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Abstract—We study energy-efficient transmission of data with
deadline constraints over a time-varying channel. Specifically, the
system model consists of a wireless transmitter with controllable
transmission rate, time-varying and stochastic channel state, and
strict delay constraints on the packets in the queue. While the
transmitter can control the rate, the transmission power required
depends on the chosen rate and the prevailing channel condition.
The objective is to obtain a rate control policy that serves the data
within the deadline constraints while minimizing the total energy
expenditure. Towards this end, we first introduce the canonical
problem of transmitting B units of data by deadline T over
a Markov fading channel, and obtain the optimal policy for it
using continuous-time stochastic control theory. Using a novel
cumulative curves methodology and a decomposition approach,
we extend the above setup to consider extensions involving
variable deadlines on the packets. Finally, utilizing the analysis
we present a heuristic policy for the case of arbitrary packet
arrivals to the queue with individual deadline constraints, and
give illustrative simulation results for its performance.

Index Terms—Delay, Energy, Quality of Service, Stochastic
Control, Transmission rate, Wireless.

I. I NTRODUCTION

Modern wireless systems are projected to carry a large
volume of data traffic with an increasing emphasis on qual-
ity of service. A significant portion of this traffic would
have strict delay requirements arising from various end-user
applications that involve real-time data communication. For
example, in present commercial data networks, services such
as video and real-time multimedia streaming, high throughput
file transfers and voice-over-IP impose strict delay constraints
on data packets, while, in sensor networks time critical sensing
applications impose deadline constraints that require that the
data collected must be transmitted back to a central processing
entity within a specified time interval. By their nature, wireless
systems are characterized by scarcity of resources and one
of the critical concerns is energy consumption. Minimizing
the energy cost has numerous advantages in terms of efficient
battery utilization for mobile devices, increased lifetime of
sensor and ad-hoc networks, and better utilization of limited
energy sources in satellites. Our work in this paper primarily
addresses the above two concerns; specifically, the focus
is to utilize dynamic control of the transmission rate of a
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wireless device to minimize energy expenditure subject to
packet deadline constraints. Since in most scenarios energy
spent for transmission constitutes the bulk of the total energy
expenditure, the energy cost in this paper will refer to the
transmission energy cost.

Most wireless devices are now equipped with channel mea-
surement and rate adaptation capabilities [1]. Channel mea-
surement allows the transmitter-receiver pair to measure the
fade state using a pre-determined pilot signal while rate control
capability allows the transmitter to adjust the transmission rate
over time. Such a control can be achieved in various ways that
include adjusting the power level, symbol rate, coding scheme,
constellation size and any combination of these approaches;
furthermore, in some technologies the receiver can detect these
changes directly from the received data without the need foran
explicit rate change control information [2]. Also, transmission
rate can be adapted very rapidly over millisecond duration
time-slots [1], thus providing ample opportunity to utilize rate
adaptation to optimize system performance.

To reliably transmit at a certain rate, there is a minimum
amount of transmission power required which depends on
the transmitter system; however, for most communication
schemes the power-rate function has two fundamental aspects
which are common assumptions in the literature [4]–[6], [10]–
[12], [16]. First, for a fixed bit-error probability and channel
state, the required transmission power is a convex function
of the rate as shown in Figure 1(a). This implies, from
Jensen’s inequality, that transmitting data at low rates over
a longer duration (spreading the transmission over time) is
more energy efficient as compared to high rate transmissions.
Second, the wireless channel is time-varying which shifts the
convex power-rate curves as a function of the channel state as
shown in Figure 1(b). As good channel conditions require less
transmission power, one can exploit this variability over time
by adapting the rate in response to the channel conditions.
Thus, by adapting the transmission rate intelligently overtime
energy cost can be significantly reduced.

In this paper, we seek to address the question of dynamic
rate adaptation when data packets have strict deadline con-
straints. Specifically, we first consider a simplified canonical
problem where the transmitter queue hasB units of data
that must be transmitted by a single deadlineT over a
fading channel modelled as a general Markov process. Using
a continuous-time stochastic control formulation we obtain
the optimal transmission policy in explicit/closed form. We
then consider the case when the packets in the queue have
variable deadline constraints. While this problem is complex
to solve, a decomposition approach is presented wherein it is
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Fig. 1. Transmission power as a function of the rate and the channel state;
(a) fixed channel state, (b) variable channel state.

viewed as multiple instances of the earlier canonical problem
but with dependencies among them. The rate control policy
thus obtained is shown to be optimal under specific instances.
Finally, utilizing these results we present a simple heuristic rate
control policy for an arbitrary (general) packet arrival process
with individual deadline constraints on the data packets, and
give illustrative simulation results quantifying the gains in the
energy cost achieved by it.

Transmission rate control has been actively studied in
the communication networks literature in various different
contexts. Adaptive network control and scheduling has been
studied in the context of network stability [12], [14], average
throughput [13], [15], average delay [4], [16] and packet drop
probability [17]. However, this literature considers “average
metrics” that are measured over an infinite time horizon and
hence do not directly apply for delay constrained/real-time
data. Furthermore, adapting the transmission rate simply based
on steady state distributions does not suffice and to consider
strict deadlines one needs to take into account the system
dynamics over time; thus, introducing new challenges and
complexity into the problem. Recent work in this direction
includes [5]–[8], [10], [11]. The work in [5] studied various
offline formulations under complete knowledge of the future
and devised heuristic online policies using the offline optimal
solutions. The authors in [6] studied several data transmission
problems using Dynamic Programming (DP), however, the
specific problem that we consider in this work becomes
intractable using this methodology due to the large state space
in the DP-formulation or the well-known “curse of dimension-
ality”. The works in [10], [11] studied formulations for energy
efficient data transmission over a static channel without fading.
In our earlier work in [7] we studied energy efficient data
transmission over static non-fading channels using a network
calculus approach while in [8], [9] we presented specific parts
of this work.

II. SYSTEM MODEL

We consider a continuous-time model of the system. Clearly,
such a model is an approximation of the actual system, but the
assumption is justified, since in practice transmission rate can
be adjusted over time-slots on the order of 1 msec which are
much shorter than packet delay requirements usually on the
order of 100’s of msec [1]. A significant advantage of such a
model is that it makes the problem mathematically tractable
and yields simple solutions. The alternative discrete-time
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Fig. 2. Modulation scheme considered in [12] as given in the table. The
corresponding plot shows the least squares monomial fit,0.043r2.67, to the
scaled piecewise linear power-rate curve.

dynamic programming setup is intractable, computationally
intensive and would only yield numerical solutions without
much insights. Furthermore, the results obtained using the
continuous-time model can be applied to the discrete-time
system in a very straightforward manner by simply evaluating
the solution at discrete times as done for the simulation results
in Section V-B.

A. Transmission Model

Let ht denote the channel gain,P (t) the transmitted signal
power andP rcd(t) the received signal power at timet. We
make the common assumption [4]–[6], [10]–[12], [16] that
the required received signal power for reliable communication,
with a certain low bit-error probability, is convex in the rate;
i.e. P rcd(t) = g(r(t)), whereg(r) is a non-negative convex
increasing function forr ≥ 0. Since the received signal power
is given asP rcd(t) = |ht|

2P (t), the required transmission
power to achieve rater(t) is given by,

P (t) =
g(r(t))

c(t)
(1)

where c(t)△

=|ht|
2. The quantity c(t) is referred to as the

channel stateat time t. Its value at timet is assumed known
either through prediction or direct channel measurement but
evolves stochastically in the future. As an example, with
optimal channel coding the well-known Shannon capacity
formula gives the power per bit as,P = N0W (2r/W −1)

|ht|2 ;
other examples of (1) can be found in [4], [5]. It is worth
emphasizing that while we definedc(t) as |ht|

2 to motivate
the relationship in (1), more generally,c(t) could include
other stochastic variations in the system and (uncontrollable)
interference from other transmitter-receiver pairs, as long as
the power-rate relationship obeys (1).

In this work, our primary focus will be ong(r) belonging
to the class ofMonomialfunctions, namely,g(r) = krn, n >
1, k > 0 (n, k ∈ R). While this assumption restricts the
generality of the problem, it serves several purposes. First,
mathematically it leads to simple optimal solutions in explicit-
form and insightful observations that can be applied in prac-
tice. Second, most importantly, for most practical transmission
schemesg(·) is described numerically and its exact analytical
form is unknown. In such situations, one can obtain the best
approximation of that function to the formkrn by choosing the
appropriatek, n and then applying the results thus obtained.



3

For example, consider the QAM modulation scheme consid-
ered in [12] and reproduced here in Figure 2. The table gives
the rate and the normalized signal power per symbol, whered
represents the minimum distance between signal points and the
scheme is designed for error probabilities less than10−6. The
plot gives the least squares monomial fit to the transmission
scheme and one can see from the plot that for this example
the monomial approximation is fairly close. Third, monomials
form the first step towards studying extensions to polynomial
functions which would then apply to a generalg(·) function
using the polynomial expansion. Under a more restrictive
setting in Section III-C, we also study the class ofExponential
functions, namely,g(r) = k(αr−1), α > 1, k > 0 (α, k ∈ R).
Finally, without loss of generality, throughout the paper we
take k = 1, since any other value ofk simply scales the
total energy cost without affecting the results on the optimal
transmission policy.

B. Channel Model

We consider a first-order, continuous-time, discrete state
space Markov model for the channel state process. Markov
processes constitute a large class of stochastic processesthat
exhaustively model a wide set of fading scenarios and there
is substantial literature on these models and their applications
[18]–[21]. Denote the channel stochastic process asC(t) and
the state space asC. Let c ∈ C denote a particular channel
state and{c(t), t ≥ 0} denote a sample path. Starting from
statec, the channel can transition to a set of new states (6= c)
denoted asJc. Let λcc̃ denote the channel transition rate from
statec to c̃, then, the sum transition rate at which the channel
jumps out of statec is, λc =

∑

c̃∈Jc
λcc̃. Clearly, the expected

time thatC(t) spends in statec is 1/λc and one can view1
λc

as the coherence time of the channel in statec.
Now, defineλ△

=supc λc and a random variable,Z(c), as,

Z(c)△

=

{

c̃/c, with prob. λcc̃/λ, c̃ ∈ Jc

1, with prob. 1 − λc/λ
(2)

With this definition, we obtain a compact and simple descrip-
tion of the process evolution as follows.Given a channel state
c, there is an Exponentially distributed time duration with rate
λ after which the channel state changes. The new state is
a random variable which is given asC = Z(c)c. Clearly,
from (2) the transition rate to statẽc ∈ Jc is unchanged at
λcc̃, whereas with rateλ−λc there are indistinguishable self-
transitions. This is a standard Uniformization technique and
there is no process generality lost with the new descriptionas
it yields a stochastically identical scenario1.

Example: Consider a two-state channel model with statesb
and g denoting the “bad” and the “good” channel conditions
respectively. The two states correspond to a two level quan-
tization of the channel gain. If the measured channel gain is

1Other technical assumptions in the model are as follows. The channel state
space,C, is a countable space (it could be infinite), andC ⊆ R

+. The states
c = 0,∞ are excluded fromC since each of this state leads to a singularity in
(1). The setJc, ∀c, is a finite subset ofC. Transition rateλc, ∀c is bounded
which ensures thatλ defined as the supremum is finite. For allc, the support
of Z(c) lies in [zl, zh], where0 < zl ≤ zh < ∞. This ensures thatC(t)
does not hit0 or ∞, a.s. (almost surely), over a finite time interval.
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Fig. 3. Schematic description of the system for theBT -problem.

below some value, the channel is labelled as “bad” andc(t)
is assigned an average valuecb, otherwisec(t) = cg for the
good condition. Let the transition rate from the good to the
bad state beλgb and from the bad to the good state beλbg. Let
γ = cb/cg, and using the earlier defintion,λ = max(λbg, λgb).
For statecg we have,

Z(cg) =

{

γ, with prob. λgb/λ

1, with prob. 1 − λgb/λ
(3)

To obtainZ(cb), replaceγ with 1/γ andλgb with λbg in (3).

III. BT - PROBLEM

We begin with the following canonical problem: the trans-
mitter queue hasB bits of data and a single deadlineT
by which this data must be transmitted; the objective is to
minimize the expected energy expenditure. We refer to this as
the “BT -problem” where the notation implies that the amount
of data under consideration isB, and the deadline isT . A more
general setup with variable deadline constraints is treated in
Section IV. We now describe in detail the control formulation
and the optimality conditions for theBT -problem.

