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Abstract—We study a novel hierarchical wireless networking O vBN
approach in which some of the nodes are more capable than ® RN
others. In such networks, the more capable nodes can serve as o

1

Mobile Backbone Nodes and provide a backbone over which
end-to-end communication can take place. Our approach corts
of controlling the mobility of the Backbone Nodes in order to
maintain connectivity. We formulate the problem of minimizing D\.
the number of backbone nodes and refer to it as the Connected
Disk Cover (CDC) problem. We show that it can be decomposed Fig. 1. A Mobile Backbone Network in which every Regular Nd&®) can
into the Geometric Disk Cover (GDC) problem and the Steiner directly communicate with at least one Mobile Backbone N@d&N). All
Tree Problem with Minimum Number of Steiner Points (STP- Ccommunication is routed through a connected network fortnethe MBNs
MSP). We prove that if these subproblems are solved separdie
by v- and §-approximation algorithms, the approximation ratio of
the joint solution is y+4. Then, we focus on the two subproblems Rubin et al. (see [24] and references therein) and by Gerla
and present a numb_er of distributed approximation algo_r_lthms et al. (e.g. [10],[29]). In this paper, we develop and anelyz
that maintain a solution to the GDC problem under mobility. A novel algorithms for the construction and maintenance éund
new approach to the solution of the STP-MSP is also described v g . ' . uct :
We show that this approach can be extended in order to obtain .node mobility) .Of a Mobile BaCkbOUe Network. Qur approach
a joint approximate solution to the CDC problem. Finally, we is somewhat different from the previous works, since we $ocu
evaluate the performance of the algorithms via simulation ad  on controlling the mobilityof the more capable nodes in order
show that the proposed GDC algorithms perform very well unde 15 maintain network connectivity and to provide a backbone
mobility and that the new approach for the joint solution can f liabl icati
significantly reduce the number of Mobile Backbone Nodes. or relia _e communication. .

A Mobile Backbone Network is composed of two types
of nodes. The first type includes static or mobile nodes (e.g.
sensors or MANET nodes) with limited capabilities. We refer
to them asRegular NodegRNs). The second type includes
|. INTRODUCTION mobile nodes with superior communication, mobility, and

IRELESS Sensor Networks (WSNs) and Mobile Ad¢omputation capabilities as well as greater energy ressurc

Hoc Networks (MANETS) can operate without anye.g. Unmanned-Aerial-Vehicles). We refer to themMabile
physical infrastructure (e.g. base stations). Yet, it hasnb Backbone Node¢MBNs). The main purpose of the MBNs
shown that it is sometimes desirable to constructiriual 1S to provide a mobile infrastructure facilitating netweskde
backboneon which most of the multi-hop traffic will be routedcommunication. We specifically focus on minimizing the num-
[4]. If all nodes have similar communication capabilitiesda ber of MBNs needed for connectivity. Yet, the constructién o
similar limited energy resources, the virtual backbone ma&Mobile Backbone Network can improve other aspects of the
pose several challenges. For example, bottleneck formati@etwork performance, including node lifetime and Qualify o
along the backbone may affect the available bandwidth aggrvice as well as network reliability and survivability.
the lifetime of the backbone nodes. In addition, the virtual Fig. 1 illustrates an example of the architecture of a Mobile
backbone cannot deal with network partitions resultingrfroBackbone Network. The set of MBNs has to be placed such
the spatial distribution and mobility of the nodes. that (i) every RN can directly communicate with at least

Alternatively, if some of the nodes are more capable th&ne MBN, and (ii) the network formed by the MBNs is

others, these nodes can be dedicated to providing a backbedenected. We assume disk connectivity model, whereby
over which reliable end-to-end communication can takegladwo nodes can communicate if and only if they are within
A novel hierarchical approach forMobile Backbone Network & certain communication range. We also assume that the

operating in such a way was recently proposed and studiedggmmunication range of the MBNs is significantly larger than
the communication range of the RNs.

The authors are with the Communications and Networking &ebeGroup, We term the problem of placing theinimumnumber of
MIT, Cambridge, MA 02139 (e-mail{anand3, gilz, modiarj@mit.edu). MBN h that both of th b diti isfied
This research was supported by NSF grant CCR-0325401, by @R S such that both of the above conditions are satisfie

N000140610064, and by a grant from Draper Laboratory. It alas sup- as theConnected Disk Cover (CD@roblem. While related
ported by a Marie Curie International Fellowship within tG#h European problems have been studied in the past [2],[4],[13],[:811[
Community Framework Programme. . . . . .

A preliminary version of this work appeared in ACM MOBIHO@p (S€€ Section Il for more details), this paper is one of the firs
Florence, May, 2006 attempts to deal with the CDC problem.

Index Terms—Wireless networks, Controlled mobility, Dis-
tributed algorithms, Approximation algorithms, Disk cover.



Our first approach is based on a framework thetomposes algorithmsfor the GDC problem in a mobile environment, as
the CDC problem into two subproblems. We view the CD@ell as the design of aovel Discretization Approacfor the
problem as a two-tiered problem. In the first phase, ti®lution of the STP-MSP and the CDC problem.
minimum number of MBNs such that all RNs azevered(i.e. This paper is organized as follows. In Section Il we review
all RNs can communicate with at least one MBN) is placedelated work and in Section Ill we formulate the problem.
We refer to these MBNs aSover MBNsand denote them in Section IV presents the decomposition framework. Distedu
Fig. 1 by white squares. In the second phase, the minimwpproximation algorithms for placing the Cover MBNs are
number of MBNs such that the MBNs’ network is connectegresented in sections V and VI. A new approach to placing
is placed. We refer to them &lay MBNsand denote them in the Relay MBNs is described in Section VII. A joint solution
Fig. 1 by gray squares. In the first phase, the Geometric Digkthe CDC problem is discussed in Section VIII. In Section
Cover (GDC) problem [15] has to be solved, while in théX we evaluate the algorithms via simulation. We summarize
second phase, a Steiner Tree Problem with Minimum Numbt@e results in Section X. Due to space constraints, someeof th
of Steiner Points (STP-MSP) [19] has to be solved. We shgwoofs are omitted and can be found in [26].
that if these subproblems are solved separatelybgnd §-
approximation algorithmsthe approximation ratio of the joint I
solution isy+d.

We then focus on the Geometric Disk Cover (GDC) prob- Several problems that are somewhat related to the CDC
lem. In the context of static points (i.e. RNs), this probleas Problem have been studied in the past. For simplicity, wreen d
been extensively studied in the past (see Section I1). Hewevscribing these problems we will use our terminology (RNs and
much of the previous work is either (i) centralized in naturd/BNs). One such problem is the Connected Dominating Set
(i) too impractical to implement (in terms of running time) problem [4]. Unlike the CDC problem, in this problem there is
or (iii) has poor average or worst-case performance. Rggenflo distinction between the communication ranges of RNs and
a few attempts to deal with related problems under nodéBNs. Additionally, MBNs’ locations are restricted to RNS’
mobility have been made [6],[13],[16]. locations. Similarly, the Connected Facility Location Iplem

We attempt to develop algorithms that do not fall in an{¢27] also restricts potential MBN locations. Furthermates
of the categories above. Thus, we develop a number Rioblem implies a cost structure that is not directly adaleta
practically implementablelistributed algorithmsor covering to that of the CDC problem. Lu et al. [20] study a Connected
mobile RNs by MBNs. We assume that all nodes can detezgnsor Cover problem [12], where the objective is to cover
their position via GPS or a localization mechanism. Thidiscrete targets while maintaining overall network cortivéy
assumption allows us to take advantage of location infaomat and maximizing network lifetime. The set of constraintshist
in designing distributed algorithms. We obtain the worstecaProblem can be mapped to the CDC problem. However, the
approximation ratios of the developed algorithms and ttbjective function and algorithmic approach are different
average case approximation ratios for two of the algorithms We note that Tang et al. [28] have recently independently
Finally, we evaluate the performance of the algorithms vf@rmulated and studied the CDC problem (termed in [28] as
simulation, and discuss the tradeoffs between the contjgexi the Connected Relay Node Single Cover). A centralized 4.5-
and approximation ratios. approximation algorithm for this problem is presented i8][2

Regarding the STP-MSP, [19] and [2] propose 3- and 4 section IV, we will show that our approach provides a
approximation algorithms based on finding a Minimum Spafé€ntralized3.5-approximation for the CDC problem.
ning Tree (MST). However, when applied to the STP-MSP, We propose to solve the CDC problem by decomposing
suchMST-basedalgorithms may overlook efficient solutions.it into two NP-Complete subproblems: the Geometric Disk
We present aDiscretization Approachthat can potentially Cover (GDC) problem and the Steiner Tree Problem with
provide improved solutions. In certain practical instantee Minimum number of Steiner Points (STP-MSP). Hochbaum
approach can yield a 2 approximate solution for the STP-M3Fd Maass [15] provided a Polynomial Time Approximation

