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Abstract—Transmission rate adaptation in wireless devices the transmission rate over time. This is achieved in various
provides a unique opportunity to trade-off data service rate ways that include adjusting the power level, symbol rate,
with energy consumption. In this paper, we study optimal rate- - qqing scheme, constellation size and any combination of

control to minimize the transmission energy expenditure subject . . .
to strict deadline or other quality-of-service (QoS) constraints. these approaches. Associated with a rate, there is a comesp

Specifically, the system consists of a wireless transmitter with INg power expenditure which is governed by the power-rate
controllable transmission rate and with strict QoS constraints function. Specifically, a power-rate function is a relaship

on data transmission. The goal is to obtain a rate control which gives the amount of transmission power that would
policy that minimizes the total transmission energy expenditure be required to transmit at a certain rate. Keeping the bit-

while ensuring that the QoS constraints are met. Using a novel bability fixed. it i idelv k that f t
formulation based on cumulative curves methodology, we obtain error probanility Tixed, It IS widely known that tor mos

the optimal transmission policy and show that it has a simple and €ncoding schemes the required power is a convex function of
appealing graphical visualization. Utilizing the optimal “offline”  the rate [7]-[10], [12], [14], [17]. This implies, from Jesrss
results, we then develop an online transmission policy for an jnequality, that transmitting data at a low rate and over a
arbitrary stream of packet arrivals and deadline constraints, ard longer duration has less energy cost as compared to a fast

show, via simulations, that it is significantly more energy efficient te t L H ith S traints takea int
than a simple head-of-line drain policy. Finally, we generalize rate transmission. However, with QoS constraints takea in

the optimal policy results to the case of time-varying power-rate Consideration, a low rate t_fansmiSSion may not always be
functions. able to meet these constraints; thus, there is a tradeoff ! In

Index Terms—Energy efficiency, Delay constraints, Quality of thjs work, we seek to obtain the optimal rate-control policy

Service, Rate control, Network calculus, Wireless. that minimizes the transmission energy expenditure while a
ensuring that the strict QoS constraints are met.
I. INTRODUCTION We consider a transmitter with data arrivals that havetstric

Services envisioned in modern communication systems &0S constraints such as individual packet deadlines, finite
tend beyond traditional voice communication to enhancédiffer or other service constraints. We represent the asriv
data applications such as video and real-time multimedi& a cumulative curve (known as the arrival curve) and model
streaming, high-throughput data access and Voice-ovgt}IP the QoS constraints using the concept ofiaimum departure
Invariably, meeting the quality-of-service (QoS) requmients curve The minimum departure curve helps translate fairly
for these applications translates into stricter packésydand general QoS constraints into a simple and graphical form.
throughput constraints. Wireless systems also generali h Using this model, we first consider a time-invariant powager
strict limitations on energy consumption thereby necatisig function and obtain the optimal policy under the knowledge
efficient utilization of this resource [2]. For example, imiiz-  Of the arrival curve. The optimal policy has a simple and
ing energy consumption leads to improved battery utilorati appealing graphical visualization as discussed latendJgie
for mobile devices, increased lifetime for sensor nodesaahd optimal solution, a heuristic online policy is developedieth
hoc networks, and better utilization of limited energy smsr does not require prior knowledge of the arrival process; the
in satellites. Since in many scenarios transmission ener@gline policy is shown to be energy-efficient via simulation
constitutes a significant portion of the total energy exjtenel  Finally, in the latter half of the paper, we extend the result
for wireless nodes [2], it is imperative to minimize this tosto @ setup involving a time-varying power-rate function.
to achieve significant energy savings; henceforth, in thjsep

we will focus solely on transmission energy expenditure. B- Related Work

Transmission rate adaptation/control is an active area of
A. Motivation and Summary research in communication networks in various different-co

Modern wireless devices are equipped with rate-adaptit@xts- Adaptive network control and scheduling have been
capabilities [3], [4] which allows the transmitter to adjusStudied in the context of network stability [16]-{19], aage
throughput [20]-[23], average delay [7], [14] and packedpdr
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The work in [8] studied the problem of a known stream A 4
of packet arrivals that must be transmitted by a common
deadline using minimum energy. In [12], the problem was
extended by allowing different energy functions for diéfiet

arrival curve

arrival curve

packets, where, the authors proposed the MoveRight atfgorit departure

that eventually converges to the optimal solution; however fgf departure curve
the actual analytical form of the optimal solution was not g

obtained. In [10], the authors considered batch arrivald an min. departure ° min. departure
packet deadlines as the QoS metric and utilized filtering cuve curve

techniques to obtain an energy efficient transmission yolic Fig. (@  tmet 0 Fig. (o) tmet

In this paper, we provide a simple yet general framework for

the QoS constrained energy minimization problem from whickg. 1. Data flow model: (a) Fluid arrival model, (b) Packetizzuival
these earlier results can be recovered back as special c&¥sS!

(see Section IlI-C). The work in [11] has a different context

wherein the transmitter can recover back partial energy IOls“ne results thus obtained can then be applied to a discrete-

while it is in the idle state, whereas in [9], the authors &dd .. . . : .
o . . time system in a straightforward manner by simply evalgatin
several data transmission problems using Dynamic Program- . . . .
he solution at the discrete-time slot boundaries.

ming. The dynamic programming methodology, however, in
most cases leads to numerical solutions without much itsigh

Within a different context in [25], the problem of trans-A. Data Flow Model
mitting stored video file from a server to a client over a To describe the flow of data into the system, we utilize
network was considered. Utilizing buffering at the clientyq cumulative curves methodology [13], [24]. This model
the optimal policy was obtained that minimizes the bit-ratgpplies to a general setting where data could arrive in packe
variability. Strikingly, the mathematical formulation ithe (packetized model) or in a continuum of bits (fluid model)t Le
work of [25] has similarities to that considered in this papeA(t), D(t) and D,,;,(t) denote the arrival curve, departure
hence, the optimal policies share various properties suglirve and the minimum departure curve respectively; these
as the shortest path feature (albeit with different comt@ixt are assumed to be right-continuous functions and are defined
meanings). However, the solution methodology in [25] igs follows.
?ase_d on a majorization technique which is only su'tableé)efinition 1: (Arrival Curve) An arrival curve A(t),t >
or discrete data models. In contrast, our approach is ba . . . .=

: . L . i)e, € R, is the total number of bits that have arrived in time

on continuous-time convex optimization, and applies tmbolnterval 0, 1]
discrete and fluid data models. Moreover, in this paper, we B
also develop the optimal solution for a time-varying power- Definition 2: (Departure Curve)A departure curveD(t),
rate relationship, which was not addressed in the storegbvid > 0,t € R, is the total number of bits that have departed
context. In another context, [26] studied the problem of jotserved) in time0, ¢].
scheduling for dynamically variable voltage processormehe |n case of a fluid arrival modelA(t) is a continuous
similar properties (such as the shortest path property f thnction, whereas, for a packet arrival model it is a piesewi
optimal solution) were observed. Finally, part of the résulconstant function as depicted in Figure 1. To ensure that the
presented in this paper have appeared in our preliminark w@fansmitter does not transmit more than the data that has
in [6]. arrived to the queue, we require tha(t) < A(t). We refer

The rest of the paper is organized as follows. In Section g} this constraint as theausality constraintNow, to model
we present the system model; in Section Ill we presefHe quality-of-service constraints we introduce a new aroti

the optimal policy for the case of time-invariant powereratof 5 “minimum departure curvewhich is defined as follows.
function, and finally, in Section IV we generalize the setup

and consider a time-varying power-rate function. Definition 3: (Minimum Departure Curve)Given an ar-

rival curve A(t), a minimum departure curvé,,;,(t) is a
function such thaD,,,;,, (t) < A(t),Vt > 0, and is defined as
Il. SYSTEM MODEL the cumulative minimum number of bits that if departed by

We consider a continuous-time model and assume thipe? would satisfy the quality-of-service requirements.

rate can be varied continuously in time. Such a model isThe function D,,;,(¢t) can be viewed as the constraint
an approximation of an actual system, but the assumptibmction, such that in order to satisfy the QoS requiremtrs

is justified, since in practice the communication slots oveleparture curve)(¢) must satisfyD(t) > D,,;,(t). Thus, in
which rate-control can be done are of the order of 1 msaccompact way the QoS and the causality constraints can be
duration [3], and much smaller than packet delay requirésnemxpressed asp,,.,(t) < D(t) < A(¢), Vt. Note that the
which are typically on the order of 100's of msec. Thelefinition of D,,;,(t) hides the implicitly assumed service
advantage of such a model is that it makes the problem that discipline (the order in which data is served), as the above
consider mathematically tractable and also provides alsimpnodel looks at the data flow only in a cumulative sense. As we
and intuitive graphical visualization of the optimal sadut show next, through a few illustrative examples, that a numbe



1 4 rate relationship,
P(t) =g(rt),t) @)
A(t) x where the functiory(r, t) is a convex increasing function with
. g s | AD respect to the first argument (rate) apg-,t) > 0 for r >
s = r B 0,Vt. The relationship in (1) is a general transmission model
D,in(t) = A(t-d) v for most encoding schemes and has been widely studied in the
D.in(Y) = max[A(t)-B,0] literature in various forms [7]-[12], [14], [15]. As an exaims,

ime time the well-known Shannon formula for the power per bit gives
(a) Deadline constraint (b) Buffer constraint the following relationship [8],F = NoW (2"/" —1); in case
of other coding schemes the Shannon formula gives a lower
Fig. 2. QoS Examples: (a) Packet deadline constraint/,ofb) Buffer bound on the power per bit.
constraint of B. Given the relationship in (1), the transmission energy ex-
penditure of a departure cuni@(t) over time intervall0, T’

of commonly used QoS constraints can be modelled within 9VEN by,

this framework.