A. Optimal Control Formulation

Consider theBT -problem and letx(t) denote the amount
of data left in the queue at timet. The system state can be
described as(x, c, t), where this notation means that at the
present timet, the amount of data left isx(t) = x, and the
channel state isc(t) = c. Let r(x, c, t) denote the chosen
transmission rate for the corresponding system state(x, c, t).
Since the underlying channel process is Markov, it is sufficient
to restrict attention to transmission policies that dependonly
on the present system state [25]. Clearly then,(x, c, t) is a
Markov process. The system is depicted in Figure 3.

Given a policy r(x, c, t), the system evolves in time as
a Piecewise-Deterministic-Process (PDP) [23] as follows.It
starts withx(0) = B andc(0) = c0. Until τ1, whereτ1 is the
first time instant aftert = 0 at which the channel changes,
the queue is reduced at the rater(x(t), c0, t). Hence, over the
interval [0, τ1], x(t) satisfies the ordinary differential equation,

dx(t)

dt
= −r(x(t), c0, t) (4)

Equivalently in integral form, x(t) = x(0) −
∫ t

0
r(x(s), c0, s)ds, t ∈ [0, τ1]. Then, starting from the

new state(x(τ1), c(τ1), τ1), until the next channel transition
we have, dx(t)

dt = −r(x(t), c(τ1), t), t ∈ [τ1, τ2); and this
procedure repeats untilt = T is reached. A schematic
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Fig. 4. System evolution over time for theBT -problem.

diagram of the process for a particular channel sample path
is depicted in Figure 4.

A transmission policy,r(x, c, t), is admissiblefor the BT -
problem, if it satisfies the following,

(a) 0 ≤ r(x, c, t) < ∞, (rate must be non-negative)
(b) r(x, c, t) = 0, if x = 0 (no data left to transmit) and,
(c) x(T ) = 0, a.s. (deadline constraint)2.
Consider now an admissible transmission policyr(·) and

define acost-to-gofunction,Jr(x, c, t), as the expected energy
cost incurred starting from state(x, c, t), t < T . Then,

Jr(x, c, t) = E

[

∫ T

t

1

c(s)
g(r(x(s), c(s), s))ds

]

(5)

where the term within the brackets is the total energy expen-
diture obtained as the integral of the power cost over time.
The expectation above is taken over{c(s), s ∈ (t, T ]} and
conditional on the starting statex(t) = x, c(t) = c. Define a
minimum cost function, J(x, c, t), as the infimum ofJr(x, c, t)
over the set of all admissible transmission policies.

J(x, c, t) = inf
r(·)

Jr(x, c, t), r(x, c, t) admissible (6)

Thus, stated concisely, the optimization problem is to compute
the minimum cost functionJ(x, c, t) and obtain the optimal
policy r∗(x, c, t) that achieves this minimum cost.

B. Optimality Conditions

A standard approach towards studying continuous time
problems is to investigate their behavior over a small time
interval. In the context of theBT -problem, this methodology
is summarized as follows. Suppose that the system is in state
(x, c, t). We first apply a transmission policy,r(·), in the
small interval[t, t + h] and thereafter, starting from the state
(x(t + h), c(t + h), t + h) we assume that the optimal policy
is followed. By assumption, the energy cost is optimal over
[t+h, T ], hence, investigating the system over[t, t+h] would

2An additional technical requirement is thatr(x, c, t) be continuous and
locally Lipschitz inx (for x > 0) which ensures that the ODE in (4) has a
unique solution.

give conditions for the optimality of the chosen rate at timet.
Sincet is arbitrary, we obtain formal conditions for an optimal
policy.

Following the above approach, we now present the details of
the analysis. Considert ∈ [0, T ) and a small interval[t, t+h],
wheret + h < T . Clearly, from Bellman’s principle [23] the
value functionJ(x, c, t) satisfies,

J(x, c, t)=min
r(·)

{

E

∫ t+h

t

1

c(s)
g(r(x(s), c(s), s))ds

+EJ(xt+h, ct+h, t + h)
}

(7)

where xt+h, ct+h is a short-hand notation forx(t + h) and
c(t+h) respectively. The expression within the curly brackets
in (7) denotes the total cost with policyr(·) being followed
over [t, t+h] and the optimal policy thereafter. This cost must
be clearly no less than the cost of applying the optimal policy
directly from the starting state(x, c, t). Thus for an admissible
policy r(·) we obtain,

J(x, c, t) ≤ E

∫ t+h

t

1

c(s)
g(r(x(s), c(s), s))ds

+ E [J(xt+h, ct+h, t + h)] (8)

E[J(xt+h,ct+h, t + h)] − J(x, c, t)

+E

∫ t+h

t

1

c(s)
g(r(x(s), c(s), s))ds ≥ 0 (9)

Dividing (9) by h and taking the limith ↓ 0, we obtain,

ArJ(x, c, t) +
1

c
g(r) ≥ 0 (10)

since 1
hE
∫ t+h

t
g(r(x(s),c(s),s))

c(s) ds → g(r)
c ; r is the transmission

rate at timet, i.e. r = r(x, c, t). The quantityArJ(x, c, t) is
defined asArJ(x, c, t)△

= limh↓0
EJ(xt+h,ct+h,t+h)−J(x,c,t)

h .
The operatorAr is called the differential generator of the

Markov process(x(t), c(t)) for the transmission policyr(·).
Intuitively, it can be viewed as a natural generalization of
the ordinary time derivative for a function that depends on a
stochastic process. An elaborate discussion on this topic can be
found in [23]–[25]. For the process(x(t), c(t)), using the time
evolution in (4), the quantityArJ(x, c, t) can be evaluated as
[23],

ArJ(x, c, t) =
∂J(x, c, t)

∂t
− r(x, c, t)

∂J(x, c, t)

∂x
+λ(Ez[J(x,Z(c)c, t)] − J(x, c, t)) (11)

whereEz is the expectation with respect to theZ(c) variable
as defined in (2).

Now, in the above steps from (8)-(10), if policyr(·) is
replaced with the optimal policyr∗(·), equation (10) holds
with equality, i.e.

Ar∗

J(x, c, t) +
1

c
g(r∗) = 0 (12)

Thus, we see that for a given system state(x, c, t), the optimal
transmission rater∗ is that value ofr that minimizes (10) and
the minimum value of this expression equals zero. This gives,

min
r∈[0,∞)

[

g(r)

c
+ ArJ(x, c, t)

]

= 0 (13)
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SubstitutingArJ() from (11), we get a partial differential
equation (PDE) inJ(x, c, t) which is also referred to as the
Hamilton-Jacobi-Bellman (HJB) equation. This is theoptimal-
ity equationfor the BT -problem.

min
r∈[0,∞)

{g(r)

c
+

∂J(x, c, t)

∂t
− r

∂J(x, c, t)

∂x

+λ(Ez[J(x,Z(c)c, t)] − J(x, c, t))
}

= 0 (14)

The boundary conditions for the above PDE are,J(0, c, t) = 0,
andJ(x, c, T ) = ∞, if x > 0. The last condition follows due
to the deadline constraint ofT on the data.

While the above analysis gives the optimality equation, an
important caveat is that it assumesJ(x, c, t) to be sufficiently
smooth. Therefore, additionally, we also need converse argu-
ments to verify that having a solution of (14) indeed gives the
optimal solution. These technical details and the verification
theorems are presented in Appendix A.

C. Optimal Transmission Policy

We have, so far, presented general results on the optimality
condition for theBT -problem. We now give specific analytical
results for the optimal policy and discuss some of the insights
that can be drawn from it. However, before proceeding further
a few additional notations regarding the channel process are
required. Let there be totalm channel states in the Markov
model and denote the various statesc ∈ C as c1, c2, . . . , cm.
Given a channel stateci, the values taken by the random
variable Z(ci) (defined in (2)) are denoted as{zij}, where
zij = cj/ci. The probability thatZ(ci) = zij is denoted as
pij . Clearly, if there is no transition from stateci to cj , pij = 0.
Also, without loss of generality we take the multiplicative
constantk = 1 in the functiong(r) = krn since any other
value ofk simply scales the total cost in (5) but the optimal
policy results remain the same.

Theorem I: Consider theBT -problem withg(r) = rn,
n > 1, n ∈ R and a Markov channel model. The optimal
policy, r∗(x, c, t), and the minimum cost function,J(x, c, t),
are given by,

r∗(x, ci, t) =
x

fi(T − t)
, i = 1, . . . ,m (15)

J(x, ci, t) =
xn

ci(fi(T − t))n−1
, i = 1, . . . ,m (16)

The functions{fi(s)}
m
i=1 are the solution of the following

ordinary differential equation (ODE) system with the boundary
conditionsfi(0) = 0, f ′

i(0) = 1,∀i 3,

f ′
1(s) = 1 +

λf1(s)

n − 1
−

λ

n − 1

m
∑

k=1

p1k

z1k

(f1(s))
n

(fk(s))n−1
(17)

...

f ′
m(s) = 1 +

λfm(s)

n − 1
−

λ

n − 1

m
∑

k=1

pmk

zmk

(fm(s))n

(fk(s))n−1
(18)

3For numerical evaluation of the ODE solution, the two boundary conditions
can be combined by taking a smallǫ > 0, letting fi(s) = s, s ∈ [0, ǫ], ∀i
and then using an initial-value ODE solver to obtain{fi(s)}, s ≥ ǫ.

Proof: See Appendix B.

The results in the above theorem can be interpreted as
follows. From (15), the optimal rate givenx amounts of data
left, channel stateci and timet, is x

fi(T−t) , where the function
fi(s) is associated with the channel stateci. The correspond-
ing minimum expected cost starting from state(x, ci, t) is

xn

ci(fi(T−t))n−1 . The boundary conditionfi(0) = 0 is due to
the deadline constraint, since at the deadline(T − t) = 0
and we haveJ(x, ci, T ) = ∞, if x 6= 0. In full generality,
the ODE system in (17)-(18) can be easily solved numerically
using standard techniques (e.g. ODE solvers in MATLAB)
and as shown in Appendix B, the system has a unique positive
solution. Furthermore, this computation needs to be done only
once before the system starts operating since the ODE system
depends on the parameters of the channel model but not on the
prevailing channel state. Thus,{fi(s)} can be pre-determined
and stored in a table in the transmitter’s memory. Once{fi(s)}
are known, the closed form structure of the optimal policy in
(15) warrants no further computation. At timet, the transmitter
simply looks at the amount of data left in the queue,x, the
channel state,ci, and using the appropriatefi(·) function it
computes the transmission rate asx

fi(T−t) .
The solution in (15) provides several interesting observa-

tions and insights as follows. At timet, the optimal rate
depends on the channel stateci through the functionfi(T − t)
and this rate is linear inx with slope 1

fi(T−t) . Thus, as
intuitively expected, the rate is proportionately higher when
there is more data left in the queue. Furthermore, we can
view the quantity 1

fi(T−t) as the “urgency” of transmission
under the channel stateci and with (T − t) time left until
the deadline. This view gives a nice separation form for the
optimal rate:

optimal rate = amount of data left * urgency of transmission

Due to the boundary condition, ast approachesT , fi(T−t),∀i
goes to zero; thus, as expected, the urgency of transmission,

1
fi(T−t) , increases ast approaches the deadline. Interestingly,
if we setλ = 0 (no channel variations) then,fi(T − t) = T −
t,∀i and r∗(x, c, t) = x

T−t . Thus, with no channel variations
the optimal policy is to transmit at a rate that just empties
the queue by the deadline. This observation is consistent with
the earlier results in the literature for non-fading/time-invariant
channels [5], [7], [10]. We refer to this transmission scheme
as the “Direct Drain” (DD) policy.

Simulation Example:Consider the two-state channel model
with the states “bad” and “good” as described in Section II-B.
Let g(r) = r2 (i.e.n = 2) and for simplicity takeλbg = λgb =
λ. Denotingγ = cb/cg, we have,Z(cg) = γ, w.p. 1, and
Z(cb) = 1/γ, w.p. 1. Denotingfb(s), fg(s) as the respective
functions in the bad and the good states, we have,

f ′
b(s) = 1 + λfb(s) −

γλ(fb(s))
2

fg(s)
(19)

f ′
g(s) = 1 + λfg(s) −

λ(fg(s))
2

γfb(s)
(20)
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Fig. 6. Expected energy cost for the optimal and the direct drain (DD) policy.

