
Reliability and Route Diversity in Wireless
Networks

Amir E. Khandani, Jinane Abounadi, Eytan Modiano, and Lizhong Zheng

Abstract—We study the problem of communication reliability
of wireless networks in a fading environment based on the outage
probability formulation. The exact expression for the disconnect
probability, the probability that a transmission by a node is
not received correctly by any other node in the network, is
obtained for one and two dimensional random networks. We
obtain the end-to-end reliability of multi-hop transmission using
the outage probability metric and develop algorithms for finding
the most reliable route subject to power constraints as well as
the minimum energy route subject to a reliability constraint.
Finally, we study the tradeoff between outage probability and
transmission power, with and without route diversity.

I. INTRODUCTION

In this paper, we develop a new model for route reliability
in a wireless network. A wireless link is subject to multi-path
fading which makes communication unreliable. We consider
the outage probability formulation to model individual link
reliability, which is more appropriate than the ergodic capacity
formulation when the channel is slowly changing, or when the
data is delay-sensitive and cannot tolerate the delays associated
with coding over the fading channel [1]. Our approach is novel
in two respects. First, we extend the outage concept to a multi-
hop setting, we consider the end-to-end reliability of a multi-
hop route and propose algorithms for selecting the optimal
route based on outage probability as the reliability metric. In
addition, we study the tradeoff between power consumption
and end-to-end reliability and show, through simulation, how
route diversity can change this tradeoff.

We assume a network where the geographic locations of
wireless nodes and thus the distance and the path-loss between
nodes are known at the transmitters. We also assume that
the multi-path fading environment changes fast enough and/or
the data is delay-sensitive such that it is difficult to obtain
the instantaneous fading state information at the transmitter.
Furthermore, we assume that ARQ or coding over a long
period of time to correct for errors are not practical due to
delay or hardware constraints. Under these assumptions, the
outage probability is a good metric to characterize reliability.
We study the reliability of a single route for one session,
ignoring the effects of interference from other sessions in the
network. In a practical setting, interference between multiple
sessions must be dealt with through various medium access
techniques at the MAC layer, and our approach may be most
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relevant in situations where only a small amount of informa-
tion must be relayed through the network. These assumptions
make the problem simple enough to arrive at some guiding
theoretical results that capture many of the important element
relevant to more complicated settings. For example, we will
be able to formulate various route selection algorithms and
study the trade off between reliability, as given by the outage
probability, and power consumption under various conditions.
In a more complicated setting, an additional amount of energy
must be spent on exchanging node locations and to coordinate
transmissions, but the essential element, which is the trade-off
between reliability and power consumption will remain the
same.

We start our analysis by looking at the reliability of a point-
to-point communication link in Section II, where we develop
the mathematical formulation for the probabilistic link model.
We then turn to the issue of reliability in a network setting.
In Section III, we look at the probability that a message
transmitted by a node is not received by any other node in
the network. Defining this event as the node disconnect event,
we find the exact expression for this probability in one and
two dimensional random networks. Moreover, we examine
the tradeoff between the disconnect probability and power
consumption and quantify the value of space diversity. In
Section IV, the reliability framework is extended to a multi-
hop route. We look at optimal routing algorithms under various
constraints and study the trade-off between route reliability
and power consumption. We also briefly explore the idea of
route diversity as a way to improve the route reliability-power
tradeoff.

II. PROBABILISTIC LINK MODEL

Using the outage probability model, the probability of
successful reception for a Rayleigh fading link with fixed
distance is given by the following simple expression1:

PSucc(d, snr) = exp

(
− dk

snr

)
· (1)

where d is distance between nodes, snr is the signal to noise
ratio at the transmitter (it is the transmitted power level
if the noise level is 1), and k is the path-loss exponent.
Similarly, the probability of an un-successful transmission, or
outage, is given by: POutage(d, snr) = 1− exp

(
− dk

snr

)
. It can

be shown that the outage probability in the high-snr regime

1This formula is obtained using AWGN channel with Rayleigh fading
assuming the transmitter does not have information about the fading state.
See [6] for more details.
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is approximately given by: POutage(d, snr) ≈ dk

snr . This type
of approximation is typically used to analyze the trade-off
between outage probability and transmission power level. In
general, for a point-to-point link with a single transmitting
and receiving antenna, it is known that the outage probability
decays as snr−1. Detailed analysis of this topic is given in [4].
Assuming the noise level is constant, the relationship between
snr and the transmitted power is linear. We may refer to snr as
the transmitted power in this paper, but the reader should keep
in mind that we are simply ignoring the constant multiplicative
factor.