Deadline Constraint Consider a set of packet arrivals ac-
cording to an arrival curved(t) and letd be the individual
deadline constraint on the incoming data. To obt&ig;., (¢)
set, Dypin(t) = 0,t € [0,d) and D,y (t) = A(t — d),t > d;
now, following an earliest-deadline-first service distiplsuch Throughout the paper, our focus will be on the time in-
.th‘.’ﬂ the departure curve Sat'Sf'Q.%”"(t) = D_(t) < A(t)’ Yt terval [0,T] for some finiteT', and with finite deadline/QoS
It IS easy fo see th"%t th_e deadllne con'_stralnts W_'" all be. M&bnstraints. Thus, we deal with energy minimization over a
Thus, herefD"”'?l(t) is simply a tlme—sh|ftgd Version ol() finite time interval rather than considering an infinite time
as shown in Figure 2(a). As a generalization, suppose thaki, o, a5 done in much of the literature on power-rate

Fhe datg has ga”"?‘b'e r(ld_ez;dllhnesb'and these Cd ead.'('jnes are 'Ea ptation which studies average performance metriceeSin
Increasing order in which the bits arrive. Consider a pac Séparture curve specifies the transmission rate and visayve

arrival quel and let{t;} d_enote the arrival epochdd; } we will use the terms departure curve and transmissionypolic
the deadlines andb;} the sizes of the data packets. Ther]nterchangeably

D,..n(t) is a piecewise constant function with jumps at times
{t;+d;} and the sizes of the jumps beifg, }. Along similar
lines as above, one can also obtéip,;, (¢) for a fluid arrival
model. We first consider the case of a time-invariant power-rate
Buffer Constraint Consider a buffer constraint @, i.e. the function and assume in this section tt#(t) is only a function
queue size must not excedsl vt > 0. For an arrival curve Of r(t), i.e. P(t) = g(r(t)). Such an assumption models a
A(t) and a departure curvB(t) the buffer size at any time Static channel or a slow fading wireless channel where over
t is given byb(t) = A(t) — D(t). Sinceb(t) < B, we have [0,7] the channel gain does not change appreciably over time.
D(t) > max[A(t)— B, 0]. Thus, we see that, following a first-This is a good model for wireless LAN or fixed wireless
come-first-serve service discipline, the minimum departupetwork scenarios.
curve must beD,,;,(t) = max[A(t) — B,0] as shown in
Figure 2(b). It is easy to incorporate a time varying buffes. Problem Formulation

constrglntB(t) as well. . . _ Consider an arrival curvel(¢) and assume that this curve is
Service-Curve ConstraintThe notion of service curves

‘ -~ [ part of network calculus th 241 Gi known over the intervdD, T']. Based on the QoS requirements,
orms an integral part of network calculus theory [24]. V€one can construct the minimum departure cufi¥g;,(t) as

a service curves(t) and an arrival curved(t), the quantity iscussed in Section II. Now giver(t) and Dy (t), a

A(t)@3(1) represents the minimum data that must flow out eparture curveéd(t) which represents how data is transmitted

the system, wherey is convolution in the min-plus algebra:is said to beadmissibleif it satisfies both the causality and

Therefore, under network calculus theory, given any servig QO0S constraints; i.&mm (t) < D(t) < A(t), t € [0, ]

curve 5(¢), the minimum departure curve can be obtained Fhe energy minimization problem is to obtain the admissible

Diin(t) = A(t) @ B(2). . . _ eparture curve with the least energy expenditure. Mathema
Thus, we see that a wide variety of QoS constraints can %”y this can be stated as follows

abstracted by constructing the appropriate minimum depart

T
£(D(1)) = / o(D' (1), t)dt @)

where D'(t) is the derivativé at time ¢; it gives the trans-
mission rate at that instant and the tegitD’(¢),t) gives the
instantaneous transmission power.

IIl. TIME-INVARIANT POWER-RATE FUNCTION

T
curve.
i E(D(t)) = D' (t))dt 3
i EDW) = [ a0') €
B. Transmission Model subjectto Dy (t) < D(t) < A(t), t € (0,7

Let P(t) denote the_ required transmission pOW?r to reliably 1Throughout the paper, at points of non-differentiabiliy, () is taken as
transmit at rate-(¢) at timet¢. We assume the following power-the right-derivative, and the right-derivative is assumeeist for allt.



A then

D(1) b (t)p(t)dt b o(F())p(t)dt
Ay PO o (LT @REY [ o(F )00 @
B N Sy p(t)dt J? p(t)dt
,/'/' v with strict inequality if¢() is strictly convex and # b, « # (.
g 7 s Proof: See [27]. [ |
© / .
s v Dunin(t) Now, consider an admissible departure cubg) and make
J/ 7 T Devt(y) the following substitution in the above lemmady) = 1, ¢() =
o T > g(0), fO)=D'(),a=0andb=T. This gives,
0 time T T T
(BB o Bapom g
i i _ T — T
Fig. 3. Cumulative curves for th&T'-problem. fo dt fo dt
o T
| | o(PEFEN T < [awane @
Without loss of generality, we tak®,,,;,(0) = 0, D(0) = 0, T 0

and D,,,;,(T) = A(T), where the last equality simply states T ,
that all the data must depart by, For the above problem, we g(B/T)T < /O g(D'(t))dt )

also require thaD(t) belongs to the sdt, wherel’ consists of L .
a *) g The left hand side in (7) is the total energy cost of the carista

all non-decreasing, continuous functions with boundedtrig o ) ) ; X
rate transmission policy at rafe/T', while, the right hand side

derivative for allt € [0,7] and with D(0) = 0. The non- . h | ¢ her admissible d h
decreasing assumption follows from the cumulative natdre (§ € total cost of any other admissible departure curve. T

the departure curves, the continuity assumption is naasal inequality in (7) thus proves the optimality claim.

any discontinuity would imply instantaneous transmissién ~ The result for theBT-problem is fairly intuitive given the
non-zero amount of data which is practically infeasible arfgPnvexity property of the power-rate function. Its praatic
finally, the bounded right-derivative assumption ensuhes t implication is interesting as it says that employing a carpl
the rate and the energy cost in (3) are finite. Furthermoiériable-rate policy does not provide any gains in the energ
if one makes the natural assumption that there is no d&spenditure; in fact, a constant-rate policy suffices. Aeot

that arrives and needs to be transmitted instantaneohsly, t observation is that whey(-) is strictly convex, the inequality
admissible departure curves exist. in (7) is strict for any admissibl®(¢) other than the constant-

rate policy. Hence, in this case the constant-rate polidhes
o . unique optimal solution. On the other hand, for the case when
B. Optimality Properties S . o -
_ _ o o g(-) is linear, there is equality in (7) and all policies have the
In this section, we present the optimality criterion and thgyme energy cost.
various properties of the optimal departure curve. To a8V  General Case:We now consider the general setup and as-
the discussion, consider the following simple example: th§me without loss of generality thalt(t) > D, (1),0 < t <
transmitter hasB units of data that must be transmitted byy Otherwise, if at some time there is equality, the problem
deadlineT" using minimum energy. We refer to this as thgan pe divided into two sub-problems over time intervas, |
BT-problem”. This example sheds important insights into theng [¢,, 7] and each can be solved independently. The first
problem and also serves as a building block for the geneggkylt, Theorem 1, is a generalization of the result for the
problem. BT-problem and it gives the criterion for the optimality of
BT-problem: The two curvesA(t) and D,,;,(t) for this a departure curve.

