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optical networks
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Abstract—We study the maximum throughput properties of
dynamically reconfigurable optical network architectures having
wavelength and port constraints. Using stability as the through-
put performance metric, we outline the single-hop and multi-
hop stability regions of the network. Our analysis of the stability
regions is a generalization of the BvN decomposition technique
that has been so effective at expressing any stabilizable rate
matrix for input-queued switches as a convex combination of
service configurations. We consider generalized decompositions
for physical topologies with wavelength and port constraints. For
the case of a single wavelength per optical fiber, we link the de-
composition problem to a corresponding Routing and Wavelength
Assignment (RWA) problem. We characterize the stability region
of the reconfigurable network, employing both single-hop and
multi-hop routing, in terms of the RWA problem applied to the
same physical topology. We derive expressions for two geometric
properties of the stability region: maximum stabilizable uniform
arrival rate, and maximum scaled doubly substochastic region.
These geometric properties provide a measure of the performance
gap between a network having a single wavelength per optical
fiber and its wavelength-unconstrained version. They also provide
a measure of the performance gap between algorithms employing
single-hop versus multi-hop electronic routing in coordination
with WDM reconfiguration.
Index Terms—IP-over-WDM, wavelength division multiplex-

ing, matrix decomposition, Birkhoff-von Neumann, WDM re-
configuration, performance evaluation, queueing network, input-
queueing

I. INTRODUCTION
We consider an optical networking architecture consisting

of nodes having an electronic router overlaying an optical
interface, with the nodes interconnected by an optical transport
layer. Depicted at the top in Fig. 1 is an example of our archi-
tecture with electronic edge nodes interconnected by an optical
transport network using optical fiber links. This constitutes
the physical topology of the network. Optical transceivers,
multiplexers/demultiplexers, wavelength converters, and opti-
cal switches allow individual wavelength signals to be either
dropped to the electronic routers at each node or to pass
through the node optically. The logical topology consists of the
lightpath interconnections between the electronic routers and is
determined by the configuration of the optical interface at each
node [11]. Future optical networks will make use of optical
bypass, tunable transceivers, optical switches, and wavelength
converters in order to harness the full capacity of the optical
transport network. The interaction of these optical components
with the electronic interface is depicted at the bottom in
Fig. 1. Tunable optical components introduce flexibility to
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Fig. 1. Network architecture, with each edge node having the following fea-
tures: 1–electronic inflows; 2–electronic outflows; 3–electronic packet switch;
4–optical to electronic converter; 5–electronic to optical converter; 6–tunable
optical receivers; 7–tunable optical transmitters; 8–wavelength converter; 9–
optical switch; 10–optical multiplexer/demultiplexer; 11–incoming fiber; 12–
outgoing fiber; 13–controller. The network also includes all-optical nodes
providing switching/conversion services to incoming fibers.

optical networks by enabling logical topology reconfiguration.
As network traffic changes with time, the optimal logical
topology varies as well. In this work, we study the ultimate
throughput properties of reconfigurable optical networks. We
determine the performance penalty associated with wavelength
constraints, and we characterize the performance gap between
architectures that employ single-hop versus multi-hop routing
at the electronic layer.
The seminal work of Tassiulas and Ephremides underlies

much of the existing literature in the area of stability of
communication networks [31]. Indeed, the network model
considered in this paper easily fits into the framework of Tas-
siulas and Ephremides, as does much of the switch scheduling
literature. To the best of our knowledge, the study of stability
properties of optical networks was introduced in [24], [25],
[36], where the authors considered optical burst scheduling
under dynamic traffic in time-domain wavelength interleaved
networks. Subsequent work looking at stability properties of
optical networks includes: [4], [5], where scheduling algo-
rithms were introduced for joint electronic routing and WDM
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layer reconfiguration under a variety of practical optical layer
constraints; and [34], [35], where the stability properties of
optical burst, flow, and packet switched architectures were
compared.
A major contribution of our work is a characterization of

the stability region for single-wavelength optical networks
through a linkage to the Routing and Wavelength Assignment
(RWA) problem for WDM networks. This characterization
allows us to derive fundamental geometric properties of the
stability region for optical networks of arbitrary topologies.
In this work, we primarily focus on single-wavelength optical
networks. The single wavelength topology is commonly used
in traditional metropolitan and access networks operating on
one frequency (e.g. 1.3nm systems). Moreover, our single-
wavelength treatment simplifies the presentation considerably
and can be extended, by appropriate scaling of the stability
region, to multi-wavelength optical networks.
Our work is conceptually related to Birkhoff-von Neumann