Figure 5 plots these functions, evaluated using MATLAB, for
T = 10, λ = 5, γ = 0.3. First, as expectedfg(T − t) ≤
fb(T − t),∀t, which implies that givenx units of data in the
buffer and timet, the rate x

fg(T−t) is higher under the good
state than the bad state. Second,fg(T−t) ≤ T−t ≤ fb(T−t),
where the function,T − t, gives the rate, x

T−t , corresponding
to the direct drain (DD) policy. Thus, the optimal policy both
spreads the data over time and adapts the rate in response
to the time-varying channel condition and this adaptation is
governed by the respective functions{fi(·)}.

We now present illustrative simulation results to compare
the performance of the optimal policy with the direct drain
(DD) policy. As stated earlier, the DD policy transmits at a
rate sufficient to just empty the buffer by the deadline without
any rate adaptation to the channel state. For the simulations,
we consider the two-state channel model withcg = 1, cb = γ
and takeg(r) = r2. We let,T = 10 and partition the interval
[0, 10] into slots of lengthdt = 10−3, thus, having10, 000 time
slots. The transmission rate chosen in each slot is obtainedby
evaluating the respective policies at the time corresponding to
the start of that slot. A channel sample path is simulated using
a Bernoulli process, where in a slot the channel transitions
with probability λdt and with probability1 − λdt there is
no transition. At each transition, the new state isc̃ = Z(c)c
which for the two-state model amounts to jumps between the
two states. Expected energy cost is computed by taking an
average over104 sample paths. Figure 6(a) plots the energy
costs of the two policies asλ is varied withγ = 0.3, B = 10.

Whenλ is small the channel is essentially time-invariant over
the deadline interval and the two policies are comparable. As
λ increases, the optimal cost substantially decreases due to
the channel adaptation. In Figure 6(b),γ is varied withλ = 5,
B = 10. As γ decreases the good and the bad channel quality
differ significantly and the optimal rate adaptation leads to
a substantially lower energy cost in terms of an order of
magnitude difference as compared to the DD policy.

Constant Drift Channel: Theorem I gives the optimal
policy for a general Markov channel model. By considering
a special structure on the channel model which we refer to
as theConstant Driftchannel, two specialized results can be
obtained. First, we obtain thef(·) function in closed form for
the Monomial class(g(r) = rn), and second, we obtain the
optimal policy for the Exponential class(g(r) = αr − 1).

In the constant drift channel model, we assume that the
expected value of the random variable1/Z(c) is independent
of the channel state, i.e.E[1/Z(c)] = β, a constant. Thus,
starting in statec, if c̃ denotes the next transition state we
haveE

[

1
c̃

]

= E
[

1
Z(c)

]

1
c = β

c . This means that if we look

at the process1/c(t), the expected value of the next state is
a constant multiple of the present state. We refer toβ as the
“drift” parameter of the channel process. Ifβ > 1, the process
1/c(t) has an upward drift; ifβ = 1, there is no drift and if
β < 1, the drift is downwards. As a simple example of such
a Markov model, suppose that the channel transitions at rate
λ > 0 and at every transition the state either improves by a
factor u > 1 with probability pu, or worsens by a factor1/u
with probability pd (= 1− pu). Thus, given some statec > 0
the next channel state is eitheruc or c/u, and,E[1/Z(c)] =
pu/u + upd. Here, the drift parameterβ = pu/u + upd.

The next theorem, Theorem II, gives the optimal policy
result for the constant drift channel model and the monomial
class of functions while Theorem III later gives the result for
the exponential class.

Theorem II: Consider theBT -problem withg(r) = rn,
n > 1, n ∈ R and a constant drift channel with driftβ. The
optimal policy,r∗(x, c, t), and the function,J(x, c, t), are,

r∗(x, c, t) =
x

f(T − t)
(21)

J(x, c, t) =
xn

c(f(T − t))n−1
(22)

wheref(T − t) = (n−1)
λ(β−1) (1 − exp(−λ(β−1)

n−1 (T − t))).

Proof: See Appendix E.

The closed-form expression off(·) above provides an
interesting intuitive observation related to the parameter β.
Suppose that the present channel state isc, then for a fixed
rate r, the expected power cost in the next channel state is
E
[

g(r)
Z(c)c

]

= g(r)
c β, which is β times the present costg(r)

c .
This means that for higher values of parameterβ, the channel
on every transition drifts in an expected sense towards higher
expected power cost or worsening conditions and vice-versaas
β decreases. Hence, as expected, the urgency of transmission
1/f(t) is an increasing function with respect toβ since for
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largeβ values it becomes more energy efficient to utilize the
present channel conditions. Interestingly, whenβ = 1, the
expected future power cost does not change and in this case
the optimal policy reduces to the direct drain (DD) policy, i.e.
r∗(x, c, t) = x

T−t (where we have used L’Hopital’s rule to
evaluatef(·) for β = 1). Thus, we see that the direct drain
policy is optimal both under no channel variations and under
a constant drift channel model withβ = 1.

Theorem III: Consider theBT -problem withg(r) = αr −
1, α > 1 and a constant drift channel with driftβ. The optimal
policy, r∗(x, c, t), is the following,

Case 1: β ≥ 1,

r∗(x, c, t) =







√

2xλ(β−1)
ln α 0 ≤ x < λ(β−1)(T−t)2

2 ln α

x
T−t + λ(β−1)(T−t)

2 ln α x ≥ λ(β−1)(T−t)2

2 ln α

(23)

Case 2: 0 < β < 1,

r∗(x, c, t) =

{

0 0 ≤ x < λ(1−β)(T−t)2

2 ln α
x

T−t −
λ(1−β)(T−t)

2 ln α x ≥ λ(1−β)(T−t)2

2 ln α

(24)

Proof: See Appendix F.

From above, we see that while the optimal rate function
has a different functional form for the exponential case, some
of the natural properties still hold true - it is monotonically
increasing inx, increasing ast approaches the deadline and
also increasing inβ.

IV. VARIABLE PACKET DEADLINES

In the last section, we dealt with a specific case of the energy
minimization problem involvingB bits of data and a single
deadlineT . We now extend the results to a more general setup
where the data in the queue has variable deadlines. We adopt
a cumulative curves methodology [3], [7], [22] and provide a
natural decomposition of the problem in terms of multiple but
dependent instances of the canonicalBT -problem. Through
this decomposition we obtain a transmission policy that is
shown to be optimal for the constant drift channel model. As
will be evident, the cumulative curves formulation provides a
very appealing and simple visualization of the problem and
the solution.

A. Problem Setup

Let us first define the following cumulative curves. Define
the Arrival Curve, A(t), as the total number of bits that have
arrived to the queue in time[0, t]; theDeparture Curve, D(t),
as the total number of bits that have departed (served) in time
interval [0, t] and theMinimum Departure Curve, Dmin(t),
as the minimum number of bits that must depart by timet
to satisfy the deadline constraints. For example, in theBT -
problem case, we haveA(t) = B, t ∈ [0, T ] since the queue
has B bits to begin with at time0 and no more data is
added. We haveDmin(t) = 0, t ∈ [0, T ),Dmin(T ) = B
since until the deadlinet < T there is no minimum data
transmission requirement while atT the entireB bits must
have been transmitted. Finally, the curveD(t) represents

B

T

A(t)

Dmin(t)D(t)

(a)

0

B1

B2

BM-1

BM

T1
0 T2 TM-1 TM

(b)

Dmin(t)

A(t)

D(t)

time time

Fig. 7. Cumulative curves for (a)BT -problem, (b) Variable deadlines case.

the data departure over time which depends on the chosen
transmission policy. A schematic diagram of this is given in
Figure 7(a).

Consider now the variable deadlines problem. Here, the
queue hasM packets that are arranged and served in the
earliest-deadline-first order. Letbj be the number of bits in
the jth packet andTj be the deadline for this packet; assume
0 < T1 < T2 < . . . < TM . There are no new arrivals and the
objective is to obtain a transmission policy that serves this data
over the time-varying channel with minimum expected energy
cost while meeting the deadline constraints. In terms of the
cumulative curves, the setup can be visualized as depicted in
Figure 7(b). LetBj =

∑j
l=1 bl; whereBj is the cumulative

amount of data of the firstj packets. Then,A(t) = BM ,∀t,
since a totalBM bits are in the queue at time0 and no more
data is added, and,Dmin(t) is a piecewise-constant curve with
jumps at timesTj , i.e. at timeTj , Dmin(Tj) = Bj since the
first Bj bits must be transmitted byTj . Finally, we require
that for admissibility a transmission policy must be such that
the departure curve,D(t), satisfyDmin(t) ≤ D(t) ≤ A(t); in
other words, data must be served such that the cumulative
amount lies above the minimum departure curve (deadline
constraints) and below the arrival curve (causality constraints).
Note that if a transmission policy adapts the rate with the
channel variations, the actual departure curve followed would
depend on the underlying channel sample path; however, for
all the sample paths (almost surely) the above admissibility
criterion must be satisfied.

B. Optimal Control Formulation

Let the system state be denoted as(D, c, t), where the
notation means that at the present timet, the cumulative
amount of data that has been transmitted isD(t) = D, and the
channel state isc(t) = c. Let r(D, c, t) denote a transmission
policy and since the underlying channel process is Markov, it
is again sufficient to restrict attention to policies that depend
only on the present system state [25]. Furthermore, we will
assume that the functiong(r) belongs to the Monomial class,
i.e. g(r) = krn, k > 0, n > 1.

As before, given a policyr(D, c, t) the system evolves in
time as a Piecewise-Deterministic-Process starting in theinitial
stateD(0) = 0 and c(0) = c0. Until τ1, whereτ1 is the first
time instant aftert = 0 at which the channel changes, data is



8

transmitted at the rater(D(t), c0, t). Hence, over the interval
[0, τ1), D(t) satisfies the differential equation,

dD(t)

dt
= r(D(t), c0, t) (25)

Equivalently, in integral form D(t) = D(0) +
∫ t

0
r(D(s), c0, s)ds, t ∈ [0, τ1]. Then, starting from the

new state(D(τ1), c(τ1), τ1) until the next channel transition
we have, dD(t)

dt = r(D(t), c(τ1), t), t ∈ [τ1, τ2); and this
procedure repeats untilt = TM is reached.

A transmission policy,r(D, c, t), is admissible, if it satisfies
the following: (a)0 ≤ r(D, c, t) < ∞, (non-negativity), and,
(b) Dmin(t) ≤ D(t) ≤ A(t), t ∈ [0, TM ], a.s. (deadline and
causality constraints).

For an admissible policyr(·), let Jr(D, c, t) denote the
cost-to-gofunction as the expected energy expenditure starting
from an admissible state(D, c, t), (i.e. Dmin(t) ≤ D ≤
A(t), t < TM ). Then,

Jr(D, c, t) = E

[

∫ TM

t

1

c(s)
g(r(D(s), c(s), s))ds

]

(26)

where the above expectation is taken over{c(s), s ∈ (t, TM ]}
and conditional on the starting stateD(t) = D, c(t) = c.
Define aminimum cost function, J(D, c, t), as the infimum of
Jr(D, c, t) over the set of all admissible transmission policies.

J(D, c, t) = inf
r(·)

Jr(D, c, t), r(D, c, t) admissible (27)

As before, the optimization problem is to compute the optimal
policy r∗(D, c, t) that achieves the minimum costJ(D, c, t).

Following Section III-B, the optimality HJB equation can
be obtained directly by noting that the process evolution
as discussed above remains the same as theBT -problem,
except that, for convenience we have used the cumulative data
transmittedD(t) as the state variable. Thus, using the results
of Section III-B the HJB equation is given as,

min
r∈[0,∞)

{g(r)

c
+

∂J(D, c, t)

∂t
+ r

∂J(D, c, t)

∂D

+λ(Ez[J(D,Z(c)c, t)] − J(D, c, t))
}

= 0 (28)

However, the boundary conditions for the above general
formulation are more complex than theBT -problem and
depend on the underlyingDmin(t) curve. For the variable
deadlines setup, these are given as,J(BM , c, t) = 0 and
J(D, c, Tj) = ∞, if D < Bj , j = 1, . . . ,m. The second
condition follows from the deadline constraints since ast
approachesTj the cost function must be unbounded if the
required cumulative amountBj has not been transmitted.

