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Abstract—We study energy-efficient transmission of data with wireless device to minimize energy expenditure subject to
deadline constraints over a time-varying channel. Specifically, the packet deadline constraints. Since in most scenarios gnerg
system model consists of a wireless transmitter with controllable spent for transmission constitutes the bulk of the totatgne

transmission rate, time-varying and stochastic channel state,ral dit th tin thi il refer to th
strict delay constraints on the packets in the queue. While the expenditure, the energy cost In this paper will reter 1o the

transmitter can control the rate, the transmission power required ~ transmission energy cost.
depends on the chosen rate and the prevailing channel condition.  Most wireless devices are now equipped with channel mea-
The objective is to obtain a rate control policy that serves the d&  surement and rate adaptation capabilities [1]. Channel mea
within the deadline constraints while minimizing the total energy - g\;rement allows the transmitter-receiver pair to measuee t
expenditure. Towarq§ this end,. we first introduce the canonical fade state using a pre-determined pilot signal while raterob
problem of transmitting B units of data by deadline T over - ] . N
a Markov fading channel, and obtain the optimal policy for it ~capability allows the transmitter to adjust the transnoissate
using continuous-time stochastic control theory. Using a novel over time. Such a control can be achieved in various ways that
cumulative curves methodology and a decomposition approach, include adjusting the power level, symbol rate, coding sehe
we extend the above setup to consider extensions involving.qngtellation size and any combination of these approaches
variable deadlines on the packets. Finally, utilizing the analysis furthermore, in some technologies the receiver can detestt
we present a heuristic policy for the case of arbitrary packet i : .
arrivals to the queue with individual deadline constraints, and Changes directly from the received data without the needrior
give illustrative simulation results for its performance. explicit rate change control information [2]. Also, trarission

Index Terms—Delay, Energy, Quality of Service, Stochastic rate can be adapted very rapidly over millisecond duration
Control, Transmission rate, Wireless. time-slots [1], thus providing ample opportunity to utdizate
adaptation to optimize system performance.

To reliably transmit at a certain rate, there is a minimum
amount of transmission power required which depends on

Modern wireless systems are projected to carry a largfee transmitter system; however, for most communication
volume of data traffic with an increasing emphasis on quaehemes the power-rate function has two fundamental aspect
ity of service. A significant portion of this traffic would which are common assumptions in the literature [4]-[6]]H10
have strict delay requirements arising from various eret-uq12], [16]. First, for a fixed bit-error probability and chael
applications that involve real-time data communicationr Fstate, the required transmission power is a convex function
example, in present commercial data networks, servicds sué the rate as shown in Figure 1(a). This implies, from
as video and real-time multimedia streaming, high throughpJensen’s inequality, that transmitting data at low ratesr ov
file transfers and voice-over-IP impose strict delay camsts a longer duration (spreading the transmission over time) is
on data packets, while, in sensor networks time criticass@n more energy efficient as compared to high rate transmissions
applications impose deadline constraints that requirettiea Second, the wireless channel is time-varying which shifés t
data collected must be transmitted back to a central primgessconvex power-rate curves as a function of the channel state a
entity within a specified time interval. By their nature, @lgss shown in Figure 1(b). As good channel conditions require les
systems are characterized by scarcity of resources and tna@smission power, one can exploit this variability overet
of the critical concerns is energy consumption. Minimizingpy adapting the rate in response to the channel conditions.
the energy cost has numerous advantages in terms of effici€hus, by adapting the transmission rate intelligently dirae
battery utilization for mobile devices, increased lifedinof energy cost can be significantly reduced.
sensor and ad-hoc networks, and better utilization of &thit  In this paper, we seek to address the question of dynamic
energy sources in satellites. Our work in this paper prilparirate adaptation when data packets have strict deadline con-
addresses the above two concerns; specifically, the foaimints. Specifically, we first consider a simplified cacanhi
is to utilize dynamic control of the transmission rate of groblem where the transmitter queue hBsunits of data

that must be transmitted by a single deadlife over a
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Fig. 2. Modulation scheme considered in [12] as given in th#etaThe
corresponding plot shows the least squares monomid).it.3r2-67, to the
scaled piecewise linear power-rate curve.

Fig. 1. Transmission power as a function of the rate and thaerasstate;
(a) fixed channel state, (b) variable channel state.

\t/)|eweqha3 muIné)Ie mstances of t:e earILer canonical p’lmml_dynamic programming setup is intractable, computatignall
ut wit dependencies among t, em. The rate c;c.)nt.ro POlfftensive and would only yield numerical solutions without
th_us Obta!ne.d is shown to be optimal under_specmc_m_stanc%Ch insights. Furthermore, the results obtained using the
Finally, utilizing these results we present a simple heiaeriste continuous-time model can be applied to the discrete-time

cqr;]trpl d"_"?'c;cy lf%r alzjl_arbnrary (g(_aneral) p:ckgzt arnvabkpess system in a very straightforward manner by simply evalugtin
with individual deadline constraints on the data pac etsl ape solution at discrete times as done for the simulationlies
give illustrative simulation results quantifying the gaim the  saction VB

energy cost achieved by it.
Transmission rate control has been actively studied in o
the communication networks literature in various différerA. Transmission Model

contexts. Adaptive network control and scheduling has beeni gt 1, denote the channel gaiiR,(t) the transmitted signal
studied in the context of network stability [12], [14], asge power andPred(t) the received signal power at tinte We
throughput [13], [15], average delay [4], [16] and packedfr make the common assumption [4]-[6], [10]-[12], [16] that
probability [17]. However, this literature considers “&ag€e the required received signal power for reliable commurocat
metrics” that are measured over an infinite time horizon aRgin 3 certain low bit-error probability, is convex in thetea
hence do not directly apply for delay constrained/reaktim g Pred(t) = g(r(t)), whereg(r) is a non-negative convex

data. Furthermore, adapting the transmission rate simg8gd increasing function for > 0. Since the received signal power
on steady state distributions does not suffice and to cansige given asPme?(t) = |h|2P(t), the required transmission
strict deadlines one needs to take into account the systgBlver to achieve rate(t) is given by,
dynamics over time; thus, introducing new challenges and
complexity into the problem. Recent work in this direction P(t) = g(r(t)) 1)
includes [5]-[8], [10], [11]. The work in [5] studied varisu c(t)
offine fqrmulat|oqs _unde_r complgte knc_)wledge Of. the fuFur\(/evhere c(t)2|h:|?. The quantityc(t) is referred to as the
and devised heuristic online policies using the offline ropdi ; : :

: : . .. channel stateat timet. Its value at timet is assumed known
solutions. The authors in [6] studied several data trarsions . . ;

. . : either through prediction or direct channel measurement bu
problems using Dynamic Programming (DP), however, theevolves stochastically in the future. As an example, with
specific _problem that we consider in this work becomeos timal channel cod)i/n the WeII-kn.own Shannon pca, acit
intractable using this methodology due to the large staaeesp P , g i NOW(ZV,-/W_DD. y
in the DP-formulation or the well-known “curse of dimensionformula gives the power per bit as&y = == m—
ality”. The works in [10], [11] studied formulations for ergy  Other examples of (1) can be found in [4], [5]. It is worth
efficient data transmission over a static channel withadinfz

emphasizing that while we definedt) as |h:|? to motivate

In our earlier work in [7] we studied energy efficient datdh® relationship in (1), more generally(t) could include
transmission over static non-fading channels using a miw@ther stochastic variations in the system and (unconbigl)a

calculus approach while in [8], [9] we presented SpeCiﬁaspa,interference from ot.her transmitter—receiver pairs, agyjlas
of this work. the power-rate relationship obeys (1).

In this work, our primary focus will be og(r) belonging
to the class oMonomialfunctions, namelyg(r) = kr™, n >
1,k > 0 (n,k € R). While this assumption restricts the
We consider a continuous-time model of the system. Clearbgnerality of the problem, it serves several purposest,Firs
such a model is an approximation of the actual system, but timathematically it leads to simple optimal solutions in éip
assumption is justified, since in practice transmissioa cain form and insightful observations that can be applied in prac
be adjusted over time-slots on the order of 1 msec which dfee. Second, most importantly, for most practical trarssioin
much shorter than packet delay requirements usually on $ehemeg(-) is described numerically and its exact analytical
order of 100’s of msec [1]. A significant advantage of suchfarm is unknown. In such situations, one can obtain the best
model is that it makes the problem mathematically tractabégproximation of that function to the forkr™ by choosing the
and yields simple solutions. The alternative discretestimappropriatek, n and then applying the results thus obtained.

Il. SYSTEM MODEL



For example, consider the QAM modulation scheme consid-

ered in [12] and reproduced here in Figure 2. The table givesqueue c(t)
the rate and the normalized signal power per symbol, whiere
represents the minimum distance between signal pointshend t
scheme is designed for error probabilities less thamf. The
plot gives the least squares monomial fit to the transmission 0
scheme and one can see from the plot that for this examg_le . o
the monomial approximation is fairly close. Third, monolsia 'g. 3. Schematic description of the system for fi-problem.
form the first step towards studying extensions to polynbmia

functions which would then apply to a general) function below some value, the channel is labelled as “bad” afid

using the polynomial expansion. Under a more restricti\{g assigned an average valug otherwisec(t) = ¢, for the
setting in Section llI-C, we also study the classafonential good condition. Let the transition rate from the good to the

functions, namelyy(r) = k(a’ 1), & > 1,k > 0(a, k € R). o gtate ba,, and from the bad to the good state kg. Let
Finally, without loss of generality, throughout the papez w

) : = , and using the earlier defintion,= Abgs Agh)-
take & = 1, since any other value of simply scales the Izor ;’étcé’c we havg max(Aog, Agh)
. - . g )
total energy cost without affecting the results on the optim
transmission policy. Ze,) v, with prob. Ag, /A
o) = 1, with prob.1— \g/A

()
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B. Channel Model ] i . .
We consider a first-order, continuous-time, discrete staTg obtainZ(c,), replacey with 1/ andAgy ith Ay in (3).

space Markov model for the channel state process. Markov

processes constitute a large class of stochastic proctsstes IIl." BT - PROBLEM

exhaustively model a wide set of fading scenarios and therewe begin with the following canonical problem: the trans-
is substantial literature on these models and their agpit®. mitter queue hasB bits of data and a single deadlirE
[18]-[21]. Denote the channel stochastic proces§'&g and by which this data must be transmitted; the objective is to
the state space & Let ¢ € C denote a particular channelminimize the expected energy expenditure. We refer to this a
state and{c(t),t > 0} denote a sample path. Starting fromhe “BT-problem” where the notation implies that the amount
statec, the channel can transition to a set of new sta3és)( of data under consideration 13, and the deadline i&. A more
denoted agJ.. Let A,z denote the channel transition rate fronyeneral setup with variable deadline constraints is tceate
statec to ¢, then, the sum transition rate at which the channgection IV. We now describe in detail the control formulatio
jumps out of state is, \. = > ;. ; Acz. Clearly, the expected and the optimality conditions for th&7-problem.

time thatC(¢) spends in state is 1/\. and one can viev%
as the coherence time of the channel in state

Now, defineAZ sup, \. and a random variable7(c), as, A. Optimal Control Formulation

_ Consider theBT-problem and letz(t) denote the amount
Z()2 ¢/e, with prob. Acz/A, ¢ € Je (2 ©f data left in the queue at time The system state can be
T, with prob.1 — A./A described agz,c,t), where this notation means that at the