We extend the Discretization Approach and show that it cattheme (PTAS) for the GDC problem. However, their algo-
obtain a solution to thgoint CDC problem in a centralized fithm is impractical for our purposes, since it is centrediz
manner. Even for the CDC problem, using this approat‘%‘q has a high running tl_me for reasonable approximation
enables a&-approximationfor specific instances. Due to thef@tios. Several other algorithms have been proposed for the
continuous nature of the CDC problem, methods such §PC problem (see the review in [S]). For example, Gonzalez
integer programming cannot yield an optimal solution. Thuf’] pPresented an algorithm based on dividing the plane into
for specific instances this approach provides the lowestvknoStrips. In [5] it is indicated that this is an 8-approximatio
approximation ratio. It is shown via simulation that thisaiso ~ lgorithm. We will show that by a simple modification, the
the case in practical scenarios. approximation ratio is reduced to 6. -

To conclude, our first main contribution is a decomposition Problems related to the GDC problem under mobility are

result regarding the CDC problem. Other major contributio@ddressed in [6],[13],[16]. In [16], a 4-approximate cahtr

are the development and analysisiitributed approximation ized algorithm and a 7-approximate distributed algorithm
are presented. Hershberger [13] presentseatralized 9-

1A ~-approximation algorithm for a minimization problem alsafinds a appr_OX|mat|0n a_lgorlthm for a slightly different .pl’Oblemhte_
solution with value at mosy times the value of the optimal solution. mobile geometricsquarecover problem. We build upon his
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TABLE |

2) The undirected grapty = (M, E) imposed onM (i.e.

NOMENCLATURE : ” :
Vk,l € M, define an edgék,l) € F if dy < R) is

Symbol Definition connected.
N={1,...,n} Set of RNs We will study both the case in which the nodes are static,
M ={di,...,dn} Se;gg'\"i‘(’)\‘;dmmes o RN and the case in which the RNs are mobile and some of the
R Communication ranges of RN and MBN  MBNS move around in order to maintain a solution the CDC
D Communication diameter of an RN)(= 2r)  problem. We assume that there exists some sort of MBN
Py, Set of RNs covered by MBM; routing algorithm, which routes specific MBNs from their old
qALGO Strip width for strip-based algorithm ALGO | ti to thei Th tual d | t of h
o Strip width as a fraction o (g = aD) ocations to their new ones. The actual development of suc
db, dft Leftmost, rightmost RNs covered by MBY¥;,  an algorithm is beyond the scope of this paper.
Meover (resp.Myeiay) || Set of MBNs that explicitly cover (resp. do We now introduce additional notation required for the

not cover) at least one RN ] . .

presentation and analysis of the proposed solutions (Table

includes some of the notation used throughout the paper). A
few of the proposed algorithms operate by dividing the plane

approach in order to develop distributed algorithm for the jnto strips. When discussing such algorithms, we assunte tha
GDC problem. Clustering nodes to form a hierarchical archhe RNs in a strip are ordered from left to right by their
tecture has been extensively studied in the context of @88l cgordinate and that ties are broken by the RNs’ identitias (e
networks (e.g. [1],[4],[8]). However, the idea of delibesly MAC addresses). Namely< j, if i, < j, ori, = j, and the

controlling the motion of specific nodes in order to maintaifp of ; is lower than ID ofj. We note that in property (1) of
some desirable network property (e.g. lifetime or connég)i

has been introduced only recently (e.g. [17],[21],[23]).

IIl. PROBLEM FORMULATION

the CDC problem it is required that every RN is connected to
at least one MBN. We assume that even if an RN can connect
to multiple MBNs, it is actually assigned to exactly one MBN.
Thus, we denote by, the set of RNs connected to MBN
d;. We denote byi" andd® the leftmost and rightmost RNs

We consider a set oRegular Nodes(RNs) distributed connected to MBNI; (their z-coordinates will be denoted by
in the plane and assume that a set Mbbile Backbone (dF), and(df),). Similarly to the assumption regarding the
Nodes(MBNs) has to be deployed in the plane. We denoféNs, we assume that the MBNs in a strip are ordered left to
by N the collection of Regular Nodes{1,2,..., n}, by

M = {di,da,...

,dm} the collection of MBNs, and byl;;

right by thex-coordinate of their leftmost RN(¢F)..).
In order to evaluate the performance of tdestributed

the distance between nodeand;. The locations of the RNs algorithms we define the following standard performance

measures. We define th&me Complexityas the number

are denoted by the — y tuples (i, i,) Vi.
We assume that the RNs and MBNs have both a co®f communication rounds required in reaction to an RN
munication channel (e.g. for data) and a low-rate contrglovement. We assume that during each round a node can
channel. For the communication channel, we assume the dife¢hange errorless control messages with its neighbors. We

connectivity model. Namely, an RN can communicate bi- define theLocal Computation Complexitgs the complexity of
directionally with another nodg (i.e. an MBN) if the distance the computation that may be performed by a node in reaction
betweeni and j, d;; < r. We denote byD = 2r the toits (or another node’s) movement. We assume that the nodes
diameter of the disk covered by an MBN communicatingi@intain an ordered list of their neighbors. Hence, the Loca
with RNs. Regarding the MBNs, we assume that MBsan Computation Complexity refers to the computation required
communicate with MBNj if d;; < R, whereR > r. For 0 maintain this list as well as to make algorithmic decision
the control channel, we assume that both RNs and MBNs can

communicate over a much longer range than their respective IV. DECOMPOSITIONFRAMEWORK

data chgnngls. Since given a fixed transmission power, th%n this section we obtain an upper bound on the performance
communlcatlon range is inversely related to data rate,uhlsof an approach that solves the CDC problem by decomposing
a vaI|d.assumpt|0n. _ it and solving each of the two subproblems separately. The fir
~ Atthis stage, we assume that the number of available MBN§,oplem is the problem of placing the minimum number
is not bounded (e.g. if required, additional MBNS can bgt coyer MBNssuch that all the RNs are connected to at
dispatched). Yet, in our analysis, we will try to minimizggat one MBN. In other words, all the RNs have to satisfy
the number of MBNs that are actually deployed . Finally, Wgp|y hroperty (1) in the CDC problem definition. This problem

assume that all nodes can detect their position, either P8 G5 the Geometric Disk Cover (GDC) problem [15] which is
or by a localization mechanism. We shall refer to the problefg,ulated as follows:

of Mobile Backbone Nodes Placement as the Connected Di

Kk
Cover (CDC) problem and define it as follows Eroblem GDC: Given a setNV of RNs (points) distributed in

] o . the plane, place the smallest set of Cover MBNs (disks)
Problem CDC: Given a set of RNs ) distributed in the gych that for every RN € N, there exists at least one MBN
plane, place the smallest set of MBN&/} such that: j € M such thatd;; < r.

1) For every RNi € N, there exists at least one MBN The second subproblem deals with a situation in which a
j € M such thatd;; <r. set of Cover MBNsis given and there is a need to place



the minimum number oRelay MBNssuch that the formed

C (e (T O—e—
network is connected (i.e. satisfies only property (2) in the/d MmN < ‘o 2
CDC problem definition). This subproblem is equivalent to [® RN @)

e ——

the Steiner Tree Problem with Minimum Number of Steiner
Points (STP-MSP) [19] and can be formulated as follows: (b)

Problem STP-MSP: Given a set of Cover MBNSM .oye:r) Fi i _— ) .
Lo . ig. 2. Tight example of the approximation ratio of the deposition

distributed in the plane, place the smallest set of Relay BIBMigorithm: (a) optimal solution and (b) decomposition aigmn solution

(Myeiay) such that the undirected gragh= (M, E') imposed

onM = Meoper UMyeay (i.€.VE,l € M, define an edgék, )

if di; < R) is connected. of the CDC problem, where << r refers to a sufficiently

We now define ecomposition Based CDC Algorithamd Small constant. Also shown is the optimal solution with cost
bound the worst case performance of such an algorithm. MBNS. Fig. 2-b shows a potential solution obtained by using
Definition 1: A Decomposition Based CDC Algorithmth® decomposition framework (with = § = 1), composed of
solves the CDC problem by using approximation algo- an optimal disk cover and an optimal STP-MSP solution. The

rithm for solving the GDC problem, followed by usingsa C€OStiSn +n —1 = 2n — 1 MBNs. This example highlights
approximation algorithm for solving the STP-MSP. the fact that under the Decomposition Framework, the cover