(BvN) decompositions, particularly as applied to switching
theory [8], [32]. The set of switch configurations (or service
configurations) available to an n × n input-queued switch is
typically represented by the set of permutation matrices of
size n. The result of [31] implies that the convex hull of these
service configurations equals the stability region of the input-
queued switch. BvN decompositions draw on these concepts
to express any stabilizable rate matrix as a convex combination
of permutation matrices (service configurations) [8]. An alter-
native characterization employs a result of Birkhoff [2] to state
that the convex hull of the service matrices (permutation ma-
trices) equals the doubly substochastic region [20]. Like BvN
decompositions for input-queued switches, our work seeks to
express any stabilizable rate matrix as a convex combination
of service configurations. Unlike input-queued switches, our
optical networking architecture has physical constraints, such
as port and wavelength limitations, that affect the set of service
configurations. For example, the set of service configurations
may not include the full set of permutation matrices, and may
include non-permutation matrices. Thus, while the work of
[31] allows us to express the stability region as the convex hull
of available service configurations, this description can have
limited value in providing an understanding of the geometric
properties of the stability region. This is in contrast to the
case of the input-queued switch, where a result of Birkhoff
[2] has been applied to demonstrate that the convex hull of
the service matrices (permutation matrices) equals the doubly
substochastic region [20]. Recently, the study of [18] has
developed order bounds, based on uniform multi-commodity
flow, for maximum achievable throughput performance in
general network settings. In this paper, we develop a theory of
RWA decompositions that enables us to exactly elicit geometric
properties of the stability region of single-wavelength optical
networks having general topologies. A preliminary version of
this work appeared in [6], [7].
In recent years, tremendous efforts have been made in the

research towards so-called “IP-over-WDM” networks. These
studies aim to improve network performance through increased
electro-optical integration [14], [16], [23], [29], [33], [38].
Several studies consider Optical Burst Switching (OBS) as
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(a) Unidirectional ring physical topology
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(b) π1: 1 → 2, 2 → 3, 3 → 1
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(d) π3: 2 → 3, 3 → 2
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(e) π4: 3 → 1, 1 → 3

Fig. 2. There are four maximal logical topology configurations for the
unidirectional three-node ring having a single wavelength per optical fiber.
The logical configurations are depicted as lightpath routings (straight-edge
links with corners) with corresponding logical topology graph overlaid (curved
links).

the mechanism for accessing the optical transport layer [23]–
[25], [36], [37], [39]. Most solutions seek to integrate IP and
Generalized Multiprotocol Label Switching (GMPLS) func-
tionality. Our work differs from existing studies on electro-
optical integration in that we are not tied to a particular
protocol suite, but rather employ a “generic” architecture
utilizing electronic packet switching along with a reconfig-
urable optical transport layer. Our approach is to determine the
fundamental performance characteristics achievable in general
reconfigurable optical networks having varying topology and
processing functionalities. We next provide an example of the
effects of such physical constraints upon an optical network.

A. Simple motivating example
Consider a unidirectional ring network having 3 nodes.

Suppose this network is restricted to a single wavelength per
optical fiber, with lightpaths routed only in the clockwise di-
rection. These constraints restrict the network to four maximal
logical topologies1, illustrated in Figure 2.
Consider the traffic matrix λ, given by

λ =




· 0 θ
θ · 0
0 θ ·



 ,

where the (i, j)-th entry of λ is equal to the average arrival rate
of packets to node i destined for node j. We wish to determine
the maximum value of θ that the network can support, given
that only one packet can be serviced along a logical link per
time slot. If we restrict the network to only use single-hop
electronic-layer routes, the maximum value of θ is 1/3. This
follows because logical links 1 → 3, 2 → 1, and 3 → 2
each traverse two fibers, which due to the single-wavelength
constraint means that only one of these links can be served at

1Every valid logical topology is either equal to, or has some subset of links
from, one of the maximal topologies.
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a time. Sharing time equally between the three links affords
a maximum of 1/3 of the proportion of time to service each
link. Thus, θ = 1/3 is the maximum value such that the traffic
rate matrix λ can be supported.
Suppose instead that we allow the network to make use

of multi-hop electronic-layer routes. In this case, a simple
policy that maintains logical topology π 1 (Figure 2(a)) for
all time and multi-hops packets along the electronic layer
leads to a link load of 2θ on each logical link. Since no
more than 1 unit of traffic per time slot can be supported on
each wavelength, this policy can support any θ ≤ 1/2. This
is a clear improvement over the achievable traffic rate matrix
supported under single-hop routing. The value θ = 1/2 is also
the maximum value achievable, which is easily seen by noting
that each physical link has 2θ units of traffic demand that it
must service.
For comparison, consider the wavelength-unconstrained

case2 [4], [5], [25], which in the case of the 3-node unidi-
rectional ring topology implies three wavelengths per optical
fiber. The maximum value of θ that is supported in this case
is θ = 1, which is achievable by maintaining for all time the
logical configuration 1 → 3, 2 → 1, 3 → 2.
This example highlights three important points. First, the