. . . . . .present timet, the amount of data left is(¢t) = z, and the
With this definition, we obtain a compact and simple descrip; () =2

tion of the process evolution as followSiven a channel state hannel state is(t) = c. Let r(z,c,t) denote the chosen
: . o . : . transmission rate for th rr ndin tem ().
¢, there is an Exponentially distributed time duration witie ansmission rate for the corresponding system state, ¢)

. Since the underlying channel process is Markov, it is sfiti
2 g:\edrovr\rl]hl\/cgrig;ﬁe Cazrcr;]eliSStﬁferfh:g?gES'ZThe rEal‘(’a\"aﬁtmetd)srestrict attention to transmission policies that depenty
from (2) the transition rate tog staiec 7. is chrzzlhange dy;ﬂ on the present system state [25]. Clearly then,c,t) is a
. e T Markov pr . Th mi i in Figure 3.
Aez, Whereas with rate, — )\, there are indistinguishable self- arkov process e system is depicted gure 3

. o : o . Given a policy r(z, ¢, t), the system evolves in time as
transitions. This is a stand_ard Umfo_rmlzatlon ‘eCh”"?“’"?' 2a Piecewise-Deterministic-Process (PDP) [23] as follolws.
there is no process generality lost with the new descripdi®n

o . . : . starts withz(0) = B and¢(0) = ¢o. Until 7, wherer, is the
it yields a stocha_sucally identical SCenstio ) first time instant after = 0 at which the channel changes,
Example Consider a two-state channel model with stdtesyne queue is reduced at the rate:(t), co, t). Hence, over the

andg denoting the “bad” and the “good” channel conditiongterval [0, 4], 2(t) satisfies the ordinary differential equation,
respectively. The two states correspond to a two level quan-

tization of the channel gain. If the measured channel gain is dL(t) = —r(z(t), co, t) (4)
dt ) )
1 . —
Other technical assumptions in the model are as follows. ThareH state Equivalently in integral form, z(t) _ z(0) —

space(, is a countable space (it could be infinite), ahdC R*. The states : .
¢ = 0, 00 are excluded frong since each of this state leads to a singularity inf,, 7((s), co,s)ds, t € [0,7;]. Then, starting from the
(1).' The set7., Ve, is a'f|n|te subset of. Trans@lorj (ateAc,Vc is bounded npew State(gc(ﬁ), 0(71)7 T1), until the next channel transition
which ensures that defined as the supremum is finite. For @lithe support h da(t) . d thi

of Z(c) lies in [z, z,], where0 < z < z, < co. This ensures thaf'(x) W€ Nave,—z= = —r(x.(t),c(rl),z-f), t € [r,m2); and t IS
does not hit0 or co, a.s. (almost surely), over a finite time interval. procedure repeats untdi = T is reached. A schematic




¢ give conditions for the optimality of the chosen rate at titne
Sincet is arbitrary, we obtain formal conditions for an optimal
channel co or policy.
state c(t) !  — Following the above approach, we now present the details of
‘ - the analysis. Considere [0, 7') and a small intervalt, t + h],

wheret + h < T. Clearly, from Bellman’s principle [23] the
time value functionJ(z, ¢, t) satisfies,

buffer b t+h 4
t)=min 4 F — d
state () ) | | J(z,c,t) I;fl(lgl{ /t C(S)g(r(x(s),c(s),s)) s
\\\g\\f 3 +EJ(Tt4n, Cepn,t + h)} (7)
0 / E \ ™ T time  wherea; s, cin is @ short-hand notation far(t + ) and
da(t) da(t) c(t+ h) respectively. The expression within the curly brackets
a = —rle(t).co.t) “a = —rlelt) ent) in (7) denotes the total cost with poliey(-) being followed

over [t,t+h] and the optimal policy thereafter. This cost must
be clearly no less than the cost of applying the optimal polic
directly from the starting stater, ¢, t). Thus for an admissible

Fig. 4. System evolution over time for th@7-problem.

diagram of the process for a particular channel sample p&@icy r(-) we obtain,
is depicted in Figure 4. t+h
A transmission policyr(z, ¢, t), is admissiblefor the BT - J(z,e,1) < E/t @Q(T(I(S)’C(S)vs))ds
problem, if it satisfies the following, + ElJ(z Cror t+h 3
(@) 0 < r(z,c,t) < oo, (rate must be non-negative) (@, cen ) (®)
(b) r(z,c,t) =0, if =0 (no data left to transmit) and, ElJ(zrsr cron t+ )] — J(z.c.t
(c) z(T) = 0, a.s. (deadline constraift) I (eenceen t+h ) (@6 )
Consider now an admissible transmission polidy) and +E/ ——g(r(x(s),c(s),s))ds >0 (9)
define acost-to-gofunction, J,.(z, c, t), as the expected energy t c@ o _
cost incurred starting from state, ¢, t), t < T. Then, Dividing (9) by % and taking the limit: | 0, we obtain,
1
T A" J(x,c,t) + — >0 10
hiaet) = E| [ glrlalo) o) )| ©) (08 +colr) 2 4o
Ji (s

sincel E [/*" st — 900+ 1 is the transmission
where the term within the brackets is the total energy expemte at timet, i.e. r = r(x, c,t). The quantity A" J(z,c,t) is
diture obtained as the integral of the power cost over timgefined asA™J(z, ¢, £)2 limy, o EJ(ft+hth+h;Lt+h>—J(1vcvt>.
The expectation above is taken ovft(s),s € (¢, 7]} and  The operatorA” is called the differential generator of the
conditional on the starting state(t) = x, c(t) = c. Define a Markov procesgz(t),c(t)) for the transmission policy:(-).
minimum cost functian/(z, ¢, ), as the infimum of/,.(x, ¢,t)  Intuitively, it can be viewed as a natural generalization of
over the set of all admissible transmission policies. the ordinary time derivative for a function that depends on a
. I stochastic process. An elaborate discussion on this tepide
T, et) = i?§ ol et), r(,ct) admissible  (6) found in [23]-[25]. For the proceds:(t), c(t)), using the time

Thus, stated concisely, the optimization problem is to cat@p evolution in (4), the quantityd”J(z, ¢, ) can be evaluated as
the minimum cost function/(z, ¢, ¢) and obtain the optimal [23],
policy 7*(z, ¢, t) that achieves this minimum cost. AT (2, 0t) = aJ(fgtC» t) r(w,0,t) 3J(gaca t)
xr

ME.[J(x, Z(c)e,t)] — J(z, e, 1)) (11
B. Optimality Conditions _ i (_ ol (% (c)e, )] (¢ ))_( )

A standard approach towards studying continuous tirﬁ%here.EZ |s.the expectation with respect to tigc) variable
problems is to investigate their behavior over a small tim%SNdeVUn?r? 'lﬂ (2)'b ve st from (8)-(10). if poli i
interval. In the context of thé3T-problem, this methodology IO d 'thetﬁ 0 et.s elps I'o *( )-( ),t' polgx(-% Ifj
is summarized as follows. Suppose that the system is in starg aced with the optimal policy (1), equation (10) holds

: . . . with equality, i.e.
(z,c,t). We first apply a transmission policy,(-), in the
small interval(t, ¢ + h] and thereafter, starting from the state A (e t) + }g(r*) -0 (12)
(x(t+h),c(t+ h),t+ h) we assume that the optimal policy ¢
is followed. By assumption, the energy cost is optimal ovarhus, we see that for a given system siate, ¢), the optimal
[t+h,T)], hence, investigating the system oVt + k) would transmission rate* is that value of- that minimizes (10) and
the minimum value of this expression equals zero. This gives

2An additional technical requirement is thatz, c,t) be continuous and
locally Lipschitz inz (for = > 0) which ensures that the ODE in (4) has a min | (r) T+ A I(z, e, t)| =0 (13)
unique solution. r€[0,00) c ’



Substituting A" J() from (11), we get a partial differential
equation (PDE) inJ(z,c,t) which is also referred to as the Proof: See Appendix B. u
Hamilton-Jacobi-Bellman (HJB) equation. This is thgimal-

ity equationfor the BT-problem. The results in the above theorem can be interpreted as

follows. From (15), the optimal rate given amounts of data
min {@ L ol@et) 8z ct) left, channel state’ and timet, is +7#—;, where the function
r€[0,00) L € ot O fi(s) is associated with the channel state The correspond-
IAE[J (2, Z()e, t)] — J(z, c, t))} =0 (14) ing minimum expected cost starting from stafe, ctt) is
B W The boundary conditiory;(0) = 0 is due to
The boundary conditions for the above PDE aff), c,t) = 0, the deadline constraint, since at the deadliie— t) = 0
andJ(z,c,T) = oo, if z > 0. The last condition follows due and we haveJ(z,c',T) = oo, if z # 0. In full generality,
to the deadline constraint &f on the data. the ODE system in (17)-(18) can be easily solved numerically
While the above analysis gives the optimality equation, aming standard techniques (e.g. ODE solvers in MATLAB)
important caveat is that it assuméér, c, t) to be sufficiently and as shown in Appendix B, the system has a unique positive
smooth. Therefore, additionally, we also need conversa-argolution. Furthermore, this computation needs to be dohe on
ments to verify that having a solution of (14) indeed gives thonce before the system starts operating since the ODE system
optimal solution. These technical details and the verificat depends on the parameters of the channel model but not on the

theorems are presented in Appendix A. prevailing channel state. Thusf;(s)} can be pre-determined
and stored in a table in the transmitter's memory. Oht:€s) }
C. Optimal Transmission Policy are known, the closed form structure of the optimal policy in

) warrants no further computation. At timegthe transmitter
imply looks at the amount of data left in the queue the
hannel state¢!, and using the appropriatg(-) function it

We have, so far, presented general results on the optimaﬁ
condition for theBT'-problem. We now give specific analyticalS
results for the optimal policy and discuss some of the ir'[sighC o -
that can be drawn from it. However, before proceeding furth§omputes the trgnsmlssmn rate TCl—t) " .

a few additional notations regarding the channel process ar '€ solution in (15) provides several interesting observa-
required. Let there be totah channel states in the Markov!ons and insights as follows. At time, the optimal rate
model and denote the various states C ascl,¢2, ..., ¢™. depends on the channel statehrough the functiory; (T —t)

\ . . ; . 1
Given a channel state’, the values taken by the randonfd this rate is linear inc with slope W—t? Thus, as
variable Z(c') (defined in (2)) are denoted ds;;}, where intuitively expected, the rate is proportionately highenen

j /o i i : there i ore data left in the queue. Furthermore, we can
zij = ¢ /c'. The probability thatZ(c¢') = z;; is denoted as 'eret;]Sem ;nt't al Ias theq“u ruenc l’{rofetrgn;m'svl'on
pij. Clearly, if there is no transition from stateto ¢/, p;; = 0. VI€W quantity 77—z _urgency” o 1SS
Also, without loss of generality we take the multiplicativender the channel stai€ and with (T — ¢) time left until
constantk = 1 in the functiong(r) = kr™ since any other the deadline. This view gives a nice separation form for the
value of k simply scales the total cost in (5) but the optimaPPtimal rate:

policy results remain the same. . —
optimal rate = amount of data left * urgency of transmission

Theorem |: Consider the BT-problem withg(r) = r™
n > 1,n € R and a Markov channel model. The opti
policy, *(x, ¢,t), and the minimum cost functiod|(z, ¢, t),