Theorem 1:For R > 2r, the Decomposition Based cpcMBNs are placed without considering the related problem of
Algorithm yields a( + §)-approximation for the CDC prob- Placing the relay MBNs. _ o
lem. Although in the next sections we mainly focus on distributed
Proof: Define ALGO as the solution obtained by thedlgorithms, we note that if a centralized solution can be
Decomposition Based CDC Algorithm. Also, defiHéGO..,, tolerated, the approximation ratio of the GDC problem can

andALGO, ., as the set o€overandRelayMBNs in ALGO. D€ very close to 1 (e.g. using a PTAS [15]). Similarly, the
Specifically, an MBNa; is aCoverMBN if it covers at least 1 lowest known approximation ratio of the STP-MSP solution

RN (i.e.P,, # 0). Otherwiseq; is a Relay MBN. Next, define (obtained by a centralized r_zllgorith_m) is 2._5 [3]. Therefdn_ye
OPTepe as the overall optimal solution similarly broken upTheorem 1, theframework immediately yields a centralized

into OPTE,. and OPTES, .. Thus we have that, 3.5—§1pprpxi_mation algorithm for the soI.ution of the CDQ b+’O.
lem# This improves upon the centralized 4.5-approximation

|ALGO| = |ALGO.oy|+ |ALGO,..| algorithm, recently presented in [28]. Since both alganish
< 4 |OPTeos| + 6 - |OPTALGO - cov—rel use a PTAS, their respective complexities are quite higle. Th

key point with respect to our Decomposition Framework is
where OPT.,, represents the optimal GDC of the RNs, an¢hatany future improvement to the approximation ratio of the
OPTALGO-cov—rel TEPrEsents the optimal STP-MSP solutios TP-MSP will directly reduce the CDC approximation ratio
connecting the Cover MBNs placed by the approximate
GDC algorithm,ALGOcoy- _ V. PLACING THE COVER MBN'S - STRIP COVER
Next, we make use of the fact that giverl.GO.,, as the .
input Cover MBNs, a candidate STP-MSP solution can be Hochbaum and Maass [15] introduced a method for ap-

constructed by placing MBNs in the positions defined by tHgoaching the GDC problem by (i) dividing the plane into

nodes iNOPTope. This is a valid STP-MSP solution, sincefdual width strips, (i) solving the problem locally on the

ALGO.. is a valid GDC for the RNs. and therefore. ever oints within each strip, and (iii) taking the overall satut as
MBN in ALGO.. is at most a distance away fromsome the union of all local solutions. Below we present algorithm

RN. SinceOPTE3,. is also a valid GDC, it follows that every that are based on this method. These algorithms are actually
MBN in ALGO.,., is at most a distancgr from someMBN two different versions of a single generic algorithm. Thstfir

in OPTE,.. Therefore, as long a& > 2r, the MBNs in v_ersion chally covers the strip with rectangles encapedlm
ALGO.py U OPTepe: form a connected network. FinaIIy,d',Sks Whlle the second version locally covers thg str_lpcdlye
SiNCe OPTALGO con_rer TEPresents an STP-MSP solutioﬁ’v'th disks. We then generalize (to arbitrary strip widthsg t

that must have a lower cost than this candidate solution, \ﬁgeCtS_Of solvmg_the proble_m '903”3/ In strips an_d l_Jse this
have that extension to provide approximation guarantees. Finailhces

we are interested in distributed algorithms, we briefly désc
< 4 -|OPTepu| + 6 - (|OPTES | + |OPTEL |)  the distributed implementation.
< (v+9) [OPTESc| +6 - [OPTE b
< (y+90)-|0PTcpel, A. Centralized Algorithms

|ALGO|

For simplicity of the presentation, we start by describing

where the second line follows from the fact that the optimﬁl1e centralized algorithms. The two versions of the Strip

GDC for the RNs is of lower cost tha PTE% .

According to Theorem 1, even if the two subproblems a
solved optimally (i.e. withy = ¢ = 1), this yields a 2-
approximation to.the. CDC PrOblem- A tight exam.ple of this 2yyhen we useour distributed algorithms (presented in the following
fact is illustrated in Fig. 2. Fig. 2-a shows amode instance sections) within the framework, the overall approximatiatio is higher.

rCover algorithm $trip Cover with Rectangles SCR and
§trip Cover with Disks SCD) appear below. In line 6, the



e e version of thel-center problerh Many algorithms for solving

/ ) N/ N this problem exist, an example being @n logn) algorithm
aD| |1 \\f A o . due to [14]. We will show that solving the 1-center problem
\L N Z SN\ instead of compactly covering rectangles (as done in the SCR
(dr)="q,~ d,” & algorithm) provides a lower approximation ratio.
Fig. 3. An example illustrating step 9 of the SCR algorithm The CompUtat'onal compIeX|ty of the SCR algomhm IS

O(nlogn), resulting from sorting the points by ascending
coordinate. In the SCD algorithm the 1-center subrouting ma

first version (SCR) calls th&kectanglesprocedure and the potentially need to_be executed as many(is) times for_
second one (SCD) calls thBisks procedure. The input is each of _the_O(n) d'3k52 placed. Therefore, the cc_)mpu_tatlon
a set of points (RNSV = {1,2,....n} and their (z,y) complexity is O(C(n)n?), where C'(n) is the running time

coordinates, (i, ,) ¥i. The output includes a set of disksOf the 1-center subroutine used in steps 12 and 17. By using

(MBNS) M = {dy,ds,...,d,,} and their locations such that® binary search te_chnique to find the maxin#gl, we can

all points are covered. The first step of the algorithm is fgwer the complexity taO(C(n)nlogn).

divide the plane intoK strips of width gsc = aD (recall )

that D = 2r). The values ofgsc that guarantee certainB- Worst Case Performance Analysis

approximation ratios will be derived below. We denote the Let algorithm A denote the local algorithm within a strip,

strips by S; and the set of MBNs in stri; by Ms;. and let |As;| denote the cardinality of the GDC solution
found by algorithmA covering only the points in strif;.

Algorithm 1 Strip Cover with Rectangles/Disks (SCR/SCD)'BEt algo_rithmlB r(_e[;:ﬁzelnt thl(le ovgrrlgll algor:ithm, whi(;:h v;prks
~divide the plane Intok strips of widthgso = aD y running algorit ocally within each strip and taking

=

2 Mg, — O,¥j =1,...,K the union of the local solutions as the overall solution. im o
3: for all stripsS;,j =1,...,K do case algorithmB is either the SCR or SCD algorithm and
4:  while there exist uncovered RNs if; do algorithm A is composed of steps 4-7 within the for loop.
5: let i be the leftmost uncovered RN ify; Let |OPT)| represent the cardinality of an optimal solution
3 (]:\3! Riczgglssi or call Disks() of the GDC problem in the plane an@PTs; | the cardinality
8 return Oj Mg, I of an optimal solution for p0|nt§ exclusively WI'[I‘.]I.I’] str@,».
Procedure Rectangles) Note thatOPT # | Jg, OPTs,, sinceOPT can utilize disks
9: placean MBN d;, such that it covers all RNs in the rectangulaccovering points across multiple strips. Finally, I8 denote
area withz-coordinateiz iz + v'1 — a*D] the worst case approximation ratio of algorithin Namely,
;?c;cr:éﬂrrg D‘%k%) Z 4 is the maximum of Ag, | /|OPTs,| over all possible point-
11: P, — O {set of RNs covered by the current MBa#} set configurations in a.strlﬁj._ S|m|IarIy,.Iet Zp denote the
12: while P;, Ui coverable by a single MBN (diskjo worst case approximation ratio of algorithi
13: Py, «— Pg, Ui We characterizé/p as a function oZ 4. Namely, if¢ < D,
Ei if tgreefaekafe no more RNs in the sttipen the cardinality of the solution found by algorithBis at most
16:  let ¢ be the next leftmost uncovered RN Ky not currently ([%1 +1)Z4 times t_hat of the optimal solution®)’T’|. The
in P, proof can b_e found in [261. . _ . _
17: place MBN (disk) dx such that it covers the RNE,,, Observation 1:1f the strip width isq < D, a single disk
18: return dy, can cover points from at mo$f%] + 1) strips.

Lemma 1:1f the strip width isq < D, Zp = ([2]+1)Za.

