∈{lm,..,M}

(

Bj − B(lm−1)

tj − t(lm−1)

)

(13)

lm+1 = 1 + arg max
j∈{lm,..,M}

(

Bj − B(lm−1)

tj − t(lm−1)

)

(14)

The above iteration stops whenlm+1 = M + 1.
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Example 3: : Consider a stream ofN packet arrivals of
sizeB units with a constant inter-arrival timeτ . Each packet
has a deadlined before which it must depart (Figure 10(a)).
Such an arrival stream is a good model for applications which
generate packets at regular times (or with a small variance),
e.g. voice data. The optimal minimum energy curve is shown
in the figure and is given as follows. Ifd < τ , the solution
is trivial and the packet must be transmitted before the next
arrival. If d ≥ τ , the optimal curve is a straight line with slope
NB/(d + (N − 1)τ).

The intuition gained from the examples above can now
be utilized to obtainDopt(t) for the general setting and
this is presented next. For simplicity, however, we restrict
our attention to only piecewise-constantA(t) and Dmin(t)
curves (i.e. staircase functions corresponding to the packet
data model). The algorithm for the more general case with
continuous curves is a direct extension of the arguments
presented here and can be found in [5].

Construction of the Optimal Departure Curve: As is the
case in Examples 1 and 2, the main idea behind constructing
the optimal curveDopt(t) is to obtain its segments in a
recursive fashion. From Example 1, we see that withA(t) con-
straints the minimum-slope line segments are chosen; while
from Example 2, we see that withDmin(t) constraints the
maximum-slope line segments are chosen. Thus, intuitively, in
the general case we would need to combine these two ideas
and this is done more formally in the discussion below.

To proceed, consider any generic point(t0, α), where0 ≤
t0 < T and Dmin(t0) ≤ α ≤ A(t0). Starting at this point,
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consider straight lines with non-negative slopes. Among these,
choose those lines that starting at(t0, α) remain admissible for
some finite duration. In other words, consider straight lines
L(t) for which there exists anǫ > 0 (ǫ could depend on the
chosenL(t)), such thatL(t) is admissible fort ∈ [t0, t0 + ǫ),
i.e. Dmin(t) ≤ L(t) ≤ A(t), for t ∈ [t0, t0 + ǫ). Denote this
set asF . Intuitively, the slopes of the lines inF give the
possible admissible slopes thatDopt(t) can have at that point.
Note that the setF depends on the point(t0, α) but to make
the notations simple we drop the explicit dependence.

Now, considerL(t) ∈ F , then clearly,L(t) eventually either
intersectsA(t) or it intersectsDmin(t), where we use the
following definition of intersection.

Definition 4: Starting att0, L(t) intersectsDmin(t) if for
some point̃t > t0, called the point of intersection, one of the
following holds: (a) eitherL(t̃) = Dmin(t̃) or, (b) the function
L(t) − Dmin(t) changes sign at̃t (here t̃ is a discontinuity
point).
Intuitively, the above definition means thatL(t) crosses the
curveDmin(t) at t̃. A similar definition holds for intersection
with A(t). Let the setF be partitioned into a set of lines
that intersectA(t) first and those that intersectDmin(t) first.
Denote these sets asFA andFDm

respectively. The following
intuitive result states that the slope of the lines inFA (those
that intersectA(t) first) is greater than the slope of the lines
in FDm

(those that intersectDmin(t) first).

Lemma 5: (a) Let LD(t) ∈ FDm
then anyL(t) ∈ F

that has slope less thanL′
D intersectsDmin(t) first. (b) Let

LA(t) ∈ FA then anyL(t) ∈ F that has slope greater than
L′

A intersectsA(t) first.
Proof: See Appendix C.

Let SA andSDm
denote the slopes of the lines inFA and

FDm
respectively. Consider the line, which we denote asLo,

with slopeβo at the boundary of the two intervals, i.e.,

βo = inf SA = supSDm
(15)

If either SA or SDm
is empty above, it is neglected. We call

βo theoptimal slopeand the lineLo theoptimal line. Thus, in
simple terms,Lo is the least slope line that intersectsA(t) first,
or the maximum slope line that intersectsDmin(t) first (note
the similarities with Examples 1 and 2). Using this lineLo,
we can now obtain an algorithm for constructing the optimal
departure curve as illustrated next.

To begin with, we haveDopt(0) = 0; thus, the starting point
is (0, 0). Let t0 denote a generic time instant, wheret0 = 0
in the first iteration.

1) Obtainβo as in (15) and the optimal lineLo.
2) Obtain the first instantt1 such that, (a)Lo(t1) =

Dmin(t1), or, (b) Lo(t1) = A(t1) or Lo(t1) = A(t−1 ).
SetDopt(t) = Lo(t), t ∈ (t0, t1].