’maP“e to the boundary condition, aspproache¥’, f;(T—t), Vi
goes to zero; thus, as expected, the urgency of transmjssion
L increases as approaches the deadline. Interestingly,

are given by, Ji(T-t)’ o
A . if we setA = 0 (no channel variations) therf; (T —t) = T —
r*(z,c't) = ———, i=1,....,m (15) t,Vi andr*(z,c,t) = 7% . Thus, with no channel variations
fi(T —1) : T ¢ . . ;
n the optimal policy is to transmit at a rate that just empties
J(z,ctt) = ,x—, i=1,...,m (16) the queue by the deadline. This observation is consisteht wi
Cl(fi(T—t))”_l . . . ] . .. .
the earlier results in the literature for non-fading/timeariant

The functions{f;(s)}, are the solution of the following channels [5], [7], [10]. We refer to this transmission sceem
ordinary differential equation (ODE) system with the boand as the “Direct Drain” (DD) policy.

conditions £;(0) = 0, f{(0) = 1,¢ %, Simulation Example:Consider the two-state channel model
Af1(s) A =i (fi(s)™ with the states “bad” and “good” as described in Section.ll-B
n—1 n—1 Zun (Fe(3))m—1 a7 Letg(r) = r? (i.e.n = 2) and for simplicity take\,, = Ay, =

k=1 A. Denotingy = ¢;/c,, we have,Z(c,) = v, w.p. 1, and

Z(cy) = 1/v, w.p. 1. Denoting f,(s), f4(s) as the respective
m n functions in the bad and the good states, we have,
f(s) = 14 0me A Pk _{fm())" 1 g 9
_ YA(fo(s))?

n—1  n—1& 2z (fr(s)"!
fq(s)
3For numerical evaluation of the ODE solution, the two boupdanditions A 2
can be combined by taking a smalt> 0, letting f;(s) = s, s € [0,¢€], V¢ f’(s) = 1+\f (s) . (fq(s)) (20)
and then using an initial-value ODE solver to obtifi(s)}, s > e. g

7fo(s)

fils) = 1+

fo(s) L+ Afo(s) (19)



- (T When )\ is small the channel is essentially time-invariant over
N — (79 the deadline interval and the two policies are comparabte. A
S A increases, the optimal cost substantially decreases due to
15 the channel adaptation. In Figure 6(b)is varied with\ = 5,

B = 10. As v decreases the good and the bad channel quality

differ significantly and the optimal rate adaptation leads t

5 a substantially lower energy cost in terms of an order of
magnitude difference as compared to the DD policy.

f,(T=0), 1T

*time, t° Constant Drift Channel Theorem | gives the optimal
policy for a general Markov channel model. By considering
a special structure on the channel model which we refer to
as theConstant Driftchannel, two specialized results can be
22 110 obtained. First, we obtain thg(-) function in closed form for

ZS«/*/*\*—’ 100] , the Monomial clasgg(r) = r™), and second, we obtain the

21y @ ool optimal policy for the Exponential clagg(r) = " — 1).

20 —©- Optimal | sl In the constant drift channel model, we assume that the

expected value of the random varialléZ(c) is independent

of the channel state, i.e2[1/Z(c)] = 3, a constant. Thus,

starting in statec, if ¢ denotes the next transition state we

have E [i] = F |:Z%c):| 1 = 5. This means that if we look

at the process/c(t), the expected value of the next state is

30r a constant multiple of the present state. We refef tas the

zd*ee\e\e\é “drift” parameter of the channel processglt> 1, the process

15 : 10 ‘ ‘ 1/c(t) has an upward drift; if3 = 1, there is no drift and if

[0} 5 10 0.1 0.2 0.3 cer .

(a) Lambda (b) Gamma 8 < 1, the drift is downwards. As a simple example of such

a Markov model, suppose that the channel transitions at rate

Fig. 6. Expected energy cost for the optimal and the direéhd@D) policy. )\ > ( and at every transition the state either improves by a
factoru > 1 with probability p,,, or worsens by a factor/u
with probability p; (= 1 — p,). Thus, given some state> 0

Figure 5 plots these functions, evaluated using MATLAB, fohe next channel state is either or ¢/u, and, E[1/Z(c)] =

T = 10,A = 5,7 = 0.3. First, as expectedy(T' — t) < p, /u+ upy. Here, the drift parametet = p,, /u + up,.

fo(T' —t),vt, which implies that giver units of data in the  The next theorem, Theorem II, gives the optimal policy

buffer and timet, the rate+—7— is higher under the good result for the constant drift channel model and the monomial

state than the bad state. Secofidl'—t) <T—t < f,(T'—t), class of functions while Theorem Il later gives the resolt f

where the function]” —t, gives the rate;=;, corresponding the exponential class.

to the direct drain (DD) policy. Thus, the optimal policy bot _ _

spreads the data over time and adapts the rate in responsgl€orem Il: Consider the BT-problem withg(r) = r",

to the time-varying channel condition and this adaptaten § > 1,7 € R and a constant drift channel with driff. The

governed by the respective functiofi;(-)}. optimal policy,r*(z, ¢, t), and the functionJ(z, c,t), are,

Fig. 5. fp(T —t) and f4,(T — t) plot for the bad and the good channel
respectively. The parameters aggr) = r2, T = 10, A = 5,v = 0.3.
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We now present illustrative simulation results to compare (a0 t) = x 1)
the performance of the optimal policy with the direct drain T f(Tr—v)
DD licy. A rlier, the DD policy transmi "
(DD) policy. As stated earlier, the policy transmits at a Jwet) = x 22)

rate sufficient to just empty the buffer by the deadline witho c(f(T —t))n—1

any rate adaptation to the channel state. For the simutgtion (n-1) AB-1)

we consider the two-state channel model with=1, ¢, =~ Where f(T' —t) = 5= (1 — exp(= == (T — 1))).

and takeg(r) = r2. We let, T = 10 and partition the interval Proof: See Appendix E. -

[0, 10] into slots of lengthit = 103, thus, having 0, 000 time . .

slots. The transmission rate chosen in each slot is obtdiged The closed-form expression of(-) above provides an
evaluating the respective policies at the time correspantb interesting intuitive observation related t(_) the paramﬁe
the start of that slot. A channel sample path is simulatedgusiSUPPOSe that the present channel state, ihen for a fixed
a Bernoulli process, where in a slot the channel transitiof&€ 7, the expected power cost in the next channel state is
with probability Ad¢ and with probabilityl — Adt there is E 55” = 2003, which is 3 times the present cogt”.

no transition. At each transition, the new statefis- Z(c¢)c This means that for higher values of parametethe channel
which for the two-state model amounts to jumps between tba every transition drifts in an expected sense towardsehnigh
two states. Expected energy cost is computed by taking expected power cost or worsening conditions and vice-\essa
average oveid0* sample paths. Figure 6(a) plots the energy decreases. Hence, as expected, the urgency of transmission
costs of the two policies as is varied withy = 0.3, B=10. 1/f(¢) is an increasing function with respect tbsince for




large 5 values it becomes more energy efficient to utilize the A(t)
present channel conditions. Interestingly, wheén= 1, the

expected future power cost does not change and in this case B
the optimal policy reduces to the direct drain (DD) police. i ‘
r*(x,c,t) = 7 (where we have used L'Hopital’s rule to A(t) B,
evaluatef(-) for 8 = 1). Thus, we see that the direct drain D(t)
policy is optimal both under no channel variations and under D(Y) Din(® B,

a constant drift channel model with = 1.

Dmin(t)

0 T time 0 T, T,

(@) (b)

Ty Ty time

Theorem lll: Consider the BT-problem withg(r) = o" —
1, a > 1 and a constant drift channel with drift. The optimal

policy, r (x’ ) t)' is the following, Fig. 7. Cumulative curves for (apT-problem, (b) Variable deadlines case.

Case 1 5>1,
2
(@, c,t) = %ﬂl) O<z< %3) the data departure over time which depends on the chosen
T + W x> W transmission policy. A schematic diagram of this is given in
Figure 7(a).
Case20< <1, Consider now the variable deadlines problem. Here, the

0< g < A=B(T-1) gueue hasM packets that are arranged and served in the
r*(z,ct) = { e AA-B)(T—t) - A(l_ﬁ)(Tz_lt‘;? (24) earliest-deadline-first order. Lét; be the number of bits in
T~ " 32ma T2 2ha the j" packet andl’; be the deadline for this packet; assume
) 0< Ty <Ty <...<Ty. There are no new arrivals and the
Proof: See Appendix F-. B objective is to obtain a transmission policy that serves daita
From above, we see that while the optimal rate functiagver the time-varying channel with minimum expected energy
has a different functional form for the exponential casenso cost while meeting the deadline constraints. In terms of the

of the natural properties still hold true - it is monotonlgal cumulative curves, the setup can be visualized as depinted i

increasing inz, increasing as approaches the deadline andrigure 7(b). LetB; = >°7_, b;; where B; is the cumulative
also increasing ing. amount of data of the firsf packets. ThenA(t) = By, Vi,
since a totalB,, bits are in the queue at timieand no more
IV. VARIABLE PACKET DEADLINES data is added, and),,.;, (t) is a piecewise-constant curve with

In the last section, we dealt with a specific case of the ener#/mps at timesfy, i.e. at imeT;, Dmin(1;) = B; since the

minimization problem involvingB bits of data and a single st B; bits _mu's.t.be transmn;ed_ by Flnally, We require
tgyat for admissibility a transmission policy must be sucéatth

deadlinel’. We now extend the results to a more general setu q <t D) < D) < A(1): 1
where the data in the queue has variable deadlines. We ad tﬁt eparture curvel)(t), satisfy Dmin (f) < D(t) < A(); in .
er words, data must be served such that the cumulative

a cumulative curves methodology [3], [7], [22] and provide 9 i b h o d deadi
natural decomposition of the problem in terms of multiplé bl?mountl les above the minimum eparture curve ( cadline
dependent instances of the canoniéi™-problem. Through constraints) and below the arrival curve (causality caists).

this decomposition we obtain a transmission policy that §?te that if a transmission policy adapts the rate with the

shown to be optimal for the constant drift channel model. A annel variations, the actual departure curve followedld/o
will be evident, the cumulative curves formulation provsde epend on the underlying channel sample path; however, for

very appealing and simple visualization of the problem arfl (e sample paths (almost surely) the above admissibilit
the solution. criterion must be satisfied.