An example of the SCR algorithm and in particular of step W& now show that in the SCR algorithr#,, = 2. This
9 in which disks are placed such that they compactly covBPProximation ratio is tight, as illustrated in Fig. 4-a. We
all points in the rectangular area withcoordinate range, provide an inductive proof, since a similar proof methodgio
to iy + /1 — a2D is shown in Fig. 3. will be used in order to obtain the approximation ratios @& th

As mentioned above, Gonzalez [9] presented an al or'th‘?ﬂ"er GDC algorithms.
! v zalez [39] p IO emma 2:1f the strip widthgsc < Y3D | steps 4-7 of the

for covering points with unit-squares. It is based on divgli ) . L2 .

the plane into equal width strips and covering the points ﬁCR algorithm prqwde a_2-apprOX|mat|on algorithm for the
each of the strips separately. In [5] it was indicated thaukmvaDC proplem w_|th|n a strip. .

the same algorithm is applied to covering points with uni Proof: Consider some strif§. Let OPTs = {d, da, ...,
disks, the approximation ratio is 8. The SCR algorithm {dorrs|} @nd ALGOs = {a1,az,. .., ajarcogs ) denote an
actually a slight modification to the algorithm of [9]. Undikn optimal |n.-str|p solutpn and SCR in-strip subroutine fiste
[9], in our algorithm we allow the selection of the strip widt 4-7) solution, respectively. Recall that we assume that the

This will enable us to prove that the approximation ratio fo'}/”?”\lS of bothOPTs and ALGOs are ordered from left to

covering points with unit disks is actually 6. irflg?;Lb)y Z;C(()gz?'r)'atgi:;}hec;zg;l%t Cz\éetrﬁgbg,? 'Qlt ((I)Zr?fhrjn
The SCD algorithm requires to answer the following ques- ‘¢ /¢ — V77 /¢7 Y. @om m &g

tion ('n. Step _12): can a set Of. p9|nTBdk Ui be Cove.re_d 3The 1-center problem for a set of poiniis to find the location of the

by a single disk of radius? This is actually the decision centerfrom which the maximum distance to any point fhis minimized.



\0 RN ~ OPT iSCR/SCD\ /‘—7&“\\ Theorem_ 3:If_ % < qsc < @, the SCD algorithm is a
N S “5t 4.5-approximation algorithm for the GDC problem.

\
D|| | ¥
@ I \ \ * )

C. Average Case Performance Analysis

~= — -
< Up to now we discussed thesorst caseperformance. We
@ ®) "= now wish to bound the approximation ratios in theerage
Fig. 4. Tight examples of the 2 and 1.5 approximation ratibtained by case We assume that the RNs are randomly distributed
the in-strip subroutines of the (a) SCR and (b) SCD algorthm according to a two dimensional Poisson process of density
A nodes/unit?. A key property of such a distribution is

disk (from the left) corresponding to the disk that covers ththat when the number of RNs is given, their positions are

rightmost point covered by the:" OPTs disk d,,. independent and each _unlformly distributedin the plane.
. . .. Due to the random locations of the RNs, the number of MBNs
Let gs¢ = aD,a < 1. We now prove by induction that if

o < +/3/2, the in-strip subroutine has approximation ratio I.ac.ed by an opt-|mal algorithm¢)PT'| is a random var_|able.
2, 1.e. [ALGOg| = b < 2|OPTy| imilarly, we define|SCR| and |SCD| as random variables
g felon S| — IOPTsl — Sl

Base CaseThe area covered byd; (the leftmost optimal fﬁ;rzsggng:ngrti?hmg n\x/rgbdegﬁ%fedltf;s/ep;fce?dabyr;[)f;((iemsa%(lfnand
disk) is bounded by a rectangle withcoordinate rangéd’).. 9 ' ge app

(the z-coordinate of the leftmost point) t@i%), + D. The ratios fscr andfsop as,

minimumarea covered by two SCR algorithm disks whose Bscn = E[SCR]] op = E[|SCD|]

leftmost point is(dX), is a rectangle with:-coordinate range E[OPT|)’ E[|OPT]

(df)z to (df)s +2V1—a?D. Thus, if 2y/1—a?D > D, |t should be noted thaBsc p differs from the expected value
by < 2. This condition is met ifysc < V3D /2. of the approximation ratio (e.gE[|SCR|/|OPT]|)). Yet, it

Inductive Step:Assume that the in-strip algorithm usesrovides a good measure of the average performance.
no more than2m disks to cover all the points covered by The following theorem and corollary bound the average
di,...,dp (i.e.b, < 2m). Consider the number of additionalapproximation ratios of both the SCR and SCD algorithms
disks it takes for the algorithm to cover the points covergd lfsince SCD always outperforms SCR). The proof of the
di,...,dm,dy, 1. Since all of the points up to the rightmosttheorem is by combining the results of the following lemmas.
point of d,,, are already covered, by the same argument @e proofs of the lemmas and the corollary can be found in
the base case, the algorithm will use at most 2 extra diskfe Appendix.
to cover the points covered hy,,.,. It thus follows that if ~ Theorem 4:Given RNs distributed in the plane according
¢ <V3D/2, b1 < by +2<2m+2=2(m+1). B to a two dimensional Poisson process with density

By C(_)mbi_ning tr_\e results of Iemma_s 1 and 2, we obtain the D2\ + 2DV + 1
approximation ratio of the SCR algorithm. Bscp < Bscr < =— .

Theorem 2:If £ < gg¢ < @, the SCR algorithm is a avl—a*DiA+1
6-approximation algorithm for the GDC problem. Corollary 1: If ¢ = 2, thengscon < fscr < 3.

Proof: Define algorithm A as the in-strip subroutine offhe consequence of the above is that although the worst case

the SCR algorithm (steps 4-7) and algorithm B as the SGproximation ratios of the SCR/SCD algorithms are 6 and
algorithm. From Lemma 2, foy < v/3D/2, Z4 = 2. From 4.5 (respectively), selecting a specific strip width resuit
Lemmal,Zp < Z4([D/q]+1), the minimum value of which an average approximation ratio which is bounded by 3. It
(for ¢ < D) is 3Z4. This is attained when > D/2. m s interesting to note that this strip-width lies in the rang

In the lemma below we show that for the SCD algorithriequired for the worst case analysis of theorems 2 and 3.
Z 4 = 1.5. The proof (omitted for brevity and can be found in Lemma 4:Given a strip widthg = oD, and anL x KaD
[26]) follows from an inductive argument very similar to thaplanar area,

1)

of Lemma 2. The key difference is that given a leftmost RN AaDLK
covered by an OPT disk;, if either (i) d; is the rightmost OPT E[lSCR|] < Avl—a2D?+1

disk or (ii) (df")., < (df4,), then the SCD algorithm willonly | o 5. Given anl x KaD planar area
use 1 disk to cover the RNs covereddy In contrast, in such '
a case the SCR algorithm may still use 2 disks. E[|OPT|] > KLlo‘D -
Lemma 3:1f gso < @, steps 4-7 of the SCD algorithm D2+ 5+ 5
provide a 1.5-approximation algorithm for the GDC problem Finally, note that for a large number of RNs, the assumption
within a strip. that they are uniformly distributed is perhaps not reatisti
Combining this result with Lemma 1 (similarly to thejn general, the RNs may tend to cluster together, resulting
derivation of Theorem 2), we obtain the approximation ratigy nodes concentrated within single strips (rather thaeagpr
of the SCD algorithm. The approximation ratio for the inigstr across a large number of strips). This will result in a better
subroutine of the SCD algorithm is tight, as shown in Fig. 4-Bverage case performance, since the strip-based algsrithen
For the problem instance presented in the figure, the optiniabst effective when covering RNs within a single strip. Thus
solution requires 2 disks, whereas the SCD algorithm aIwag§CD and Sscr derived in this section are actually upper
places 3 disks. bounds on realistic average approximation ratios.



D. Distributed Implementation more tailored to frequent node movements. In particulas it

The SCR and SCD algorithms can be easily implementedqﬁs"able to develop_algorithms that azgaptive i.e. require
a distributed manner. The algorithms are executed at the RNYY 0cal updates in response to local node movements.
and operate within the strips. The SCR algorithm executed!8¢ this section we present such an algorithm which builds

an RN is described below. Recall that we denote the RNEPON ideas presented in [13]. Hershberger [13] studied the
within a strip according to their order from the left (ile< j Problem of covering moving points (e.g. RNs) with mobile

if i, < j.). Ties are broken by node ID. unit-squares (e.g. MBNs). Since thedimensionalsmooth
maintenance schemgroposed in [13] does not easily lend

Algorithm 2 Distributed SCR (at RN) itself to distributed implementation, we focus on thienple
initialization 1-D algorithmproposed there.

1: let G; be the set of RNg such thatj < i andi, — j» < D Applied to our context, the Simple 1-D algorithm covers

2. if G; = O then mobile RNs along the strip with length rectangles (MBNSs).

3:  call Place MBN The key feature is that point transfers between MBNs are
Construction and Maintenance localized Namely, changes do not propagate along the strip.

4: if MBN Placedmessage receivetthen . .
= call Place MBN According to [13], the algorithm has a worst case perforneanc

6: if 7 is disconnected from its MBN or enters from a neighborin§atio of 3" Extending theSimple 1-D algorithmof [13]

strip then to diameter D disks is not straightforward. We will first

7. if there is at least one MBN within distancethen show that an attempt to simply use rectangles encapsulated
gf nglsne %g‘ﬁ I;;LZGSK/?BNBNS in disks without any additional modifications results in a 4-
Procedure Place MBN approximation to the GDC problem within a strip. Then, we
10: let i"* be the rightmost RN s.(i"), < iz +v/1 —aZD will present the MObile Area Cover (MOAC) algorithm which

11: place MBN d}, covering RNsj, wherej, € [ix, (i7).] reduces the approximation ratio to 3.