C. Transmission Policy

A direct solution of the optimization problem stated in
the previous section is fairly difficult due to the complexity
of solving the differential equation with multiple boundary
conditions involved. Interestingly, however, the simple graph-
ical visualization of cumulative curves provides an intuitive
and natural decomposition of the variable deadlines problem
in terms of multiple inter-relatedBT -problems. A visual

comparison of the two diagrams in Figure 7 suggests the
following approach. First, instead of looking at individual
packets in the queue, we can visualize the deadline constraints
in terms of cumulative amounts as{BjTj}

M
j=1 constraints,

that is, a total ofBj bits must be transmitted by deadline
Tj (j = 1, . . . ,M ). Clearly, each individualBjTj constraint
is like a BT -problem except that now there are multiple such
constraints that all need to be satisfied. For every timet and
channel statec, we know the optimal transmission rate to
satisfy each of theBjTj constraints individually (assuming
only this constraint existed), thus, to meet all the constraints
a natural solution is to simply choose the maximum rate; i.e.
procedurally, for a given system state list the remainingBjTj

constraints, obtain the transmission rate individually for each
one of them using the rate function obtained previously for
the BT -problem, and then choose the maximum value.

More precisely, this transmission policy is described as
follows. Let the system be in state(D, c, t) and consider a
particular BjTj constraint. Using (15), the optimal rate for
an individual BjTj constraint for channel stateci is given
as Bj−D

fi(Tj−t) , since (Bj − D) is the amount of data left and
(Tj − t) is the time left until the deadlineTj . Let r̃(D, c, t)
denote the transmission rate for our proposed policy, thenr̃(·)
is the maximum value among the rates for allBjTj constraints
for which (Bj ≥ D,Tj ≥ t); i.e.

r̃(D, ci, t) = max
j:(Bj≥D,Tj≥t)

Bj − D

fi(Tj − t)
(29)

where, as before, the functions{fi(s)}
m
i=1 are the solution

of the following ODE system with the boundary conditions
fi(0) = 0, f ′

i(0) = 1,∀i,

f ′
i(s) = 1+

λfi(s)

n − 1
−

λ

n − 1

m
∑

k=1

pik

zik

(fi(s))
n

(fk(s))n−1
, i = 1, . . . ,m

(30)
By construction all theBjTj constraints are satisfied since at
all times we choose the maximum rate among those needed
to meet each of the remaining constraints. Hence, the policy
in (29) is admissible. Furthermore, since the policy in (29)
is based on theBT -solution, it inherits all the properties of
that solution. The ODE system in (29) is identical to theBT -
case, hence, as before the functions{fi(s)}

m
i=1 can be obtained

numerically using a standard ODE solver. This computation
needs to be done only once before the system starts operating
and the functions{fi(s)} can be pre-determined and stored
in a table in the transmitter’s memory. Once the{fi(s)} are
known, the online computation is minimal. At timet, the
transmitter looks at the cumulative amount of data transmitted,
D, the channel state,ci, and then using the corresponding
fi(·) function it simply computes the maximum among a set
of values as given in (29).

While the transmission policy in (29) applies for a general
Markov channel model, under the specialization to a constant
drift channel it is in fact the optimal policy as shown in the
following theorem. Note that for the constant drift channel
model, the functionfi(s) = f(s), ∀i wheref(·) is given in
Theorem II.
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Theorem IV: (Variable Deadlines Case)Consider the vari-
able deadlines problem withg(r) = rn, n > 1, n ∈ R and the
constant drift channel model with parameterβ. The optimal
rate, r∗(D, c, t) for Dmin(t) ≤ D ≤ A(t), t ∈ [0, TM ) is
given as,

r∗(D, c, t) = max
j:(Bj≥D,Tj≥t)

Bj − D

f(Tj − t)
(31)

where,f(s) = (n−1)
λ(β−1) (1 − exp(−λ(β−1)

n−1 s)).

Proof: See Appendix G.

V. PACKET ARRIVALS WITH DEADLINES

Consider an arbitrary stream of packet arrivals to the queue
with each packet having a deadline by which it must depart.
Regardless of the underlying stochastic process generating the
packets, we next present a heuristic energy-efficient transmis-
sion policy based on the variable deadlines solution. We call
it the “BT-Adaptive” (BTA) policy. Since this policy is not
based on a specific arrival process, it is robust to changes in
the arrival statistics and can accommodate multiple deadline
classes of packet arrivals to the queue. Finally, to evaluate the
performance of the BTA policy, we also present illustrative
simulation results comparing it with a non-adaptive scheme.

A. BT-Adaptive (BTA) Policy

Consider packet arrivals to the queue and assume that the
arrivals occur at discrete times with each packet having a
deadline associated with it. Clearly, at the instant immediately
following a packet arrival the transmitter queue consists of,
(a) earlier remaining packets with their deadlines and (b) the
new packet with its own deadline. Re-arranging the data in
the queue in the earliest-deadline-first order we can view the
queue as consisting of some total amountBM of data with
variable deadlines, identical to the case considered in thelast
section. Not assuming any knowledge of the future arrivals
and using (29) we have an energy efficient policy to empty the
transmitter buffer. As this policy is followed, at the next packet
arrival instance the above procedure is simply repeated by
updating the data amount taking into account the new packet.

Summarizing, the BTA policy is as follows:Transmit the
data in the queue with the rate as given in (29); at every packet
arrival instant re-arrange the data in the earliest-deadline-first
order to obtain a new set ofBjTj values including the new
packet and its deadline; re-initializeD to zero and follow (29)
thereafter.

B. Simulation Results

In this section, we present simulation results to evaluate
the performance of the BT-Adaptive policy. For comparison
purposes we consider the “Head-of-Line Drain” (HLD) policy
which can be easily implemented in practice. In HLD policy,
the data in the queue is arranged in the earliest-deadline-first
order and the packets are served in that order. At timet, let
Ht be the amount of data left in the head-of-the-line packet
andTH be the amount of time until its deadline, then the rate
chosen isrt = Ht

TH
. Thus, the transmitter serves the first packet

0 10 25 50
10

2

10
3

10
4

10
5

10
6

(a) Packet arrival rate

Ex
pe

cte
d 

en
er

gy
 co

st

BTA
HLD

0 20 40
0

0.5

1

1.5

2

2.5

3

x 10
4

(b) Sample path index

En
er

gy
 co

st

BTA
HLD

Fig. 8. Energy cost comparison for Poisson arrival process for (a) different
arrival rate, (b) different sample paths.

20 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5x 10
4

Deadline in msec.

E
xp

ec
te

d 
en

er
gy

 c
os

t

BTA
HLD

Fig. 9. Energy cost versus packet deadline for Poisson arrival process.

in queue at a rate to transmit it out by its deadline, then moves
to the next packet in line and so on. At every packet arrival
instant, the data in the queue is re-arranged in the earliest-
deadline-first order and the above policy is repeated with the
new packet taken into account.

The simulation setup is as follows. The queue has packet
arrivals and each packet has a deadline associated with it. On
each simulation run, the total time over which the packets
arrive and the system is operated is taken asL = 10 seconds.
This interval[0, 10] is partitioned into10, 000 slots, thus each
slot is of durationdt = 1 msec. The channel model is the two
state model, described in Section II-B with the parameters,
cg = 1, cb = 0.2, λbg = λgb = λ = 50. Thus, the average
time spent in a state before the channel transitions is1/50
seconds, or20 msec. A channel sample path is simulated using
a Bernoulli process where in a slot the channel transitions with
probabilityλdt; otherwise there is no transition. For simplicity,
the packet arrival and the channel state transitions occur only
at the slot boundaries. For both the BTA and the HLD policies,
the rate chosen in a slot is obtained by evaluating the respective
policies at the time corresponding to the start of that slot.We
take g(r) = r2; energy cost per slot is thereforer

2dt
c (r is

the chosen rate in the slot) and the total expected energy cost
is taken as an average of the total cost over multiple sample
runs.

We first consider a Poisson packet arrival process with each
packet having1 unit of data and a deadline of200 msec.
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Figure 8(a) is a plot of the expected energy cost, plotted on
a log scale, versus the packet arrival rate. Note that a packet
arrival rate of10 implies that the average inter-arrival time of
a packet is1/10 sec. or100 msec. As is evident from the plot,
the BTA policy has a much lower energy cost compared to the
HLD policy and as the arrival rate increases the two costs are
roughly an order of magnitude apart. This can be intuitively
explained as follows. When the arrival rate is low, most of
the time the queue has at most a single packet. Hence, both
policies choose a rate based on the head-of-line packet with
the BTA policy also adapting the rate with the channel state.
As the arrival rate increases and due to the bursty nature of
the Poisson process, the queue tends to have more packets.
The BTA policy then adapts based on the channel and the
deadlines of all the packets in the queue, whereas, the HLD
policy chooses a rate based solely on the head-of-line packet.
The energy efficiency of the BTA policy is not just in an
average sense but even on individual sample paths. This is
shown in Figure 8(b) for 50 sample paths for arrival rate of
10 packets/second.

In Figure 9, the packet arrival process is Poisson with rate
10 but now the packet deadline is varied. Clearly, as seen in
the figure, the energy cost decreases as the packet deadline
increases since lower transmission rates are required to meet
the deadlines. Also, as the deadline increases the energy cost
difference between the BTA and the HLD policy increases.
This is because with a larger delay constraint there is more
room for the adaptive techniques employed in the BTA policy
to have a greater effect.

In Figure 10, we consider a Uniform packet arrival process
where now the inter-arrival time between packets is uniformly
distributed between 50 and 150 msec. The deadline for each
packet is taken as 200 msec while the packet size is varied.
First, as expected the energy cost for both the policies in-
creases with the packet size and second, the BTA policy has a
much less energy cost compared with HLD policy even when
the arrival process is less bursty as compared to the Poisson
process.

VI. CONCLUSION

We considered transmission of delay-constrained data over
time-varying channels with the objective of minimizing the
total transmission energy expenditure. We adopted a novel

approach based on continuous-time formulation and stochastic
control theory to address an otherwise difficult set of problems.
We first considered the problem of transmittingB units of data
by deadlineT and obtained the optimal rate adaptation policy.
Various properties of the optimal rate function are deducedand
it is also shown to have an intuitive separation form. Using
a cumulative curves methodology and a decomposition ap-
proach, we then obtained an energy-efficient rate control policy
when the data in the queue has variable deadline constraints;
this policy is shown to be optimal under specific scenarios.
Finally, based on the intuition developed in the above, we
devised a heuristic policy for arbitrary packet arrival process
and compared its performance through simulations. We believe
that the framework of this paper holds promise for various
extensions addressing QoS-constrained data transmissionin
wireless systems. Some of the natural extensions include a
network model with multiple transmitter-receiver pairs and
multi-hop transmissions with end-to-end delay constraints.
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APPENDIX A
VERIFICATION THEOREM FOR THEBT -PROBLEM

In Section III-B, we obtained heuristically the optimality
equation as given by (14). To present a rigorous argument we
need to verify that a solution of (14), i.e. functional forms
J(x, c, t) and r∗(x, c, t) that satisfy (14), indeed give the
optimal solution for theBT -problem. However, the standard
verification theorems in [23] that provide conditions to check
for the optimality of the solution to the HJB equation do not
directly apply for theBT -problem. This is because the non-
standard boundary conditionx(T ) = 0 leads to a singularity

in J(x, c, t) at t = T (since,J(x, c, t)
(t→T )
−−−−→ ∞, if x > 0).

To overcome this technical difficulty and obtain a verification
theorem for theBT -problem, we consider a particular relax-
ation and take appropriate limits as discussed next.

Consider the following modification to the problem. Instead
of emptying the buffer by timeT , extend the deadline toT +τk

for some τk > 0. In the interval [T, T + τk] the channel
does not change and whatever data,x(T ), left at time T is
transmitted out at the constant ratex(T )/τk. Thus, now the
system runs over time[0, T ] and the data left atT has a
terminal energy cost of emptying it in the nextτk interval.
This terminal cost is given as,

hk(x(T ), c(T )) =
τk g

(

x(T )
τk

)

c(T )
(32)

We now consider a sequence{τk}
∞
1 such thatτk ↓ 0. This

gives a sequence of modified problems which we denote as
{Pk} while the corresponding minimum-cost functions are
denoted as{Jk(x, c, t)}.