wavelength constraint has been shown to reduce the maxi-
mum throughput achievable under single-hop and multi-hop
routing. This is an example of the intuitively obvious fact
that wavelength constraints often lead to throughput penalties.
Second, there is a throughput performance gap between elec-
tronic layers employing multi-hop versus exclusively single-
hop routing. Again, this is intuitively obvious in light of
the optical-layer constraints, but this is in contrast to the
case of wavelength-unconstrained networks, where single-hop
and multi-hop algorithms are identical in terms of throughput
performance [5]. Finally, note that both the single-hop and
multi-hop cases have made use of service configurations that
cannot be equated to permutation matrices, where each input
port is always connected to a single output port, each output
port is always connected to a single input port, and the
connections are exclusively used for single-hop service of
packets. This points to the fact that a direct application of
BvN decompositions does not apply in constrained network
scenarios. These observations suggest three important goals
of this paper:
1) to develop a theory of generalized decompositions anal-
ogous to BvN decompositions for port and wavelength
constrained networks;

2) to explore the throughput penalty of constrained versus
wavelength-unconstrained optical networks; and

3) to determine the throughput gap between single-hop and
multi-hop electronic-layer routing algorithms.

II. NETWORK THROUGHPUT

We consider a reconfigurable WDM-based packet network
N , consisting of n nodes (the set of nodes is V ). The network

2A WDM network is wavelength-unconstrained when there are sufficiently
many wavelengths available to activate any logical configuration, subject to
the number of transceivers available at each node.

symbol N refers to all physical aspects of the optical data
network, including the physical topology of the network, the
number of wavelengths available in each fiber link, and the
number of transceivers (or ports) at each node. We assume
that node v ∈ V has Pv transceivers. The network nodes
are interconnected by optical fiber. Let GP = (V, EP ) be
the directed physical topology graph of the network N : if
there exists a fiber between nodes v1, v2 ∈ V along which
data can travel from node v1 to v2, then the directed edge
(v1, v2) belongs to EP . For example, the network of Fig. 2(a)
is represented by a clockwise-oriented 3-cycle (3 node ring)
physical topology graph.
A direct optical communication link between two nodes is

called a logical link or a lightpath. Such a link consists of
an all-optical path through the network N , connecting the
nodes, possibly traversing multiple intermediate nodes, with
no intermediate electronic processing (see for example the
straight-edge links depicted in Fig. 2(b)-(d)). The edges of
the directed graph GL = (V, EL) represent the set of logical
links that can be enabled in the network. Denote m = |EL|.
In general these logical links may not be able to be activated
simultaneously, but resources exist to at least allow each link
to be active individually. We assume that a lightpath can exist
between any two nodes, which implies that GL is a complete
graph. At any time, the network may initiate a logical topology
reconfiguration, under which existing lightpaths are torn down
and new ones are set up.
Throughout the paper, we will treat data destined for a

particular terminal node j ∈ V as commodity j data. For
a directed edge e ∈ EL, let σ(e) denote the source (initial)
vertex, and τ(e) denote the terminal (destination) vertex.
Packets are assumed to have fixed size, with transmission

duration of one slot. This assumption is for simplicity of
exposition and can be relaxed with appropriate envelope algo-
rithms [17]. Each node separately enqueues packets for every
destination in the network (virtual output queueing), with
Qij(t) equal to the number of enqueued commodity j packets
at node i, at the beginning of time slot t. The differential
backlog (backpressure) of commodity j packets corresponding
to link e ∈ EL at time t is Zej(t) = Qσ(e)j(t) − Qτ(e)j(t).
For link e ∈ EL, the maximum backpressure at time t is given
by Z∗

e (t) = maxj∈V Zej(t).
Data traffic arrives for service through the network accord-

ing to a stochastic process, (Aij(t), t ≥ 0), where Aij(t)
represents the cumulative number of exogenous arrivals of
commodity j packets to node i, up to the end of time t.
We make the assumption that there is no self-traffic in the
network, i.e. Aii(t) = 0 for all t ≥ 0 and i ∈ V . The
arrival processes are assumed to be general, in that they can be
temporally and mutually correlated, with λ ij equal to the long
term rate of arrivals for source-destination pair (i, j), where
λij = limt→∞ Aij(t)/t w.p.1 (with probability 1). Denote the
n × n arrival rate matrix λ = (λij , i, j ∈ V ).
Let ΠN denote the set of feasible logical topologies in the

network: the n × n matrix π = (πij , i, j ∈ V ) ∈ ΠN is a
nonnegative integer matrix, where π ij is the number of active
logical links from node i to node j. Clearly, ΠN is constrained
by the wavelength/port limitations of the network, as well as
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the physical topology.
Service is applied to the system at each time slot by

activating a logical topology, and routing a packet across each
active logical link. We denote the correspondingm×n service
activation matrix by S = (Sej , e ∈ EL, j ∈ V ). Here, Sej

equals the number of logical links from node σ(e) to node τ(e)
used to service commodity j packets under the activation S.
Note that an admissible service activation matrix must have
a valid underlying logical topology belonging to ΠN . This
property characterizes the set of multi-hop service activation
matrices, Smh:

Smh = {S ∈ Zm×n
+ : πσ(e)τ(e) =

∑
j∈V Sej , π ∈ ΠN}.