A. Problem Setup B. Optimal Control Formulation

Let us first define the following cumulative curves. Define Let the system state be denoted @3,c¢,t), where the
the Arrival Curve A(t), as the total number of bits that havenotation means that at the present timethe cumulative
arrived to the queue in tim@, ¢]; the Departure Curve D(t), amount of data that has been transmitte®{¢) = D, and the
as the total number of bits that have departed (served) ia tichannel state is(t) = c. Let r(D, ¢, t) denote a transmission
interval [0,¢] and theMinimum Departure CurveD,,;,(t), policy and since the underlying channel process is Markov, i
as the minimum number of bits that must depart by titneis again sufficient to restrict attention to policies thapelied
to satisfy the deadline constraints. For example, in B only on the present system state [25]. Furthermore, we will
problem case, we havé(t) = B, t € [0,T] since the queue assume that the functiog(r) belongs to the Monomial class,
has B bits to begin with at time0 and no more data isi.e. g(r) =kr™, k> 0,n > 1.
added. We haveD,,,;,(t) = 0, t € [0,T), Dpin(T) = B As before, given a policy'(D, ¢, t) the system evolves in
since until the deadling < T there is no minimum data time as a Piecewise-Deterministic-Process starting iimikial
transmission requirement while &t the entire B bits must stateD(0) = 0 and ¢(0) = ¢o. Until 71, wherer, is the first
have been transmitted. Finally, the curie(t) represents time instant aftet = 0 at which the channel changes, data is



transmitted at the rate(D(t), co, t). Hence, over the interval comparison of the two diagrams in Figure 7 suggests the

[0,7), D(t) satisfies the differential equation, following approach. First, instead of looking at individua
dD(t) packets in the queue, we can visualize the deadline contgtrai
= r(D(t), co,t) (25) in terms of cumulative amounts a{sBjTj}jf‘il constraints,

_ o that is, a total ofB; bits must be transmitted by deadline

Equivalently, in integral form D(t1) = D(0) + 7, (j =1,...,M). Clearly, each individuaB;7; constraint

Jor(D(s),co,5)ds, t € [0,7]. Then, starting from the ig jike a BT-problem except that now there are multiple such
new state(D(ry), c(71),71) until the next channel transition constraints that all need to be satisfied. For every tiraad
we have, 50 = r(D(t),c(r1),t), t € [r1,m2); and this channel state;, we know the optimal transmission rate to
procedure repeats until= T}, is reached. satisfy each of theB,T; constraints individually (assuming
A transmission policyy(D, c, t), is admissibleif it satisfies only this constraint existed), thus, to meet all the coimstsa
the following: (a)0 < r(D,c,t) < oo, (non-negativity), and, a natural solution is to simply choose the maximum rate; i.e.
(b) Dmin(t) < D(t) < A(t),t € [0,Tn], a.s. (deadline and procedurally, for a given system state list the remainthg’;
causality constraints). constraints, obtain the transmission rate individually dach
For an admissible policy(-), let J,(D,c,t) denote the one of them using the rate function obtained previously for
cost-to-gafunction as the expected energy expenditure startigge B7-problem, and then choose the maximum value.

from an admissible stat€D,c,t), (i.e. Dmin(t) < D < More precisely, this transmission policy is described as
A(t), t <Ta). Then, follows. Let the system be in stateD,c,t) and consider a
Tv o q particular B;T); constraint. Using (15), the optimal rate for
Jr(D,c,t)=F / ——g(r(D(s), c(s), s))ds (26) an individual B;T; constraint for channel stat¢ is given
o ols) as ¢4, since(B; — D) is the amount of data left and

where the above expectation is taken ofefs), s € (t, Ty} (T —t) is the time left until the deadlin€;. Let 7(D,c,t)
and conditional on the starting stafe(t) = D, c(t) = c¢. denote the transmission rate for our proposed policy, ftien
Define aminimum cost functian/(D, ¢, t), as the infimum of is the maximum value among the rates forB{I; constraints
J.(D, c,t) over the set of all admissible transmission policie$or which (B; > D,T; > t); i.e.

J(D,c,t) = H(H; Jr(D,c,t), r(D,c,t) admissible (27)

. ; B; — D

D) = (82020 fi(T; — 1) (29)

As before, the optimization problem is to compute the opktima i .

policy 7*(D, ¢, t) that achieves the minimum cos(D, c,t). Where, as before, the functions/;(s)};Z, are the solution
Following Section I11-B, the optimality HJB equation carof the following ODE‘ system with the boundary conditions

be obtained directly by noting that the process evolutiofi (0) = 0, £(0) = 1, Vi,

as discussed above remains the same asBifieproblem, Mi(s) A Cpi (fils)"

except that, for convenience we have used the cumulatie d#f(s) = 1+——->———— Z %’7%1, i=1,....,m

transmittedD(¢) as the state variable. Thus, using the results n—1 n—1zi (fils)

of Section IlI-B the HIB equation is given as, ) . o (30)
By construction all theB;T; constraints are satisfied since at

min {@ + 0J(D, ¢, t) + TaJ(D7C> t) all times we choose the maximum rate among those needed
ref0,00) L € ot oD to meet each of the remaining constraints. Hence, the policy
+AEL[J(D, Z(c)e,t)] — J(D, e, t))} =0(28) in (29) is admissible. Furthermore, since the policy in (29)
is based on theéBT'-solution, it inherits all the properties of
However, the boundary conditions for the above genemdat solution. The ODE system in (29) is identical to the&-
formulation are more complex than thBT-problem and case, hence, as before the functi¢rigs)}™, can be obtained
depend on the underlyin@,,;,(t) curve. For the variable numerically using a standard ODE solver. This computation
deadlines setup, these are given d$Ba,c,t) = 0 and needs to be done only once before the system starts operating
J(D,c,T;) = oo, if D < Bj, j =1,...,m. The second and the functions(f;(s)} can be pre-determined and stored
condition follows from the deadline constraints since tasin a table in the transmitter's memory. Once thg(s)} are
approachedl; the cost function must be unbounded if th&nown, the online computation is minimal. At timg the
required cumulative amouri®; has not been transmitted.  transmitter looks at the cumulative amount of data trarteahit
D, the channel state;?, and then using the corresponding
C. Transmission Policy fi(+) function it simply computes the maximum among a set
. . S . of values as given in (29).
A direct solution of the optimization problem stated in While the transmission policy in (29) applies for a general

the previous segtlon |s.fa|rly d|ﬁ|cult (_jue 0 t_he complgxit Markov channel model, under the specialization to a comstan
of solving the differential equation with multiple bounglar | . L : . :
drift channel it is in fact the optimal policy as shown in the

conditions involved. Interestingly, however, the simpteg- following theorem. Note that for the constant drift channel

ical visualization of cumulative curves provides an irtit . . L :
" . . model, the functionf;(s) = f(s), Vi where f(-) is given in
and natural decomposition of the variable deadlines pmblerheorem I

in terms of multiple inter-relatedBT-problems. A visual




Theorem IV: (Variable Deadlines Casefonsider the vari- 10° e
able deadlines problem with(r) = r™, n > 1,n € R and the - HLD
constant drift channel model with paramet8r The optimal

rate, 7*(D, ¢,t) for Dy,in(t) < D < A(t), t € [0,Tn) is B
given as, > B
B,—D 5 =
r*(D,c,t) = max —L (31) % 2
(B zD.1;2t) f(Tj —1t) g w
n—1 AB—1 i
where, f(s) = A(&aq))(l — exp(— 2=V ),
Proof: See Appendix G. ]
10° : ‘ o) :
o 10 25 50 o 20 40
V. PACKET ARRIVALS WITH DEADLINES (a) Packet arrival rate (b) Sample path index

Consider an arbitrary stream of packet arrivals to the quegg. 8. Energy cost comparison for Poisson arrival procesgdpdifferent
with each packet having a deadline by which it must depagtrival rate, (b) different sample paths.

Regardless of the underlying stochastic process gengitin
packets, we next present a heuristic energy-efficient tnéns x 10"

sion policy based on the variable deadlines solution. We cal —— BTA
it the “BT-Adaptivé (BTA) policy. Since this policy is not - HLD
based on a specific arrival process, it is robust to changes in
the arrival statistics and can accommodate multiple deadli
classes of packet arrivals to the queue. Finally, to evaltre
performance of the BTA policy, we also present illustrative
simulation results comparing it with a non-adaptive scheme

N
w

=
= o N

Expected energy cost
o
&

3

A. BT-Adaptive (BTA) Policy R
. . %O 50 100 150 200 250 300 350 400
Consider packet arrivals to the queue and assume that the Deadline in msec.
arrivals occur at discrete times with each packet having 2 o Enen  ver et deadline for Poissonaimi
deadline associated with it. Clearly, at the instant immatedy 9.5 Crgy COST VEISUS packet deadling fof FoISSOnanprocess.
following a packet arrival the transmitter queue considis o

(2) earlier remaining packets W.'th their deadllr_wes and ife) tin gueue at a rate to transmit it out by its deadline, then move
new packet with its own deadline. Re-arranging the data jn

. X . . . 0 the next packet in line and so on. At eve acket arrival
the queue in the earliest-deadline-first order we can view th P y'p

ueue as consisting of some total amothy; of data with instant, the data in the queue is re-arranged in the earliest
que ; g of S . . deadline-first order and the above policy is repeated wigh th
variable deadlines, identical to the case considered idatte

section. Not assuming any knowledge of the future arriva?sew packet taken into account.
: g any 9 The simulation setup is as follows. The queue has packet

and using (29) we have an energy efficient policy to empty the . ; . N
transmitter buffer. As this policy is followed, at the nesigiet arrivals and each packet has a deadline associated withit. O

arrival instance the above procedure is simply repeated %ach simulation run, the total time over which the packets
b Py rep arrive and the system is operated is takeras 10 seconds.

updating th'e' data amount tak.mg Into account the new paCkFﬁis interval[0, 10] is partitioned intol0, 000 slots, thus each
Summarizing, the BTA policy is as followstransmit the : ! :
X - . . ) slot is of durationdt = 1 msec. The channel model is the two
data in the queue with the rate as given in (29); at every packi

arrival instant re-arrange the data in the earliest-deamifirst ftate 1m (Zdei ge;c)r\lbei |>r\1 SiCt/'\ml ILI,)(? #Tsﬂlﬁep:\rggetgrs’
order to obtain a new set aB;T; values including the new (¢ — > 0 = - 7bg = “gb = 7 = O ' d

packet and its deadline; re-initializ® to zero and follow (29) time spent in & state before the channel t_ran_S|t|on$/E{) :
thereafter seconds, 020 msec. A channel sample path is simulated using

a Bernoulli process where in a slot the channel transitiatts w
probability \d¢; otherwise there is no transition. For simplicity,
B. Simulation Results the packet arrival and the channel state transitions ocalyr o
In this section, we present simulation results to evalua#t the slot boundaries. For both the BTA and the HLD policies,
the performance of the BT-Adaptive policy. For comparisotie rate chosen in a slot is obtained by evaluating the réispec
purposes we consider the “Head-of-Line Drain” (HLD) policypolicies at the time corresponding to the start of that 3ide.
which can be easily implemented in practice. In HLD policytake g(r) = r?; energy cost per slot is therefoﬁéj—t (r is
the data in the queue is arranged in the earliest-deadliste-fthe chosen rate in the slot) and the total expected enerdy cos
order and the packets are served in that order. At tiplet is taken as an average of the total cost over multiple sample
H; be the amount of data left in the head-of-the-line packatns.
andT'y be the amount of time until its deadline, then the rate We first consider a Poisson packet arrival process with each
chosen ig; = Ti; Thus, the transmitter serves the first packgtacket havingl unit of data and a deadline &f00 msec.
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x10° : : approach based on continuous-time formulation and sttichas
- EI’S control theory to address an otherwise difficult set of peais.

| We first considered the problem of transmittiBgunits of data
by deadlin€l’ and obtained the optimal rate adaptation policy.
Various properties of the optimal rate function are deduaedi
it is also shown to have an intuitive separation form. Using
a cumulative curves methodology and a decomposition ap-
proach, we then obtained an energy-efficient rate contiaiypo
when the data in the queue has variable deadline constraints
this policy is shown to be optimal under specific scenarios.