problem are as follows. Since there are no new arrivals andTheoremI' (Optimality Criterion) Let D(t) be an admis-
the queue has3 units of data at the beginning, the ?rr'vagible departure curve andl(t) be a straight line segment over
curve is A(t) = B, Vt € [0,T]. Furthermore, there is no a,b] that joins pointsD(a) and D(b), 0 < a < b < T. If L(t)

minimum data transmission requirement until the deadli tisfiesD,in (t) < L(t) < A(t), and, L(t) # D(t), the new
T, at which point all the data must be transmitted:; hencﬁeparture7gzlfveD_’Lew(t) constructed as '

Dipnin(t) =0,t € [0,T) and D,,;,,(T) = B. The admissibility

criterion specialized to this case thus becoiies D(t) < B D" (t) = D(t), t€[0,a)

and D(T') = B. Figure 3 is a schematic diagram of these L(t), t € [a,b]

curves which also depicts a few admissible departure curves — D), t e (bT]
We claim that the optimal policy is constant rate transmis- ’ ’

sion at rateB/T', i.e. (D°P')'(t) = £ and D°P(t) = B¢, t €  satisfies£ (D" (t)) < £(D(t)), where the inequality is strict

[0, 7], where D°P!(t) denotes the optimal departure curve. T¢f g(.) is strictly convex.

see why this is true consider the following integral versibn 6 apove theorem states that, if there exists any two points

Jensen’s inequality [27]. on the curveD(¢) that can be joined by a straight line without
Lemma 1: Let f(t), p(t) be two functions defined far < violating the admissibility constraints, replacing thatrtpof

t < bsuchthatx < f(t) < gandp(t) > 0, withp(t) # 0. Let  D(¢) with the straight line can only lower the energy cost. The

¢(u) be a convex function defined on the interwak « < 3; implication of this is that whenever admissible, it is optim
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Fig. 4. Figure for Theorem I: (a) an admissible departure €uwt) and
(b) the new curveD™c*(¢). Fig. 5. Example showing violation of Lemmas 2-4. The dottedslisow
that D(t) does not meet the optimality criterion.

to transmit at a constant rate. A schematic diagram depictin
this is given in Figure 4. Henceforth, the criterion thatr@o continuously or in a discrete step. Denoting any such paint a
a departure curve there does not exist any two points that ggnthe following results are obtaingd
?oe:;I?r?:“g);/)t?n?aliglgr?tg?igi?ble straight line will be reéel Lemma 2: AF to, D°Pt(t) either intersectsi(t) or it inter-
_ o _ o SeCtSD,,in(t); i.e. we haveDP!(ty) = A(tg) or DP(ty) =
Proof: First note that sincd.(t) is admissible, the new p . (1), Note, if there is a discontinuity irl(¢) att, (jump

curve D" (t) is also admissible. Consider, point for packetized data) theRort(to) = A(ty ).
new b Lemma 3: Suppose that att, we have D°P!(t;) =
E(D™(t)) — E(D(t)) = E(L(1)) —/ g(D'(t))dt  (8)  D,....(to), then, the slope change must be negative.

Lemma 4: Suppose that aty, we have D°Pt(tq) = A(to)

Over the intervala, b], we know from the result of thé&7- Qr A(ty)) then the change in slope must be positive.

problem that’.(¢) has the least energy cost among all departu _
curves that would transmitD(b) — D(a)) amount of data  The proofs of the above lemmas are straightforward and
in time (b — a). Hence, from (5)-(7), we get&(L(t)) — omitted for brevity. They can be easily understood from

j'bg(D’(t))dt < 0 and the result follows. m Figure 5. Pointt = a corresponds to a point of rate change

aR Kl L_ function An i . and it violates Lemma 2. It is easy to see that arotiag a
nemark. ( Inear power-rate unction) N interesting ,q optimality criterion is violated since an admissibleigtht

special case arises when the power-rate relationshipéarin line segment exists (the dotted segment arotind a in the

€. P o= nr vv'herem. > 01s a constant, In.th.ls case, thefigure). Similarly, pointst = b andt = ¢ correspond to a
integral value in (3) is the same for all admissible departu(/iolation of Lemmas 3 and 4 respectively.

curves and hence, all departure curves have the same energ&/mong other properties, the optimal departure curve
cost. Thus, with a linear power-rate curve it does not matt opt (1) uses the least maxir’num transmission-power and has

in terms of the energy cost, how data is transmitted as lo shortest length metric. The minimal maximum-power
as th? ca.usallty_and the QQS constraints are mgt. pre\ﬁ{bperty of D°P!(t) states that among all admissible departure
even in this special case of linear power-rate function, we w urves, if we look at the maximum instantaneous power
see next that the d_eparture curve that satis_fies the opty '_'aﬁequirément over time,D°P(t) curve has the least such
criterion has appealing properties that make it a good clasteli requirement. This is summarized in the theorem below.
transmission policy.

Henceforth, we consider the more interesting case of lstrict _Th_i?reg””: (M|n|maldg/IaX|mhum P(_)welr)deen any ad-
convexg(-) function. The next result shows that the optimd'SSibe eparture curve(t), the optimal departure curve

opt iofi
departure satisfying the optimality criterion is unique. DePi(t) satisfies,

Theoremll: (Uniqueness)Consider the optimization prob- max (D°P')'(t) < max D'(t) 9)
lem in (3) with g(-) being strictly convex. LetD(t) be telo.7) telo.7)
an admissible departure curve that satisfies the optimalifigyivalently, max;e (o) PP (t) < max,cpo.r) P(t), where
criterion, then, D(t) is unique and it minimizes the energyp( ) denotes the power expenditure over time.

cost in (3). _ Proof: See Appendix B [ ]
Proof: See Appendix A. ] . N .
Remark2: The above theorem is very significant if we

Throughout now, we will denote the adomissible departuig, nose an additional maximum power constraint in the op-
curve satisfying the optimality criterion @ (¢) and later (imization problem in (3). In this case, the problem is first

. : . . o
in Section III-C, give an algorithm for constructinG®” ().  g5ved without the power constraint. If the optimal solatio
We now characterize the points in time at which the optimal

rate changes, i.e. points at which the slope (or the rightztne notation f(2+) meanslimy_.oc f(z + n) and f(z—) means
derivative where non-differentiable) @f°r(¢) changes, either lim, .. f(z — e,) with e, > 0, ¢, — 0.
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Fig. 6. String visualization for the optimal curve, (a) strilying between
A(t) and Dy (1); (b) DOPE(t) as taut string.
Fig. 7. CurvesA(t), Dy,in(t) and DPt(t) for Example 1.

satisfies the maximum power constraint, we are done; other- 4 y
wise from Theorem Il it follows that there does not exist any AN - A
other admissible departure curve that can satisfy the power
constraint and the constrained optimization problem has no

A3

solution. Thus, we see thdd°r!(¢) is the unique curve that as
satisfies the QoS constraints with both the least total gnerg ,, a2
cost and the least maximum power requirement. AL min. slope segment, a1
As mentioned earlier,D°P!(t) also has the shortest i.e. s, = min(At)
length among admissible departure curves. More specifi- 0 t 2 =T 0o t 2 =T
cally, for any continuous, piecewise differentiable cyrits @ (b)

to%al length tJSII’I?g standard geometrical result |sogt|ven i“% 8. (a) Construction of the first segment 0Pt (t) for Example 1, (b)
fo V(1 + (D’(t))?)dt. The result below states th@°"*(t)  construction of the second segment.
minimizes this metric.

Theoreml|V: (Shortest Length) The optimal departure _ o o
curve D°P(t) has the shortest length among all admissiblgajectory. This means that the optimality criterion must b

departure curves. Specifica”y, it minimizes the metric, satisfied, because otherwise, the construction in Theorem |
T would make the string tighter, thereby leading to a contradi
len(D(t))é/ (1+ (D'(1))2)dt (10) tion. By the uniqueness result, it then follows that this trhes
0 the optimal curve. Note that depending on the shapd @]

_ . o _ . and D,,,;, (t) curves, the curveD°P*(t) consists of segments
Proof: Since D7 (¢) minimizes the integral in (3) for a of constant-rate transmission and/or segments where tinésra
convex increasing functiog(-), the result follows by replacing varying continuously over time; see for example Figure 1,0(b

g(r) with g(r) = /(1 +12). ®  where over timefa,b] and [c,d] the curve D°P!(t) has a
continuous rate change.
C. Optimal Policy Examples Using the above string visualization, we now

In the last section, we presented the optimality criterind a Present a few illustrative examples for which the optimal
the various properties of the optimal curve. We now construgolution can be obtained in closed-form. Among these, the
the optimal departure curvB?rt(t). However, before giving first two examples have been studied earlier in the liteeatur
the algorithmic description, it is instructive to considar [8l. [10], and their solutions were obtained using a diseret
very insightful visualization. This graphical picture pides OPtimization approach that was mathematically tediousteBy
a simple and intuitive way to understan@rt(t) and is formulating the problems within our framework, the solago
described next. can be obtained more easily from the graphical picture.