The above model of reliability of a single link will be
the building block as we turn to the discussion of reliability
in a network setting. Since reliability is a function of the
transmitted power, an interesting question in this context is
whether the reliability-power tradeoff changes in the presence
of multiple intermediate relay nodes. We will see later in
this paper that the trade-off remains of the same form for a
multi-hop path, even under optimal route selection and power
allocation schemes.

III. NETWORK DISCONNECT PROBABILITY

Consider a random two dimensional network as shown in
Figure 1. We are interested in the probability that a message
transmitted by the source is not received by any other node
in the network. This is motivated by the desire for measuring
asymptotic connectivity as motivated by work such as [3].
This event, which we refer to as the disconnect event, is
related to the outage event on all links shown in light color
in Figure 1. The interesting question is the tradeoff between
the disconnect probability and the transmitted power level.
Any gain achieved here is purely due to the space diversity
created by the presence of multiple receiving nodes and gives
us a sense for space diversity gain in a network. We will
look at this probability in one and two dimensional Poisson
networks2 with density parameter λ. As will be shown shortly,
λ has a significant impact on disconnect probability. Our
interest in studying such networks is motivated by our desire
to understand the fundamental limits on the performance gains
that can be obtained due to diversity. While infinite size
networks do not exist in practice, their analysis can be used
to gain valuable insight into the potential benefit of space
diversity in a network. Similar studies were used in the past
(e.g., [3]) to obtain significant insights on wireless network
performance and connectivity.

Consider a one dimensional network. Let’s fix the source
node and measure all distances relative to that node, as
shown in Figure 2. Let Disconnect(x, dx, snr) be the event
that the source node is not connected to any node in the
segment of (x, x + dx]. An infinitesimally short line segment
of length dx either contains no node or contains only a
single node, which happens with probability λdx. Using
the independence of the fading from the event that the

2In one dimension, this network is constructed by uniformly placing N
nodes on a line of length L as both N and L approaches infinity, while keeping
the N

L
constant at λ. The two dimensional counterpart is constructed similarly

by placing N nodes uniformly on a disk with area A while keeping N
A

constant
at λ.

Fig. 1. Disconnect with and without Diversity

line segment contains a node, one can bound this prob-
ability by: 1− PSucc(x, snr)λdx ≤ PDisconnect(x, dx, snr) ≤
1− PSucc(x + dx, snr)λdx, where PSucc(d, snr) is given by (1).
Define the event Disconnect(L, snr) as the event that the source
node is not connected to any node located within distance L
from it in one direction. The probability of this event is given

by: PDisconnect(L, snr) =
∏ L

dx

i=0 PDisconnect(idx, dx, snr). Taking
the logarithm of both sides, we have:

Log (PDisconnect(L, snr)) =
L
dx∑

i=0

Log (PDisconnect(idx, dx, snr)) ·

This last expression can be bounded using bounds for
PDisconnect(x, dx, snr). As dx → 0, the sum can be replaced
by an integral and the lower and the upper bounds
converge, see [6] for more details. In the limit, using
the fact that ln(1− p) ≈ −p for small values of p, we
have: Log(PDisconnect(L, snr)) = − ∫ L

0
PSucc(x, snr)λdx =

− ∫ L

0
exp(− xk

snr )λdx· To find the disconnect probability for an
asymptotically large network, we are interested in the limit
of the above quantity as L →∞. Using known integral forms
given in [5], it can be shown that the disconnect probabil-
ity is given by the following limit: Log(POne−sided

Disconnect(snr)) =
− ∫∞

0
exp(− xk

snr )λdx = −λ k
√

snr 1
kΓ

(
1
k

)
, where Γ is the well

known Gamma function. The above expression only measure
the probability that the node is disconnected from all nodes
in one direction. The two-sided disconnect probability follow
immediately, as given in the following theorem.