In words, the above equation describes how each integer
matrix in Smh implies the activation of an underlying logical
topology π ∈ ΠN , where πσ(e)τ(e) equals the number of
distinct logical links originating at node σ(e) and terminating
at τ(e) that are active to service any commodity.
The set Smh places no restriction on which commodity

is allowed to cross an active logical link. This means that
service activations belonging to Smh can correspond to multi-
hop routing, where packets are re-enqueued after transmission
across a logical link. In this paper, we will also deal with
networks in which single-hop routing is exclusively employed.
In such a situation, the set of admissible service activations is
denoted Ssh, where S ∈ Ssh must satisfy

Sej > 0 implies j = τ(e).

In words, the above statement means that a link can only be
activated to service traffic directly to its destination node. Since
the single-hop link activations are available in a multi-hop
network, we must have S sh ⊆ Smh.
A service activation matrix S results in packet transitions

through the network. To model the queue evolution implied
by invoking S, we introduce for each commodity j ∈ V the
n × m routing matrix Rj = (Rj

ie, i ∈ V, e ∈ EL), where:

Rj
ie =






1, if σ(e) = i

−1, if τ(e) = i and i (= j

0, else

Denote by dij(S) the net amount of service, in number
of packets per time slot, experienced by queue Q ij under
activation matrix S. Using the above routing matrix we can
express dij(S) =

∑
k Rj

ikSkj . Since dij(S) is a net quantity,
it can be positive, negative, or zero. We gather these values
into the n × n matrix d(S) = (dij(S), i, j ∈ V ).

A. Throughput considerations
The performance metric we study here is the network

throughput, defined according to the stability criterion often
referred to as rate stability. A system of queues is rate stable
if [1]

lim
t→∞

Qij(t)/t = 0 w.p.1 ∀i, j ∈ V.

Our choice of a rate stability criterion is because of its
application to the widest possible class of arrival processes,
and because it leads to a closed stability region of stabilizable

arrival rate matrices. The results of this paper extend to strong
stability (defined in [1]) following additional technical details.
The optimal throughput performance of the reconfigurable

WDM network is characterized through the maximum stability
region or stability region of the network. Since it is of
interest in this work to understand the relative throughput
performance of algorithms employing multi-hop electronic-
layer routing versus algorithms exclusively employing single-
hop electronic-layer routes, we distinguish two stability re-
gions: one for achievable rates under multi-hop electronic-
layer routing, and one for achievable rates under exclusively
single-hop electronic-layer routing.
Definition 2.1: The single-hop stability region is denoted

Λ∗
sh. For any arrival process having long-term rate matrix

λ ∈ Λ∗
sh, there exists a reconfiguration and routing algorithm

employing exclusively single-hop electronic routing under
which the network is rate stable.
Definition 2.2: The multi-hop stability region is denoted

Λ∗
mh. For any arrival process having long-term rate matrix

λ ∈ Λ∗
mh, there exists a reconfiguration and routing algorithm

(possibly employing multi-hop electronic routing) under which
the network is rate stable.
Definition 2.3: An algorithm is called throughput optimal

(achieves 100% throughput) if the set of arrival rates that it
can stabilize equals the multi-hop stability region.
In [31], Tassiulas and Ephremides introduced an algorithm

that achieves 100% throughput in a general multi-hop-capable
network. Their algorithmic description for scheduling in this
network setting involves maxweight decisions, where at each
time t ≥ 0, the algorithm activates logical topology

π∗ ∈ argmax
π∈ΠN

∑

e∈EL

πσ(e)τ(e)Z
∗
e (t), (1)

and for each active logical link e (having π ∗
e > 0), electron-

ically routes a packet of commodity j ∗ ∈ arg maxj Zej(t)
across e. In [31], it is shown that this scheduling policy
achieves the multi-hop stability region Λ∗

mh, which can be
expressed as the set of non-negative matrices in the convex hull
of the available multi-hop service activations. Symbolically,

Λ∗
mh = Rn×n

+ ∩ conv
({

d(S) : S ∈ Smh
})

(2)

= Rn×n
+ ∩

{∑|Smh|
i=1 φid(Si) : φi ≥ 0,

∑
i φi = 1

}
.