String Visualization Consider a string restricted to lie be- Example 1: [8]: Consider a sequence of packets arriv-
tweenA(t) and Dy, () (i.e. visualizeA(t), D, (t) curves ing to the system in timg), T') with the first packet arrival at
as hard boundaries for the string). Tie one end of the string §ime 0 and the rest arriving at timeg’}';'. The deadline
the origin and pass the other end through,,,,(T). If we now constraint is that all the packets must depart by tiffie
make the string tight, its trajectory gives the optimal depe (common deadline), wher& > t"~'. The curvesA(t) and
curve. D, (t) for this problem are depicted in Figure 7 (where we
and have sett™ = T). From the string visualization it is easy
to see that the optimal departure curve consists of pieeewis
linear segments with increasing slopes and the points athwhi

e slope changes, the optimal policy just empties the buffe
see Fig.7).
3This observation was pointed out by Rene L. Cruz Algorithmically, to construct the linear segmentsiofrt(t)

Figure 6 is an illustration showing a general(t)
D,nin(t) curve and the correspondingert(t) visualized as a
tight string. Intuitively, when the string is in the tightmdition
it cannot be made tighter between any two points along



proceed as follows. Letl’ denote the cumulative amount of A AQ) 4
data arrived to the queue just before titie(the total data B, B
in the first: packets). Starting at tim@, consider the straight DOPY(t)

line segments that join the point8, 0) (origin) and (¢?, A%) ‘ S2 ‘
(jump points ofA(t)). From among these choose the segmertu*b, b,+b, ,
with the minimum slope, i.e.i the segment having slope equal D, () L max. slope segment,
to the minimum overi of ﬁ‘— , as shown schematically in b, b, |/ i.e.s, = max(B/t)
Figure 8(a). Denoting the minimizing index as the first 0 - > 0’“ I >
segment of D°P'(t) is then constant-rate transmission with (@) (b)

rate s; = min; (;‘—) from ¢t = 0 until ¢ = ¢™. Starting at

™ ; fran . i9. 9. (a) CurvesA(t), Dimin(t) and D°Pt(t) for Example 2, (b)
t : the procedure is repeqted.by shifting the origin to the né&\gnstruction of the first segment &1°P(¢).

point (t™, A™), as shown in Figure 8(b). Thus, the slopes of

the linear segments denoted &s, .., s,} can be computed

recursively as follows. Také, = 1,t° = 0,4° = 0 and 4B o
initialize m = 1; we then have, AW T D
At — AUm—1) 3B S :
Sm = min — (11) T A(t) L
i€{lm N} \_ £ — tUm=1) 2B ‘ - Dmi®
At — AUm—1) or
lmyr = 1l+arg min (l) (12) gt ™y
i€{lm,...,N} t _t(lm D \/Dmir(t)
The above iteration stops whép,,1 = N + 1. Intuitively, ‘
the optimal policy follows a constant rate transmissionilunt 0 d T 0 a b cd 7
points where the future arrivals are such that relative ® th (a)- Example 3 Fig. (b)

deadline constraint, the transmission rate must be higher.
Fig. 10. CurvesA(t), Dmin(t) and DP(t) for (a) Example 3 and (b)

Example 2: [10]: ConsiderM data packets in the trans-continuous data flow.
mitter buffer at time 0, with individual packets having a
deadline by which they must be transmitted. Let fHepacket
have b; units of data and a deadling, j = 1,..,M. The Example 3: . Consider a stream oiV packet arrivals of
packets in the queue are served in the earliest-deadlste-fsize B units with a constant inter-arrival time. Each packet
order and for this case, thé(t) and D,,;,(t) curves can be has a deadline before which it must depart (Figure 10(a)).
obtained as shown in Figure 9(a). Note that the structure ®fich an arrival stream is a good model for applications which
this problem is the reverse of Example 1 and in some loogenerate packets at regular times (or with a small variance)
sense one can regard these problemsdasl$ of each other. e.g. voice data. The optimal minimum energy curve is shown
From the string interpretation, we see that the optimalggoliin the figure and is given as follows. if < 7, the solution
is a piecewise linear curve as shown in the figure, and isstrivial and the packet must be transmitted before the next
compared to Example 1, the slopes of the linear segments argval. If d > 7, the optimal curve is a straight line with slope
now monotonically decreasing in time. NB/(d+ (N —1)7).

To obtain the segments d@?°"*(t) proceed as follows. Let
B; = >~]_, by, where B; denotes the cumulative data in theD

first j packets. Starting at time, consider the straight line this is presented next. For simplicity, however, we resric

segments that join the poin8, 0) (origin) and(¢;, B;) (jump . . e }
points of D,,;,(t)). From among these choose the segme(r%Ir attention o only piecewise-constantt) and Dyin ()

with the maximum slope, i.e. the segment having slope eq curves (i.e. staircase functions corresponding to the giack

B. ua%ta model). The algorithm for the more general case with
t

to the maximum ovey of (Tj - Denoting the maximizing continuous curves is a direct extension of the arguments

index asm, the first segment ofD°Pt(¢) is constant-rate presented here and can be found in [5].
transmission with raté’= from ¢ = 0 until ¢ = ¢,. Starting at
t., the procedure is reToeated by shifting the origin to the n
point (¢, Bx). Specifically, the slopes denoted gs, .., s, }
are obtained as follows. Takk = 1,tp = 0,By = 0 and
initialize m = 1, we then have,

The intuition gained from the examples above can now
e utilized to obtainD°P(t) for the general setting and

eg'pnstruction of the Optimal Departure Curve As is the
case in Examples 1 and 2, the main idea behind constructing
the optimal curveD°P!(t) is to obtain its segments in a
recursive fashion. From Example 1, we see that wlith) con-
straints the minimum-slope line segments are chosen; while

o = e (Bj - B(lm—l)) (13) from_ Example 2,_ we see that with,,,;, (¢) constrz_iintg__the
J€llm, M} \ t5 — 1, —1) maximum-slope line segments are chosen. Thus, intuitiuely
B; — B, -1 the general case we would need to combine these two ideas
Iy = 1+ M e\t — t 1) (14) " and this is done more formally in the discussion below.

To proceed, consider any generic poing, «), where0 <

The above iteration stops wheép.., = M + 1. to < T and D, (to) < a < A(tp). Starting at this point,



consider straight lines with non-negative slopes. Amormrgeh A
choose those lines that starting(&f, o) remain admissible for
some finite duration. In other words, consider straightdine DoP(t)
L(t) for which there exists aa > 0 (¢ could depend on the
chosenL(t)), such thatl(¢) is admissible fort € [to,to + €),
i.e. Dpin(t) < L(t) < A(t), for t € [to,to + €). Denote this L
set asF. Intuitively, the slopes of the lines itF give the A(t)
possible admissible slopes that*!(¢) can have at that point. ﬁ
Note that the sef# depends on the poirit,, o) but to make L 2
the notations simple we drop the explicit dependence. } Din()

Now, considetL(t) € F, then clearly,L(t) eventually either 0 t
intersectsA(t) or it intersectsD,,;,(t), where we use the

following definition of intersection Fig. 11. Example depictingl(¢) and D,,,;» (t) curves, and the constructed
Definition 4: Starting att, L(t) intersectsD,,;,(t) if for  D(t) curve.
some pointt > t,, called the point of intersection, one of the
following holds: (a) eithed.(f) = Dmm( t) or, (b) the function _ .
L(t) — Dpin(t) changes sign at (heref is a discontinuity Dmin(t). Thus, segment, from ¢ = [0, ] is the first part
point). of the optimal curve. Note that lines with slope greater than
Intuitively, the above definition means tha{t) crosses the L1 intersect A(t) first and lines with slope less than)
curve D, (t) atf. A similar definition holds for intersection intersect Dy, (¢) first. The line L, is the one with slope
with A(t). Let the setF be partitioned into a set of linesat the boundary (as defined in (15)). Next, starting from the
that intersectd(t) first and those that interse@,,;,, (¢) first. N€W point(ty, Dmin(t1)), Lo is the optimal line and; is the
Denote these sets &, andFp,, respectively. The following first instant such thaL,(t;) = A(t; ). The segment, from
intuitive result states that the slope of the linesAn (those t = [t1,t2] forms part of the optimal curve. The segment
that intersectA(t) first) is greater than the slope of the lineds also obtained in a similar fashion and it is the last segmen
in Fp, (those that intersedD,,,;,, (t) first). ast =T is reached.
Lemma 5: (a) Let Lp(t) € Fp,, then anyL(t) € F
that has slope less thaf’, intersectsD,,;,(t) first. (b) Let D. Online Policy Without Arrival Information
La(t) € Fa then anyL(t) € F that has slope greater than |y the previous sections, we obtained a fundamental un-
L'y intersectsA(t) first. _ derstanding of the energy minimization problem by assuming
Proof: See Appendix C. B that the data arrival information was known in advance. s th
Let S, andSp,, denote the slopes of the lines iy and section, we utilize those results to consider the more stali
Fp,, respectively. Consider the line, which we denotelgs case when there is an arbitrary stream of packet arrivalseto t
with slopeg, at the boundary of the two intervals, i.e., gueue and there is no information, statistical or othernise
. the packet arrival process. Each arriving packet has andisti
Po =nfS4 = supSp,, (15) deagline by whichpit must be served, agng the goal as before
If either S4 or Sp,. is empty above, it is neglected. We calis to minimize the total energy expenditure. To address this
3, the optimal slopeand the lineL, the optimal line Thus, in problem, we present an online transmission policy, retetoe
simple terms/, is the least slope line that interseet§) first, as the Backlog-Adaptivé (BA) policy, and give numerical
or the maximum slope line that intersedis,;,, () first (note results comparing the energy cost of the BA policy with the
the similarities with Examples 1 and 2). Using this lihg, head-of-line drain policy.
we can now obtain an algorithm for constructing the optimal To understand the BA policy, let us first revisit Example 2 in
departure curve as illustrated next. Section IlII-C which we summarize here again. Suppose that
To begin with, we haveD°rt(0) = 0; thus, the starting point the transmitter hasl/ packets with individual deadlines on
s (0,0). Let ¢ty denote a generic time instant, whege= 0 the packets; there are no new arrivals to the system and the