12: it (1% 4+ 1), — (%), < D then We define the strip width agy,oac = aD. We reduce

13:  sendan MBN Placedmessage to" + 1 disks to the rectangles encapsulated in them and use these

rectangles to cover points within the strip, as was depitted

Every RN that has no left neighbors within distange Fig. 3. The rectangles cover the strip wid#I{) and their
initiates the disk placement procedure that propagatesgaldength isat mosty'1 —a?D. We setD = 1 anda = /5/3
the strip. The propagation stops once there is a gap betwéegsulting inv1 —a?D = 2/3). These are arbitrary values
nodes of at leasD. If an RN arrives from a neighboring selected for the ease of presentation. Yet, the algorithch an
strip or leaves its MBN’s coverage area, it initiates thekdighe analysis are applicable to ah§2 < o < v/5/3. We restate
placement procedure that may trigger an update of the MBNRe set of rules from [13] using our terminology and assuming
locations within the strip. Notice that MBNs only move wherfunlike [13]) that the rectangles’ lengths are at most 2/3.
a recalculation is required. Although the responsibility t
place and move MBNs is with the RNs, simple enhancememtigorithm 3 Simple 1-D [13] withv/1 — a2D = 2/3
would allow the MBNs to repOSitiOI’l themselves during th@ initialize the cover greedib{using the SCR a|gorithﬁn
maintenance phase. If after a recalculation, an MBN is notmaintain the leftmost RN and rightmost RN of each MBN
repositioned, then it is not required and can be used elsewhe rectangle .
The time complexity (i.e. number of rounds) @(n). The 2 if two adjacent MBN rectangles come into contten

. A ) . exchangetheir outermost RNs
computation complexity i$)(logn). Control information has 3 If a set of RNs covered by an MBN becomes too loftge

to be transmitted between RNs over a distante- 27. separation between its leftmost and rightmost RNs becomeesey
The distributed SCD algorithm is similar to the distributed than 2/3 then _ _
SCR algorithmThe main difference is that in Step 10Rifice split off its rightmost RN into a singleton MBN

check whether rule 4 applies
if two adjacent MBN rectangles fit in a 2/3 rectantfen
merge the two MBNs

MBN, :% is defined as the rightmost coverable point (by 3
single disk of radiusr), given thati is the leftmost point.

Finding this point requires solving 1-center problems. mhe
in Step 11 a disk that covers all the points betweeamd i ? . .
should be placed. The time complexity of the distributed SCD ' N€ following lemma provides the performance guarantee of

algorithm is agairO(n). The local computation complexity is this algorithm. The proof foIIovys a similar inductivg metho
O(C(n) log n) to calculate the value aft, whereC(n) is the ology as that of Lemma 2, with the key observation that at
running time of the 1-center subroutine used. most 5 algorithm MBNs can cover RNs covered by a single

optimal MBN. Notice that since the changes are kept local,
the approximation ratio holds at all time (i.e. there is nede
to wait until the changes propagate).

A. MObile Area Cover (MOAC) Algorithm Lemma 6: The Simple 1-D algorithm [13with /I — a2 =

In the SCR and SCD algorithms, an RN movement may/3 is at all timesa 4-approximation algorithm for the GDC

change the allocation of RNs to MBNs along the whole strip.
9 9 P 4We note that using the same inductive proof methodology] fsre emma

Thuls' althouQ_h Fhey may operate well in a r.elatively Stat.ﬁ‘: one can show that the simple 1-D algorithm actually maistea 2-
environment, it is desirable to develop algorithms that aegproximation at all times.

V1. PLACING THE COVER MBNS - MoBILE COVER
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Fig. 5. Worst case example for the performance of the Simydealgorithm: 8:

(a) algorithmic solution and (b) optimal solution. The nwentof optimal 9
MBNSs is denoted byk.

10:

11:

problem within a strip.
Recall that the overall solution to the GDC problem in thgs.
plane involves combining the solutions obtained in everipst 1a4:
Due to lemmas 1 and 6, if implemented simultaneously if5:
every strip, the algorithm provides a 12-approximationtfo
GDC problem in the plane, which is relatively high. We nowl?
focus on enhancements that reduce the approximation rajip
while maintaining the desired locality property. 19:
Fig. 5 presents an example which shows that the approx-
imation ratio described in Lemma 6 is tight. It is showr??:
that optimal MBNd; can cover RNs that are covered by 421,
algorithm MBNs. Two of these algorithm MBNs cover RNs
that are within2/3-length rectangles, while the two otherz2:
cover a single RN. Similarlyj, covers RNs from 4 additional 23:
algorithm MBNs, and so on. Optimal MBN,. covers RNs 24
from exactly 3 algorithm MBNSs that have not been covered b$>:
optimal MBNs {d, ..

.,dk_1}. The resulting approximation M%r e

Initialization
1: cover the RNs with MBNs using the SCR algorithm
2: for all MBNs : do

Li —df Ri —d + 2
Pdi < all RNs within [Li, RZ]

k Maintenance
5: if an RNp € P, movesright such thatp, > R; then

if Lj <p.<Rj,j#1i{pind;'sdomaint then
remove p from Py,
else if [p, — Li| < Z then
stretch L; and R; to maintain invariant (1) by setting
R; «— pz and L; < max(L;, px — %)
else{p not in the immediate domain of any MBN

remove p from Py,

Disconnection
12: if at any time there exists an uncovered Rihen

if for some MBNd;, L; < p, < R; then
Py, — Pa; Up
else If for some MBNd;, L; and R; can bestretchedto
include p while maintaining invariant (2Jjhen
de — de Up
stretch L; and R; to maintain invariants (1) and (2)
else{p cannot be covered by an existing MBN
let d;—1 andd,;+. represent the MBNs to the left and right
of p
if [Ljy1 — R;—1| > % {i.e. enough “open space” to
maintain invariant (2) then
create MBN d; with P;, = p and|R; — L;| > § while
maintaining invariant (3)
else{< 1 space aroung}
shrink MBN d;_; such thatR; 1 = p, — =
create MBN d; with L; = p, — + and R; = p.
Py;_, « all points in[L;_1, Rj—1]
Py; — all points in[L;, R]

ratio is(4(k—1)+3)/k ~ 4. One of the sources of inefficiency 27 if there exists MBNd; such that|(df), — (dF).| < 2 or

is the potential presence eflength MBNs (e.g. covering a
single RN) that cannot merge with theély3-length neighbor 28:

|(d?)z - (djL)z| S % then

merge d; into d;

MBNs. Thus, up to 5 MBNs deployed by the Simple 1-D

algorithm may cover points which are covered by a single The MOAC algorithm is described below. It consists of

optimal MBN (e.g.d2 in Fig. 5). As I_ong_as such Narrow 1es regarding construction and maintenance of the MBNs’
MBNs can be avoided, a better approximation can be achieve§jins. |n particular, thanitialization phase that places the
we now m_od|fy_the Simple 1-D algorithm to _y|eld the MOACy1gNs and constructs their domains is described in lines 1-4.
algorithm in Whl_chs-length MBNS cannot exist. ._In order to initially cover all the RNs, the MBNs are placed
B_e_f(_)re describing the a_llgorlth_m, we make the fOIIOW'n%ccording to the SCR algorithm. Then, for each MBN, the
o!efmltlons. For M_BN d;, in addition toths leftmost qnd left and right domain boundaried.( and R;) are set as the
rightmost RNs, defined earlier, @ andd;?, we also define o dinates of the leftmost RN covered by the MBN and
L; and Rl as the_x—coordlngtes of its left and. ”9“"0”‘3'” the rightmost edge of the rectangle generated by SCR (recall
boundaries. The interpretation of MB&'s domain is that any the example in Fig. 3). In line 4 all the RNs within the
point in the_:c-range Of[Ls, Rq] will automatiqa!ly become a 1, ndaries are associated with the MBN. Sincedoioac,
member point of MBNd?‘ Recall that by definition MBN; SCR generate8/3-length rectangles, at the end of the phase
Is 1o the left of MBNdj it (df)s < (df)z . .. all the invariants hold.
The MQAC. a'g‘?”th”? operates _thr_nn strips and_m_amtams TheMaintenancehase (lines 5-11) takes care of a situation
the _followmgmvanantsm each strip (in order of priority) at in which an RN leaves its MBN's domain boundd&njt the
all times, f0.r ever-yll\-/IBNdi: RN moves into a domain of another MBN, it is removed from
1) Domain definition:L; < (df)e < (dfY)s < R the set of RNs covered by the MBN. The Disconnection phase
2) Domain Ign_gt_ﬁ: 3 <IRi—Li| <3. will immediately take care of assigning it to the new MBN.
3) Domain disjointnessL;, R;|(\[L;, R;] = @,Vd; € M. otherwise, the algorithm tries to move the right boundaghsu
4) Domain influencevp € N, L; < p. < Ri < pz € P+ that the RN will be covered and the MBN’s domain will be

5The upper bound is the coverage length of a MOAC MBN (heretrariliy at most 2/3 (We refer to such an operation as stretclﬁi{)g

chosen as/1 — a2D = 2/3). To maintain the algorithm’s properties, the
lower bound should be half of the upper bound and their sunuldhioe at
least one. In addition, due to Lemmad,> 0.5 has to hold.