If t1 = T terminate; else repeat the above steps with the new
starting point as(t1,Dopt(t1)). The correctness and optimality
of the above algorithm is shown in Appendix D.

As an example, considerA(t) and Dmin(t) shown in
Figure 11 for which the algorithm executes as follows. Start
at the origin (0, 0) and note thatL1 is the optimal line as
defined above andt1 is the first instant at which it equals

A(t)


D
min
(t)


D
opt
(t)


L
1


L
2


L
3


T
0
 t
1
 t
2


Fig. 11. Example depictingA(t) andDmin(t) curves, and the constructed
D(t) curve.

Dmin(t). Thus, segmentL1 from t = [0, t1] is the first part
of the optimal curve. Note that lines with slope greater than
L′

1 intersect A(t) first and lines with slope less thanL′
1

intersectDmin(t) first. The line L1 is the one with slope
at the boundary (as defined in (15)). Next, starting from the
new point(t1,Dmin(t1)), L2 is the optimal line andt2 is the
first instant such thatL2(t2) = A(t−2 ). The segmentL2 from
t = [t1, t2] forms part of the optimal curve. The segmentL3

is also obtained in a similar fashion and it is the last segment
as t = T is reached.

D. Online Policy Without Arrival Information

In the previous sections, we obtained a fundamental un-
derstanding of the energy minimization problem by assuming
that the data arrival information was known in advance. In this
section, we utilize those results to consider the more realistic
case when there is an arbitrary stream of packet arrivals to the
queue and there is no information, statistical or otherwise, of
the packet arrival process. Each arriving packet has a distinct
deadline by which it must be served, and the goal as before
is to minimize the total energy expenditure. To address this
problem, we present an online transmission policy, referred to
as the “Backlog-Adaptive” (BA) policy, and give numerical
results comparing the energy cost of the BA policy with the
head-of-line drain policy.

To understand the BA policy, let us first revisit Example 2 in
Section III-C which we summarize here again. Suppose that
the transmitter hasM packets with individual deadlines on
the packets; there are no new arrivals to the system and the
goal is to empty the buffer with minimum energy. The optimal
policy for this case is shown in Figure 9, but to highlight the
dynamic nature of the policy and for computational simplicity
we rephrase it as follows. Denote the state of the system as
(t,D) where the notation means that at timet, the cumulative
amount of data that has been transmitted isD, i.e. D(t) = D.
Assuming an admissible system state, i.e.Dmin(t) ≤ D ≤
A(t) andt < T , the optimal transmission rate for this state is
obtained as follows. First, visualize the origin at point(t,D),
then, it is easy to see that the optimal rate is the maximum
value among the slopes

(

Bj−D
tj−t

)

, corresponding to the straight

line segments that connect the points(t,D) and (tj , Bj) for
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all {j : Bj ≥ D, tj ≥ t}. Specifically, letr∗(t,D) denote the
optimal rate, we then have,

r∗(t,D) = max
j:(Bj≥D,tj≥t)

Bj − D

tj − t
(16)

The above function is an alternate way to state the optimal
policy shown in Figure 9 for Example 2; it provides a
convenient way for implementation. The transmitter simply
keeps track of the cumulative amount of data that has been
transmitted and at timet, it computes the rate at that instant
as given in (16) by a simple max operation. Note that the
policy in (16) applies for a static buffer that already contains
packets with deadlines; we now extend it to incorporate packet
arrivals to the queue that are unknown in advance.

Consider arbitrary packet arrivals to the queue with each
packet having a distinct deadline associated with it. Assume
that the arrivals occur at discrete time instances. Clearly, at the
instant immediately following an arrival, the transmitterqueue
consists of (a) earlier remaining packets with their deadlines
and (b) the new packet with its own deadline. Re-arranging
the data in the earliest-deadline-first order we can view the
queue as consisting of a total amountB of data with variable
deadlines. This is identical to the problem mentioned earlier of
emptying the data in the buffer with minimum energy, hence,
we can use the transmission policy given in (16). Now, as
this policy is followed, at the next packet arrival instancewe
simply repeat the above procedure by rearranging the data and
taking the new packet into account. We refer to the above
policy as the Backlog-Adaptive (BA) policy and it can be
summarized as follows,

BA-policy: Transmit the data in the queue with the rate as
given in (16); at every packet arrival instant re-arrange the
data in the earliest-deadline-first order to obtain a new set
of Bjtj values by including the new packet and its deadline;
re-initialize D and t to zero and follow (16) thereafter.

Note that the BA policy is not based on any specific arrival
process, hence it is robust to changes in the arrival statistics
and can even accommodate multiple deadline classes of packet
arrivals to the queue.