\/

in the first iteration. goal is to empty the buffer with minimum energy. The optimal
1) Obtaing, as in (15) and the optimal liné,. policy for this case is shown in Figure 9, but to highlight the
2) Obtain the first instant; such that, (a)L.(t,) = dynamic nature of the policy and for computational simpyici
Donin(t1), or, (b) Lo(t1) = A(ty) or L,(t;) = A(ty). We rephrase it as follows. Denote the state of the system as
Set DPL(t) = Ly(t), t € (to,t1]. (t, D) where the notation means that at timyeéhe cumulative

If ¢, = T terminate; else repeat the above steps with the né@ftount of data that has been transmittedisi.e. D(t) = D.

starting point agt,, D°*(t,)). The correctness and optlmalltyAss”m'ng an admissible system state, L&, (t) < D <

of the above algorithm is shown in Appendix D. A(t) andt < T, the optimal transmission rate for this state is
As an example, considerl(t) and D,,.,(t) shown in obtained as follows. First, visualize the origin at paintD),
Figure 11 for which the algorithm executes as follows. Stalff€n. it is easy to see that the optimal rate is the maximum
at the origin (0,0) and note thatZ; is the optimal line as value among the S|0D€<57) corresponding to the straight
defined above and, is the first instant at which it equalsline segments that connect the poifitsD) and (t;, B;) for



all {j : B; > D,t; > t}. Specifically, let-*(t, D) denote the =~ 10°
optimal rate, we then have,

r*(t,D) = max
J:(B;j>Dit;>t)  tj —1

(16) 8
=3

The above function is an alternate way to state the optir %103,
policy shown in Figure 9 for Example 2; it provides & &,
convenient way for implementation. The transmitter simpl S )
keeps track of the cumulative amount of data that has be < 10°¢

transmitted and at time, it computes the rate at that instant ]
as given in (16) by a simple max operation. Note that tt . —©— HLD 103k |

policy in (_16) appli_es for a static buffer_that_ already camsa  oaket crival rate Sample f)s:ath indes

packets with deadlines; we now extend it to incorporate @ack

arrivals to the queue that are unknown in advance. Fig. 12. Energy cost comparison for Poisson arrival proceséa different

Consider arbitrary packet arrivals to the queue with eaéfival rate, (b) different sample paths.
packet having a distinct deadline associated with it. Assum
that the arrivals occur at discrete time instances. Cleatlghe
instant immediately following an arrival, the transmittereue packets arrive and the system is operated is takeh &as10
consists of (a) earlier remaining packets with their dewdii seconds. This intervgD, 10] is partitioned into10, 000 slots,
and (b) the new packet with its own deadline. Re-arrangifigus each slot is of duratiodt = 1 msec, and for simplicity,
the data in the earliest-deadline-first order we can view tiee packet arrivals take place at the slot boundaries. Fbr bo
queue as consisting of a total amoubtof data with variable the BA and the HLD policies, the transmission rate chosen
deadlines. This is identical to the problem mentioned eadi for a slot is obtained by evaluating the respective policies
emptying the data in the buffer with minimum energy, hencé} the time corresponding to the start of that slot. We take
we can use the transmission policy given in (16). Now, air) = %, hence the energy cost per slot/i&it. The total
this policy is followed, at the next packet arrival instange ~€xpected energy cost is obtained by taking an average of the
simply repeat the above procedure by rearranging the data &fal cost over multiple sample runs of the system.
taking the new packet into account. We refer to the aboveWe first consider the setup where each packet hasit
policy as the Backlog-Adaptive (BA) policy and it can beof data and a deadline @00 msec. Figure 12(a) is a plot of
summarized as follows, the energy cost averaged over the sample paths and plotted

BA-policy: Transmit the data in the queue with the rate a§n @ logarithmic scale versus t_he packet arrival rate. As is
given in (16); at every packet arrival instant re-arrangeeth evident from the plot, the BA policy has a much lower energy
data in the earliest-deadline-first order to obtain a new séoSt compared to the HLD policy and as the arrival rate
of B;t; values by including the new packet and its deadlind?creases the difference between the two increases. Tihiseca

most of the time the queue has at most a single packet, hence,

Note that the BA policy is not based on any spgmﬂc.arr_lv%oth policies choose a rate based on the head-of-line packet
process, hence it is robust to changes in the arrival statist

) . As the arrival rate increases and due to the bursty natuteeof t
and can even accommodate multiple deadline classes oftpacke
arrivals to the queue. poisson process, the queue tends to have more packets. The
BA policy then adapts the rate based on the backlog and the
deadlines of all the packets in the queue, whereas, the HLD
E. Simulation Results policy chooses a rate based solely on the head-of-line packe
In this section, we present illustrative simulation resultn Figure 12(b), we set the arrival rate as 10 packets/second
comparing the performance of the Backlog-Adaptive policgnd plot the energy cost for the first 50 sample paths. As
with the “Head-of-Line Drain” (HLD) policy. In HLD policy, evident from the plot, the BA policy has lower energy cost not
the data in the queue is arranged in the earliest-deadliste-flust in an average sense but even on most individual sample
order and the packets are served in that order. At tinet H,  paths.
be the amount of data left in the head-of-the-line packet andin Figure 13(a), we set the arrival rate Espackets/second
Ty be the amount of time until its deadline, then, under HLNd plot the average energy cost by varying the packet size.
policy the rate is chosen as = Ti; Thus, the transmitter Clearly, as seen in the figure, the energy cost increasesas th
serves the first packet in queue at a rate to transmit it quaicket size increases since there is more data that needs to b
by its deadline, then moves to the next packet in line and sansmitted, however, the BA policy has a much lower energy
on. At every packet arrival instant, the data in the queue dsst as compared to the HLD policy. In Figure 13(b), we plot
re-arranged in the earliest-deadline-first order and the/@b the average energy cost by varying the packet deadlines and
policy is repeated with the new packet taken into account. a similar trend is observed. The energy cost decreases as the
The simulation setup is as follows. The transmitter has-Poisacket deadline increases since lower transmission rages a
son packet arrivals and each packet has a deadline associegquired to meet the deadlines, and here as well, the BAypolic
with it. On each simulation run, the total time over which théas a significant lower energy cost as compared to HLD policy.
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x 10° © 8000 : B. Optimality Properties

—— BA
10, | 2000l We proceed as in Section Il by first considering the
3 3 BT-problem and then extending the results to gener@l)
S st S 6000y and D,;,,(t) curves. As in the time-invariant case, ti-
s 550007 problem provides useful insights into the problem and also
§ e > 4000l plays an important role as a building block.
§ al § 1) BT-problem Consider the BT-problem where the
Z = 30007 transmitter hasB units of data in the queue and a deadline
2r 2000} T by which this data must be transmitted using minimum
. energy. The following lemma gives the optimal solution for
ol 1000 . . .
0o 1 2 3 4 5 (o) ~ 200 400 this problem; its proof is based on results from the theory of
Packet size Deadline in msec.

Calculus of Variationd29].