Above, we use |Smh| to represent the cardinality of the set
Smh, and index the elements of Smh with S1, . . . ,S|Smh|.
When the set of service activations is restricted to single-hop

routing, specifically to the set of single-hop service activation
matrices Ssh, the algorithm of [31] reduces to activating at
each time t ≥ 0 the logical topology

π∗ ∈ arg max
π∈ΠN

∑

i,j∈V

πijQij(t), (3)

for single-hop electronic routing. In [30], it is shown that this
scheduling policy achieves the single-hop stability regionΛ ∗

sh,
and that Λ∗

sh can be expressed as the convex hull of the set
of logical topology matrices. Symbolically,

Λ∗
sh = conv (ΠN ) =

{∑|ΠN |
i=1 φiπi : φi ≥ 0,

∑
i φi = 1

}
.
(4)
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To be precise, we emphasize that [31] and [30] demonstrate
stability over the regions Λ∗

mh,Λ∗
sh, respectively, up to a set

of measure zero, under a stricter stability criterion than rate
stability, and also under more restrictive assumptions on the
arrival processes than what we employ here. In [3], it is proved
that the maxweight scheduling policies (1), (3) achieve rate
stability for any arrival process whose long-term rates belong
to the closed convex sets Λ∗

mh,Λ∗
sh, respectively.

For context, note that in the case of a n × n input-queued
switch, ΠN contains all permutation matrices of size n, and
the stability region equals the doubly substochastic region:

ΛIQsh =
{
λ :

∑
j λi,j ≤ 1, ∀i,

∑
i λi,j ≤ 1, ∀j

}
. (5)

The characterizations (2), (4) of the stability regions are as
convex hulls over sets of service matrices. Contrast this with
the characterization of the stability region of the input-queued
switch in (5) as 2n linear inequality constraints. The stability
polytopes in general network settings can have exponentially-
many non-trivial linear inequality constraints, which leads
to a difficulty of tractability in their characterization. In
what follows, we develop a theory of RWA decompositions.
This enables us to exactly characterize stability performance
properties of wavelength-constrained reconfigurable WDM-
based networks having arbitrary physical topologies. Thus our
analysis establishes quantitative performance metrics that can
be used by network designers to evaluate and compare varying
network topologies and node functionalities.

B. Implementation considerations
A physical limitation of current reconfigurable optical com-

ponents is their inherent latency. Thus, assuming current
components, it may not be reasonable to assume that reconfig-
uration of the logical topology is achievable without idle time
while transceivers are tuned. Additional implementation issues
that can lead to idle time associated with reconfiguration in-
clude synchronization of communication along lightpaths and
distribution of control information between network nodes.
The effect of this reconfiguration overhead can be reduced
by employing frame-based scheduling, where reconfiguration
decisions are only made at frame boundaries as opposed
to slot boundaries [5]. By selecting an appropriately large
frame size, the network stability region in the presence of this
overhead can be made arbitrarily close to the stability region
in a network with no such overhead. This has been shown
for unconstrained optical networks in [5], [25], and extends
easily to our network model. We conclude that the analysis
of this paper remains valid when the network is subject to
reconfiguration overhead.
We emphasize that this paper focuses on quantifying

the throughput properties of reconfigurable WDM networks.
These properties are invariant, in that they hold as bounds
on the limits of network performance irrespective of the
scheduling algorithm employed. Thus, while the maxweight
schedulers (1) and (3) are proven to achieve the multi-hop
and single-hop stability regions, respectively, these are not
the only scheduling algorithms with desirable throughput
properties. Nevertheless, it is worthwhile to note that the

key computational step of the maxweight schedulers is the
selection of a maximum weight logical topology matrix,
which, irrespective of single-hop or multi-hop capability, is in
general NP-hard. This follows because the maximum weight
independent set problem, a known NP-hard problem, can
be shown to be polynomial-time reducible to the problem
of maxweight logical topology selection. There are network
configurations however, where polynomial-time solutions to
the maxweight scheduling problem exist. For example, in
wavelength-unconstrained networks, the maxweight schedul-
ing problem reduces to finding a maximum weight matching
in a weighted bipartite graph, an O(n3) operation (see e.g. [4],
[5]).

III. RWA DECOMPOSITIONS

In this section, we demonstrate that in any optical network
having a single wavelength per physical fiber link, the question
of stability for a particular arrival rate matrix can be directly
tied to the RWA problem on the same physical topology graph.
Note that our work considers stability properties of single-
wavelength optical networks. Yet, we use properties of the
RWA for multi-wavelength optical networks to characterize
the stability region of single-wavelength optical networks.
We directly relate the RWA problem with no wavelength
conversion to the set of achievable rates using only single-
hop electronic routing, and the RWA problem with wavelength
conversion to the set of achievable rates using multi-hop
electronic layer routes.