8For brevity, we only state the operations when an RN movesdaight
of the boundary (there are analogous operations for a leftwaovement).



Finally, if the RN cannot be covered by stretchify, it is non-mergeableMBNs move into the same area. Based on

removed from the set of points covered by the MBN. Ththis premise, we present the Merge-And-Separate (MAS)

Disconnection phase will immediately create a new MBN faalgorithm, as an algorithm which merges pairwise disks @her

it. possible (similar to the MOAC algorithm) and separatesgjisk
The Disconnection phase takes care of cases in whichiftoo many mutually non-mergeable disks concentrate in a

RN is disconnected from its MBN (as described above) arsthall area. As will be shown, the MAS algorithm retains some

cases in which an RN enters from a neighboring strip. In tloé the localized features of the MOAC and obtains a better

simplest cases, such an RN joins an existing MBN whogerformance ratio. However, this comes at a cost of incrkase

boundaries may have to be stretched in order to cover it. Iscal computation complexity.

other cases, a new MBN is created in order to cover the RN.We define the strip-widths ag; 45 = oD and setD =1,

It has to be carefully created such that its domain length is@ = v/5/3, V1 —a? = 2/3. These are arbitrary values

least 1/3. Note that the operations in lines 22-26 can alwagglected for the ease of presentation, the algorithm and the

be accomplished without violating invariant (2). This iseduanalysis are applicable to afly5 < o < v/3/2. Let TR

to the fact that an MBNd; is created for poinp only if andzy, ., bethez-coordinates of the rightmost and leftmost

Ipx — Lj—1] > 2/3 (otherwise MBNd;_; would have been points of { Py, U Py; U Py, }. The algorithm is initialized by

stretched to covep), which implies there is enough space focovering the nodes within a strip with MBNs by using the

two MBNSs of size greater or equal to 1/3 to coexist. distributed SCR algorithm. The algorithm that then operate
Finally, in theMergephase, two neighboring MBNs have toat an MBN d; is described below. We note that as in the

be merged since all their RNs are within a 2/3-long intervaprevious algorithms, most of the operations are performed i

It can be initiated by movements of some of the RNs deaction to an RN movement. However, in order to maintain

immediately following the previous phases. Following th¢he locality of the algorithm, the Separation operation is

merge in line 28, the MBN should update ifs, and R; performed periodically at each MBN. Fig. 6 demonstrates the

such that the domain will include all RNs and will satisfySeparation done at lines 8-11. For correctness of the #igori

invariant (2). This is always possible, since the two mergade assume that both the merge and separate operations can be

MBNs satisfy the invariants prior to their merger. We notexecuted atomically (i.e. without any interrupting openay.

that the algorithm can be implemented in distributed manner

by applying some of the rules at the MBNs and some of thefdgorithm 5 Merge-and-Seperate (MAS)

at disconnected (i.e. uncovered) RNs (it should be clean frdnitialization _ _ _

the context where each rule should be applied). 1: cover the RNs W|.th.MBNs using the SCR algorithm

. . 2. Py «— all RNs within [L“RZ]

The following lemma provides the performance guarant%rgel

of the MOAC algorithm within the strip. Its proof is almost 3. for all MBNs d;, within 2D of d; do

identical to that of Lemma 6. The main difference is that4: if {P,, |J Pa,} can be covered by a single MBtien

due to the enforced Domain invariants, at most 4 algorithn¥®: ~merge d; anddy,

MBNSs can cover RNs covered by a single optimal MBN. FromepParation

. . . 6: for all MBN pairsd;, dr within 2D of d; do
Lemma 1 it follows that if MOAC is simultaneously executed ;. CRe, b — TLg, | < 2D then

in all strips, it is a 9-approximation algorithm. 8: separate and reassigrMBNs and RNs such that
Lemma 7:The MOAC algorithm is a 3-approximation al- 9: Py, —allRNs infzr, @, o + 3]

gorithmat all timesfor the GDC problem within a strip. 10: Py, —alRNsinfzr, o+ %00, ,, + 3]
The time complexity of the MOAC algorithm i£(1), 11 Py, —allRNsin[zr, .\ + 5, 2R 4]

since all node exchanges are local. The local computatigffation , , ,

c_omplexity is potentiallyO(lgg n), du_e to .the operation in 12: 'rfng?esgf &néeNri féc;r:ngtncf;ggsjzlqﬁeitrlp oran RNe Fa,,
I|r_1e 23. The only assumption requ_lred is _that MBNs ands;  create a virtual MBN for p

disconnected RNs have access to information regarding 14: if the virtual MBN cannot benergedwith any of its neighbors
d¥, df and R; of their inmediate neighbors to the right and then

left (as long as they are less thaf away). Thus, in terms of 1 create a new MBN to coverp

complexity, MOAC is the best of the distributed algorithms.

Define steady stateas any point in time in which there are
. no merge or separate actions currently possible. Below we
B. Merge-and-Separate (MAS) Algorithm describg the perfpormance of the MAS a>llggrithm.

The relatively high approximation ratio of the MOAC algo- Lemma 8:In steady state, the MAS algorithm is a 2-
rithm results from the fact that it reduces disks into regtas, approximation algorithm for the GDC problem within a strip.
thereby losing about5% of disk coverage area. The difficulty ~ Since point transfers are local (i.e. only take place betwee
in dealing with disks is that there are no cldaordersand adjacent MBNs), the time complexity i©(1). The compu-
that even confined to a single strip, many disks can overlggiion complexity isO(C(n)) to evaluate the merge and the
although they cover disjoint nodes. create rules, wher€'(n) is the running time of the 1-center

On average any algorithm with a merge rule should perforsubroutine used. In order to make the required decisions, we
well. However, just having a merge rule is not sufficient imssume that an MBN has access to all nearby (i.e. within a
the rare but possible case where many mutually pairwidéstance of3D) MBNs’ point-sets and locations.
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Fig. 6. The Separation rule of the MAS algorithm yielding an efficient approximate solution for the ESMT. We
present a somewhat similar approach for solving the STP-MSP
O My problem. Our approach is quite different from the approach
oM . of [22], since the STP-MSP problem is more sensitive to
>3R discretizing the plane than the ESMT problem.
R DefineV;, as the lattice of points in the plane generated by
R gridding the plane with horizontal/vertical spacingthe exact
) (b) value of which will be derived later. Next, defiig as the

set of pairwise intersection points of radiliscircles drawn
around each of the Cover MBNSs. For the intersection region
of any two circles, add three equally spaced points along the
line between the two intersection points. L&t denote the
VIl. PLACING THE RELAY MBNS set of these points. The sdtf, V; andV; are illustrated Fig.