E. Simulation Results

In this section, we present illustrative simulation results
comparing the performance of the Backlog-Adaptive policy
with the “Head-of-Line Drain” (HLD) policy. In HLD policy,
the data in the queue is arranged in the earliest-deadline-first
order and the packets are served in that order. At timet, let Ht

be the amount of data left in the head-of-the-line packet and
TH be the amount of time until its deadline, then, under HLD
policy the rate is chosen asrt = Ht

TH
. Thus, the transmitter

serves the first packet in queue at a rate to transmit it out
by its deadline, then moves to the next packet in line and so
on. At every packet arrival instant, the data in the queue is
re-arranged in the earliest-deadline-first order and the above
policy is repeated with the new packet taken into account.

The simulation setup is as follows. The transmitter has Pois-
son packet arrivals and each packet has a deadline associated
with it. On each simulation run, the total time over which the
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Fig. 12. Energy cost comparison for Poisson arrival process for (a) different
arrival rate, (b) different sample paths.

packets arrive and the system is operated is taken asL = 10
seconds. This interval[0, 10] is partitioned into10, 000 slots,
thus each slot is of durationdt = 1 msec, and for simplicity,
the packet arrivals take place at the slot boundaries. For both
the BA and the HLD policies, the transmission rate chosen
for a slot is obtained by evaluating the respective policies
at the time corresponding to the start of that slot. We take
g(r) = r2, hence the energy cost per slot isr2dt. The total
expected energy cost is obtained by taking an average of the
total cost over multiple sample runs of the system.

We first consider the setup where each packet has1 unit
of data and a deadline of200 msec. Figure 12(a) is a plot of
the energy cost averaged over the sample paths and plotted
on a logarithmic scale versus the packet arrival rate. As is
evident from the plot, the BA policy has a much lower energy
cost compared to the HLD policy and as the arrival rate
increases the difference between the two increases. This can be
intuitively explained as follows. When the arrival rate is low,
most of the time the queue has at most a single packet, hence,
both policies choose a rate based on the head-of-line packet.
As the arrival rate increases and due to the bursty nature of the
poisson process, the queue tends to have more packets. The
BA policy then adapts the rate based on the backlog and the
deadlines of all the packets in the queue, whereas, the HLD
policy chooses a rate based solely on the head-of-line packet.
In Figure 12(b), we set the arrival rate as 10 packets/second
and plot the energy cost for the first 50 sample paths. As
evident from the plot, the BA policy has lower energy cost not
just in an average sense but even on most individual sample
paths.

In Figure 13(a), we set the arrival rate as10 packets/second
and plot the average energy cost by varying the packet size.
Clearly, as seen in the figure, the energy cost increases as the
packet size increases since there is more data that needs to be
transmitted, however, the BA policy has a much lower energy
cost as compared to the HLD policy. In Figure 13(b), we plot
the average energy cost by varying the packet deadlines and
a similar trend is observed. The energy cost decreases as the
packet deadline increases since lower transmission rates are
required to meet the deadlines, and here as well, the BA policy
has a significant lower energy cost as compared to HLD policy.
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IV. T IME-VARYING POWER-RATE FUNCTION

In previous sections, we considered the time-invariant
power-rate function case and utilized a cumulative curves
methodology to obtain the optimal solution. The framework
provided a graphical visualization of the problem and the
optimal solution. In this section, we generalize those results
and consider a time-varying power-rate function setup. Thus,
now the functionP (t) has a time-varying dependence and is
given asP (t) = g(r(t), t). For a fixed timet0, the amount
of power required to transmit at a certain rater is governed
by the convex functiong(·, t0), but now, this convex function
could be different at different times.

A. Problem Formulation

The problem formulation remains the same as given in
Section III-A with the data flows being described using
cumulative curves and the objective is to obtain the minimum
energy departure curve. The optimization problem is given as,

min
D(t)∈Γ

E(D(t)) =

∫ T

0

g(D′(t), t)dt (17)

subject to Dmin(t) ≤ D(t) ≤ A(t), t ∈ [0, T ]

In the above formulation, we assume thatg(r, t) as a func-
tion of r is a strictly convex, increasing and continuously
differentiable function for allt. We also assume thatg(r, t)
is a deterministic function of timet ∈ [0, T ] and piecewise
continuous int.

The above formulation provides a general framework to
model various scenarios involving time-variability in thesys-
tem. It generalizes the problem in Section III-A to include
time-dependent parameters in transmission arising due to
phenomena such as beam-forming, antenna patterns etc. Since
it models a more general power-rate cost function, one can also
introduce an artificial cost for control purposes; for example,
by imposing a high cost over certain intervals one can control
the times over which data should be transmitted. Finally, it
also models scenarios where we have a time-varying channel
and the channel gain is predictable or known over time.