Theorem 1: In a Poisson line network with density λ and
path-loss exponent k, the probability that a node is discon-
nected from the network is exp

(−2λ k
√

snr 1
kΓ( 1

k )
)
, where Γ is

the well known Gamma function.
Similarly, in the two dimensional case we obtain the fol-

lowing result.
Theorem 2: In a two dimensional Poisson network with

density λ and path-loss exponent k, the probability that a node
is disconnected from the network is exp

(
−2λπ

k
√

snr2 1
kΓ( 2

k )
)

,
where Γ is the well known Gamma function.

The above results do not require use of the high-snr ap-
proximation in their derivation, i.e. the expressions given in
theorem 1 and theorem 2 are valid for any snr value. These
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Fig. 2. Random Line Network Disconnect Probability

expressions show that with diversity, the disconnect probability
decays exponentially with k

√
snr and k

√
snr2, in one and two

dimensional networks respectively.

IV. RELIABILITY AT THE NETWORK LAYER

We now look at the problem of route selection under
reliability and power constraints in a network. A multi-hop
route is a sequence of nodes through which the information
is relayed from a source node, S, to a destination node, D,
i.e. Route = (r0, r1, · · · , rh−1, rh), where, r0 = S, rh = D, and
h is the number of hops. We assume the network operates
based on a time division protocol under which successive
transmissions along a route happen in consecutive transmission
slots. Route (s, r1, · · · , rh−1, d) is identical to a sequence of h
point-to-point links, where for the ith link, relay i− 1 is the
transmitter and relay i is the receiver, snrri−1ri is the transmitted
signal-to-noise power, and dri−1ri is the corresponding distance.
We define the event of successful end-to-end transmission
as the event that all h transmissions are successful, and
assume that fading for different links are i.i.d Rayleigh random
variables. Based on this assumption and using (1), the End-to-
End Reliability, i.e the probability of successful end-to-end
transmission, can be written as: Reliability(r0,r1,··· ,rh−1,rh) =
∏h

i=1 exp

(
− dk

ri−1ri

snrri−1ri

)
= exp

(
−∑h

i=1

dk
ri−1ri

snrri−1ri

)
. The to-

tal amount of power spent for end-to-end transmission is:
SNR

(r0,r1,··· ,rh−1,rh)
Total =

∑h
i=1 snrri−1ri . The end-to-end reliability

is a function of the total power consumption, and the problem
of optimal route selection, either in reliability or in power
sense, only becomes well defined if the other quantity is
constrained. This restriction can be applied either at nodal
level or at an end-to-end level. We will consider each case
next.

A. Fixed Maximum Transmission Power Per Link
Assume the transmitted signal-to-noise ratio at each link

is limited to SNRLink−Max. This formulation may be ap-
propriate if the maximum transmitted power per node is
limited due to hardware constraint. For a fixed route,
(r0, r1, · · · , rh−1, rh), the end-to-end reliability is given by:

Reliability(r0,r1,··· ,rh−1,rh) = exp

(
−

∑h
i=1 dk

ri−1ri

SNRLink−Max

)
. The end-to-

end reliability is a monotonically decreasing function of∑h
i=1 dk

ri−1ri , which can be treated as the cost metric for route
selection. We refer to route selection algorithm based on this
cost metric as the Minimum Outage Route (MOR).

B. End-to-End Power/Reliability Optimized Route

Alternatively, one can look at the problem of optimizing
transmission power levels and route selection on an end-to-
end basis. Consider the problem of minimizing the end-to-
end power for a fixed route, (r0, r1, · · · , rh−1, rh), subject to
a fixed minimum end-to-end reliability, ReliabilityMin. This
can be formulated by the following constrained optimization
problem:

min
h∑

i=1

snrri−1ri

s.t. exp

(
−

h∑

i=1

dk
ri−1ri

snrri−1ri

)
≥ ReliabilityMin· (2)

Since exp is a monotonically increasing function, the con-
straint must be satisfied with equality at the optimal solution.
So, the optimization problem is equivalent to:

min
h∑

i=1

snrri−1ri

s.t.
h∑

i=1

dk
ri−1ri

snrri−1ri

= −ln(ReliabilityMin). (3)

This problem can be solved using Lagrangian multiplier
technique. The amount of power allocated to link ri−1ri
under the optimal power allocation scheme is given by:

ŝnrri−1ri =
∑h

i=1

√
dk

ri−1ri

−ln(ReliabilityMin)

√
dk

ri−1ri . The corresponding total

consumed power is given by ŜNRTotal =
∑h

i=1 ŝnrri−1ri =(∑h
i=1

√
dk

ri−1ri

)2

−ln(ReliabilityMin)
· The last expression can be used as the basis

for an optimal route selection scheme, which we refer to as
Minimum Power Route (MPR).