(2}

[$2]

»

N

Expected energy cost
I‘ﬂ w

S o1 Pazket size - 4 Finally, based on the intuition developed in the above, we
devised a heuristic policy for arbitrary packet arrival gges
Fig. 10. Energy cost versus packet size for Uniform arrivaicpss. and compared its performance through simulations. We\gelie

that the framework of this paper holds promise for various

extensions addressing QoS-constrained data transmigsion

Figure 8(a) is a plot of the expected energy cost, plotted Qfeless systems. Some of the natural extensions include a
a log scale, versus the packet arrival rate. Note that a packgnyvork model with multiple transmitter-receiver pairsdan
arrival rate of10 implies that the average inter-arrival time Ofmulti-hop transmissions with end-to-end delay constgaint

a packet isl /10 sec. or100 msec. As is evident from the plot,

the BTA policy has a much lower energy cost compared to the

HLD policy and as the arrival rate increases the two costs are ACKNOWLEDGEMENTS
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APPENDIXA
VERIFICATION THEOREM FOR THEBT-PROBLEM

In Section 11I-B, we obtained heuristically the optimality 7«

equation as given by (14). To present a rigorous argument

need to verify that a solution of (14), i.e. functional form
J(x,c,t) and r*(x,c,t) that satisfy (14), indeed give the
optimal solution for theBT-problem. However, the standardt

verification theorems in [23] that provide conditions to cke

for the optimality of the solution to the HIB equation do no?
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constraints required for th&T-problem with the exception
of z(T) = 0 which is no longer a necessary requirement.
Furthermore, from the increasing and convexity properies
g(r), it is easy to see that for a fixed, ¢), hi(z,c) =0, if
2 = 0,Vk andhy (z, ¢) =), oo, if 2 > 0. Thus, as we look
at the modified problem®;, with large values oft (smaller
values of i), there is an increasingly higher penalty cost
applied to the data left at timE. And ask — oo, this penalty
cost goes to infinity; thus, in the limit we have a situation
equivalent to the3T-problem. The rest of the proof delves into
the technical details involved in taking the limits. Spexifiy,
to obtain the verification theorem for thBT-problem, we
show that having obtained the optimal cost function for the
modified problemP, and then taking the limitk — oo gives
the optimal solution for the3T-problem.

We will use the notatiof’ to denote the set of all admissible
policies for problem®P, (note that for all P, the setl’
is the same since the problems only differ in the terminal
cost functionhy(-,-)). The cost-to-go function for a policy
r(-) for problem P, will be denoted asJ!(z,c,t); ie.
(r,0,0) = B [ 1 200D s gy (2(T), o(T))|. We

>
r s

Y&t with Lemma 1 which gives the verification result for
%roblem Pr. It states that a solution of the PDE equation

(14) satisfying the relevant boundary conditions indeaegi
he minimum cost function and that the transmission policy
btained from the minimizing in (14) is the optimal policy.

directly apply for theBT-problem. This is because the non- Lemmal: (Verification Result for P;) Let J*(z,¢c,t) de-

standard boundary condition(T") = 0 leads to a singularity

in J(z,c,t) att = T (since,J(z, ¢, t) " oo, if 2 > 0).
To overcome this technical difficulty and obtain a verifioati

fined on|0, B] x C x [0, T, solve the equation in (14) with the
boundary conditions/*(0,¢,t) = 0,Yc € C,t € [0,T) and
J¥(z,¢,T) = hi(x,c). Then,

theorem for theBT-problem, we consider a particular relax- 1) J*(x,c,t) < J*(z,c,t), ¥V r(-) € T

ation and take appropriate limits as discussed next.

Consider the following modification to the problem. Instead

of emptying the buffer by tim&, extend the deadline 6+

for somer; > 0. In the interval [T, T + 7] the channel
does not change and whatever datél’), left at timeT is

transmitted out at the constant ratél") /7. Thus, now the
system runs over timg0,7] and the data left af’ has a
terminal energy cost of emptying it in the next interval.
This terminal cost is given as,

s ()

o(T)
We now consider a sequengey, }$° such thatr, | 0. This

hi(2(T), e(T)) = (32)

gives a sequence of modified problems which we denote
{Px} while the corresponding minimum-cost functions are

denoted agJ*(z,c,t)}.

Note that the relaxation does not change the system dy-
namics over time but only affects the terminal cost applied

to the leftover data at tim&. In the BT-problem, we had
an infinite cost on any data left & but now each problem
{Pi.} has a smooth functioh(x(T'),c(T)) associated with
it. Clearly, then, the optimality equation for ea@h, is the

same as (14) except that the boundary conditions for the PD

now becomeJ*(0,c,t) = 0 and J*(z,¢,T) = hy(z,c).
The admissibility of a policy for problenP, includes the

2) Letr}(z,c,t) be an admissible policy faP;, such that-};
is the minimizing value of in (14) for J*(z, ¢, t), then,
i (, ¢, t) is an optimal policyJ* (x, ¢, t) is the minimum
cost function and,

P Garert) = B /tTgu,*;(x(j()s,)c(s),s)) i
+ hi(2(T), o(T)) (33)
Proof: See [23], Chap IIl, Theorem 8.1. |

Now, define the functionJ(x,c,t)2 limy_.o, J*(x,c,t).
The next theorem shows that this limit exists and if it sassfi
(alél), it is the optimal solution for thé&T-problem. We will
use the notatiol” in the theorem to denote the set of all
admissible policies for thé&T-problem.

Theorem V: (Verification for the BT-problem) Con-

sider (z,¢,t) € [0,B] x C x [0,T) and define
J(x, e, )2 limg o J*(z,c,t). Let J(x,c,t) satisfy the
HJB equation in (14) and*(z, c,t) be an admissible policy
for the BT-problem such that* is the minimizing value of
Ii:.n (14) for J(x,c,t). Then,

1) J(z,c,t) < Jp(x,c,t), Vr()el
2) r*(z,c,t) is the optimal policy,J(z, ¢, t) is the minimum
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cost function and, where J,.(-) above is defined in (5). From Lemma 1 we know

that,
| k k Jef
J(z,et) = E / S0 s) es),))ds | (34) T@et) < Ji@et), Vr()eloT  (36)
¢ Thus from (35) and (36) we have,
Proof: We divide the proof into various steps each giving JE (@, e t) < oz, e,t), ¥ r() €T 37)

arguments for the various claims in the theorem statement.
Step 1: The limit, J(z,c,t) = limy_.o J*(x,c,t) exists Since the above inequality holds for &ll taking limits gives,
and is finite
Consider the relaxed probler®, and the corresponding
minimum cost function/*(z, ¢, t). We now make two claims, Step 3: Result 2 stated in the theorem
first that J* (z, c, tZ is non-decreasing i for each(z, ¢, ) From the theorem statement, we know thidt, ¢, ) satis-
anq second that*(z, c,t) is boynded for allk. These two fies (14) andr*(z,c,t) is an admissible policy for th&3T-
_clalms are_proved as follows. F_lrst, note that the SequenCe y ohiem. Now, using Dynkin's formula, [23], 0f(z, ¢, t) for
is decre_zasmg angl h_enm(x,_c) is m_onotonlcal_ly point-wise policy r*(-) we get¥ 7, t < 7 < T,
increasing inz with increasingk. Fix an admissible policy
r(-) € I, then for every channel sample path the total energy J
cost is higher a% increases because the terminal cost is higher.
Hence, for allr(-) the expected energy cost increases wiith T g(r*(zs, cs, 8))
taking the infimum over(-) proves the first claim. To prove = BJ (27, er,7) + E/t
the second claim consider a simple poliay;), that starting - E/T
t

J(x, e, t)2 klim JE(z,e,t) < Jo(z,c,t), V() €T (38)

(x,c,t) = EJ(xr,¢r,7) — E/ A" J (2, ¢, 8)ds (39)
t

ds (40)

S

90 (2s,¢5,5) (41)

with 2 units of data at time, empties this data at a constant -
S

rate by timet, wheret < ¢ < T i.e.r = x/(f — t) is fixed.
For such a policy, where we have usetl, ¢, as short-hand notations fofs) and
i ¢(s) respectively. The equality in (40) follows sineé is the
Lg(z/(E—1) minimizing value in (13) which givest™ J(z, ¢, t)+2g(r*) =
/t ds 0 or equivalently = g(r*(z, cs, s)) = —A" J(x,cs, ). The

; inequality in (41) follows sinceJ(-) is non-negative. Since

1 the above holds for alt < T, taking limits and using the

—ds
t

Jre(z,c,t)=FE

c(s) monotone convergence theorem we get,
z V(=1 (A - t))j e MY T g(r(x*, cs, 5))
< - / > I\ \Tsy TS 7))
<g (tt>jz_:o<c(zl)3> i J(z,c,t) > FE /t . ds (42)
(- t)g ( z > A A o Combining the above inequality with that in (38) shows
c t—t that we have equality for policy*(x,c,t), i.e. J(x,c,t) =

T g(r*(xs,cs,s .

The inequality above follows by first conditioning that the J¢ Mds This completes the proof thal(z, c, )

) . ~ . 4 is the minimum cost function and*(-) is the optimal policy.
channel makeg transitions overft, ¢, taking c(s) = (21)’c, =
where(z;)? ¢ is the worst possible channel quality starting with
statec and makingy transitions, and finally taking expecta-
tion with respect toj (number of transitions;, is Poisson APPENDIXB
distributed with rate\(f —t) andz; > 0 is the least value that PROOF OFTHEOREMI — BT-problem
any Z(c) can take). SinceJ*(z,c,t) < Jq(z,c,t),Vk, the  To prove optimality, we check all the conditions required
bounded-ness claim follows. Combining the above two clains the verification results of Appendix A as follows. We
(non-decreasing and bounded), we see that the point-wide lifirst consider the relaxed proble®, and obtain the optimal

J(x,c,t) =limy_ o0 J¥(z,c,t) exists. solution by verifying the conditions in Lemma 1. Then, we
Step 2: Result 1 stated in the theorem, i.€(z,c,t) < take the limitk — oo and check the conditions required in
Jr(z,c,t), V BT-admissible policies Theorem V. These limits give us the optimal solution for the

From the notation consideref, denotes the set of admis-BT-problem.
sible policies for theBT-problem and’ the set of admissible ~ Step 1: Optimal solution for the modified problef®,
policies for problemg P, }. We havel’ C T because a policy  Let us suppose that the functional form for the optimal rate
that empties the data by the deadline is clearly an adméssibf(z, c,t) is given as,

policy for the modified problem$P;} in which case such a 2

policy simply incurs zero terminal energy cost. Thus, fdr al ri(z, ¢ t) = =’ i=1,...,m (43)
r(-) € T, z(T) = 0 and the terminal energy cost is zero. This !
gives for allk, Assuming this functional form we now obtain the minimum

cost function.J*(z, ¢, t). To proceed, note that;(-) must be
JE(x,e,t) = Jo(x,c,t), Vr() €T (35) the minimizing value of- in (14). Thus, using the first-order
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condition for the minimization (i.e. first derivative witespect ~ Consider the limitJ(z,c,t) = limy_.o J*(z,c,t). From

to r equal to zero) we ge¥/(z,c,t) € (0,B] x C x [0,T), Theorem V we know that this limit exists and using (45) we
a rg(r) 0%z, ct) oJ%(x,ct) obtain,
7( T -r ; k ; "
or\ ¢ ot O J(x, ¢ t) = lim J¥(z, ' t) = ————,i=1,...,m
k i i k(.. i _ k—o0 c(fi(T =)t
FAEL [T (2, Z(¢)e' 1) = TH (@, e, 1)) | =0 (44) 49
T
. S i where we define,
This gives, 2 (&0 — g ri@ebh) and upon integration N _
with the boundary condition* (0, ¢!, t) = 0, we get, fi(s) = [lim f(s), s €[0,T], Vi (50)
n . . .y . .
Jk(a?,ci,t) by —1...m (45) For optimality we now check the conditions required in

AT )
In order for the functional forms in (43) and (45) to be th
optimal solution we need to satisfy the conditions in Lemma
« First, the boundary conditiod®(z, ¢!, T) = hy(x,c!) =
@/m)" requires,

ct

Theorem V. First, we need to show théf-) as obtained in
49) satisfies the HIB equation in (14). Substituting thevabo
?orm of J(z,c',t) in (14) and using the first-order condition
for the minimization we get2/(z:-t) — g/’ (z.cL.) yhich
gives,

r(z,¢ ) = —— i=1,...,m (51)

fFO)y=m, Vi=1,...,m (46) (T —1)
Furthermore, to satisfy the PDE equation we require (see the

The other boundary conditiod” (0, ¢*,t) = 0, Vi,t, is steps presented in Step 1),

already satisfied as can be easily checked.