Note that the relaxation does not change the system dy-
namics over time but only affects the terminal cost applied
to the leftover data at timeT . In the BT -problem, we had
an infinite cost on any data left atT but now each problem
{Pk} has a smooth functionhk(x(T ), c(T )) associated with
it. Clearly, then, the optimality equation for eachPk is the
same as (14) except that the boundary conditions for the PDE
now becomeJk(0, c, t) = 0 and Jk(x, c, T ) = hk(x, c).
The admissibility of a policy for problemPk includes the

constraints required for theBT -problem with the exception
of x(T ) = 0 which is no longer a necessary requirement.
Furthermore, from the increasing and convexity propertiesof
g(r), it is easy to see that for a fixed(x, c), hk(x, c) = 0, if

x = 0,∀k andhk(x, c)
(k→∞)
−−−−−→ ∞, if x > 0. Thus, as we look

at the modified problemsPk with large values ofk (smaller
values of τk), there is an increasingly higher penalty cost
applied to the data left at timeT . And ask → ∞, this penalty
cost goes to infinity; thus, in the limit we have a situation
equivalent to theBT -problem. The rest of the proof delves into
the technical details involved in taking the limits. Specifically,
to obtain the verification theorem for theBT -problem, we
show that having obtained the optimal cost function for the
modified problemPk and then taking the limitk → ∞ gives
the optimal solution for theBT -problem.

We will use the notatioñΓ to denote the set of all admissible
policies for problemPk (note that for allPk, the set Γ̃
is the same since the problems only differ in the terminal
cost functionhk(·, ·)). The cost-to-go function for a policy
r(·) for problem Pk will be denoted asJk

r (x, c, t); i.e.

Jk
r (x, c, t) = E

[

∫ T

t
g(r(x(s),c(s),s))

c(s) ds + hk(x(T ), c(T ))
]

. We
start with Lemma 1 which gives the verification result for
problem Pk. It states that a solution of the PDE equation
(14) satisfying the relevant boundary conditions indeed gives
the minimum cost function and that the transmission policy
obtained from the minimizingr in (14) is the optimal policy.

Lemma1: (Verification Result forPk) Let Jk(x, c, t) de-
fined on[0, B]×C× [0, T ], solve the equation in (14) with the
boundary conditionsJk(0, c, t) = 0,∀c ∈ C, t ∈ [0, T ) and
Jk(x, c, T ) = hk(x, c). Then,

1) Jk(x, c, t) ≤ Jk
r (x, c, t), ∀ r(·) ∈ Γ̃

2) Letr∗k(x, c, t) be an admissible policy forPk such thatr∗k
is the minimizing value ofr in (14) for Jk(x, c, t), then,
r∗k(x, c, t) is an optimal policy,Jk(x, c, t) is the minimum
cost function and,

Jk(x, c, t) = E
[

∫ T

t

g(r∗k(x(s), c(s), s))

c(s)
ds

+ hk(x(T ), c(T ))
]

(33)

Proof: See [23], Chap III, Theorem 8.1.

Now, define the functionJ(x, c, t)△

= limk→∞ Jk(x, c, t).
The next theorem shows that this limit exists and if it satisfies
(14), it is the optimal solution for theBT -problem. We will
use the notationΓ in the theorem to denote the set of all
admissible policies for theBT -problem.

Theorem V: (Verification for the BT -problem) Con-
sider (x, c, t) ∈ [0, B] × C × [0, T ) and define
J(x, c, t)△

= limk→∞ Jk(x, c, t). Let J(x, c, t) satisfy the
HJB equation in (14) andr∗(x, c, t) be an admissible policy
for the BT -problem such thatr∗ is the minimizing value of
r in (14) for J(x, c, t). Then,

1) J(x, c, t) ≤ Jr(x, c, t), ∀ r(·) ∈ Γ

2) r∗(x, c, t) is the optimal policy,J(x, c, t) is the minimum
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cost function and,

J(x, c, t) = E

[

∫ T

t

1

c(s)
g(r∗(x(s), c(s), s))ds

]

(34)

Proof: We divide the proof into various steps each giving
arguments for the various claims in the theorem statement.

Step 1: The limit, J(x, c, t) = limk→∞ Jk(x, c, t) exists
and is finite

Consider the relaxed problemPk and the corresponding
minimum cost functionJk(x, c, t). We now make two claims,
first that Jk(x, c, t) is non-decreasing ink for each(x, c, t)
and second thatJk(x, c, t) is bounded for allk. These two
claims are proved as follows. First, note that the sequenceτk

is decreasing and hencehk(x, c) is monotonically point-wise
increasing inx with increasingk. Fix an admissible policy
r(·) ∈ Γ̃, then for every channel sample path the total energy
cost is higher ask increases because the terminal cost is higher.
Hence, for allr(·) the expected energy cost increases withk;
taking the infimum overr(·) proves the first claim. To prove
the second claim consider a simple policy,π(·), that starting
with x units of data at timet, empties this data at a constant
rate by timet̃, wheret < t̃ < T ; i.e. r = x/(t̃ − t) is fixed.
For such a policy,

Jπ(x, c, t)=E

[

∫ t̃

t

g(x/(t̃ − t))

c(s)
ds

]

=g

(

x

t̃ − t

)

E

[

∫ t̃

t

1

c(s)
ds

]

≤g

(

x

t̃ − t

) ∞
∑

j=0

(

(t̃ − t)

c(zl)j

)

(

λ(t̃ − t)
)j

e−λ(t̃−t)

j!

=
(t̃ − t)

c
g

(

x

t̃ − t

)

e
λ(t̃−t)

zl e−λ(t̃−t) < ∞

The inequality above follows by first conditioning that the
channel makesj transitions over[t, t̃], taking c(s) = (zl)

jc,
where(zl)

jc is the worst possible channel quality starting with
statec and makingj transitions, and finally taking expecta-
tion with respect toj (number of transitions,j, is Poisson
distributed with rateλ(t̃− t) andzl > 0 is the least value that
any Z(c) can take). Since,Jk(x, c, t) ≤ Jπ(x, c, t),∀k, the
bounded-ness claim follows. Combining the above two claims
(non-decreasing and bounded), we see that the point-wise limit
J(x, c, t) = limk→∞ Jk(x, c, t) exists.

Step 2: Result 1 stated in the theorem, i.e.J(x, c, t) ≤
Jr(x, c, t), ∀ BT -admissible policies

From the notation considered,Γ denotes the set of admis-
sible policies for theBT -problem and̃Γ the set of admissible
policies for problems{Pk}. We haveΓ ⊂ Γ̃ because a policy
that empties the data by the deadline is clearly an admissible
policy for the modified problems{Pk} in which case such a
policy simply incurs zero terminal energy cost. Thus, for all
r(·) ∈ Γ, x(T ) = 0 and the terminal energy cost is zero. This
gives for allk,

Jk
r (x, c, t) = Jr(x, c, t), ∀ r(·) ∈ Γ (35)

whereJr(·) above is defined in (5). From Lemma 1 we know
that,

Jk(x, c, t) ≤ Jk
r (x, c, t), ∀ r(·) ∈ Γ̃ ⊃ Γ (36)

Thus from (35) and (36) we have,

Jk(x, c, t) ≤ Jr(x, c, t), ∀ r(·) ∈ Γ (37)

Since the above inequality holds for allk, taking limits gives,

J(x, c, t)△

= lim
k→∞

Jk(x, c, t) ≤ Jr(x, c, t), ∀ r(·) ∈ Γ (38)

Step 3: Result 2 stated in the theorem
From the theorem statement, we know thatJ(x, c, t) satis-

fies (14) andr∗(x, c, t) is an admissible policy for theBT -
problem. Now, using Dynkin’s formula, [23], onJ(x, c, t) for
policy r∗(·) we get∀ τ, t < τ < T ,

J(x, c, t) = EJ(xτ , cτ , τ) − E

∫ τ

t

Ar∗

J(xs, cs, s)ds (39)

= EJ(xτ , cτ , τ) + E

∫ τ

t

g(r∗(xs, cs, s))

cs
ds (40)

≥ E

∫ τ

t

g(r∗(xs, cs, s))

cs
ds (41)

where we have usedxs, cs as short-hand notations forx(s) and
c(s) respectively. The equality in (40) follows sincer∗ is the
minimizing value in (13) which givesAr∗

J(x, c, t)+ 1
cg(r∗) =

0 or equivalently 1
cs

g(r∗(xs, cs, s)) = −Ar∗
J(xs, cs, s). The

inequality in (41) follows sinceJ(·) is non-negative. Since
the above holds for allτ < T , taking limits and using the
monotone convergence theorem we get,

J(x, c, t) ≥ E

[

∫ T

t

g(r∗(x∗
s, cs, s))

cs
ds

]

(42)

Combining the above inequality with that in (38) shows
that we have equality for policyr∗(x, c, t), i.e. J(x, c, t) =

E
∫ T

t
g(r∗(xs,cs,s))

cs
ds. This completes the proof thatJ(x, c, t)

is the minimum cost function andr∗(·) is the optimal policy.

APPENDIX B
PROOF OFTHEOREM I – BT -problem

To prove optimality, we check all the conditions required
in the verification results of Appendix A as follows. We
first consider the relaxed problemPk and obtain the optimal
solution by verifying the conditions in Lemma 1. Then, we
take the limitk → ∞ and check the conditions required in
Theorem V. These limits give us the optimal solution for the
BT -problem.

Step 1: Optimal solution for the modified problemPk

Let us suppose that the functional form for the optimal rate
r∗k(x, c, t) is given as,

r∗k(x, ci, t) =
x

fk
i (T − t)

, i = 1, . . . ,m (43)

Assuming this functional form we now obtain the minimum
cost functionJk(x, c, t). To proceed, note thatr∗k(·) must be
the minimizing value ofr in (14). Thus, using the first-order
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condition for the minimization (i.e. first derivative with respect
to r equal to zero) we get,∀(x, c, t) ∈ (0, B] × C × [0, T ),

∂

∂r

(g(r)

ci
+

∂Jk(x, ci, t)

∂t
− r

∂Jk(x, ci, t)

∂x

+λ(Ez[J
k(x,Z(ci)ci, t)] − Jk(x, ci, t))

)∣

∣

∣

r∗
k

= 0 (44)

This gives, ∂Jk(x,ci,t)
∂x =

g′(r∗
k(x,ci,t))

ci and upon integration
with the boundary conditionJk(0, ci, t) = 0, we get,

Jk(x, ci, t) =
xn

ci(fk
i (T − t))n−1

, i = 1, . . . ,m (45)

In order for the functional forms in (43) and (45) to be the
optimal solution we need to satisfy the conditions in Lemma 1.

• First, the boundary conditionJk(x, ci, T ) = hk(x, ci) =
(x/τk)nτk

ci , requires,

fk
i (0) = τk, ∀i = 1, . . . ,m (46)

The other boundary conditionJk(0, ci, t) = 0, ∀i, t, is
already satisfied as can be easily checked.

• Second,Jk(·) and r∗k(·) must solve the PDE equation
in (14) for all values of the system state(x, c, t) ∈
([0,∞) × (c1, . . . , cm) × [0, T )). That is, we require,

g(r∗k(x, ci, t))

ci
+

∂Jk(x, ci, t)

∂t
− r∗k(x, ci, t)

∂Jk(x, ci, t)

∂x
+λ(Ez[J

k(x,Z(ci)ci, t)] − Jk(x, ci, t)) = 0 (47)

Substituting (43) and (45) in the equation above, sim-
plifying and settings = T − t gives the following ODE
system,∀i = 1, . . . ,m,

(fk
i )′(s) = 1 +

λfk
i (s)

n − 1
−

λ

n − 1

m
∑

j=1

pij

zij

(fk
i (s))n

(fk
j (s))n−1

(48)
Thus, from above we see that forr∗k(·) andJk(·), as given

in (43) and (45), to satisfy the optimality PDE equation in
(14) we require that the functions{fk

i (s)}m
i=1 satisfy the

above ODE system with the boundary conditions in (46). The
question that remains is whether a set of positive functions
exist that solve the ODE system in (48). The following lemma
shows that indeed such a set exists and also that these functions
are unique.

Lemma2: (Existence and Uniqueness of the ODE so-
lution in (48)) The ODE system in (48) with the boundary
conditionsfk

i (0) = τk, ∀i, τk > 0, has a unique positive
solution fors ∈ [0, T ].

Proof: See Appendix C.

Thus, we see thatJk(x, ci, t) as given in (45) solves (14)
with the minimizing rate functionr∗k(x, ci, t) as given in (43).
This rate function is a valid transmission policy as it satisfies
all the admissibility requirements for problemPk (i.e. r∗ ≥ 0,
r∗ = 0 for x = 0, r∗k(x, ci, t) is locally Lipschitz continuous
in x and continuous int). From Lemma 1, it then follows
that Jk(x, ci, t) and r∗k(x, ci, t) are the optimal solution for
problemPk.