B. Optimality Properties

We proceed as in Section III by first considering the
BT -problem and then extending the results to generalA(t)
and Dmin(t) curves. As in the time-invariant case, theBT -
problem provides useful insights into the problem and also
plays an important role as a building block.

1) BT -problem: Consider theBT -problem where the
transmitter hasB units of data in the queue and a deadline
T by which this data must be transmitted using minimum
energy. The following lemma gives the optimal solution for
this problem; its proof is based on results from the theory of
Calculus of Variations[29].

Lemma 6: The optimal transmission rateropt(t) for the
BT -problem is given as,

ropt(t) = max(0, r∗(t)) (18)

where r∗(t) is a unique positive value that satisfies
∂
∂rg(r, t)|r=r∗(t) = k and k is a positive constant such that
∫ T

0
ropt(t)dt = B.

Proof: See Appendix E.

Thus, we see that the optimal rate is such that the partial
derivative of g(r, t) with respect tor at the positive value
r∗(t) equals a constantk. The value of this constant is chosen
such that the deadline constraint atT is met. We refer to the
constantk as the“marginal cost” for the BT -problem. At
any timet, if there exists a positive rater∗(t) for which the
marginal cost isk, that rate is chosen as the transmission rate;
otherwise, the transmission rate is 0 and no data is transmitted.

For positive transmission rate, since the marginal cost (or
the first-derivative ofg(r, t) with respect tor) is the same for
all t, it implies that infinitesimal changes in the rate would not
change the total energy cost. This observation is intuitive, since
otherwise, we could decrease the rate over the intervals when
the marginal cost is high and correspondingly increase the
rate over the intervals when the marginal cost is low; thereby,
reducing the total energy cost and violating the optimality
claim. Now, for all t such thatropt(t) = 0 we must have
∂
∂rg(r, t)|r>0 > k. This means that at all such times, the
marginal cost is high and it is relatively costly to transmit
the data, hence, the optimal policy chooses a zero rate.

As compared to the time-invariant power-rate function case,
clearly, the optimal rate now is not constant over time;
however, interestingly, the marginal cost is constant. Thus,
the constant slope property from before translates here into a
constant marginal cost property. As a check, if we remove the
time-dependence ing(r, t), then r∗(t) would be a constant.
This gives ropt(t) = r∗ and from

∫ T

0
ropt(t)dt = B, we

get r∗ = B
T . Thus, the optimal solution is constant-rate

transmission in conformity with the result in Section III-B.
As concrete examples for illustration, we now specialize

(18) to two specific forms ofg(r, t), namely, theMonomial
class and theExponentialclass of functions.

Example 4: (Monomial Class) Let g(r, t) = rn

c(t) , n >

1, c(t) > 0, be the class of positive monomial functions
with c(t) representing the channel gain or the time-dependent
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parameter. For any positive constantk, ∂
∂r

rn

c(t) |r=r∗(t) = k,
gives,

r∗(t) =

(

kc(t)

n

)
1

n−1

(19)

Sincek andc(t) are positive, we haver∗(t) > 0,∀t, and from

(18) we getropt(t) =
(

kc(t)
n

)
1

n−1

. The value ofk such that

the deadline constraint is met is obtained from,
∫ T

0
ropt(t)dt =

B, which gives,k
1

n−1 = B
γ , whereγ =

∫ T

0
(c(t)/n)

1
n−1 dt.

Substituting back inropt(t) finally gives,

ropt(t) =
B

γ

(

c(t)

n

)
1

n−1

(20)

Example 5: (Exponential Class)Let g(r, t) = αr−1
c(t) , α >

1, c(t) > 0, be the class of exponential functions withc(t)
being the time-dependent parameter. Note that takingα = 2
and c(t) = |h(t)|2, gives the Shannon formula for the power

per bit. For the exponential case,∂g(r∗,t)
∂r = αr∗(t) ln(α)

c(t) = k,
gives,

ropt(t) = max

(

0,
ln(k) − ln(ln(α)/c(t))

ln(α)

)

(21)

The value ofk such that the deadline constraint is met is
obtained from

∫ T

0
max

(

0, ln(k)−ln(ln(α)/c(t))
ln(α)

)

dt = B.

Returning back to the solution in (18), we next show an
interesting monotonicity property with respect to the marginal
costk. This is presented in the lemma below.

Lemma 7: Let ropt(t) be given by (18) for somek ≥ 0
and Dopt(t) =

∫ t

0
ropt(s)ds. Then,Dopt(t) is monotonically

non-decreasing ink, unique for a given value ofk and zero
throughout fork = 0. Furthermore, forDopt(T ) = B > 0,
there is a unique positive value ofk that achieves it.