A. The RWA problem
The objective of the RWA problem is to minimize the num-

ber of wavelengths needed to set up a certain set of lightpaths
for a given physical topology. We consider two versions of the
RWA problem: RWA with no wavelength conversion capability
and RWA with full wavelength conversion capability.
Let T = (Tij) be a non-negative n × n integer lightpath

demand matrix, where Tij is the number of lightpaths, orig-
inating at node i and terminating at node j, that must be
assigned. In the case of no wavelength conversion capability,
the RWA is subject to the wavelength continuity constraint,
which requires that no lightpath makes use of more than a
single color from its source to its destination. In this case, let
W nc(T) be the minimum number of wavelengths required
to service the demands of matrix T with no wavelength
conversion (see Appendix A for details). As an example,
consider the 3-node unidirectional ring physical topology
having a single wavelength per optical fiber, and the lightpath
demand matrix T given in Fig. 3(a). A valid RWA with no
wavelength conversion is provided in Figure 3(b), It is easy
to see for this network that W nc(T) = 4.
A network node having full wavelength conversion capa-

bility can transform any pass-through lightpath, in the optical
domain, from its incident wavelength to any other wavelength.
In this case, we define W c(T) to be the minimum number
of wavelengths required to service the demands of T with
wavelength conversion (see Appendix A for details). Since
using a single color per lightpath is accommodated by the
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T =




· 0 2
1 · 0
1 1 ·





(a) Demand matrix

1

2

3

(b) Without

1

2

3

(c) With

Fig. 3. RWAs with and without wavelength conversion for traffic T. The
physical topology is a unidirectional ring (clockwise oriented). A dashed line
indicates an idle wavelength on the corresponding fiber links.

RWA with wavelength conversion, it is clear for any physical
topology thatW c(T) ≤ W nc(T) for all T. For the trivial case
of T = 0, we define (for technical reasons) that W nc(0) =
W c(0) = 1. For the traffic demand T of Fig. 3(a), Fig. 3(c)
depicts the RWA employing wavelength conversion. In this
case, W c(T) < W nc(T) (the inequality is strict).

B. Examples of RWA decompositions
In the RWA problem, multiple single-wavelength logical

configurations are multiplexed through the use of frequency
division (WDM). In our reconfigurable network setting, re-
stricted to a single wavelength per optical fiber, multi-
ple single-wavelength logical configurations are multiplexed
through the use of time division (by enabling logical recon-
figuration and adjustable electronic-layer routing over time).
Through careful interchange of time and frequency, we can
conceptually link the RWA problem to the stability issue in our
reconfigurable network. Consequently, we will demonstrate
how to transform a RWA for a particular wavelength traffic
demand into a sequence of arrival rate matrices belonging
to the network stability region, when the network N has a
single wavelength per optical fiber. We next demonstrate this
relationship with examples for both the single-hop and multi-
hop scenarios.
1) Single-hop RWA decompositions: Consider the RWA

with no wavelength conversion for traffic T in Fig. 3(a).
The RWA of Figure 3(b) multiplexes the traffic demand
T over 4 wavelengths. This RWA can be expressed as a
decomposition of T into a superposition of single-wavelength
logical topology configurations (expressed in matrix form) as
follows,

T =




· 0 1
0 · 0
1 0 ·



+




· 0 1
0 · 0
0 0 ·



+




· 0 0
0 · 0
0 1 ·



+




· 0 0
1 · 0
0 0 ·



 ,

(6)
where the matrices from left to right represent the rings
depicted in Figure 3(a) in order of increasing radius. Note
that each of the matrices in the decomposition of (6) is a
valid single-wavelength logical configuration.
Assuming there is a constant number W ≥ 4 wavelengths

available in each optical fiber, then we can say that each single-
wavelength logical configuration in the RWA utilizes a fraction
of 1/W of the total available multiplexing resources in the
network. The utilization of the multiplexing resources is then
given by 4/W ≤ 1.

We also consider time as a multiplexing resource; how-
ever, since we consider the evolution of our system over
an infinite horizon, the time resource is normalized to unity.
Consequently, when a particular single-wavelength logical
configuration utilizes a fraction of the time resource, this is
a measure of the long-term fraction of time spent servicing
that logical configuration.
Consider equation (6), the valid RWA for traffic matrix T

on the physical topologyGP , and re-interpret each wavelength
configuration as utilizing 1/W of the available time resources
in a single-wavelength network N . We have established that
each wavelength configuration from the RWA is a valid single-
wavelength logical topology and that the total utilization of
multiplexing resources can be no more than 1. Consequently,
we have validly multiplexed time in the single-wavelength
network N . The resulting rate matrix corresponding to time
sharing of service configurations is given for W ≥ 4 by

λW =
1
W

T =
1
W




· 0 2
1 · 0
1 1 ·



 .