Fig. 13. (a) Average energy cost versus packet size and (&jage energy Lemma 6: The optimal transmission rate"pt(t) for the
cost versus packet deadline. BT-problem is given as

roPt(t) = max(0,r*(t)) (18)
IV. TIME-VARYING POWER-RATE FUNCTION
where r*(¢) is a unique positive value that satisfies
In previous sections, we considered the time—invariata@%g(nt)|T:M(t) — k and k is a positive constant such that

power-rate function case and utilized a cumulative curv?f‘ roPt(t)dt = B.

methodology to obtain the optimal solution. The framework’

provided a graphical visualization of the problem and the

optimal solution. In this section, we generalize those ltesu Thus, we see that the optimal rate is such that the partial

and consider a time-varying power-rate function setup.sThuderivative of g(r,t) with respect tor at the positive value

now the functionP(t) has a time-varying dependence and is*(¢) equals a constarit The value of this constant is chosen

given asP(t) = g(r(t),t). For a fixed timety, the amount such that the deadline constraintZatis met. We refer to the

of power required to transmit at a certain ratés governed constantk as the"marginal cost” for the BT-problem. At

by the convex functiony(-, t), but now, this convex function any timet, if there exists a positive rate*(¢) for which the

could be different at different times. marginal cost is, that rate is chosen as the transmission rate;
otherwise, the transmission rate is 0 and no data is tratesinit

For positive transmission rate, since the marginal cost (or
A. Problem Formulation the first-derivative ofy(r, ¢) with respect to) is the same for

. . . all ¢, it implies that infinitesimal changes in the rate would not
The problem formulation remains the same as given Irk ; T
; . . : . change the total energy cost. This observation is intyitiree
Section IlI-A with the data flows being described using : .
- therwise, we could decrease the rate over the intervale whe
S S the marginal cost is high and correspondingly increase the
energy departure curve. The optimization problem is giv&n Fate over the intervals when the marginal cost is low; thgreb
T reducing the total energy cost and violating the optimality
min E(D(t)) :/ g(D'(t),t)dt (17) claim. Now, for all ¢ such thatr°?’(t) = 0 we must have
Dle)er 0 9 4(r,t)] > k. This means that at all such times, the
bject o Dynin(t) < D(t) < A(t), t € [0,T] ord\hPlr>0 = g . .
subj manit) = = ) ) marginal cost is high and it is relatively costly to transmit
the data, hence, the optimal policy chooses a zero rate.
As compared to the time-invariant power-rate function case
early, the optimal rate now is not constant over time;
however, interestingly, the marginal cost is constant. sThu
the constant slope property from before translates heceant

continuous in. constant marginal cost property. As a check, if we remove the

The above formulation provides a general framework ttﬂne-dependence ig(r,1), then+*(t) would be a constant.
model various scenarios involving time-variability in thgs- |, . gives roPi (1) — T’* iand from [T ot (dt — B, we
= ) = B,

tem. It generalizes the problem in tion IlI-A to incl . LN
° generalizes the proble Sectio 0 CUOIeet r* o= % Thus, the optimal solution is constant-rate

time-dependent parameters in transmission arising due %9 Lo : . . .
P P . 9 transmission in conformity with the result in Section 11I-B
phenomena such as beam-forming, antenna patterns ete. Sln(':A ncrete examoles for illustration. we now aliz
it models a more general power-rate cost function, one mn al S concrete examples for llustration, we now specialize
18) to two specific forms of(r,t), namely, theMonomial

introduce an artificial cost for control purposes; for exénp . .

by imposing a high cost over certain intervals one can cd)ntr%laSS and thé&xponentialclass of functions.

the times over which data should be transmitted. Finally, it Example 4: (Monomial Class)Let g(r,t) = g’(—;, n >

also models scenarios where we have a time-varying chanbelc(t) > 0, be the class of positive monomial functions
and the channel gain is predictable or known over time.  with ¢(¢) representing the channel gain or the time-dependent

Proof: See Appendix E. ]

In the above formulation, we assume thgt,t) as a func-
tion of r is a strictly convex, increasing and continuousl)éI
differentiable function for allt. We also assume that(r, t)

is a deterministic function of time € [0,7] and piecewise
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parameter. For any positive constant -2 yom crt)|r re@y =k, [D(a),D(®)], 0 < a < b < T.If L(t) is admissible, i.e.

gives, Dpmin(t) < L(t) < A(t), and,L(t) # D(t), the new departure
Ee(t) = curve D(t) constructed as,
o= (242 (19) ~
" D) = D(t), t€]0,a)
Sincek andc(t) are positive, we have*(t) > 0, Vt, and from = L(t), t €a,b]
(18) we getroPi(t) = ("“T(t))f1 The value ofk such that = D(t), t e (bT]
the deadline constramt is met is obtained frchp roPt(t )dt satisfiesg(D(t)) < &(D(t)), where&(+) is as given in (17).
B, which gives k=1 = £, wherey = [/ (c(t)/n) = dL. Proof: First note that since.(t) is admissible, the new
Substituting back lﬂ“o”t( ) finally gives, curve D(t) is also admissible. Consider,
gy _ B () - .
rori(t) = poll (20) E(D(t)) = E(D(t)) = E(L(1)) —/ g(D'(t), t)dt  (22)
Example 5: (Exponential Class)Let ¢(r, t) — ({(Z)Iv o> From Lemmas 6 and 7, we know th&ft) is the unique curve,

that has the least energy cost among all departure curves tha

tl)éif]g)tria (t)i'mbee-dthezlgzitogaigaoqurtlslogr]tzt;?ntzgvrfgﬁ% would transmit(D(b) - D( )) units of data over time interval
' la,b]. Thus,E(L(t)) < f g(D'(t),t)dt, which completes the

andc(t) = |h(t)|?, gives the Shannon formula for the power"”
) ) ) " Olna) roof. |
per bit. For the exponential cas@,aﬂ—’ =k .
gives r ®) From the above theorem, we see that whenever admissible,
’ segments of the optimal departure curve follow the constant
FoP (1) = max ( 0 In(k) — In(In(e)/c(t)) (21) Marginal cost curve. This property translated into coristan
In(«) rate (straight line) segments in the time-invariant povede-
The value ofk such that the deadline constraint is met iguhnctlﬁn cgse,'als outlined earlier in Thheorem . T_hus]: we see
obtained from/;” max <07 ln(k)—hll(l(n()a)/c(t))) dt — B. that the pictorial representation and the properties frm t
_ e time-invariant case apply here in terms of constant makgina
~ Returning back to the solution in (18), we next show agosts. Lastly, as illustrative examples for the time-vagycase,
interesting monotonicity property with respect to the @) we re-visit Examples 1 and 2 in Section 1lI-C and obtain

costk. This is presented in the lemma below. the departure curve that satisfies the optimality criteribime
Lemma 7 Let ropf( ) be given by (18) for somé > o algorithms presented below are obtained by translating the
and DP!(t f roPt(s)ds. Then, D°Pt(t) is monotonically "€Spective ones from the time-invariant case, where idstéa

non-decreasmg ik, un|que for a given value of and zero constant-slope segments we will be seeking constant nargin
throughout fork = 0. Furthermore, forD°?!(T) = B > (, COSt segments.
there is a unique positive value éfthat achieves it. Example 6: Consider the setup in Example 1 where there
Proof: See Appendix F m is a stream ofV packet arrivals and a deadlirfe by which

all the data must depart. The curvedt) and D,,;,(t) for
this problem are depicted in Figure 7. To obtain the departur
curve satisfying the optimality criterion proceed as foio

2) General Case Thus far, we have presented resultStart attime O; le{k;}, i = 1,..., N, be the marginal costs to
for the BT-problem; these can now be generalized to theeet each oft?, A?) points individually, i.e %; is the marginal
setup with generalA(t) and D, (t) curves. Theorem V cost associated with optimally transmittingj bits over time
below gives the optimality criterion for this case and is f,t']. Let ki, be the minimum amondk;} andi,,;, the
generalization of Theorem | presented earlier. It states, thcorresponding index of the minimizing jump point. The first
if there exists any two points on an admissible departugegment ofD°?*(t) is then the constant marginal cost solution
curve that can be replaced with a constant marginal-cqﬁtween[o,timm] with marginal costk,,;,. Now, starting at
solution without violating the admissibility constraintthe (¢imin A*min) repeat the algorithm by shifting the orlgm to

new departure curve obtained will have a lower energy costiis point and considering the jump points beydfidi~,
The notation;constant marginal-cost curve over time-intervalconsidering alli such thatt! > ¢=i~. Finally, the algorlthm

[a, b] between data-points3;, Bs|” will refer to the departure stops whentimin = T,
curve, L(t), obtained usmg the solutlon in (18) as follows:

L(a) = B, L(t) = + [, r(s)ds, t € [a,b], where queue has\/ data packets with thg!" packet having; bits
r(s) = max(0,r” (S)) and margmal' costk chosen such gnq 5 deadiing;, j = 1,.., M. For this problem, the curves
that L(b) = B,. From Lemma 7, this value of and the 4y andp, . (i) are shown in Figure 9(a). As in the previous
correspondingL(t) are unique. example, the departure curve satisfying the optimalitiedion
TheoremV: (Optimality Criterion) Let D(¢) be an admis- is constructed as follows. At time O, I¢k;}, j=1,...,M
sible departure curve and.(¢) be the constant marginal- be the marginal costs to meet ti{e;, B;) points, i.e. k;
cost curve over time-intervala,b] between data-pointsis the marginal cost associated with optimally transnttin

From the above lemma, we see that givéandT’, a binary
search would be sufficient to obtain the value@umerically.