Proof: See Appendix F

From the above lemma, we see that givenB andT , a binary
search would be sufficient to obtain the valuek numerically.

2) General Case: Thus far, we have presented results
for the BT -problem; these can now be generalized to the
setup with generalA(t) and Dmin(t) curves. Theorem V
below gives the optimality criterion for this case and is a
generalization of Theorem I presented earlier. It states that,
if there exists any two points on an admissible departure
curve that can be replaced with a constant marginal-cost
solution without violating the admissibility constraints, the
new departure curve obtained will have a lower energy cost.
The notation,“constant marginal-cost curve over time-interval
[a, b] between data-points[B1, B2]” will refer to the departure
curve, L(t), obtained using the solution in (18) as follows:
L(a) = B1, L(t) = L(a) +

∫ t

a
r(s)ds, t ∈ [a, b], where

r(s) = max(0, r∗(s)) and marginal-costk chosen such
that L(b) = B2. From Lemma 7, this value ofk and the
correspondingL(t) are unique.

TheoremV: (Optimality Criterion) Let D(t) be an admis-
sible departure curve andL(t) be the constant marginal-
cost curve over time-interval[a, b] between data-points

[D(a),D(b)], 0 ≤ a < b ≤ T . If L(t) is admissible, i.e.
Dmin(t) ≤ L(t) ≤ A(t), and,L(t) 6≡ D(t), the new departure
curve D̃(t) constructed as,

D̃(t) = D(t), t ∈ [0, a)

= L(t), t ∈ [a, b]

= D(t), t ∈ (b, T ]

satisfiesE(D̃(t)) ≤ E(D(t)), whereE(·) is as given in (17).

Proof: First note that sinceL(t) is admissible, the new
curve D̃(t) is also admissible. Consider,

E(D̃(t)) − E(D(t)) = E(L(t)) −

∫ b

a

g(D′(t), t)dt (22)

From Lemmas 6 and 7, we know thatL(t) is the unique curve,
that has the least energy cost among all departure curves that
would transmit(D(b)−D(a)) units of data over time interval
[a, b]. Thus,E(L(t)) ≤

∫ b

a
g(D′(t), t)dt, which completes the

proof.

From the above theorem, we see that whenever admissible,
segments of the optimal departure curve follow the constant
marginal cost curve. This property translated into constant
rate (straight line) segments in the time-invariant power-rate
function case, as outlined earlier in Theorem I. Thus, we see
that the pictorial representation and the properties from the
time-invariant case apply here in terms of constant marginal
costs. Lastly, as illustrative examples for the time-varying case,
we re-visit Examples 1 and 2 in Section III-C and obtain
the departure curve that satisfies the optimality criterion. The
algorithms presented below are obtained by translating the
respective ones from the time-invariant case, where instead of
constant-slope segments we will be seeking constant marginal-
cost segments.

Example 6: Consider the setup in Example 1 where there
is a stream ofN packet arrivals and a deadlineT by which
all the data must depart. The curvesA(t) and Dmin(t) for
this problem are depicted in Figure 7. To obtain the departure
curve satisfying the optimality criterion proceed as follows.
Start at time 0; let{ki}, i = 1, . . . , N , be the marginal costs to
meet each of(ti, Ai) points individually, i.e.ki is the marginal
cost associated with optimally transmittingAi bits over time
[0, ti]. Let kmin be the minimum among{ki} and imin the
corresponding index of the minimizing jump point. The first
segment ofDopt(t) is then the constant marginal cost solution
between[0, timin ] with marginal costkmin. Now, starting at
(timin , Aimin) repeat the algorithm by shifting the origin to
this point and considering the jump points beyondtimin , i.e.
considering alli such thatti > timin . Finally, the algorithm
stops whentimin = T .

Example 7: Consider the setup in Example 2 where the
queue hasM data packets with thejth packet havingbj bits
and a deadlinetj , j = 1, ..,M . For this problem, the curves
A(t) andDmin(t) are shown in Figure 9(a). As in the previous
example, the departure curve satisfying the optimality criterion
is constructed as follows. At time 0, let{kj}, j = 1, . . . ,M
be the marginal costs to meet the(tj , Bj) points, i.e. kj

is the marginal cost associated with optimally transmitting
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Bj bits over time[0, tj ]. Let kmax be the maximum among
{kj} andjmax be the corresponding index of the maximizing
jump point. The first segment ofDopt(t) is then the constant
marginal-cost solution between[0, tjmax

] with marginal cost
kmax. Now, starting at(tjmax

, Bjmax
) repeat the algorithm

by shifting the origin to this point and considering the jump
points beyondtjmax

. The algorithm finally stops at the step
when tjmax

= T .