Using (6), we have an explicit decomposition of λW into
a convex combination of valid single-hop service matrices,
subject to a single-wavelength per optical fiber,

λW =
1
W




· 0 1
0 · 0
1 0 ·



 +
1
W




· 0 1
0 · 0
0 0 ·



 +
1
W




· 0 0
0 · 0
0 1 ·





+
1
W




· 0 0
1 · 0
0 0 ·



 +
W − 4

W




· 0 0
0 · 0
0 0 ·



 . (7)

From the decomposition of (7), we can immediately conclude
that λW ∈ Λ∗

sh for W ≥ 4 (this follows directly from
the definition of Λ∗

sh). In words, the arrival rate matrix λW

belongs to the single-hop stability region for any W ≥ 4. We
call this decomposition a single-hop RWA decomposition of
λW . In summary, by interchanging frequency and time, we
have used a RWA for a particular wavelength traffic demand
to produce a sequence of arrival rate matrices belonging to
the single-hop stability region of N , when N has a single
wavelength per optical fiber.
2) Multi-hop RWA decompositions: For the RWA with

wavelength conversion, each wavelength routing can be con-
sidered a valid single-wavelength logical configuration. The
difference from the RWA with no wavelength conversion is
that lightpaths on a particular wavelength can have endpoints
on that wavelength, corresponding to the use of a wavelength
converter. We can re-interpret the RWA problem in our re-
configurable setting by noting that while the RWA problem
uses wavelength converters to take advantage of available
resources at different frequencies (equivalently, wavelengths),
our reconfigurable network uses electronic-layer queues to take
advantage of available resources at different times. Thus, wher-
ever RWA invokes a wavelength converter, the reconfigurable
network can be understood to terminate a lightpath at that
node and electronically enqueue the carried data for multi-hop
transmission to its destination at a different time.
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We demonstrate multi-hop RWA decompositions in the
following example. Consider the RWA problem for the wave-
length traffic demand T in Fig. 3(a). We have established that
wavelength conversion can be used to service T with only
3 wavelengths, as depicted in Figure 3(c). This RWA can be
expressed as the following decomposition, with the matrices
successively representing the rings depicted in Figure 3(b) in
order of increasing radius,

T =




· 0 1
0 · 0
1 0 ·



 +




· −1 1
0 · 0
0 1 ·



 +




· 1 0
1 · 0
0 0 ·



 . (8)

The above decomposition can be interpreted as follows. The
first wavelength fully services demands {1 → 3, 3 → 1}.
The second wavelength services demand 1 → 3 and services
demand 3 → 2 only up to node 1. Consequently, the ‘−1’
in the second matrix of (8) represents the 3 → 2 traffic that
is enqueued for multi-hop transmission at node 1. The third
wavelength services the remainder of demand 3 → 2 from
node 1 to node 2 as well as fully servicing demand 2 → 1.
Thus, for W ≥ 3, the arrival rate matrix λW = (1/W )T

can be expressed using (8) as a convex combination of valid
single-wavelength multi-hop service matrices,

λW =
1
W




· 0 1
0 · 0
1 0 ·



 +
1
W




· −1 1
0 · 0
0 1 ·





+
1
W




· 1 0
1 · 0
0 0 ·



 +
W − 3

W




· 0 0
0 · 0
0 0 ·



 .

We conclude that λW ∈ Λ∗
mh for W ≥ 3.

IV. CAPACITY REGIONS FROM RWA DECOMPOSITIONS IN
SINGLE-WAVELENGTH NETWORKS

The examples of the previous section have shown how the
RWA with and without wavelength conversion for a single
traffic demand T can be translated to a sequence of arrival rate
matrices belonging to the single-hop and multi-hop stability
regions, respectively. In this section, we will demonstrate
that the single-hop and multi-hop stability regions for single-
wavelength optical networks can be fully described by the
RWA functions W nc and W c, respectively.

A. Single-hop stability region
We begin by considering the single-hop stability region.

In networks with no wavelength constraints, this region is
characterized in [4], [5]. In [34], [35], this region is studied as
the stability region of general optical flow switched networks.
Our characterization, which is exclusive to single-wavelength
networks, is useful in our subsequent development of geomet-
ric properties of the stability region. In particular, it allows us
to express the entire capacity region as a collection of limit
points based on the solution to the RWA problem.
The example of Section III-B.1 provided a sequence of

arrival rates belonging to Λ∗
sh for a single integer traffic

demand matrix T in the RWA problem with no conversion. In
this section we consider all such arrival rates, gathered over

all possible integer traffics T in the RWA problem. Let Rnc

be the set of all such arrival rates,

Rnc =
{

λ =
1
W

T : T ∈ Zn×n
+ , W ∈ Z+, W ≥ W nc(T)

}
.

(9)
Recall that we are restricting attention to joint optical

reconfiguration and electronic layer routing algorithms where
the optical layer has only a single wavelength available in
each optical fiber. Consequently,Λ∗

sh is the single-hop stability
region of the single-wavelength network N .
For the set R, let cl(R) represent the closure3 of R. We

next establish that every matrix in cl(Rnc) belongs to Λ∗
sh,

and conversely, that every matrix in Λ∗
sh belongs to cl(Rnc).