Example 7: Consider the setup in Example 2 where the
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Bj bits over time[0,;]. Let k4, be the maximum among [13] Cruz R.,"A Calculus for Network delay” (Parts I&IFEE Transactions
{k;} andj,.... be the corresponding index of the maximizing% on Information Theory; Jan., 1991. N o

. . . ot . 14] Collins B. and Cruz R., “Transmission policies for timayiag channels
jump point. The first segment dp°r(t) is then the constant

) > . ] with average delay constraintsRroceedings, 1999 Allerton Conf. on
marginal-cost solution betwedn, ¢, _ | with marginal cost ~ Comm., Control and CompMonticello, IL, 1999.
Emaz. NoOw, starting at(t;,...,Bj,...)

repeat the algorithm [15] Ata B “Dynamic power (_:ontrol ina W!reless stqtic chahsubject to

p .S : : . . . a quality of service constrainto appear in Operations Research.
by'ShIftlng the origin to this p(?lnt ar_]d conS|der|ng the ]um'PJ.6] L. Tassiulas and A. Ephremides, “Stability propertigsconstrained
points beyond; The algorithm finally stops at the step queueing systems and scheduling policies for maximum thrautghp
whent; =T. multihop radio networks”JEEE Transactions on Automatic Contralol.
Jmaz 37, no. 12, Dec. 1992.

[17] M. J. Neely, E. Modiano, and C. E Rohrs, “Dynamic powebpedition
V. CONCLUSION and routing for time varying wireless network$EEE Journal on Selected

We considered the problem of transmitting quality-of- Aréas in Communicationgan. 2005.

. . . . . .. [18] A. L. Stolyar, “Maximizing queueing network utility sjdxt to stability:
service constrained data over a finite-time horizon, usiiit M~ greedy primal-dual algorithm’Queueing Systemel. 50, no.4, pp.401-

imum transmission energy expenditure. The problem was for-457, 2005.

mulated using a calculus approach and posed as a continuéiﬁ%-A_- Eryilmaz, R. Srikant and J. Perkins, “Stable scheufylpolicies for
. LS . . . ading wireless channels/[EEE/ACM Transactions on Networkingol.
time optimization. This novel formulation provided a graph 13 no. 2, pp. 411-424, April 2005.

ical visualization of the problem and an appealifgjring [20] X. Liu, E. Chong, N. Shroff, “A framework for opportunistscheduling
visualization” for the optimal policy. Utilizing the general _ In Wireless networks Computer Networksil, pp. 451-474, 2003.

. . P . P Y 9 9 [611 S. Borst, P. Whiting, “Dynamic rate control algorithms fé{DR
SOll_monv we considered various examples apd pregented roughput optimization”)EEE INFOCOM Alaska, April 2001.
optimal policy under these setups. An online policy wag2] M. Zafer, E. Modiano, “Joint scheduling of rate-guaeed and best-
also developed and it was shown through simulation resultsfort services over a wireless channelEEE CDC-ECC Spain, Dec.
to PrOVid_e significant gains_ as _compared to th_e head-of-liRg) A  Goldsmith, “The capacity of downlink fading channeith variable
drain policy. The energy minimization formulation was then rate and power’|EEE Tran. Vehicular Technologyol. 45, pp. 1218-1230,

max "

extended to incorporate a time-varying power-rate fumctio

The continuous-time cumulative curves approach taken

Oct. 1997.
[24] J.Le Boudec and P. Thiran, “Network CalculuSpringer VerlagLNCS
IN2050, 2001.

this paper leads to a simple optimal solution and avoi@s)] J. D. Salehi, Z. Zhang, J. Kurose, D. Towsley, “Suppaytstored video:

many of the complications associated with discrete-time ap
proaches and dynamic-programming. Hence, we believe tha

Reducing rate variability and end-to-end resource remqmergs through
ptimal smoothing”,|EEE/ACM Transactions on Networkingol. 6, no.
, Aug. 1998.

this approach provides promise for future research intoeiss [26] B. Gaujal, N. Navet and C. Walsh, “Shortest-path altjonis for real-

related to delay and quality-of-service constraints ineleiss

time scheduling of FIFO tasks with minimal energy us@CM Transac-
tions on Embedded Computing Systeid. 4, No. 4, November 2005.

networks. Promising extensions to this work include thecom] I.S. Gradshteyn and .M. Ryzhik, Table of Integrals, Series and

sideration of multiple users and multi-hop traffic.
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APPENDIXA
PROOF OFTHEOREMII - Uniqueness

Let us assume that the admissible departure curve satisfyin
the optimality criterion,D(t), is not unique. LetD,(t) and
Dy (t) be two such distinct curves. From the boundary condi-
tions we haveD;(0) = D5(0) = 0 and D1 (T) = D3(T) =
Dnin(T). Since Dy(t) # Ds(t) the two curves must differ
over some time interval if0, T']. Let ¢ = a be the first instant
at which the two curves differ and= b be the first time instant
aftert = a at which they are equal again. Note thaK T
as at timeT’, D1(T) = Do(T'). Without loss of generality let
D;(t) > Ds(t),t € (a,b). From the admissibility of the two
curves we have,

Dunin(t) < Do(t) < Dy(t) < A(t), t€ (a,b)  (23)

By assumption, since both curvds;(¢) and Ds(t) satisfy
the optimality criterion, Lemmas 2-4 apply for points of o
changes. AD, (t) is strictly greater tha,,,;,,(¢) in ¢ € (a, b)

it follows from those lemmas that its slope cannot decrease i
(a,b). This implies thatD, () is convex in(a, b) (it could be
linear as well). Similarly asDy(t) is strictly less thanA(t)
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in t € (a,b), its slope cannot increase and hence it must loeiterion is violated. Then, based on the construction il-Th
concave in(a, b). It is clear that starting wittD; (a) = Dy(a) orem | we obtain a new curvé(t) that is also admissible.
and havingD;, (t) convex andDs(t) concave int € (a,b), the The line segment.(t) between|a,b] in D(t) always has a
two curves cannot be equal againtat b which leads to a slope that is less than the maximum slopelft) between

contradiction. Finally, if both curves are linear {n,b) with [a,b). As D(t) = D(t),t & (a,b), the overall maximum slope

equality att = a andt¢ = b, then this violates the assumptiorof D(¢) cannot exceed that dP(¢). Thus,
thatDl(t) 7& Dg(é), te (CL, b) ~, ’
To show thatD(t) minimizes the energy cost in (3), we tg[l&)})D (t) < tg[l(;‘f’é)D (t) (24)
proceed as follows. First, as defined in the problem statemen . ,
in (3), we haveD(t) € T, whereT is the set of all non- If D(t) = D°P*(t) then we are done. If not proceed as follows.

decreasing, continuous functions with bounded rightvaiéiie ~ From Theorem I, we know thaD°?!(¢) is unique and
for all ¢ € [0, T]. In addition, we also assume thd’ ()| < Minimizes the energy cost for any non-negative, convex

M, VD(t) € T, ¥t € [0,T], whereM > 0 is chosen large increasing power-rate functiop(r). In particular, consider
enough so that all practical policies of interest (with gait the sequence of functiong, () = »". For any D(t) we
energy cost) are included ifi. Also, the curvesA(t) and know that,lim,,_ (fOT(D’(t))”dt) = maxco,7) D' (t).
Din(t) are assumed to have a bounded right-derivative faf, o DPL(t) minimizes the integral for all, we obtain

all t € [0,77]. max DePtY () < max D'(t) as required
Let 5 denote the space of continuous functions defined teto.m)( Y < teton) D'(1) a '
on [0,7] with the supremum norm||f|| = sup,¢(o 7 f(1); APPENDIXC

this space is then a Banach space [28]. Qetlenote the set
of all admissible departure curves, i.€D(t) : D(t) € T . ) . )
and Dyin(t) < D(t) < A(t)}. We then haveQ ¢ B. (@) Lett b.el'ghe point at whichL () |nter§ectSDmm(t)
First, we claim that is a convex set. To see this, considefi'st: By definition, Lp(t) < A(t),Vt € (to,t). The proof
Di(t), Ds(t) € Qand letDs(t) = 2D; (£)+(1—z)Da(t), z €  NOW follows in two parts. F|r§t, we show that any line fh
[0,1]. Since Dy (t), D»(t) are continuous, non-decreasing an¥ith slope less thar;, must intersect.,,;,,(t) at or before

have bounded right-derivative, it is easy to see tha(t) ! and. second that thi.s line does not inte/rsﬂc(:t) in (to,1).
also has these properties. Further, we also havg,;, (t) < ConsiderL(t) € F with slope less thary,, then, L(t) <