V. CONCLUSION

We considered the problem of transmitting quality-of-
service constrained data over a finite-time horizon, using min-
imum transmission energy expenditure. The problem was for-
mulated using a calculus approach and posed as a continuous-
time optimization. This novel formulation provided a graph-
ical visualization of the problem and an appealing“string
visualization” for the optimal policy. Utilizing the general
solution, we considered various examples and presented the
optimal policy under these setups. An online policy was
also developed and it was shown through simulation results
to provide significant gains as compared to the head-of-line
drain policy. The energy minimization formulation was then
extended to incorporate a time-varying power-rate function.

The continuous-time cumulative curves approach taken in
this paper leads to a simple optimal solution and avoids
many of the complications associated with discrete-time ap-
proaches and dynamic-programming. Hence, we believe that
this approach provides promise for future research into issues
related to delay and quality-of-service constraints in wireless
networks. Promising extensions to this work include the con-
sideration of multiple users and multi-hop traffic.
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APPENDIX A
PROOF OFTHEOREM II - Uniqueness

Let us assume that the admissible departure curve satisfying
the optimality criterion,D̃(t), is not unique. LetD1(t) and
D2(t) be two such distinct curves. From the boundary condi-
tions we haveD1(0) = D2(0) = 0 and D1(T ) = D2(T ) =
Dmin(T ). SinceD1(t) 6≡ D2(t) the two curves must differ
over some time interval in[0, T ]. Let t = a be the first instant
at which the two curves differ andt = b be the first time instant
after t = a at which they are equal again. Note thatb ≤ T
as at timeT , D1(T ) = D2(T ). Without loss of generality let
D1(t) > D2(t), t ∈ (a, b). From the admissibility of the two
curves we have,

Dmin(t) ≤ D2(t) < D1(t) ≤ A(t), t ∈ (a, b) (23)

By assumption, since both curvesD1(t) and D2(t) satisfy
the optimality criterion, Lemmas 2-4 apply for points of slope
changes. AsD1(t) is strictly greater thanDmin(t) in t ∈ (a, b)
it follows from those lemmas that its slope cannot decrease in
(a, b). This implies thatD1(t) is convex in(a, b) (it could be
linear as well). Similarly asD2(t) is strictly less thanA(t)
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in t ∈ (a, b), its slope cannot increase and hence it must be
concave in(a, b). It is clear that starting withD1(a) = D2(a)
and havingD1(t) convex andD2(t) concave int ∈ (a, b), the
two curves cannot be equal again att = b which leads to a
contradiction. Finally, if both curves are linear in(a, b) with
equality att = a and t = b, then this violates the assumption
that D1(t) 6= D2(t), t ∈ (a, b).

To show thatD̃(t) minimizes the energy cost in (3), we
proceed as follows. First, as defined in the problem statement
in (3), we haveD̃(t) ∈ Γ, where Γ is the set of all non-
decreasing, continuous functions with bounded right-derivative
for all t ∈ [0, T ]. In addition, we also assume that|D′(t)| <
M, ∀D(t) ∈ Γ, ∀t ∈ [0, T ], whereM > 0 is chosen large
enough so that all practical policies of interest (with finite-
energy cost) are included inΓ. Also, the curvesA(t) and
Dmin(t) are assumed to have a bounded right-derivative for
all t ∈ [0, T ].

Let B denote the space of continuous functions defined
on [0, T ] with the supremum norm,||f || = supt∈[0,T ] f(t);
this space is then a Banach space [28]. LetΩ denote the set
of all admissible departure curves, i.e.{D(t) : D(t) ∈ Γ
and Dmin(t) ≤ D(t) ≤ A(t)}. We then haveΩ ⊂ B.
First, we claim thatΩ is a convex set. To see this, consider
D1(t),D2(t) ∈ Ω and letD3(t) = xD1(t)+(1−x)D2(t), x ∈
[0, 1]. SinceD1(t),D2(t) are continuous, non-decreasing and
have bounded right-derivative, it is easy to see thatD3(t)
also has these properties. Further, we also havexDmin(t) ≤
xD1(t) ≤ xA(t) and (1 − x)Dmin(t) ≤ (1 − x)D2(t) ≤
(1 − x)A(t), which gives,Dmin(t) ≤ D3(t) ≤ A(t); thus,
the causality and the QoS constraints are also satisfied. Next,
we show thatΩ is compact. To see this, consider a sequence
of admissible departure curves{Dn(t)}∞n=1. Since|D′(t)| ≤
M, ∀D(t) ∈ Ω, we have,|Dn(t2) − Dn(t1)| ≤ M|t2 − t1|,
which makes the sequence of functions{Dn(t)} form an
equi-continuous family of functions. From [28] (Thm. 7.25,
pg. 158), it then follows that there is a subsequence that
converges in the supremum norm. Thus, this limit function
is continuous and sinceDn(t) satisfies the causality and
the QoS constraints for alln, it is satisfied by the limit
function as well. Hence, the limit function lies inΩ and
we see thatΩ is compact. Now, consider the energy cost
function E(D(t)) as given in (3) withg(·) being strictly
convex. We next show thatE(D(t)) is also strictly convex.
ConsiderD1(t),D2(t) ∈ Ω and letD3(t) = xD1(t) + (1 −