Theorem 3: For a fixed route (r0, r1, · · · , rh−1, rh), the min-
imum required total power to guarantee the end-to-end relia-

bility of Reliabilitymin is ŜNRTotal =

(∑h
i=1

√
dk

ri−1ri

)2

−ln(ReliabilityMin)
, which

is achieved when power at each link is allocated such

that ŝnrri−1ri =
∑h

i=1

√
dk

ri−1ri

−ln(ReliabilityMin)

√
dk

ri−1ri · Hence, the minimum
power route between nodes S and D subject to a guar-
anteed end-to-end reliability is the route that minimizes∑h

i=1

√
dk

ri−1ri ,

Alternatively, we can formulate an optimal route Section
problem where we seek the most reliable end-to-end route
subject to a fixed end-to-end power, SNRTotal−Max. The con-
strained optimization problem in this case is:

max exp

(
−

h∑

i=1

dk
ri−1ri

snrri−1ri

)

s.t
h∑

i=1

snrri−1ri ≤ SNRTotal−Max

This problem can be solved using a technique very similar
to the approach used to solve (2). Omitting the details of the
optimization, we obtain the following result,
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Theorem 4: The most reliable route between nodes S
and D in a wireless network where the fading param-
eters of different links are independent Rayleigh ran-
dom variables and the maximum end-to-end power is
limited to SNRTotal−Max is the route that minimizes∑h

i=1

√
dk

ri−1ri , and the corresponding end-to-end reliabil-

ity is given by ReliabilityOptimal = exp


−

(∑h
i=1

√
dk

ri−1ri

)2

SNRTotal−Max


.

To achieve this solution the power should be allocated as

ŝnrri−1ri = SNRTotal−Max

√
dk

ri−1ri∑h
i=1

√
dk

ri−1ri

for each link ri−1ri.

The optimization problems that we looked at in this Section
are dual problems and it should not be surprising that the cost
metric in both cases is

∑h
i=1

√
dk

ri−1ri . To clarify this point,
we present a graphical illustration of the end-to-end route
reliability under the optimal power allocation scheme. For
any fixed route, different power allocation schemes result in
different end-to-end reliability and power consumption. If we
were to characterize each power allocation scheme only by the
total consumed power and the resulting end-to-end reliability,
each allocation scheme could be represented by a point in
the two dimensional plot of the end-to-end reliability versus
the total power. Certain allocation schemes are optimal, i.e.
they either minimize the total power consumed to achieve a
guaranteed end-to-end reliability or maximize the end-to-end
reliability for a fixed consumed power.

In the first formulation, we found the optimal power al-
location that minimized the total power subject to a guar-
anteed end-to-end reliability. Graphically, this optimization
corresponds to moving along the horizontal line in Figure 3
to find the allocation scheme that minimizes the total con-
sumed power while ensuring that the end-to-end reliability
is at least Reliabilitymin. We found that the reliability and
power corresponding to the optimal allocation are related by

the following relationship: ŜNRTotal =

(∑h
i=1

√
dk

ri−1ri

)2

−ln(ReliabilityMin)
. In the

second formulation, we found the optimal power allocation
to maximize the end-to-end reliability for a given end-to-end
power. This corresponds to moving along the vertical line in
Figure 3 and finding the allocation scheme that maximizes the
reliability subject to a constraint on the total consumed power
given by SNRTotal−Max. We found that the resulting end-to-end
reliability for this optimal allocation is

ReliabilityOptimal = exp


−

(∑h
i=1

√
dk

ri−1ri

)2

SNRTotal−Max


 (4)

The reliability-power relations specified by above expres-
sions are identical, and the set of optimal power allocations can
be represented by a single curve in the this two dimensional
space, as shown in Figure 3. We refer to this curve as the
Optimal Reliability-Power Trade-off curve. The shape of this
curve for a route is a function of the number and distance
between relays along that route.