Step 2: Optimal solution for theBT -problem (taking
limk→∞ in the Step 1 results)

Consider the limitJ(x, c, t) = limk→∞ Jk(x, c, t). From
Theorem V we know that this limit exists and using (45) we
obtain,

J(x, ci, t) = lim
k→∞

Jk(x, ci, t) =
xn

ci(fi(T − t))n−1
, i = 1, . . . ,m

(49)
where we define,

fi(s)
△

= lim
k→∞

fk
i (s), s ∈ [0, T ], ∀i (50)

For optimality we now check the conditions required in
Theorem V. First, we need to show thatJ(·) as obtained in
(49) satisfies the HJB equation in (14). Substituting the above
form of J(x, ci, t) in (14) and using the first-order condition
for the minimization we get,∂J(x,ci,t)

∂x = g′(r∗(x,ci,t))
ci which

gives,
r∗(x, ci, t) =

x

fi(T − t)
, i = 1, . . . ,m (51)

Furthermore, to satisfy the PDE equation we require (see the
steps presented in Step 1),

f ′
i(s) = 1+

λfi(s)

n − 1
−

λ

n − 1

m
∑

j=1

pij

zij

(fi(s))
n

(fj(s))n−1
,∀i = 1, . . . ,m

(52)
Thus, equivalently, in order to prove thatJ(x, c, t) satisfies
the HJB equation, we need to show that the functions{fi(s)}
as defined in (50) satisfy the above ODE system with the
boundary conditionsfi(0) = 0 and f ′

i(0) = 1, ∀i. These
boundary conditions follow by taking the limitk → ∞
in fk

i (s); specifically, fk
i (0) = τk → 0 and (fk

i )′(0) =
(

1 + λτk

n−1 − τk

∑m
j=1

pij

zij

)

→ 1 (Note that ask → ∞, τk ↓ 0).
The following lemma shows that this is indeed true and
{fi(s)} as defined in (50) satisfy the ODE system in (52)
with the above mentioned boundary conditions; furthermore
{fi(s)} are also the unique solution of that ODE system.

Lemma3: The functions{fi(s)} as defined in (50) are the
unique solution of the ODE system in (52) with the boundary
conditionsfi(0) = 0 and f ′

i(0) = 1, ∀i.
Proof: See Appendix D.

Finally, we need to check the admissibility of policy
r∗(x, c, t) as given in (51). To see this, note that the optimal
rater∗ is non-negative and is zero whenx = 0 (r∗(·) is locally
Lipschitz continuous inx and continuous int). The policy
r∗(·) also satisfies the deadline constraintx(T ) = 0 since the
boundary condition,f ′

i(0) = 1, ∀i, implies that very close
to the deadlineT , the policy behaves asr∗(x, ci, t) = x

T−t ;
thereby emptying the buffer by the deadline.

APPENDIX C
PROOF OFLEMMA 2 – Existence and Uniqueness of the

solution to the ODE in (48)

To ease the notations, let us abstract the ODE system in (48)
as follows. Letxi(s)

△

=fk
i (s), ai

△

=
λ

n−1 , bij
△

=
λpij

(n−1)zij
, then (48)

can be re-written as,

x′
i(s) = 1 + aixi(s) −

m
∑

j=1

bij
xi(s)

n

xj(s)n−1
, ∀i = 1, . . . ,m (53)
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where forpij ≥ 0, (λ, zij) > 0, n > 1, we have,ai > 0 and
bij ∈ [0,∞). Thus, we now have to find a vector of functions
x̄(s)△

=(x1(s), . . . , xm(s)) such that eachxi(s) satisfies the
equation in (53) with the initial condition̄x(0) = (τk, . . . , τk)
(sincefk

i (0) = τk, ∀i).
Let us defineGi(x̄(s)) △

= 1 + aixi(s)−
∑m

j=1 bij
xi(s)

n

xj(s)n−1 ,
then, in a very compact form we get,

x̄′(s) = Ḡ(x̄(s)) (54)

where x̄′(s) is the column vector(x′
1(s), . . . , x

′
m(s)) and

Ḡ(·) is the column vector(G1(·), . . . , Gm(·)). Now con-
sider the open positive orthant and denote it asU , thus,
U = (x1 > 0, . . . , xm > 0). For x̄ ∈ U , each Gi(x̄)
is a continuously differentiable function. Hence,̄G(x̄) is
continuously differentiable which means that it is locally
Lipschitz continuous in̄x over the setU . Therefore, starting
with x̄(0) = (τk, . . . , τk) ∈ U , the ODE in (54) has a unique
local solutionx̄(s) that lies inU [26]. The only question now
remains is whether the local solution leaves the open positive
orthant, i.e. whether̄x(s) 6∈ U for some finites > 0. And the
answer is no; the local solution remains insideU , which then
proves the claim that the ODE in (54) has a unique positive
solution for all s > 0. To prove the last requirement that
x̄(s) ∈ U , ∀s > 0, we proceed as follows.

First, sinceḠ(x̄) is locally Lipschitz continuous in̄x, a
unique local solution that lies inU exists for the ODE in (54).
Suppose now that0 < s0 < ∞ is the first instant at which for
somei, we havexi(s0) = 0 or xi(s0) = ∞, i.e. s0 is the first
instant at which̄x(s) leaves the positive orthantU . Over the
interval s ∈ [0, s0) we have,

x′
i(s) = 1 + aixi(s) −

m
∑

j=1

bij
xi(s)

n

xj(s)n−1
(55)

≤ 1 + aixi(s) (56)

From (56) above we get,

xi(s) ≤
(1 + aiτk)eais − 1

ai
(57)

Thus, eachxi(s) is bounded above by an exponential function
that goes to infinity only whens → ∞.

We now compute the lower bound on the functions{xi(s)}.
Let xl(s) take the smallest value among{xi(s)} over an
interval [0, s1], s1 ≤ s0; this is true sincexi(s) are continuous
functions and if a certain function takes the smallest value, it
will remain the minimum over some interval. We then have,
xl(s)/xj(s) ≤ 1, ∀j = 1, . . . ,m over s ∈ [0, s1]. This gives,

x′
l(s)=1 + alxl(s) −

m
∑

j=1

blj
xl(s)

n

xj(s)n−1
(58)

≥−
m
∑

j=1

blj
xl(s)

n

xj(s)n−1
= −xl(s)

m
∑

j=1

blj

(

xl(s)

xj(s)

)n−1

(59)

≥−xl(s)

m
∑

j=1

blj , (sincexl(s)/xj(s) ≤ 1, ∀j) (60)

=−clxl(s), (taking cl =
∑m

j=1 blj) (61)

From (61) above we get,

xl(s) ≥ τke−scl (62)

Thus,xl(s) is bounded below by an exponential function that
goes to zero only whens → ∞. Using a recursive argument
starting withs = s1 and following the new minimum function,
it follows that over the interval[0, s0) all xi(s) are lower
bounded byτke−scmax , wherecmax = maxl=1,...,m cl.

From the arguments above we therefore deduce that the
unique local solution,̄x(s), is upper and lower bounded by
two respective positive exponential functions. Hence, thelocal
solution never leaves the setU . Thus, by contradictions0

cannot be finite and it then follows that the ODE in (54) has
a unique positive global solution,̄x(s), for all s > 0, i.e.
we have a uniquēx(s) ∈ U , ∀s > 0 that satisfies (54) with
x̄(0) = (τk, . . . , τk).

APPENDIX D
PROOF OFLEMMA 3 – Functions{fi(s)} are the unique

solution of the ODE system in (52)

We know from Lemma 2 thatfk
i (s) is a continuously

differentiable function, hence,(fk
i )′(s) exists for alls ∈ [0, T ]

and from (48) it is given as,

(fk
i )′(s) = 1+

λfk
i (s)

n − 1
−

λ

n − 1

m
∑

j=1

pij

zij

(fk
i (s))n

(fk
j (s))n−1

, i = 1, ..,m

(63)
Take the limitk → ∞ in the above equation and denote this
point-wise limit ashi(s), i.e. hi(s)

△

= limk→∞(fk
i )′(s). The

limit exists sincefk
i (s) is pointwise convergent for alli (see

Step 2 of Appendix B). Thus, we get,

hi(s)=1 +
λfi(s)

n − 1
−

λ

n − 1

m
∑

j=1

pij

zij

(fi(s))
n

(fj(s))n−1
, s ∈ (0, T ](64)

=1, s = 0 (65)

To prove the lemma, we need to show thatfi(s) as defined in
(50) satisfiesf ′

i(s) = hi(s). To do this, we use the following
result [27] (Thm. 7.17, pg. 152).

Lemma4: [27] Suppose{fn} is a sequence of functions,
differentiable on[a, b] and such that{fn(x0)} converges for
some pointx0 on [a, b]. If {f ′

n} converges uniformly on[a, b],
then{fn} converges uniformly on[a, b], to a functionf , and
f ′(x) = limn→∞ f ′

n(x) , (a ≤ x ≤ b).

For our case, for alli, {fk
i (s)}∞k=1 forms a sequence of

differentiable functions on[0, T ] and fk
i (s) converges point-

wise tofi(s). We show in Lemma 5 below that(fk
i )′(s) has a

uniformly convergent subsequence on[0, T ]. Considering this
subsequence, combined with Lemma 4 above (for our case,
the sequence{f ′

n} in Lemma 4 is the uniformly convergent
subsequence{(fk

i )′(s)} and the limit functionf is fi(s)), we
obtain,f ′

i(s) = hi(s) = 1 + λfi(s)
n−1 − λ

n−1

∑m
j=1

pij

zij

(fi(s))
n

(fj(s))n−1

(from (64)). Thus, this proves thatfi(s) is a solution of the
ODE as given in (52) withfi(0) = 0 andf ′

i(0) = 1.

Lemma5: (Uniform convergence of(fk
i )′(s)) The func-

tions{(fk
i )′(s)}∞k=1 have a uniformly convergent subsequence

on s ∈ [0, T ] for all i.
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Proof: The proof is omitted here for brevity and can be
found in [3].

We now prove uniqueness using a contradiction argument.
Suppose that the solution is not unique and letf̄(s) =
(f1(s), . . . , fm(s)) and ȳ(s) = (y1(s), . . . , ym(s)) be two
solutions withyi(0) = 0, y′

i(0) = 1, fi(0) = 0, f ′
i(0) =

1, ∀i = 1, . . . ,m. We first show that if we look ats close to
0, the two solutions̄y(s) and f̄(s) are in the positive orthant
and close to each other. Start ats = 0 and considerǫ > 0, then
by the mean value theorem [27] we have,yi(ǫ) = ǫy′

i(η) with
η ∈ (0, ǫ). By the continuity of the derivative, we further have
yi(ǫ) = ǫ(y′

i(0) + γi(ǫ)) = ǫ(1 + γi(ǫ)), whereγi(ǫ)
ǫ→0
−−−→ 0

and this holds for alli. Thus for ǫ small enough we must
have ȳ(ǫ) > 0; in other words there exists ãǫ such that for
all 0 < ǫ < ǫ̃ the solutionȳ(ǫ) is in the positive orthant.
Similarly, sincef̄(s) = (f1(s), . . . , fm(s)) is also a solution,
the above set of arguments hold for it as well and we have,
f̄(ǫ) > 0. From above we also see that||ȳ(ǫ)|| < γy(ǫ), where

γy(ǫ)
ǫ→0
−−−→ 0 and a similar inequality holds for̄f(ǫ) as well.

Thus, ||ȳ(ǫ) − f̄(ǫ)|| < ||ȳ(ǫ)|| + ||̄f(ǫ)|| < (γy(ǫ) + γf (ǫ)).
Now, pick ǫ ∈ (0, ǫ̃) and consider the two solutions of

the ODE over times ∈ [ǫ, T ] starting from the initial state
ȳ(ǫ) and f̄(ǫ) respectively. Following the proof of Lemma 2
(Appendix C), we see that starting from an initial state in the
positive orthant, the ODE has a unique solution that lies in
the positive orthant. Furthermore, from [26], the solutionis
continuous with respect to the initial conditions. Thus, this
implies that starting with close enough initial conditionsthe
two solutions ȳ(s) and f̄(s) must be close enough for all
s ∈ [ǫ, T ]. Mathematically, for anyζ > 0, there exists an
ǫ ∈ (0, ǫ̃) such thatmaxs∈[ǫ,T ] ||ȳ(s) − f̄(s)|| < ζ. By taking
ζ going to zero, we see that̄y(s) and f̄(s) cannot be distinct
over s ∈ [0, T ] and this completes the proof.