x)D2(t), x ∈ [0, 1]. Then,E(D3(t)) =
∫ T

0
g(xD′

1(t) + (1 −

x)D′
2(t))dt <

∫ T

0
(xg(D′

1(t)) + (1 − x)g(D′
2(t))) dt. Thus,

we see that,E(D3(t)) < xE(D1(t)) + (1 − x)E(D2(t)).
From above, we see that (3) involves an optimization of a
strictly convex functional over a compact convex set. Thus,
it has a unique minimizer inΩ [30]. From Theorem I, the
necessary condition for any admissible departure curve to be
the minimizer is that it must satisfy the optimality criterion and
since such a curve is unique, it must be the optimal solution.

APPENDIX B
PROOF OFTHEOREM III - Minimal Maximum Power

Consider an admissible departure curveD(t) that is not
optimal. Let [a, b] be the interval over which the optimality

criterion is violated. Then, based on the construction in The-
orem I we obtain a new curvẽD(t) that is also admissible.
The line segmentL(t) between[a, b] in D̃(t) always has a
slope that is less than the maximum slope ofD(t) between
[a, b). As D̃(t) = D(t), t 6∈ (a, b), the overall maximum slope
of D̃(t) cannot exceed that ofD(t). Thus,

max
t∈[0,T )

D̃′(t) ≤ max
t∈[0,T )

D′(t) (24)

If D̃(t) = Dopt(t) then we are done. If not proceed as follows.
From Theorem II, we know thatDopt(t) is unique and

minimizes the energy cost for any non-negative, convex
increasing power-rate functiong(r). In particular, consider
the sequence of functionsgn(r) = rn. For any D(t) we

know that,limn→∞

(

∫ T

0
(D′(t))ndt

)1/n

= maxt∈[0,T ] D
′(t).

Since Dopt(t) minimizes the integral for alln, we obtain
maxt∈[0,T )(D

opt)′(t) ≤ maxt∈[0,T ) D′(t) as required.

APPENDIX C
PROOF OFLEMMA 5

(a) Let t̃ be the point at whichLD(t) intersectsDmin(t)
first. By definition, LD(t) < A(t),∀t ∈ (t0, t̃). The proof
now follows in two parts. First, we show that any line inF
with slope less thanL′

D must intersectDmin(t) at or before
t̃ and second that this line does not intersectA(t) in (t0, t̃).
ConsiderL(t) ∈ F with slope less thanL′

D, then, L(t) <
LD(t),∀t > t0. Hence, at timẽt we haveL(t̃) < LD(t̃) =
Dmin(t̃). If instead,t̃ is the discontinuity point forDmin(t),
then,LD(t)−Dmin(t) changes sign at̃t and soL(t)−Dmin(t)
must have changed sign earlier att ≤ t̃. Thus, we see thatL(t)
must intersectDmin(t) at or beforet̃. Next, sinceL(t) <
LD(t) < A(t) in t ∈ (t0, t̃), the line L(t) cannot intersect
A(t) first. This completes the proof of part (a) in the lemma.
Along similar lines as above, part (b) follows.

APPENDIX D
PROOF OF OPTIMALITY FOR THEDopt(t) ALGORITHM

From Theorem II we know thatDopt(t) is unique. Hence
it suffices to prove that the constructed curve satisfies the
optimality criterion.

Let Dc(t) denote the constructed curve. It is obvious from
the construction that at all points where the slope changes
Lemma 2 is satisfied. We next show that Lemmas 3 and 4 are
also satisfied. Lett0 be the starting instant at some iteration
and suppose thatLo intersectsDmin(t) first, i.e. att1 (as in
the algorithm) we haveLo(t1) = Dmin(t1). Also, suppose
that Lo(t1) 6= A(t−1 ). From the chosent1 in step 2, it is clear
thatLo(t) < A(t) in (t0, t1]. Thus, if we pick a lineL1 ∈ FA

with slope close toL′
o (= βo), thenL1 would intersectA(t)

beyondt1. More precisely, there exists anǫ > 0 such that any
L1 ∈ FA with slopeβo < L′