« Second,J*(:) and r;(-) must solve the PDE equation ,,, . Afi(s) A= (i)™
in (14) for all values of the system state,c,t) € fils) =1+ n—1 n—1 Z_; 2 (f;(5))" 1 Vi=1,...m
([0,00) x (c1,...,cm) x [0,T)). That is, we require, = (52)
g(ri(z, ¢ t)) Tk (z,d\t) . ;DR t) Thus, equivalently, in order to prove thd{z,c,t) satisfies
p + ot = 7i(2, ¢ 1) =5 the HJB equation, we need to show that the functipfigs)}

FNEL[TF (2, Z(¢)é )] — J* (2, ¢, t)) = 0 (47) @S defined in (50) satisfy the above ODE system with the
o ’ o o _boundary conditionsf;(0) = 0 and f/(0) = 1, V¥i. These
Substituting (43) and (45) in the equation above, sinboundary conditions follow by taking the limik — oo
plifying ahd settings = T' — ¢t gives the following ODE n fE(s); specifically, f5(0) = 7, — 0 and (fF)'(0) =
system,vi =1,...,m, 14 2% 7 32 22) — 1 (Note that ag — oo, 7 | 0).
(F5Y(s) = 1 AEs) A i& (fF(s)" he following lemma shows that this is indeed true and
i n—1 n—14=z; (ffs)r 1 {f:(s)} as defined in (50) satisfy the ODE system in (52)
=1 ’ (48) with the above mentioned boundary conditions; furthermore
{fi(s)} are also the unique solution of that ODE system.

Thus, from above we see that fof(-) and J*(-), as given
in (43) and (45), to satisfy the optimality PDE equation in Lemma3: The functiong f;(s)} as defined in (50) are the
(14) we require that the function§f®(s)}™, satisfy the unique solution of the ODE system in (52) with the boundary
above ODE system with the boundary conditions in (46). The@nditions f;(0) = 0 and f;(0) = 1, Vi.
guestion that remains is whether a set of positive functions Proof: See Appendix D. [ ]
exist that solve the ODE system in (48). The following lemma Finally
shows that indeed such a set exists and also that thesediusicti . ’
are unique.

we need to check the admissibility of policy
(z,c,t) as given in (51). To see this, note that the optimal
rater* is non-negative and is zero when= 0 (r*(-) is locally
Lemma2: (Existence and Uniqueness of the ODE so-Ljpschitz continuous inz and continuous irt). The policy
lution in (48)) The ODE system in (48) with the boundary(.) also satisfies the deadline constraitf’) = 0 since the
conditions f/(0) = 74, Vi, 7 > 0, has a unique positive houndary conditionf/(0) = 1, Vi, implies that very close

solution fors € [0, 7. to the deadlineT’, the policy behaves as'(z,c’,t) = Z;
Proof: See Appendix C. B thereby emptying the buffer by the deadline.
Thus, we see thaf”(z,c’,t) as given in (45) solves (14)
with the minimizing rate function’ (z, ¢!, t) as given in (43). APPENDIXC
This rate function is a valid transmission policy as it das PROOF OFLEMMA 2 — Existence and Uniqueness of the
all the admissibility requirements for probleR), (i.e.r* > 0, solution to the ODE in (48)

r*=0forz =0, ri(z, c¢',t) is locally Lipschitz continuous  To ease the notations, let us abstract the ODE system in (48)
in = and continuous irt). From Lemma 1, it then follows as follows. Letr;(s)2 f*(s), aiéﬁ, bz‘jé(nipf)jz., , then (48)
that J*(z, ¢, t) and r}(z,c,t) are the optimal solution for can be re-written as, Y
problem7Py,. m "

Step 2: Optimal solution for the BT-problem (taking zh(8) = 1+ a;wi(s) — Zbij&)—l’ Vi=1,...,m (53)
limy_.o in the Step 1 results) = zj(s)"
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where forp;; > 0, (A, z;;) > 0,n > 1, we have,a; > 0 and From (61) above we get,
b;; € [0,00). Thus, we now have to find a vector of functions

o > e 5

%(s)2(z1(s),...,zm(s)) such that eachr,(s) satisfies the zi(s) 2 me (62)
equation in (53) with the initial conditio&(0) = (7%,...,7%) Thus,z;(s) is bounded below by an exponential function that
(since fF(0) = 14, Vi). goes to zero only whem — oo. Using a recursive argument

Let us defineG;(X(s)) £ 1+ a;xi(s) — Y1, bu% starting withs = s, and following the new minimum function,
then, in a very compact form we get, ’ it follows that over the interval0, sy) all z;(s) are lower

_ bounded byrie~“ma=, wherecp,q, = maxij—1,..m ci.
x'(s) = G(x(s)) (54) From the arguments above we therefore deduce that the
PR , , unique local solutionx(s), is upper and lower bounded by

where X'(s) is the column vector(xy(s),...,a,(s)) and ., respective positive exponential functions. Hence |dal
G(-) is the column vector(Gi(-),...,Gn(-)). Now con-

solution never leaves the sét. Thus, by contradictions
cannot be finite and it then follows that the ODE in (54) has
a unique positive global solutiorx(s), for all s > 0, i.e.
we have a uniqu&(s) € U, Vs > 0 that satisfies (54) with

sider the open positive orthant and denote itiésthus,
U = (xry > 0,...,2,, > 0). Forx € U, eachi(i)
is a continuously differentiable function. Hencé&(x) is

continuously differentiable which means that it is Iocall&(o) = (Thye ey 7h)

Lipschitz continuous irk over the set/. Therefore, starting s

with x(0) = (7, ...,7) € U, the ODE in (54) has a unique APPENDIXD

local solutionx(s) that lies ini/ [26]. The only question NOW  prooE OFLEMMA 3 — Functions{f;(s)} are the unique
remains is whether the local solution leaves the open pesiti solution of the ODE system in (52)

orthant, i.e. whethegk(s) ¢ U for some finites > 0. And the We know from Lemma 2 thatf’(s) is a continuously

answer is no; the local solution remains in which then . . . .
sidp differentiable function, hencéf*)’(s) exists for alls € [0, 7]

proves the claim that the ODE in (54) has a unique positivé q7 48) it is ai
solution for all s > 0. To prove the last requirement tha@ rom (48) itis given as,

%(s) €U, Vs > 0, we proceed as follows. o ARG N Ky (fFG)
First, sinceG(x) is locally Lipschitz continuous irg, a (Fo)(s) = 1+ =0 Z zi (FFs))n—1 L,..,m
unique local solution that lies X exists for the ODE in (54). =t ! (63)

Suppose now thal < s < oo is the first instant at which for rae the limitk — oo in the above equation and denote this
somei, we ha}ve:ci(so) =0 orz;(so) = 00, i.e. sq is the first point-wise limit ash, (s), i.e. hi(s) 2 limy_oo(f¥)(s). The
instant at whichx(s) leaves the positive orthadt. Over the it exists sincef*(s) is pointwise convergent for ail (see
interval s € [0, s0) we have, Step 2 of Appendix B). Thus, we get,

m

2i(s) = 1+am(s)— ;bj;(szl 69 n(s)=1+ 21 A > s (J(c;f(ij))i_ls € (0,7164)
< 14 axi(s) (56) =1, s=0 (65)
From (56) above we get, To prove the lemma, we need to show tligis) as defined in
(50) satisfiesf!(s) = h;(s). To do this, we use the following
2i(s) < (1 +airz}e“is -1 (57) result [27] (Thm. 7.17, pg. 152).

Lemma4: [27] Suppose{f,} is a sequence of functions,
Thus, eachr;(s) is bounded above by an exponential functionifferentiable on[a,b] and such that{ f,,(zo)} converges for
that goes to infinity only wher — cc. some pointcy on [a, b]. If {f/} converges uniformly ofu, b],

We now compute the lower bound on the functigns(s)}. then{f,} converges uniformly ofu, 4], to a functionf, and
Let x;(s) take the smallest value amonig;(s)} over an f'(z) = lim, o f,(z), (a <z <D).

interval [0, s1], s1 < so; this is true since:;(s) are continuous )
0, 1], 51 < 50 i(s) For our case, for ali, {fF(s)}3, forms a sequence of

functions and if a certain function takes the smallest vaiue . . : & ;

: : L . differentiable functions orj0, 7] and f*(s) converges point-

will remain the minimum over some interval. We then have, . . ! P
(s)/;(s) <1, Vj = 1 m over s € [0, s1]. This gives v(ns_e tof;(s). We show in Lemma 5 below thaj; ) (s). hasg

i IV = B » =L " uniformly convergent subsequence [0nT]. Considering this

m n subsequence, combined with Lemma 4 above (for our case,
N 7(s) . . .
zj(s)=1+ az;(s) — Z%W (58) the sequencdf/} in Lemma 4 is the uniformly convergent
j=1 / subsequencé(f¥)'(s)} and the limit functionf is f;(s)), we
>_§:b ms) (S)ib (au(s) %(159) obtain, f/(s) = hy(s) = 1+ 2lel - 2 5m ()",
- = g xj(s)n—1 ! et 13 z;(s) (from (64)). Thus, this proves thgt(s) is a solution of the

ODE as given in (52) withf;(0) = 0 and f/(0) = 1.