APPENDIX E
PROOF OFTHEOREM II – Constant Drift Channel,

Monomial Case

The proof for this result is identical to that of Theorem I but
now we can evaluate the{fi(s)} functions in closed form. To
see this, start with problemPk and suppose that for all channel
states thefk

i (s) function is the same, i.e.fk
i (s) = fk(s). The

ordinary differential forfk(s) then becomes,

(fk)′(s) = 1 +
λfk(s)

n − 1
−

λ

n − 1
fk(s)





∑

j

pij

zij



(66)

= 1 −
λfk(s)

n − 1
(β − 1) (67)

where
∑

j
pij

zij
= E[1/Z(ci)] = β, ∀i, by the constant drift

channel assumption. The solution to the above ODE with
boundary conditionfk(0) = τk is given as,

fk(s) =
(n − 1)

λ(β − 1)

(

1 − exp(−
λ(β − 1)s

n − 1
)

)

+τk exp(−
λ(β − 1)s

n − 1
), s ≥ 0 (68)

From Lemma 2 the above function is the unique solution of
the ODE in (67) and it can be easily checked that the functional
forms r∗k(x, c, t) = x

fk(T−t)
and Jk(x, c, t) = xn

c(fk(T−t))n−1

satisfy the conditions in Lemma 1. To obtain the solution for
the BT -problem, we take the limit (k → ∞) which gives the
optimal solution in (21) and (22) withf(s)△

= limk→∞ fk(s) =
(n−1)

λ(β−1)

(

1 − exp(−λ(β−1)s
n−1 )

)

.

APPENDIX F
PROOF OFTHEOREM III – Constant Drift Channel,

Exponential Case

A direct non-constructive proof for showing optimality is to
plug the functional forms given in the theorem statement into
the PDE equation in (14) and check if it satisfies the equation.
However, such a proof would not reveal how the particular
functional form can be obtained. To present a constructive
proof, we utilize discrete dynamic programming and proceed
as follows. From the steps in Appendix A, we first solve for
the optimal functions,{Jk(x, c, t), r∗k(x, c, t)}, of the relaxed
problemPk, take the limitτk ↓ 0 and verify the conditions of
Theorem V. Now, to solve problemPk, we consider a discrete
approximation of the time interval[0, T ] with step sizedt.
Using dynamic programming (DP), we obtain the functional
form of the optimal policy and the minimum cost function and
take the limitdt → 0. Thus, there are two limiting operations
involved, firstdt → 0 to solve for the optimal functions for
problemPk and thenτk ↓ 0 to solve for the optimal functions
for theBT -problem. We treat the two cases,β ≥ 1 andβ < 1
separately.

Case 1: β ≥ 1. Consider a discrete approximation of time
with step sizedt > 0. Starting at timeT and recursing
backwards, let[T − jdt, T − (j − 1)dt], j ≥ 1 denote the
jth stage andVj(x, c) the corresponding cost-to-go function
starting withx amounts of data and channel statec. Denote the
jth stage optimal transmission rate asrj(x, c). Let V0 denote
the terminal energy cost over[T, T + τk], then, V0(x, c) =

hk(x, c) = (αx/τk−1)
c τk. The first step DP recursion is,

V1(x, c) = min
0≤r≤x/dt

{ (αr − 1)dt

c
+ (1 − λdt)V0(x − rdt, c)

+λdtEz(V0(x − rdt, Zc))
}

(69)

The constraint0 ≤ r ≤ x/dt follows from the non-negativity
of the rate and the buffer state respectively. SubstitutingV0(·)
and using standard lagrangian techniques, it is easy to show
that the above minimization has the following solution. Let
ρ = 1 + λdt(β − 1), (ρ ≥ 1, sinceβ ≥ 1),

r1(x, c) =

{

x
τk+dt + τk ln ρ

(τk+dt) ln α , x ≥ dt ln ρ
ln α

x
dt , 0 ≤ x < dt ln ρ

ln α

(70)

V1(x, c) =

{

τk+dt
c αr1(x,c) − (dt+ρτk)

c , x ≥ dt ln ρ
ln α

dt
c (αr1(x,c) − 1) , 0 ≤ x < dt ln ρ

ln α

(71)

Following the DP recursion for the next stage, we get,

V2(x, c) = min
0≤r≤x/dt

{ (αr − 1)dt

c
+ (1 − λdt)V1(x − rdt, c)

+λdtEz(V1(x − rdt, Zc))
}

(72)
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Now, to solve the above minimization, first assumex−rdt ≥
dt ln ρ
ln α . Substituting the corresponding form ofV1(·) into (72)

and solving the minimization by standard differentiation,the
optimal rate can be obtained asr = x

τk+2dt + (2τk+dt) ln ρ
(τk+2dt) ln α .

With this optimalr, substituting inx − rdt ≥ dt ln ρ
ln α , we get

the threshold,x ≥ 3dt ln ρ
ln α . Note that for the above threshold

rdt ≤ x, thus, buffer non-negativity constraint is also satisfied.
Next, assumex − rdt < dt ln ρ

ln α , and substitute the relevant
form of V1(·) into (72). Proceeding as before, we get,r =
x

2dt + ln ρ
2 ln α . Using thisr in x − rdt < dt ln ρ

ln α and the buffer
non-negativity constraintx− rdt ≥ 0 we get the threshold on
x as, dt ln ρ

ln α ≤ x ≤ 3dt ln ρ
ln α . Finally, for x < dt ln ρ

ln α , all the data
is drained in the second stage and the rate isr = x

dt . Thus,
the solution of the minimization in (72) is,

r2(x, c) =











x
τk+2dt + (2τk+dt) ln ρ

(τk+2dt) ln α , x ≥ 3dt ln ρ
ln α

x
2dt + ln ρ

2 ln α , dt ln ρ
ln α ≤ x < 3dt ln ρ

ln α
x
dt , x < dt ln ρ

ln α

V2(x, c) =











τk+2dt
c αr2(x,c) − (dt+ρdt+ρ2τk)

c , x ≥ 3dt ln ρ
ln α

2dt
c αr2(x,c) − (dt+ρdt)

c , dt ln ρ
ln α ≤ x < 3dt ln ρ

ln α
dt
c (αr2(x,c) − 1) , x < dt ln ρ

ln α

Continuing the DP recursion, the solution for thejth stage is,

rj(x, c) =















x
τk+jdt +

(jτk+
j(j−1)

2 dt) ln ρ

(τk+jdt) ln α , x ≥ j(j+1)dt ln ρ
2 ln α

x
(j−i+1)dt + (j−i) ln ρ

2 ln α ,
(j−i)(j−i+1)dt ln ρ

2 ln α ≤ x < (j−i+1)(j−i+2)dt ln ρ
2 ln α

Vj(x, c) =























τk+jdt
c αr2(x,c) − (1+ρ+...+ρj−1)dt+ρjτk

c ,

x ≥ j(j+1)dt ln ρ
2 ln α

(j−i+1)dt
c αr2(x,c) − (1+ρ+...+ρj−i)dt

c ,
(j−i)(j−i+1)dt ln ρ

2 ln α ≤ x < (j−i+1)(j−i+2)dt ln ρ
2 ln α

where i = 1, . . . , j. Now, take the limits,dt → 0, jdt →
(T−t). Under this limiting operation, we havej ln ρ → λ(β−
1)(T − t). Applying these limits we get (let,ζ = λ(β − 1)),

r∗k(x, c, t) =







√

2xζ
ln α , 0 ≤ x < ζ(T−t)2

2 ln α

x
τk+T−t +

ζ(T−t)(τk+ T−t
2 )

(τk+T−t) ln α , x ≥ ζ(T−t)2

2 ln α

(73)

Jk(x, c, t) =



























1
c

(√

2x ln α
ζ e

√
2xζ ln α + 1−e

√
2xζ ln α

ζ

)

,

0 ≤ x < ζ(T−t)2

2 ln α
1
c (T − t + τk)αr∗

k(x,c,t) − (1+ζτk)eζ(T−t)−1
cζ ,

x ≥ ζ(T−t)2

2 ln α

(74)

The functionJk(x, c, t) given in (74) is continuously differ-
entiable, satisfies the HJB equation in (14) and the boundary
conditions for problemPk. The policyr∗k(x, c, t) is admissible
and is the minimizingr for the HJB equation. Thus, by
Lemma 1, (73) and (74) form the optimal solution forPk.
To obtainJ(x, c, t) take the limitτk ↓ 0 in (74). This gives,

J(x, c, t) =



























1
c

(√

2x ln α
ζ e

√
2xζ ln α + 1−e

√
2xζ ln α

ζ

)

,

0 ≤ x < ζ(T−t)2

2 ln α
1
c

(

(T − t)α
x

T−t +
ζ(T−t)
2 ln α − eζ(T−t)−1

ζ

)

,

x ≥ ζ(T−t)2

2 ln α

(75)

Taking limits in (73) givesr∗(·) as in (23). To check opti-
mality, we need to verify the conditions of Theorem V. It is
easy to check thatJ(x, c, t) in (75) satisfies the HJB equation
with r∗(·) the minimizing value. Policyr∗(·), satisfies the
admissibility criteria including the deadline constraint, since,
the rater∗(x, c, t) > x

T−t ,∀x > 0, t < T .
Case 2: β < 1. The result follows using the same method-

ology as in the previous case and is omitted here for brevity.
The functionJ(x, c, t) in this case is (let,η = λ(1 − β)),

J(x, c, t) =



























e−η(T−t)

c

(√

2x ln α
η e

√
2xη ln α + 1−e

√
2xη ln α

η

)

,

0 ≤ x < η(T−t)2

2 ln α
1
c

(

(T − t)α
x

T−t−
η(T−t)
2 ln α + e−η(T−t)−1

η

)

,

x ≥ η(T−t)2

2 ln α

APPENDIX G
PROOF OFTHEOREM IV - Variable Deadlines Setup

For brevity, we only present the proof for the two packet
case (M = 2) as it easily helps elucidate the steps involved;
the complete proof for arbitraryM can be found in [3].

Two Packet Case: The proof outline is as follows. We start
with the functional form forr∗(D, c, t) as given in (31),
obtain the minimum cost functionJ(D, c, t) and check that
these satisfy the PDE equation in (28). While this simply
constitutes a check that the HJB equation is satisfied, to
finally complete the optimality proof, we consider a sequence
of relaxed problems{Pk} along similar lines as done in
Appendix A and then take the appropriate limits. We begin
first with the verification that the given rate functional satisfies
the HJB equation.

Step 1 – Verification of the HJB Equation: Start with rate
function in (31) and consider first the state space(D, c, t) ∈
[B1, B2] × C × [T1, T2) – that is, we are looking at timet ≥
T1 and all admissibleD values over this time. Starting from
(D, c, t) in this state space, clearly, the problem is identical to
theBT -problem withB = (B2−D) andT = (T2− t). From
(21), the optimal rate function must ber∗(D, c, t) = B2−D

f(T2−t) .
In conformation, the rate function in (31) over this state space
also reduces to the same form. Thus, over this state space,
(31) is trivially the optimal policy.

Next consider the state space(D, c, t) ∈ [0, B2]×C×[0, T1);
thus now we are considering0 ≤ t < T1 and all admissible
D values over this time which are[0, B2]. Fix a value oft
and c, then, as a function ofD the rater∗(·) in (31) has the
following two possibilities.

Case 1: Suppose B2

f(T2−t) > B1

f(T1−t) . For a fixedt, we see

that both B1−D
f(T1−t) and B2−D

f(T2−t) are linear inD. Figure 11(a)
gives a schematic picture of the two curves and from the figure
it is clear that sinceB2 > B1, the two curves do not intersect
over D ∈ [0, B1]. Thus, in this case the maximizing function
for all D ∈ [0, B2] is B2−D

f(T2−t) and so,r∗(D, c, t) = B2−D
f(T2−t) .

Case 2: Suppose B2

f(T2−t) ≤ B1

f(T1−t) . In this case, the two

functions B1−D
f(T1−t) and B2−D

f(T2−t) are plotted in Figure 11(b).
From the figure it is clear that sinceB1 < B2 the two curves
must intersect at somẽB ∈ [0, B1] which satisfies B1−B̃

f(T1−t) =
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(a) (b)

B2

f(T2−t)

B1

f(T1−t)

B1

f(T1−t)

B2

f(T2−t)

B̃ B1B1 B2B2 00 DD

Fig. 11. Proof of Theorem IV for the two packet case, (a) caseB2
f(T2−t)

>
B1

f(T1−t)
and (b) case B2

f(T2−t)
≤ B1

f(T1−t)
.