Route Reliability vs. Power
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Fig. 3. Route Reliability vs. Power

A. Outage Probability-Power Trade-off and Diversity

Similar to the case of a point-to-point link, here we consider
the trade-off between route outage and consumed power in
a network setting. This type of analysis gives insight to
how fast the end-to-end outage decreases as more power
is spent on the transmission. First, we look at the case
that the maximum transmitted power at each link is fixed
to SNRLink−Max. The outage probability, ρ, is given by :

ρ = 1− exp

(
−

∑h
i=1 dk

ri−1ri

SNRLink−Max

)
.

For high level of SNRLink−Max, i.e. small values of ρ, we
can use the approximation of exp(x) ≈ 1 + x to simplify this
relation to:

ρ ≈
∑h

i=1 dk
ri−1ri

SNRLink−Max
. (5)

Similarly, (4) gives relationship between the end-to-end re-
liability and the total power consumption under the optimal
power allocation scheme. Writing (4) in terms of the route
outage probability and following a similar approach, we find:

ρ ≈

(∑h
i=1

√
dk

ri−1ri

)2

SNRTotal−Max
. (6)

From (5) and (6), we observe that in the high-snr regime,
the route outage probability decays as SNR−1

Link−Max and
SNR−1

Total−Max, respectively. This is consistent with what we
observed for a single link. It should also be clear that route
selection does not have any effect on the form of this trade-
off. By selecting the optimal route, we minimized the end-
to-end outage probability by minimizing the numerator of (5)
and (6). However, that process does not change the form of
the denominators, which dictate the outage-power trade-off in
the high-snr regime. This shows that as long as we limit our
approach to a single transmitter and a single receiver per link,
even under optimal power allocation and route selection, the
trade-off maintains the same form as in the single link case.
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An interesting question is how the above mentioned trade-
off can be improved. As expected, the idea of diversity at the
route level, or route diversity, is key to this relationship as we
demonstrate using a simple simulation example. The network
that we use for our simulations is constructed by uniformly
placing 10 nodes inside a circle with radius 1 with the source
and destination nodes placed at the two opposite ends of a
diameter of this circle, see Figure 4. We only consider the case
that the transmitted power is fixed at SNRLink−Max, similar to
case A in Section IV. In this case, the most reliable route,
i.e. the Minimum Outage Route (MOR), is selected based
on the algorithm discussed in Section IV. Now consider the
possibility that each relay node can receive the information
from the last two nodes immediately before it along the
selected route as shown in Figure 4. This corresponds to a
diversity of two transmitting nodes for each transmission.

For each realization of this network, the end-to-end outage
probability is a function of the node location (inter-node
distance) and power. For the base case, i.e. without diversity,
the expression for the end-to-end outage probability was given
earlier. For the diversity scheme we outlined above, a similar
expression for the end-to-end outage, as a function of inter-
relay distances, can be calculated recursively (see [6]). Instead
of showing the reliability improvement for any particular
network realization, we average the outage probabilities over
1000 realizations of this network. We do this by calculating
the end-to-end outage versus power curve for each realization,
and then taking the average outage at each snr across the
1000 simulations. Figure 5 shows the resulting average outage
probability vs. snr curves. Even with this limited diversity, the
end-to-end outage decays as snr−2. This type of improvement
in the relationship between the end-to-end route outage and
power is achieved through route diversity and does not require
any coding, ARQ, or transmitter side information.

s
 d


1


3


2


Fig. 4. Simulation Network

V. SUMMARY AND CONCLUSIONS

The problem of communication reliability and diversity in
multi-hop wireless networks was studied based on the outage
probability model for wireless channels. We derived the exact
expression for the disconnect probability in random one and
two dimensional networks. Extending this framework to a
multi-hop setting, we studied the end-to-end route reliability

−20 −10 0 10 20 30 40 50 60
10

−4

10
−3

10
−2

10
−1

10
0

PPath
Outage

 vs. SNR

SNR (dB)

P
P

at
h

O
ut

ag
e

No−Diversity
Diversity, L=2
No−Diversity Approximation
Diversity, L=2 Approximation

0.4 SNR−2

 

1.3 SNR−1

 

Fig. 5. Average Outage Probability

in a wireless network. We developed algorithms for finding the
optimal route between a source-destination pair under various
reliability and power constraints, and showed that the trade-
off between the end-to-end reliability and consumed power is
similar to that over a single link; as long as each transmission
is limited to a single transmitting and receiving node. Our basic
simulations showed that route diversity can take advantage of
the wireless broadcast property and the independence of fade
parameters between different pairs of nodes to fundamentally
change this trade-off.
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