) . 8. Finally, defineconv(M_ over) @s the convex hull of the of
Recall that in Section 1V we showed that the CDC probleqoyer MBNs. We can now define

can be decomposed into two subproblems. In this section, we
focus on the second subproblem that deals with a situation in V' = {(Vo UVi U Ve U Meoper) N conv(]V[cover)}.
which a set of nodesJover MBN3 is given and there is a need
to place the minimum number of nodeReglay MBN}¥ such where we define a special intersection operatorto ensure
that the resulting network is connected. Recall that theadie that we pick enough points to be i such thatconv(V) 2
between connected MBNs cannot excdedThis problem is conv(Meover)-
equivalent to the Steiner Tree Problem with Minimum number For all w,v € V, if d,, < R, we define an edge
of Steiner Points (STP-MSP) [19]. (u,v). We denote the set of edges Wy and theinduced

In [19] a 4-approximation algorithm that places nodes alor@faph by G = (V, E). Let the node weights be denoted by
edges of the Minimum Spanning Tree (MST) which connects,. We now state the Node-Weighted Steiner Tree (NWST)
the Cover MBNs was proposed. In [2] an improved MST-basdguoblem [11],[18],[25], which has to be solved as part of our
algorithm with an approximation ratio of 3 was proposed?iscretization algorithm, presented below.
These algorithms are simple and perform reasonably well ftoblem NWST: Given a node-weightedundirected graph
practice. However, their main limitation is that they onlgdi G = (V, E) with zero-cost edges and a terminal 8é,,.,, C
MST-basedsolutions. Namely, since the Relay MBNs are iV, find a minimum weight tred@ C G spanningM q.e; .
general placed along the edges of the MST, these algorithms
cannot _find _solutions in which a _Relay MBN is used as Rlgorithm 6 Discretization
central junction that (_:onne_cts_ mu_ltl_ple other Relay MBNH. A 1- create the setsvo, Vi, Vs, andV {A derived beloy
example demonstrating this inefficiency appears in Fig. 7. 2. ) 1o € V — Moyver

We now present and analyze Riscretization Approach 3: w, «— 0Yv € Meover
which provides a theoretical footing towards applying the4: create the setF
vast family of discrete and combinatorial approaches taat ¢ 5 find @ minimum weight NWST o7 = (V, E)
potentially rectify the above inefficiency. The approadns-
forms the STP-MSP from an Euclidean problem to a discreteThe set of nodes selected in step 5 correspond to the
problem on a graph. Although the transformed problem doRglay MBNs in the STP-MSP solution. We assume that step
not admit a constant factor approximation, in many pratticé is performed by a3ywsr-approximation algorithm. The
cases it can be solved optimally. We will show that if such fallowing theorem provides the performance guarantee ef th
solution is obtained, it is a 2-approximation for the STPMS Discretization algorithm.

Our approach is based on an idea used by Provan [22] foiTheorem 5:1f A < £, the Discretization algorithm is a
dealing with the continuous analog of the STP-MSP probler®gw sr-approximation algorithm for the STP-MSP.
the Euclidean Steiner Minimal Tree (ESMT) problem [7]. In  Our methodology in proving the theorem is as follows. We
[22] it was proposed to discretize the plane and to sohaart by assuming the optimal STP-MSP tree is known, and
a Network Steiner Tree problem [7] on the induced grapHescribe a method to construct a candidate SteinerZrae

Fig. 7. STP-MSP solutions: (a) Optimal (4 Relay MBNs) andNt§T-based
(6 Relay MBNSs)
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Regarding the edges @f (i.e. ET), note that those added
in steps 2 and 5 must be valid i, since by definition they
represent edges between node¥ithat are less thak apart.
The final part involves showing that edges added between new
Relay MBNSs (i.e. in steps 10 and 14) are of length at nfdst
This is done by using the triangle inequality and the debniti
of the setV/. A detailed proof appears in [26]. |

The next lemma shows that the number of Relay MBNSs in
T,ie |ML,,| = [M"] = My, is less than twice the
Fig. 9. An example of the construction of the candidate ffeérom the number of Relay MBNs in the optimal solution of the STP-
optimal STP-MSP tred o pr MSP (I'opr). The proof of the Lemma and that of Theorem
5 can be found in the appendix.

Lemma 10:In T, constructed by the CFS algorithm,

G from this optimal tree. We then use the definiton®fin  [M,, | < 2[M},,.|.

order to bound the ratio between approximate solutiorio It was shown in [18] that the NWST problem does not admit
the Node-Weighted Steiner Tree (NWST) problentirio the a constant factor approximation algorithm and that the best
optimal solutionof the STP-MSP in the plane. theoretically achievable approximation ratiolisk, wherek

Recall that the set of terminals/Cover MBN£.....- is given is the number of terminals (in our formulatidn= | M_ove|)-
as input to the problem. Defirle, pr = (M*, E*) as the opti- Indeed, for the case in which all node weights are equal, [11]
mal solution to the STP-MSP. The node 8¢t is composed of presented &ln k)-approximation algorithm. Thus, in general,
the Cover MBNsM...,..,. and the optimal set of Relay MBNsthe Discretization algorithm yields a worst case approxioma
denoted byM;,, . Below, we present an algorithm for theratio of 2In|Mcover|. However, in some cases the NWST
construction of a candidate tréé= (M7, ET) in the graph problem can be solved optimally by discrete methods such as
G = (V,E). T is constructed such that it is a feasible STPnteger programming [25]. Since in such casksysr = 1,
MSP solution. An example of steps 4-5, 7, and 12-14 of tdibe approximation ratio will be 2. Notice that it is likely
algorithm is illustrated in Fig. 9. that the Discretization algorithm will have better average

performance than the MST-type algorithms, due to the use

Algorithm 7 Construction of a Feasible STP-MSP (CFS) ©f Relay MBNs as central junctions.
T M — M Since the Discretization algorithm takes care of placing

2. ET — edges(i, j) € E* where bothi, j € Meouer only the Relay MBNs it might be feasible to implement it
3: for all u € M}, that have edges (i) to a set of Cover in a centralized manner, as described above. Yet, if there
MBNSs (in Mcover) do is a need for a distributed solution, one of the MST-based

4: addto M" aRelay MBNu' € V' located at the nearest point g|gorithms [2],[19] should be used. Since these algoritdms

to u that can be directly connected to the same set of Cover . .
MBNS fot deal very well with the mobility of Cover MBNs, the

5. addto ET edges connecting’ and the set of Cover MBNs development of distributed algorithms for the STP-MSP that

6: for all u € M;,,,, that do not have edges (ifi*) to any Cover take into account mobility remains an open problem.
MBNS in M;oper dO
7:  addto M7T aRelay MBNw' € V located at the nearest point
to u VIIl. JOINT SOLUTION
8: for all Relay MBNsu,v € M/, s.t.(u,v) € E* do

o if dyy < R then Using the decomposition framework presented in Section

10: add to 7 an edge(«’,v") IV, the overall approximation ratio of the CDC problem is the

11:  else . sum of the approximation ratios of the algorithms used teesol

12: w « midpoint of the line segmentu, v) the subproblems. Hence, this framework yieldseatralized

13: Sgﬁ]tt?oMT a Relay MBNw’ € V located at the nearest 3 5_approximation algorithm. We note that the Discretized
w

algorithm developed in the previous section can be applied
towards solving the CDC problem. Accordingly, specific
instanceswhen the NWST problem can be solved optimally
In the following lemma we show thdf is also a feasible (e.g. using integer programming), a centralized 2-appnaxe

14: add to E7 edges(v/,w'), (w',v")

solution to the NWST problem . solution for the CDC problem can be obtained.
Lemma 9:1f A < %, then T, constructed by the CFS The key insight is that the CDC problem can be viewed as
algorithm, is a Steiner tree i@ an extended variant of the STP-MSP. Namely, given a set of

Proof outline: We have to show thaf’ connects all the RNs (terminals) distributed in the plane, place the smiafies
nodes from\/.,..,- by a tree whose nodes arelihand that the of MBNs (Steiner points) such that the RNs and MBNs form
edges added t&” are valid edges iff. The nodes of" (i.e. a connected network. Additionally, RNs mustleaves in the
MT™) are by definition inV, since they are selected froi. tree and edges connecting them to the tree must be of length
A node inV satisfying the condition in step 4 always existsat mostr. The other edges in the tree must be of at m®st
since V' includes the intersections of radius circles drawn  For the Discretization algorithm to apply, we need to make
around each of the Cover MBNs. the following modifications. First, in the definition of the
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TABLE Il 2

TIME COMPLEXITY (# OF ROUNDS), LOCAL COMPUTATION COMPLEXITY,
AND APPROXIMATION RATIO OF THE DISTRIBUTEDGDC ALGORITHMS
(C(n) 1S THE COMPLEXITY OF A DECISION1-CENTER ALGORITHM).
g
Algorithm Time Local In-Strip =
Complexity | Computation | Approximation o
Complexity Ratio é
MOAC o(1) O(logn) 3 2
SCR O(n) O(logn) 2 —— MOAC
MAS7 o(1) 0o(C(n)) 2 TR
SCD O(n) O(C(n)logn) 15 . scD
10 20 30 40 50 60 70 80 90 100

Number of RNs

vertex setV, M..... should be replaced with the set 01Fig. 10. Ths a\éerage number of Cover MBNs used by GDC algustbver
. .., a time period of500

RNs, N. Second,V; and V, should now be defined with P s

respect to the pairwise intersections of radiugrcles drawn o0 1000

@ RN
around each of the RNs. Finally, in the definition of the edge B L O M,
set £, RNs should only have edges to verticeslinwithin "] ® 807 o @M,
distancer, and no two RNs should have an edge betweernoo- o 600+ .\DID
them. With these modifications, it can be shown tha i 2r wol @ VN a,
. . . . . b ——gf ® 400 o
and A < R/6, the Discretization algorithm is aGnw s7- 1 T b
approximation algorithm for the overall CDC problem. 2007 ' . o« 2007 - "
) o0
Ix PERFORMANCEEVALUAT|ON 260 460 660 860 1060 260 4(;0 660 860 1060
' €Y (b)