>—ay(s) Y by, (sincem(s)/x;(s) <1, Vj) (60)  Lemma5: (Uniform convergence of(f¥)'(s)) The func-
j=1 tions {(fF)'(s)}%2, have a uniformly convergent subsequence
=—cz(s), (takingc, =77 biy) (61) ons e [0,7] for all i.
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Proof: The proof is omitted here for brevity and can beFrom Lemma 2 the above function is the unique solution of
found in [3]. B the ODE in (67) and it can be easily checked that the functiona
forms ri(z.c.1) = geciy and JA(o..1) = s
Suppose that the solution is not unique and ) — sdtisfy the conditions in Lemma 1. To obtain the solution for

P the BT-problem, we take the limiti{ — co) which gives the

(f1(8),.. ., fm(s)) and y(s) = (y1(s),-..,ym(s)) be two . 0 . AT o
sollutions withy;(0) = 0, y;(0) :11;fi(0) =0, fi(0) = o(gtlrral solution in (21) and (22) with(s) = limy oo f*(s) =

' . ) A(B-1)s
1, Vi =1,...,m. We first show that if we look at close to (F-1) (1 —exp(—=r— ))-
0, the two solutionsy(s) andf(s) are in the positive orthant

We now prove unigueness using a contradiction argume

X APPENDIXF
and close to each other. Startsat 0 and considet /> 0, th_en PROOF OFTHEOREMIII — Constant Drift Channel,
by the mean value th_eor_em [27] we ha‘yg(,e) = eyl(n) with Exponential Case
n € (0, ¢). By the continuity of the derivative, we further have . ) . L
e—0 A direct non-constructive proof for showing optimality s t

yi(€) = €(y;(0) +7i(€)) = e(1 + 7i(€)), wherey;(€) — 0
and this holds for all. Thus fore small enough we must
havey(e) > 0; in other words there exists @asuch that for

plug the functional forms given in the theorem statemerd int
the PDE equation in (14) and check if it satisfies the equation
all 0 < ¢ < ¢ the solutiong(e) is in the positive orthant Howe_ver, such a proof woulq not reveal how the particul_ar
Similarly, sincef(s) = (/1 (s) Fn(s)) is also a solution. functional fo_r_m can be obtame(_j. To preseqt a constructive
' o dm ’\})roof, we utilize discrete dynamic programming and proceed

the above set of arguments hold for it as well and we ha & follows. From the steps in Appendix A, we first solve for

f(e) >E(L0From above_w_e al_so see Fhﬁ(e)ll < jy(e)’ where the optimal functions{.J*(z, ¢, t), 7} (z,¢,t)}, of the relaxed
"y(€) — 0 and a similar inequality holds fdif(c) as well. ,roplemp,, take the limitr, | 0 and verify the conditions of
Thus, ||}_’(§) — ()| < [I¥(e)[| + Hf@” < (y(e) + Wf(‘f))- Theorem V. Now, to solve problef,, we consider a discrete
Now, pick ¢ < (0,¢) and consider the two solutions ofgpproximation of the time interval, 7] with step sizedt.
the ODE over times € [e, T star_tlng from the initial state Using dynamic programming (DP), we obtain the functional
y(€) andf(e) respectively. Following the proof of Lemma 2form of the optimal policy and the minimum cost function and
(Appendix C), we see that starting from an initial state i@ thake the limitdt — 0. Thus, there are two limiting operations
positive orthant, the ODE has a unique solution that lies jRyolved, firstdt — 0 to solve for the optimal functions for
the positive orthant. Furthermore, from [26], the solutisn problem?;, and thenr;, | 0 to solve for the optimal functions
continuous with respect to the initial conditions. Thussthfg, the BT-problem. We treat the two cases> 1 ands < 1
implies that starting with close enough initial conditiothe separately.
two solutionsy(s) and f(s) must be close enough for all Ccase 1 3 > 1. Consider a discrete approximation of time
s € [e,T]. Mathematically, for any( > 0, there exists an wjth step sizedt > 0. Starting at time7 and recursing
¢ € (0,€) such thatmax,cc7) [|¥(s) — £(s)[| < ¢. By taking packwards, lefT — jdt,T — (j — 1)dt], j > 1 denote the
¢ going to zero, we see thd(s) andf(s) cannot be distinct jt» stage andV;(z,¢) the corresponding cost-to-go function

over s € [0, 7] and this completes the proof. starting withz amounts of data and channel stat®enote the
j" stage optimal transmission rate @gx, c). Let V;, denote

APPENDIXE the terminal energy cost ovéf’, T + 1], then, Vy(z,c) =

am/f . . . .
PROOF OFTHEOREMII — Constant Drift Channel, hi(z,c) = %Tk. The first step DP recursion is,
Monomial Case " 1\dt
, o . Vi(z,c) = min {u + (1 = Adt)Vo(x — rdt, c)
The proof for this result is identical to that of Theorem | but 0<r<az/dt c

now we can eve_lluate thef;(s)} functions in closed form. To FALE, (Vo(x — rdt, Zc))} (69)
see this, start with problefR;, and suppose that for all channel
states thef¥(s) function is the same, i.eff(s) = f*(s). The The constraint < r < z/dt follows from the non-negativity
ordinary differential forf*(s) then becomes, of the rate and the buffer state respectively. Substitutif(g)

and using standard lagrangian techniques, it is easy to show

AfE(s) A Dij that the above minimization has the following solution. Let
k k 4,
() = 1+ s pl s EANS) Zi (66) p=1+rdt(8-1), (o> 1, since > 1),
j 1,
) T _ T Inp T > dtlnp
/\fk(s) r(z,c) = Ti+dt (T +dt)Ina ? ~— lna 70
= 1= Soeey SO 0<a<tme (70
. . . Te+dt ri(x,c (dt+pT1) dtIn
wherezj 7;7 = E[1/Z(c")] = B, Vi, by the constant drift Vi(z,c) = 7’“? Lari(@e) — ARy > R | §,71)
channel ‘assumption. The solution to the above ODE with Lam@e) — 1), 0<z< 4

boundary conditionf*(0) = 7 is given as, ) ]
Following the DP recursion for the next stage, we get,

—1 AP —1 r_
f¥(s) = A((nﬁ_l)) (1 - exp(—(n_l)s)> Va(z,c) = og?gf/dt{(aiclw + (1 = Mt)Vi(z — rdt,c)
+T exp(—)\(fi:i)s), s>0 (68) +ALE, (Vi (x — rdt, Zc))} (72)



Now, to solve the above minimization, first assume rdt >
dtnp - Substituting the corresponding form uf (-) into (72)

and solving the minimization by standard differentiaticime
optimal rate can be obtained as= 5 + (27p+dt) Inp

(T}C—‘,—Zdt) Ina”
With this optimalr, substituting inxz — rdt > t =L, we get

the thresholdy > 24122 Note that for the above thresholdthe rater”(z, c,t) >
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Taking limits in (73) givesr*(-) as in (23). To check opti-
mality, we need to verify the conditions of Theorem V. It is
easy to check thal(z, ¢, t) in (75) satisfies the HIB equation
with *(-) the minimizing value. Policyr*(-), satisfies the
admissibility criteria including the deadline constraisince,

7, Ve >0, < T.

rdt < z, thus, buffer non- negativity constraint is also satisfied. €ase 2 § < 1. The result follows using the same method-

Next, assumer — rdt < %22,

form of Vi(-) into (72). Proceeding as before, we get=
o Using thisr in z — rdt < 4ne

2Ina

xT
2at T

z as, %ne < g < 3np Finglly, for < 4ne aII the data
is drained in the second stage and the rate 1s . Thus,
the solution of the minimization in (72) is,
(27, +dt) Inp 3dtln p
‘rk—i—2dt + (t+2dt) Ina Z In o
— x In p dtlnp 3dt lnp

7"2(1’7C) 2dt + 21nad’l In <z <

z tinp

dt z < Ina

T +2dt a7'2((1;7(/) (dt+pdt+p Tk) > Sdlt In p

‘/’2(1.’0) — dtlnp <gp< 3dtlnp

' lna — In o
dtlnp
Ina

(&
Lgtam(mvc) _

dt (ora(re) 1) g <

(dt+pdt)
C

Continuing the DP recursion, the solution for tj#& stage is,

" (ka+.7‘(.7'2—1) dt)Inp
TE+7dt Tr+jdt) In ’

> Jj(i+1)dtlnp
T + Ej—i) In p
2_] i+1)dt

2Ina

ri(z,c)

2lna ’
Jj—i)(j—i+1)dtlnp (—i+1)(j—i+2)dtInp
2Ina <IE< 2Ina

Tjdt o () _ <1+p+---+/ﬂ Ddt+pI T,
C

J(J-i—l)dtlnp
.’II> 2Ina
(= ’L+1)dt rz(w c) _ (Itp+.. JFP] I)dt
(j— z)(j i+1)dtInp <z< (j— z-i-l)(J l+2)dtlnp
2lna 2Ina

wherei = 1,...,5. Now, take the limits,dt — 0, jdt —
(T'—t). Under this limiting operation, we havydn p — A(8—

1)(T —t). Applying these limits we get (lef; = A(8 — 1)),
0<a< UT=t)*
* _ 1na ’ 2ln«
Tk (l’, c, t) - z ‘(Tit)(.rk+¥) C(T—t)z (73)
Te+T—t + (re+T—t)Ina = 2lna
1 2zlna v2e(Ina 1—eV2eCIna
c ¢ ) T )
«(T—t)
JH(x,c,t) = =< Soma (1+¢T) cr—n_(74)
7(T —t 4 1) k@t %
Ar—t)?
z > 2lna

and the buffer
non-negativity constraint — rdt > 0 we get the threshold on

and substitute the relevant®!ogy as in the previous case and is omitted here for brevity.

The functionJ(x, ¢, t) in this case is (lety = A(1 — 5)),

e~ (Tt 2zlna \2znlna 1—eV2enina
c n € + n ’
T—t)2
0<z< ult
J(l‘a C, t) - 1 - 21“.,& —t) e_n(T_t)71
- ((T_t)aT—’f 2Ina +f)’
n(T—t)*
T2 2ln«
APPENDIXG

PROOF OFTHEOREMIV - Variable Deadlines Setup

For brevity, we only present the proof for the two packet
case (I = 2) as it easily helps elucidate the steps involved,;
the complete proof for arbitrary/ can be found in [3].

Two Packet CaseThe proof outline is as follows. We start
with the functional form forr*(D,c,t) as given in (31),
obtain the minimum cost functiod (D, ¢,t) and check that
these satisfy the PDE equation in (28). While this simply
constitutes a check that the HJB equation is satisfied, to
finally complete the optimality proof, we consider a seq@enc
of relaxed problems{P,} along similar lines as done in
Appendix A and then take the appropriate limits. We begin
first with the verification that the given rate functionalisti¢s
the HJB equation.

Step 1 — Verification of the HIB EquatioStart with rate
function in (31) and consider first the state spafec,t) €
[B1, Ba] x C x [T1,Tz) — that is, we are looking at time>
T, and all admissibleD values over this time. Starting from
(D, ¢, t) in this state space, clearly, the problem is identical to
the BT-problem withB = (B; — D) andT = (T, —t). From
(21), the optimal rate function must b&(D, ¢, t) = %.

In conformation, the rate function in (31) over this statacp
also reduces to the same form. Thus, over this state space,
(31) is trivially the optimal policy.

Next consider the state spa@®, ¢, t) € [0, Ba]xCx[0,T1);
thus now we are considerin < ¢ < 77 and all admissible
D values over this time which arf®, Bs]. Fix a value oft
andc, then, as a function oD the rater*() in (31) has the

The functionJ*(z, c,t) given in (74) is continuously differ- following two possibilities

entiable, satisfies the HIB equation in (14) and the boundarycase 1 Suppose—)

conditions for problen®P;,. The policyr; (z, ¢, t) is admissible

and is the minimizingr for the HJB equation. Thus, by

Lemma 1, (73) and (74) form the optimal solution fBY,.
To obtainJ(z, ¢, t) take the limitr; | 0 in (74). This gives,

1( mm+ﬂ)
< 3
(T—1)

2In« @9
(T_t)aT T 21n
{T=t)?