B2−B̃
f(T2−t) . Thus, in this case we getr∗(D, c, t) = B1−D

f(T1−t) for

D ∈ [0, B̃] andr∗(D, c, t) = B2−D
f(T2−t) for D ∈ [B̃, B2]. Define,

B̃(t) △

=







0, if B1

f(T1−t) < B2

f(T2−t)
B1

f(T1−t)
− B2

f(T2−t)
1

f(T1−t)
− 1

f(T2−t)

, otherwise
(76)

Using (76),r∗(·) can be written in a more compact form as,

r∗(D, c, t) =

{

B2−D
f(T2−t) , B̃(t) ≤ D ≤ B2

B1−D
f(T1−t) , 0 ≤ D < B̃(t)

(77)

The above compact form covers both cases 1 and 2 above
– for the first caseB̃(t) = 0 and for the second case we
get B̃(t) as required. Note that for the constant drift channel,
since the functionf(·) is the same for all the channel states,
the intersection point̃B(·) as defined in (76) depends only on
time t and not on the channel state.

In order for the HJB equation to be satisfied, the rate
function r∗(D, c, t) above must be the minimizing value in
(28). Using the first-order condition for the minimization then
gives ∂J(D,c,t)

∂D = − g′(r∗(D,c,t))
c (noteg(r) = rn); integrating

with respect toD with the boundary conditionJ(B2, c, t) = 0,
we obtain,

J(D, c, t) =















(B2−D)n

c(f(T2−t))n−1 , B̃(t) ≤ D ≤ B2

(B1−D)n

c(f(T1−t))n−1 + (B2−B̃(t))n

c(f(T2−t))n−1

− (B1−B̃(t))n

c(f(T1−t))n−1 , 0 ≤ D < B̃(t)

(78)

To finally verify that the HJB equation is satisfied, we now
only need to check thatr∗(D, c, t) andJ(D, c, t) as given in
(77) and (78) respectively, satisfy the following PDE,
{g(r∗(D, c, t))

c
+

∂J(D, c, t)

∂t
+ r∗(D, c, t)

∂J(D, c, t)

∂D

+λ(Ez[J(D,Z(c)c, t)] − J(D, c, t))
}

= 0 (79)

Consider first D ∈ [B̃(t), B2], then, from (78) we
have J(D, c, t) = (B2−D)n

c(f(T2−t))n−1 and from (77) we have

r∗(D, c, t) = B2−D
f(T2−t) . Substituting in the left hand side (LHS)

of (79) gives (lets = T2 − t),

LHS =
(n − 1)(B2 − D)n

c(f(s))n

(

f ′(s) − 1 +
λ(β − 1)

n − 1
f(s)

)

= 0, (since,f ′(s) = 1 − λ(β−1)
n−1 f(s)) (80)

Thus from above, (79) is satisfied overD ∈ [B̃(t), B2]. If
B̃(t) = 0, we are done. So, now supposẽB(t) > 0.

Consider D ∈ [0, B̃(t)), then, from (77) we have
r∗(D, c, t) = B1−D

f(T1−t) and from (78) we haveJ(D, c, t) =

Q(c, t) + H(D, c, t), where for simplicity of exposi-

tion we defineQ(c, t)△

=
(

(B2−B̃(t))n

c(f(T2−t))n−1 − (B1−B̃(t))n

c(f(T1−t))n−1

)

and

H(D, c, t) = (B1−D)n

c(f(T1−t))n−1 . Substituting in (79) gives,

LHS =

(

∂Q(c, t)

∂t
+ λ(Ez[Q(Z(c)c, t)] − Q(c, t))

)

+

{g(r∗(D, c, t))

c
+

∂H(D, c, t)

∂t
+ r∗(D, c, t)

∂H(D, c, t)

∂D

+λ(Ez[H(D,Z(c)c, t)] − H(D, c, t))
}

Using identical steps that lead to (80), it can be shown that the
terms within the curly bracket above equal zero. Now consider
the first-bracket terms. LetQ(c, t) = Q2(c, t)−Q1(c, t), where
Q2(c, t) = (B2−B̃(t))n

c(f(T2−t))n−1 and Q1(c, t) = (B1−B̃(t))n

c(f(T1−t))n−1 . We
have,

∂Q2(c, t)

∂t
+ λ(Ez[Q2(Z(c)c, t)] − Q2(c, t)) =

=
(n − 1)(B2 − B̃(t))n

c(f(T2 − t))n

(

−
B̃′(t)f(T2 − t)n

(B2 − B̃(t))(n − 1)
+ 1

)

A similar expression as above is obtained for the termQ1(c, t).
Combining the two and usingB1−B̃(t)

f(T1−t) = B2−B̃(t)
f(T2−t) , gives,

∂Q(c, t)

∂t
+ λ(Ez[Q(Z(c)c, t)] − Q(c, t)) = 0

This completes the verification that the functions in (77) and
(78) satisfy the PDE equation in (79). We now complete
the optimality proof by considering a sequence of relaxed
problems and taking the appropriate limit as outlined next.

Step 2 – Verification of Optimality: To verify optimality,
we view the problem in two stages - first, over the state
space(D, c, t) ∈ [0, B2]×C× [0, T1) (transmission over time-
period [0, T1]) and second over the state space(D, c, t) ∈
[B1, B2]×C×[T1, T2) (transmission over time-period[T1, T2]).
As mentioned in Step 1 of the proof, over the state space
(D, c, t) ∈ [B1, B2]×C × [T1, T2), the problem is identical to
the BT -problem, where(B2 − D) bits remain in the buffer
and these need to be transmitted in time(T2 − t). The rate
function in (31) reduces tor∗(D, c, t) = B2−D

f(T2−t) and this has
been shown to be the optimal policy; see Appendices A and
B. Thus, the optimality ofr∗(D, c, t) andJ(D, c, t) over the
second stage follows directly from that of theBT -problem.

Now consider the first stage, i.e. the state space(D, c, t) ∈
[0, B2] × C × [0, T1). This stage corresponds to transmission
over time-period[0, T1]. Once we reach timet = T1, we
know from the preceding paragraph the optimal policy to
be followed thereafter in the second stage. Thus, for the
optimization over the first stage, we can abstract the second
stage energy cost as a terminal cost incurred at timeT1 given
the particular terminal state. Specifically, the terminal cost
function is given as,h(D, c) = (B2−D)n

c(f(T2−T1))n−1 , D ∈ [B1, B2]
(since this is the minimum (expected) energy cost required
to transmit the remaining(B2 − D) bits by time(T2 − T1)),
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and h(D, c) = ∞, D ∈ [0, B1) (since there is a deadline
constraint ofT1 for the firstB1 bits, and an infinite penalty cost
is incurred ifD < B1). Since this is a non-continuous terminal
cost function, we cannot directly apply standard verification
results to show optimality. To circumvent this problem, we
consider a sequence of relaxed problems{Pk}, where the
hard deadline constraint on theB1 bits is relaxed and instead a
sequence of smooth terminal cost functions is assigned, which
monotonically converge to the required function above. This
is analogous to the steps followed earlier for theBT -problem
and they are outlined below.

Consider a sequence of numbers{τk}
∞
k=1, whereτk > 0 and

τk ↓ 0. Define a sequence of functions{fk(s)}∞k=1, where
eachfk(s) satisfies the ODE,(fk)′(s) = 1 − λ(β−1)

n−1 fk(s)

with the initial conditionfk(0) = τk. Thus,

fk(s) =
(n − 1)

λ(β − 1)

(

1 − exp(−
λ(β − 1)s

n − 1
)

)

+τk exp(−
λ(β − 1)s

n − 1
), s ≥ 0 (81)

Consider now a sequence of relaxed problems,{Pk}, over the
state space(D, c, t) ∈ [0, B2]×C×[0, T1). Each problemPk is
identical to theBT -problem in terms of the system dynamics
except that at timeT1, instead of the hard deadline, a terminal
cost is assigned. This terminal cost function is denoted as
hk(D, c) and is taken as follows,

hk(D, c) =











(B2−D)n

c(fk(T2−T1))n−1 , B̃k(T1) ≤ D < B2

(B1−D)n

c(fk(0))n−1 + (B2−B̃k(T1))
n

c(fk(T2−T1))n−1 − (B1−B̃k(T1))
n

c(fk(0))n−1 ,

0 ≤ D < B̃k(T1)

where in the above equation, the functioñBk(t), t ∈ [0, T1]
for the relaxed problemPk is correspondingly defined as,

B̃k(t) =











0, if B1

fk(T1−t)
< B2

fk(T2−t)
B1

fk(T1−t)
− B2

fk(T2−t)
1

fk(T1−t)
− 1

fk(T2−t)

, otherwise

Note that sincefk(0) = τk, as we consider larger values
of k then τk goes to zero andB̃k(T1) converges toB1

while fk(s) converges tof(s). Thus, we see that the terminal
cost functionhk(D, c) converges to the desired function as
mentioned earlier.

For the relaxed problemPk the system operates as follows.
Given a transmission policy, denoted asrk(D, c, t), the system
starts withD(0) = 0. As this policy is followed, at timeT1,
the terminal costhk(D(T1), c(T1)) is incurred and the system
stops. Also, during the periodt ∈ [0, T1], if D(t) = B2 then
all the data has been transmitted and there is no terminal cost
incurred. Thus, we see that the relaxed problemPk is a well-
posed, continuous-time control problem with smooth terminal
cost functions. Consider now the following rate function,

r∗k(D, c, t) = max
j:(Bj≥D,Tj≥t)

Bj − D

fk(Tj − t)
(82)

and the following minimum cost function which is denoted as
Jk(D, c, t),

Jk(D, c, t) =















(B2−D)n

c(fk(T2−t))n−1 , B̃k(t) ≤ D ≤ B2

(B1−D)n

c(fk(T1−t))n−1 + (B2−B̃k(t))n

c(fk(T2−t))n−1

− (B1−B̃k(t))n

c(fk(T1−t))n−1 , 0 ≤ D < B̃k(t)

(83)

Following an identical set of arguments as done in the first step
of this proof, it can be seen that the above functions satisfy
the HJB equation (note that the functional forms are analogous
to those earlier except withfk(s) replacingf(s) and B̃k(t)
replacingB̃(t)). It is also easy to see that the minimum cost
function also satisfies the boundary conditions, i.e. it equals
the terminal cost functionhk(D, c) and also equals zero for
D = B2. Using the standard verification result, outlined earlier
in Lemma 1, it can be seen that the rate function in (82) gives
the optimal transmission policy for the relaxed problemPk.

Now consider the limitk → ∞, then,Jk(D, c, t) converges
to J(D, c, t) (given in (78)) andr∗k(D, c, t) converges to
r∗(D, c, t). Utilizing the result of Theorem V (an analogous
version as stated below), the optimality ofJ(D, c, t) and
r∗(D, c, t) for the first stage of the two-packet problem
follows.

Theorem VI: (Two Packet Case): Let (D, c, t) ∈ [0, B2]×
C × [0, T1) and defineJ(D, c, t) △

= limk→∞ Jk(D, c, t). Let
J(D, c, t) satisfy the HJB equation in (28) and letr∗(D, c, t)
be an admissible policy for the first stage of the two-packet
problem, such thatr∗ is the minimizing value ofr in (28).
Then,

1) J(D, c, t) ≤ Jr(D, c, t), ∀ r(·) admissible (where
Jr(D, c, t) denotes the cost-to-go function for that policy)

2) r∗(D, c, t) is the optimal policy andJ(D, c, t) is the
minimum cost function

Proof: The proof is identical to that of Theorem V.

The requirements of the above verification theorem are satis-
fied. First, from Step 1 we know thatJ(D, c, t) andr∗(D, c, t)
satisfy the HJB equation. The functionJ(D, c, t) also satisfies
the boundary condition, i.e.J(D, c, T1) = h(D, c), D ∈
[B1, B2] (whereh(D, c) gives the optimal cost for the second
stage). The rate functionr∗(D, c, t) is non-negative and the
deadline constraint ofT1 for theB1 bits is also satisfied. This
is because from theBT -problem we know that B1−D

f(T1−t) is
an admissible rate function that meets the required deadline
constraint. Here, sincer∗(D, c, t) is chosen as the maximum
among B1−D

f(T1−t) and B2−D
f(T2−t) , the transmission rate selected

ensures that at leastB1 bits have been transmitted by time
T1 (almost surely).
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