1 < βo + ǫ intersectsA(t) first at
t̃ > t1. Now, it follows that at the next iteration, starting from
time t1, the new setFA must at least contain all lines with
slopes in(βo, βo + ǫ), hence, the optimal line starting at time
t1 (at the new iteration) cannot have slope greater thanβo (βo

here refers to the optimal slope for the iteration att0). Thus,
we see that Lemma 3 is satisfied att1.
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Similarly, if in step 2, we haveLo(t1) = A(t1)(or A(t−1 )),
then, using a similar argument as above it can be seen that
starting from timet1, the new setFDm

must at least contain
all lines with slopes in(βo, βo − ǫ). Hence, the optimal line
starting at timet1 cannot have slope less thanβo, and this
shows that Lemma 4 is satisfied att1. Note that, if att1 we
haveLo(t1) = Dmin(t1) = A(t−1 ), then, it does not matter
how the slope changes beyondt1.

Thus, we see that starting at(0, 0), at every iteration of the
algorithm (every constructed segment ofDc(t)) Lemmas 2-4
are satisfied. This implies that around every point where the
slope ofDc(t) changes we cannot construct an admissible line
segment (as outlined in Theorem I); hence,Dc(t) satisfies the
optimality criterion.

APPENDIX E
PROOF OFLEMMA 6

As presented in Section III-B, the two curvesA(t) and
Dmin(t) for theBT -problem are,A(t) = B, ∀t ∈ [0, T ], and
Dmin(t) = 0, t ∈ [0, T ), Dmin(T ) = B. The admissibility
criterion is 0 ≤ D(t) ≤ B and D(T ) = B. Re-phrasing the
BT -problem as a calculus of variations problem we get [29],

min
r(t)

E(D(t)) =

∫ T

0

g(r(t), t)dt

subject to D′(t) = r(t), D(T ) = B

r(t) ≥ 0, t ∈ [0, T ] (25)

Using [29], the Hamiltonian for the above is,H(D, r, t) =
g(r, t) + λ(t)r, and from Pontryagin’s maximum principle
(which is also a sufficient condition in our case due to
convexity) the optimal valueropt(t) satisfies, ropt(t) =
arg maxr≥0 H(Dopt, r, t) = arg maxr≥0 (g(r, t) + λ(t)r).
We also have,λ̇(t) = −∂H

∂D = 0, which implies λ(t) =
constant. Takingk = −λ(t) as the constant and sub-
stituting back in theropt(t) equation, we get,ropt(t) =
arg maxr≥0 (g(r, t) − kr). The solution to this maximization
is as given in (18). Since,g(r, t) is strictly convex and
increasing inr, we have thatr∗ is unique. Finally, to ensure
that a total ofB units of data is transmitted by the deadlineT ,
the value ofk must be chosen such that

∫ T

0
ropt(t)dt = B.

APPENDIX F
PROOF OFLEMMA 7

Let k1, k2 be two positive values such that0 < k1 < k2. Let
ropt
k1

(t), ropt
k2

(t) be the corresponding optimal rate functions as
given in (18). Suppose at timet, we haveropt

k1
(t) > 0, then,

due to strict convexity∂
∂rg(r, t) is an increasing function ofr

and sincek2 > k1 the uniquer∗ value fork2 must be greater
than fork1. This gives,ropt

k2
(t) > ropt

k1
(t). If instead at timet,

we haveropt
k1

(t) = 0, then,ropt
k2

(t) can be either 0 or positive.
Thus, we see thatropt

k2
(t) ≥ ropt

k1
(t), ∀t, with equality only if

both are zero. This shows thatDopt(t) is non-decreasing ink.
For a givenk value, the uniqueness ofDopt(t) follows since
r∗ is unique due to strict convexity.

Now supposek = 0, then, sinceg(r, t) is increasing inr we
have ∂

∂rg(r, t) ≥ 0,∀r (a non-negative function ofr). But, we

also know that ∂
∂rg(r, t) is an increasing function inr, thus,

there cannot be any positiver∗ such that ∂
∂rg(r, t)|r=r∗ = 0

(= k as taken). This givesropt(t) = 0 andDopt(t) = 0, ∀t.
Lastly, suppose thatDopt(T ) = B > 0 and letk1, k2 be two

distinctk values such that
∫ T

0
ropt
k1

(s)ds =
∫ T

0
ropt
k2

(s)ds = B.
Without loss of generality assumek2 > k1. From the earlier
arguments we know that wheneverropt

k1
(t) > 0, we have

ropt
k2

(t) > ropt
k1

(t). SinceB > 0, an interval exists over which

ropt
k1

(t) > 0. Thus, we see that
∫ T

0
ropt
k1

(s)ds <
∫ T

0
ropt
k2

(s)ds,
which leads to a contradiction, hence there is a uniquek value
that achievesDopt(T ) = B.
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