2In«

)

eS(T—t) _q
-,

o

0<z<

J(z,c,t) = (

(75)

Q=

x>

( - For a fixedt, we see
that both E(‘l f;) and fBZTt are linear inD. Figure 11(a)

gives a schematlc picture of the two curves and from the figure
it is clear that sinceéB, > By, the two curves do not intersect
over D € [0, By]. Thus in this case the maximizing function

Bx—D

for all D € [0, Bo] is f(T and sor* (D, e, t) = 1375
Case 2 Suppos:eW < f( - In this case, the two
functions fB:;;_fz and ;255 are plotted in Figure 11(b).
From the figure it is clear that sindg; < B, the two curves

must intersect at somB € [0, B;] which satisfiesi)




By 1

f(T2—t)

F(Ti—t)

B; Bo

F(Ti—1t) f(T2—1)

0 B, B, D 0 B B By D
(@) (b)

Fig. 11. Proof of Theorem IV for the two packet case, (a) C?% >
and (b) case22 - < %.

B1
f(T1-1) f(T2—t) =

%. Thus, in this case we get (D, c,t) = 74—y for
D € [0, B]andr* (D, ¢,t) = #5=5 for D € [B, By]. Define,

) 0, it sy < For
B(t)é f(T1—t) f(T2—t) (76)

_B1 By _
(T —t)  f(To—t)
1 1 9

T =6~ F(T2—9)

otherwise

Using (76),*(-) can be written in a more compact form as,

B2=D_ " B(t) < D < By
Lk _ Ty—t)? — —
7(QQ”—{%ﬁg 0< D < B(t) (77)
f(Tl—t) ) =

The above compact form covers both cases 1 and 2 ab

— for the first caseB(t)
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Thus from above, (79) is satisfied ovér € [B(t), Bo). If
B(t) = 0, we are done. So, now suppoBgt) > 0.

Consider D € [0,B(t)), then, from (77) we have
r*(D,c,t) = 74— and from (78) we have/(D,c,t) =
Q(c,t) + H(D,c, t%, where for simplicity of exposi-
tion we defineq(c, 1) ({2 — st ) and
H(D,c,t) = %. Substituting in (79) gives,

LHS = (&Qé(;’t) FAE[Q(Z()e, )] — Qle, t))) +

{g(r*(D7 ¢, t)) N OH(D,c,t) OH(D,e¢,t)
c ot oD
FAE-[H(D, Z(c)e.t)] - H(D, ¢, 1)) }

+7r*(D,e,t)

Using identical steps that lead to (80), it can be shown tieat t
terms within the curly bracket above equal zero. Now conside

the first-bracket terms. L&@(c,t) = Q2(c,t)—Q1(c, t), where
(B1—=B(t))"

Q2(c,t) = % and Q1 (c,t) = rrr—pye=t- We
have,

0Q2(c, t

002CL)  NB.Qul2(e)e.t)] - Qale.t) =

(B — B(t))(n —1)

- )By - B (
(T, — )"

BTt 1)

QEimilar expression as above is obtained for the t€nic, t).
= 0 and for the second case we

Ba—B(t)

. ; gl—é<w _ i
get B(t) as required. Note that for the constant drift channe?,Ornblnlng the two and using = = Tz —; » 9Ives,
since the functionf(-) is the same for all the channel states, aQ(c,t)
the intersection poinB(-) as defined in (76) depends only on a0 T A [Q(Z(c)e,t)] = Qe,t)) =0

time ¢ and not on the channel state.

This completes the verification that the functions in (773 an

In .order for the HJB equation to be.slatilsfied, the rgt(qg) satisfy the PDE equation in (79). We now complete
function r*(D, c,t) above must be the minimizing value iny,qo optimality proof by considering a sequence of relaxed

(28). Using the first-order condition for the minimizatidren
gives 22Det) _ _g'("(D:et) (note g(r) = r); integrating
with respect taD with the boundary conditiod (Bs, ¢, t) = 0,
we obtain,

Ba—D)™ .
W B(t) <D < By

(Bi=D)" | _(B;—B()"
c(f(Tl*t))n—1 AT (T=t))=T

— T, 0< D < B(1)

J(D,c,t) = (78)

problems and taking the appropriate limit as outlined next.
Step 2 — Verification of OptimalityTo verify optimality,

we view the problem in two stages - first, over the state

space(D, ¢, t) € [0, B2] x C x [0,Ty) (transmission over time-

period [0,71]) and second over the state spade,c,t) €

[B1, B2| xC x [T}, T3) (transmission over time-peridd’ , 73]).

As mentioned in Step 1 of the proof, over the state space

(D, ¢, t) € [By, Bs] x C x [Ty, T»), the problem is identical to

the BT-problem, where(B, — D) bits remain in the buffer

To finally verify that the HIB equation is satisfied, we novand these need to be transmitted in tif%e — ). The rate

only need to check that*(D, c,t) andJ(D, c,t) as given in function in (31) reduces to*(D, ¢, t) =

(77) and (78) respectively, satisfy the following PDE,

(s (Dc.0) | 2I(D.c.t) 0J(D, c.1)

c ot oD
FAEL[J(D, Z(¢)e, t)] — J(D, e, t))} =0

+ (D, ¢, t)

(79)

By—D ;
f(i_t) and this has

been shown to be the optimal policy; see Appendices A and
B. Thus, the optimality of*(D, ¢,t) and J(D, ¢, t) over the
second stage follows directly from that of tir-problem.

Now consider the first stage, i.e. the state spdeec,t) €
[0, B2] x C x [0,T1). This stage corresponds to transmission
over time-period[0,77]. Once we reach time = T, we

Consider first D € [B(t), By], then, from (78) we know from the preceding paragraph the optimal policy to

(B2—D)

have J(D,c,t) = c(f(Te—t)"— T

r*(D,c,t) = fB%;E;)
of (79) gives (iets =Ty —t),
_ (n — 1)(32 — D)n
LS TR O

=0, (since,f'(s)=1—2=Dr(s))

(6 -1+ 2= D))

n—1

(80)

and from (77) we have pe followed thereafter in the second stage. Thus, for the
. Substituting in the left hand side (LHS)optimization over the first stage, we can abstract the second

stage energy cost as a terminal cost incurred at filngiven
the particular terminal state. Specifically, the terminaktc
function is given ash(D, ¢) = c(f((%_’%, D € By, By
(since this is the minimum (expecte ; energy cost required

to transmit the remainingB. — D) bits by time (75 — T1)),
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and h(D,c) = oo, D € [0,B;) (since there is a deadline

constraint off} for the firstB; bits, and an infinite penalty cost (B2—D)" B*t)<D<B
is incurred if D < B1). Since this is a non-continuous terminal C(f’(‘E(;Tf[t))Z[H’ (Ba B (1) 2
cost function, we cannot directly apply standard verifmati /" (D, ¢,t) = s —oya=T T Q(FF (T —t) (83)
results to show optimality. To circumvent this problem, we _7£ﬁ1(;3kt(;))2:70 <D< Bk
(& 1— -

consider a sequence of relaxed problef®®,}, where the ) ) ) ) )
hard deadline constraint on ti# bits is relaxed and instead aFollowing an identical set of arguments as done in the fiegi st
sequence of smooth terminal cost functions is assigneashwhPf this proof, it can be seen that the above functions satisfy
monotonically converge to the required function above.sThihe HJB equation (note that the functional forms are analsgo
is analogous to the steps followed earlier for f8&-problem 10 those earlier except witlf*(s) replacing f(s) and B*(t)
and they are outlined below. replacingB(t)). It is also easy to see that the minimum cost

Consider a sequence of numbérg }2° |, wherer;, > 0 and function _also satisfies _the boundary conditions, i.e. itadgu
7 | 0. Define a sequence of functiodg*(s)}22,, where the terminal cost functio* (D, c) and also equals zero for

A

each f*(s) satisfies the ODE(f*)/(s) = 1 — ﬁ:—ll)fk(s) D = B,. Using the standard verification result, outlined earlier

- - di ek T in Lemma 1, it can be seen that the rate function in (82) gives
with the initial condition f*(0) = 7,.. Thus, the optimal transmission policy for the relaxed probl@&m
& (n—1) AB—1)s Now consider the limit — oo, then,.J*(D, ¢, t) converges
frs) = 2B —1) <l_ex (_n_1)> to J(D,c,t) (given in (78)) andr(D,c,t) converges to
B —1) r*(D,¢,t). Utilizing the result of Theorem V (an analogous

1)s
+rpexp(=——"=), 520 (81) version as stated below), the optimality ofD,c,t) and
r*(D,c,t) for the first stage of the two-packet problem

Consider now a sequence of relaxed proble{fs,}, over the follows.
state spaceD, c, t) € [0, Bo]xCx[0,T1). Each problenPy is  Theorem VI: (Two Packet Case)Let (D, ¢, t) € [0, By] x
identical to theBT-problem in terms of the system dynamicg « (0,7}) and defineJ (D, ¢, t) £ limg_o J¥(D,c,t). Let
except that at timd’, instead of the hard deadline, a terminali(p, ¢, ¢) satisfy the HIB equation in (28) and let(D, ¢, )
cost is assigned. This terminal cost function is denoted g§ an admissible policy for the first stage of the two-packet

h*(D,¢) and is taken as follows, problem, such that* is the minimizing value of in (28).
n . Then
__(B2=D)" Pk(TY< D < B '
. CEJ;“(_T%—)HTH)"’I(’B _B,E(Tl))): <(B ka(T . 1) J(D,c,t) < J.(D,ec,t), ¥V r(-) admissible (where
h*(D,c) = c(fkl(o))n_1~+ T — eE )1 J(D, ¢, ) denotes the cost-to-go function for that policy)
0< D < B*T)) 2) r*(D,c,t) is the optimal policy andJ(D,c,t) is the
3 minimum cost function
where in the above equation, the functi® (t), ¢ € [0,T1] Proof: The proof is identical to that of Theorem V. m

for the relaxed problenP;, is correspondingly defined as, ) o .
The requirements of the above verification theorem are-satis

0, if - 1;{1 = < = 1;2 - fied. First, from Step 1 we know that( D, ¢, t) andr*(D, ¢, t)

BF(t)={ B B A=) = AT satisfy the HIB equation. The functiof{D, ¢, t) also satisfies
Lo=n S0e0 - otherwise the boundary condition, i.eJ(D,c,T) = h(D,c), D €
fR(T1—=t)  fR(T2—t)

[B1, Ba] (Whereh(D, c) gives the optimal cost for the second

Note that sincef*(0) = 7, as we consider larger valuesStage). The rate function”(D,c,t) is non-negative and the

of k then 7, goes to zero andgk(Tl) converges toB; deadline constraint df; for the B; bits is also satisfied. This
while f*(s) converges tof (s). Thus, we see that the terminaliS because from thé3T-problem we know that PL=D s

cost functionhk(D,C) converges to the desired function a@.n admissible rate function that meets the I‘equiréd deadlin

mentioned earlier. constraint. Here, since*(D, ¢, t) is chosen as the maximum
For the relaxed probler®, the system operates as follows2Mong f?jl“l_—[;) and fB%;? , the transmission rate selected

Given a transmission policy, denotedia$D, c, t), the system €nsures that at lead®; bits have been transmitted by time

starts withD(0) = 0. As this policy is followed, at timg;, 71 (almost surely).

the terminal cost* (D(T}), ¢(Ty)) is incurred and the system

stops. Also, during the periotle [0,T4], if D(t) = Bz then

all the data has been transmitted and there is no terminal cos

incurred. Thus, we see that the relaxed probfemis a well-

posed, continuous-time control problem with smooth teahin

cost functions. Consider now the following rate function,

B; - D
max —_—
Jj:(B;>2D,T;>t) fk(Tj —1)

rp(D,c, t) = (82)

and the following minimum cost function which is denoted as
JF(D,c,t),
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