PROOF OFLEMMA 5

#Di(t) < zA(t) and (1 — 2)Dyin(t) < (1 — 2)Da(t) < Lp(t), vt > to. Hence, at time& we hgveL(_t) < Lp(t)
(1 — 2)A(t), which gives, Dyin(t) < Ds(t) < A(t); thus, D,nin(t). If instead,t is the dlsc_ontlr]wty point foD, ;. (¢),
the causality and the QoS constraints are also satisfied, N&&€N L' (t) —Diin (1) changes sign dtand SoL(t) —Dinin (t)

we show that is compact. To see this, consider a sequen8&St have changed sign earliertat ¢. Thus, we see thak(t)

of admissible departure curvéD,, ()} ,. Since|D'(t)] < must |ntersectpmin(t) at or beforet. Next, smce_L(t) <

M, VD(t) € Q, we have,|D,,(t2) — Dy(t1)| < M|t — t4], LD(t)' < A(t.) int € (to,t), the line L(t) cannot intersect
which makes the sequence of functiof®, ()} form an A(t) fII’S't. jl'h|s'completes the proof of part (a) in the lemma.
equi-continuous family of functions. From [28] (Thm. 7.25Along similar lines as above, part (b) follows.

pg. 158), it then follows that there is a subsequence that

converges in the supremum norm. Thus, this limit function APPENDIXD

is continuous and since,(t) satisfies the causality and PROOF OF OPTIMALITY FOR THEDP(t) ALGORITHM

the QoS constraints for alh, it is satisfied by the limit ~ From Theorem Il we know thabD°P!(t) is unique. Hence
function as well. Hence, the limit function lies it and it suffices to prove that the constructed curve satisfies the
we see that(2 is compact. Now, consider the energy cosbptimality criterion.

function £(D(t)) as given in (3) withg(-) being strictly Let D.(t) denote the constructed curve. It is obvious from
convex. We next show thaf(D(t)) is also strictly convex. the construction that at all points where the slope changes
ConsiderD (t), D2(t) € ©Q and letD3(t) = D+ (t) + (1 — Lemma 2 is satisfied. We next show that Lemmas 3 and 4 are
x)Ds(t), x € [0,1]. Then,&E(Ds(t)) = fOTg(a:D’l(t) + (1 — also satisfied. Let, be the starting instant at some iteration
x)Dh(t))dt < foT (zg(D}(t)) + (1 — x)g(D4(t))) dt. Thus, and suppose that, intersectsD,,;,, (¢t) first, i.e. att; (as in

we see thatg(Ds(t)) < xE(Di(t)) + (1 — 2)E(Dy(t)). the algorithm) we havel,(t1) = Dyin(t1). Also, suppose
From above, we see that (3) involves an optimization of tat Lo (t1) # A(t; ). From the chosen, in step 2, it is clear
strictly convex functional over a compact convex set. Thullat L,(t) < A(t) in (to, t1]. Thus, if we pick a lineL; € F4

it has a unique minimizer i [30]. From Theorem I, the With slope close ta;, (= 3,), then L; would intersectA(t)
necessary condition for any admissible departure curveeto lpeyondt;. More precisely, there exists an> 0 such that any

the minimizer is that it must satisfy the optimality critemiand L1 € Fa with slope, < L} < 3, + € intersectsA(?) first at

since such a curve is unique, it must be the optimal solutioh> t1. Now, it follows that at the next iteration, starting from
time ¢, the new setF4, must at least contain all lines with

APPENDIXB slopes in(8,, 3, + €), hence, the optimal line starting at time
PROOF OFTHEOREMIII - Minimal Maximum Power 4 (at the new iteration) cannot have slope greater tha(3,
Consider an admissible departure curdét) that is not here refers to the optimal slope for the iteration@t Thus,
optimal. Let[a,b] be the interval over which the optimalitywe see that Lemma 3 is satisfiedtat
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Similarly, if in step 2, we have.,(t;) = A(t)(or A(t;)), also know thatZg(r,t) is an increasing function im, thus,
then, using a similar argument as above it can be seen ttiare cannot be any positive such that%g(r, ]per =0
starting from timet;, the new setFp  must at least contain (= & as taken). This gives®?!(t) = 0 and D°P¢(t) = 0, Vt.
all lines with slopes in(3,, 5, — €). Hence, the optimal line  Lastly, suppose thad°?*(T') = B > 0 and letk;, k2 be two
starting at timet; cannot have slope less thdty, and this distinctk values such thafOT r,?l’t(s)ds = OT r;ft(s)ds = B.
shows that Lemma 4 is satisfied fat Note that, if att; we Without loss of generality assunie > k;. From the earlier
have Lo (t1) = Dmin(t1) = A(ty), then, it does not matter arguments we know that whenevef”(t) > 0, we have
how the slope changes beyond o r?t(t) > r?!(t). Since B > 0, an interval exists over which

Thgs, we see that starting @i, 0), at every iteration of the r,‘i”t(t) ~ 0. Thus, we see thaf;)T szt(s)ds < foT szt(s)d&
algorithm (every constructed segmentiof()) Lemmas 2-4 \ nich jeads to a contradiction, hence there is a uniquelue
are satisfied. This implies that around every point where tlﬂ‘?at achieve*P(T) = B.
slope ofD.(t) changes we cannot construct an admissible line
segment (as outlined in Theorem 1); henék,(¢) satisfies the

optimality criterion.

APPENDIXE
PROOF OFLEMMA 6

As presented in Section 1lI-B, the two curve§(t) and
Dnin(t) for the BT-problem are A(t) = B, Vt € [0,T], and
Dpin(t) = 0,t € [0,T), Dpmin(T) = B. The admissibility
criterion is0 < D(t) < B and D(T) = B. Re-phrasing the
BT-problem as a calculus of variations problem we get [29]
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(which is also a sufficient condition in our case due to

convexity) the optimal valuer?!(t) satisfies, roP'(t) =

argmax,>o H(DP! r,t) = argmax,>o (g(r,t)+ A(t)r).

We also have\(t) = —92 = 0, which implies \(t) =

constant. Takingk = —A(¢) as the constant and sub-

stituting back in ther°P(¢) equation, we gety°ri(t) =

arg max,>o (g(r,t) — kr). The solution to this maximization Eytan Modiano received his B.S. degree in Elec-
is as given in (18). Sinceg(r,t) is strictly convex and trical Engineering and Computer Science from the
increasing inr, we have that* is unique. Finally, to ensure Eig'v,\jfss".tyar?; ﬁﬁB”ZZt;?ELSIbﬂﬂrﬁi E‘Ie(l:?r?cilagg_
that a total ofB units of data is transmitted by the deadlifie

gineering, from the University of Maryland, College
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PROOF OFLEMMA 7 where he was the project leader for MIT Lincoln
Let k1, ko be two positive values such that< k; < ko. Let Laboratory's Next Generation Internet (NGI) project. ®in&999 he has
een on the faculty at MIT; where he is presently an Assodratfessor.

opt opt . . .
T{h (t)., Ty (t) be the correspondlng optlmalt rate functions a%is research is on communication networks and protocols withresis on
given in (18). Suppose at timg we haver;”"(t) > 0, then, sateliite, wireless, and optical networks.

i it O ; ; ; ; He is currently an Associate Editor for IEEE Transactionslriormation
due to strict C0nveX|tya79(7"7 t) Is an increasing function of Theory, The International Journal of Satellite Communicatjoand for

and sinceky > k; the uniquer* value fork, must be greater |ggg/acm Transactions on Networking. He had served as a tgeitor

than fork;. This gives opt (t) > r"pt(t)_ If instead at timeg, for IEEE JSAC special issue on WDM network architectures; Goenputer
" ko k1 ' L.
Networks Journal special issue on Broadband Internet A¢ctke Journal of

opt _ opt . "
we havwkl (t) =0, Ehen’rkz (tt) can be either 0 or positive. Communications and Networks special issue on Wireless Adfktworks;
Thus, we see that”"(t) > r;™(t), Vt, with equality only if and for IEEE Journal of Lightwave Technology special issue @ptical
both are zero. This shows thmopt(t) is non-decreasing in. Networks. He was the Techmcal Program co-chair for Wiopp&0IEEE
. . ont . Infocom 2007, and ACM MobiHoc 2007.
For a givenk value, the uniqueness @°?*(¢) follows since
r* IS unique due to strict convexity.
Now supposé = 0, then, sincey(r, t) is increasing in- we
have%g(n t) > 0,Vr (a non-negative function of). But, we