We now briefly discuss the tradeoffs between the CorEi-g. 11.  An example comparing solutions obtained by (a) atinth

plexities and qpprQXimaﬁon ratios of the _GDC ?lgorithm_%isk Cover and the STP-MSP algorithm from [2], and (b) thecBetization
and evaluate via simulation the GDC algorithms in a mobikdgorithm using an NWST algorithm [18]

environment. We also focus on the CDC problem and compare

results obtained by the Discretization Approach to those ) ) -

obtained by decomposing the problem. Additional results cgelution requires 12 MBNs while the decomposition based

be found in [26]. squpon requires 15 MBNS . .
Table Il shows the complexities and approximation ratios of F19- 12 presents similar results for a general case with

the distributed GDC algorithms. It can be seen that there afd'® Same parameters (areg, and i). The Decomposition

clear tradeoffs between decentralization and approxomati Tamework used the SCD algorithm along with the MST

These tradeoffs are further demonstrated by simulatiog. FRI90rithm [19] and along with the Modified MST-based al-

10 presents simulation results for a network with mobile RNgOTithm [2]. Each data point is averaged over 10 random

The Random Waypoint mobility model is used, wherein RNgstances. It can be seen that the joint solution provides a

continually pick a random destination in the plane and mowgnificant performance improvement (about 25% for a large
there at a random speed in the ran@&,in, Viwas], Where number of RNs). Yet, while the decomposition framework uses

Vinin = 10m/s and Vyex = 30m/s. We used a plane of distributed algorithms, the joint solution is centraliz&dhus,
dimension$00m x 600m and set = 100m. The figure shows & reasonable compromise could be to place the Cover MBNs

the average number of MBNs used oveitis time period as N @ distributed manner and to place the Relay MBNs by a
a function of the number of RNs. Each data point is an averag@tralized Discretization Approach.

of 10 instances (each instance was simulated o0@0s from
which the first500s were discarded).

Next we compare solutions of the CDC problem obtained The architecture of a hierarchical Mobile Backbone Net-
by the decomposition framework to joint solutions obtainedork has been presented only recently. Such an architecture
by the Discretization algorithm. Fig. 11 depicts a randoman significantly improve the performance, lifetime, anléhre
example of 10 RNs distributed in B000m x 1000m area® bility of MANETs and WSNSs. In this paper, we concentrate on
The communication ranges of the RNs and the MBNs aptacing and mobilizing backbone nodes, dedicated to mainta
r = 100m and R = 200m, respectively. In the decompositioning connectivity of the regular nodes. We have formulated th
framework, we used an optimal disk cover (obtained by integ®obile Backbone Nodes Placement problem as a Connected
programming) and the 3-approximation STP-MSP algorithidisk Cover problem and shown that it can be decomposed into
from [2]. The Discretization algorithm uses the NWST apbwo subproblems. We have proposed a numbedistributed
proximation algorithm from [18]. In this example, the jointalgorithms for the first subproblem (Geometric Disk Cover),

, o _ ' ' bounded their worst case performance, and studied their per
. iggfegggrgggf’“"” ratio of the MAS algorithm holds when thgoathm  f5rmance under mobility via simulation. As a byproduct, it

has been shown that the approximation ratios of algorithms

8We deliberately selected a small number of RNs in order toahestnate :
a partitioned network that requires Relay MBNS. presented in [9] and [13] are 6 and 2. A new approach for the

X. CONCLUSIONS
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Fig. 13. Probabilistic analysis of the SCR algorithm witlairstrip

Number of MBNs
=
Q

the plane into horizontal strips of widthseparated by vertical

[
QR

—=— SCD + MST . . .
=~ SCD + Modified MST distancesD. We first find a lower bound on the expected

—— Joint Solution

R number of optimal disks required to cover RNs im-avidth

Number of RNs strip S (denoted byFE[|OPT|s]). Within such a strip, the

Fig. 12.  Number of MBNs as a function of the number of RNs cotepu area covered by eact® PT disk is at most a rectangle of

by: (i_) the de__composition app_r_oach using the _SCD with the NOS§ed_[_19] sizeq x D. Using a similar argument to that of Lemma 4, it

algorithms, (i) the decomposition approach using the SG the modified L ;

MST-based [2] algorithm, and (iil) the Discretization algom can be seen that once a disk is placed, the expected distance

between the end of its coverage area and the start of the
next disk is1/Ag. Assuming thatL >> 1/\q, E[|OPT|s]

solution of the second subproblem (STP-MSP) and of the joiist at least the strip length divided by the expected distance

problem (CDC) has also been proposed. We have demonstrdietiveen the start of one disk and the start of another. Namely

via simulation that when it is used to solve the CDC proble®[|OPT|s] > L/(D + 1/(\q)).

in a centralized manner, the number of the required MBNs isSince the distance betweenwidth strips is D, it is im-

significantly reduced. possible for anOD PT disk to cover RNs from multiple strips.
This work is the first approach towards the design ®loreover, since there may be RNs between the strips, there

distributed algorithms for construction and maintenanta o will be a need for moreD PT disks than the ones used to

Mobile Backbone Network. Hence, there are still many opesover theg-width strips. Therefore, the expected number of

problems to deal with. For example, moving away from th@ PT disks required in order to cover only RNs in thavidth

strip approach may be beneficial. Moreover, there is a nestlips is a lower bound on the expected numbeP&fT" disks

for distributed algorithms for the STP-MSP, capable of oeal required for the whole plane. Such a bound can be found by

with Cover MBNs mobility. A major future research directiormultiplying E[|OPT|s] by the number of;-width strips, i.e.,

is to generalize the model to other connectivity constgint

and other objective functions. Finally, an important fetur E[OPT|] > ( L ) . (KO‘D). )

research direction is to address the problem when the number “\D+ %q D +q

of available MBNs is fixed.

=
)

5 10 15

To find the tightest possible lower bound, we selgcto as
APPENDIX to maximizeE[|OPT]|]. Settingg = 1/1/X achieves this, and

. . . . yields the result. |
Proof of Lemma 4Consider a single strify, whose width Proof of Corollary 1: We derive the maximum value of

is aD. Since the RNs are distributed in the plane accordi . o . .
to a two dimensional Poisson process, the horizontal (rH) by differentiating with respect ta, obtaining

coordinate) distance between RNs is exponentially disteith avI—aZ+1
with meanl/AaD. Thus, the expected distance to the location BSCR A=Amaz < i )

of the first disk isE[Ty] = 1/XaD (see Fig. 13). Once a

disk is placed, the expected distance between the end of ii%r% < a < 1, (3) is minimized wheny = 1/v/2, at which
coverage and the start of the next disk is denotedtfi¥/’]. point it attains a value of 3. m
Due to the memoryless property of the exponential random  pyoof of Lemma 10:In the CFS algorithm, each Relay
variable, E[T"] = 1/AaD. Therefore, the expected numbefBN v in Tp, p+ is replaced by a Relay MBN/ in T (steps

of disks used within a strip (denoted WY[|[SCR|s]) is the 4 and 7). For each edge connecting a pair of Relay MBNs in
total length of the strip (less the initial space) dividedthg 7., ... at most one additional MBN is added T (' in step

expected distance between the start of one disk and the i@y, SinceTy, 1 is a tree, there can be at mast”,,, | — 1
. ! retay
of another. Namely, assuming that>> 1/ aD such edges. Therefore, the total number of Relay MBNE in
L— ﬁ iS, |J\/‘[rj;lay| < |M:elay| + |J\/:elay| —-1< 2|J\/:elay|' u
E[ISCR[s] = JT—atD+ - Proof of Theorem 5: Let the number of Relay MBNs
saDL AaD in Topr andT be [Topr| = |M},,,| and |T| = [M],, |,
~ @ , respectively. Recall that in the Discretization algorithtine
Aavl—a’D? +1 Cover MBNs inG were assigned a weight of 0 and the other
The expected number of disks used in the planB[|[SCR|s] nodes were assigned a weight of 1. [gf}°T be the optimal
multiplied by the number of strips. B (minimum weight) Node-Weighted Steiner Tree (NWST)dn

Proof of Lemma 5In order to lower bound the expectedand denote its weight by} 57|. Due to Lemma 9 when
number of disks required by the optimal solution, we divid& < R/7, T is a feasible solution to the NWST problem in



G. Therefore, and due to Lemma 10,

In Step 5 of the Discretization algorithm, the NWST prob-

TSP | < IT) < 2| Topr- (4)

lem in G is solved by & nw st approximation algorithm. We

denote the obtained solution @ .o and denote the number
of Relay MBNs in this solution byT's1.col|. From (4) we get [28]

that|Tarco| < Bywst|THPST| < 28nwst|TopT|- |
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