Theorem 4.1: Λ∗
sh = cl(Rnc)

Proof: See Appendix B.

B. Multi-hop stability region
The multi-hop stability region is characterized in a similar

manner. In [4], [5], this region is characterized for networks
having no wavelength constraints, where it is shown that the
single-hop and multi-hop stability regions are equal. In [34],
[35], a queueing model is enlisted to study the throughput
properties of optical packet switched networks (OPS). The
OPS stability region of [34], [35] is related to the multi-hop
stability region of our reconfigurable optical network, with
differences arising depending on the set of available optical
layer network configurations ΠN . Our characterization in the
single-wavelength setting is tailored to our subsequent analysis
of geometric properties of the multi-hop stability region.
Here, we gather all possible arrival rates generated by multi-

hop RWA decompositions over all possible traffic demand
matrices T into the set Rc,

Rc =
{

λ =
1
W

T : T ∈ Zn×n
+ , W ∈ Z+, W ≥ W c(T)

}
.

(10)
Through similar steps as in the single-hop case, we can
establish the following theorem.
Theorem 4.2: Λ∗

mh = cl(Rc)
Proof: The proof is similar to the proof of Theorem 4.1,

and is omitted for brevity.

V. GEOMETRIC PROPERTIES OF THE STABILITY REGION

While the stability properties of our dynamically reconfig-
urable electronic-over-optical network are well characterized
in the multi-hop and single-hop cases through equations (2)
and (4), respectively, these expressions do not easily yield
simple geometric properties of the stability regions. This is
in contrast to the characterization of the input-queued switch
stability region of equation (5).
The remainder of this work is dedicated to extracting

geometric properties of the single-hop and multi-hop stability
regions in the wavelength-constrained WDM network setting.

3An accumulation point of R is such that there exist other points of R
arbitrarily close by. The closure of R is then given by the union of R and
all its accumulation points [19].



8

In what follows, we will occasionally refer to the
wavelength-unconstrained network setting. From our assump-
tion that node v ∈ V has Pv transceivers available, when
the network has no wavelength constraint, the stability region
(single-hop and multi-hop) equals [3]–[5]

Λport =
{

λ :
∑

j λij ≤ Pi ∀i,
∑

i λij ≤ Pj ∀j
}

. (11)

A. Maximum uniform arrival rate matrices

In this section, we make use of RWA decompositions to
establish geometric properties of the single-hop and multi-hop
stability regions. Define J as the n × n matrix having (i, j)
entry equal to 1 if i (= j:

J =





· 1 · · · 1

1
. . . . . .

...
...

. . . . . . 1
1 · · · 1 ·




.

We then seek to determine the maximum values θ sh, θmh such
that θshJ belongs to the single-hop stability region, and θmhJ
belongs to the multi-hop stability region.
Theorem 5.1: For network N having a single wavelength

per optical fiber, let θsh = sup{θ : θJ ∈ Λ∗
sh}. Then,

θsh = lim sup
k→∞

k/W nc(kJ). (12)

For the multi-hop scenario, let θmh = sup{θ : θJ ∈ Λ∗
mh}.

Then,
θmh = lim sup

k→∞
k/W c(kJ). (13)

Proof: See Appendix C.
Equations (12) and (13) essentially capture the maximum

ratio of the uniform traffic load l to the number of wavelengths
needed to support that traffic demand. These values are a
measure of the most efficient way that the uniform traffic
demand l can be packed over network N , with or without
wavelength conversion.
Theorem 5.1 allows us to draw on the literature regarding

RWA algorithms for various physical topologies to obtain
geometric properties of the single-hop and multi-hop stability
regions. As an example, consider the unidirectional ring having
a single transceiver per node (Pi = 1). In this case, it can be
shown that the minimum numbers of wavelengths required
to service traffic lJ with or without wavelength conversion
are equal: W nc(lJ) = W c(lJ) = nl(n − 1)/2. Applying
(12) and (13) we obtain a maximum uniform arrival rate of
θsh = θmh = 2/(n2 − n). Thus, there is no single-hop versus
multi-hop performance gap for uniform arrival rates under
the unidirectional ring. However, noting in the wavelength-
unconstrained case (see (11)), the maximum uniform arrival
rate is given by θmax = 1/(n − 1), we find a constrained
versus unconstrained performance gap of 2/n = O(1/n). 4

4We employ O-notation to represent an asymptotically tight bound [13] on
the performance gap.

We draw the RWA values W nc(lJ), W c(lJ) from [10],
[26]–[28], and summarize the single-hop and multi-hop max-
imum uniform arrival rates for several physical topologies in
Table I. The table lists the maximum uniform arrival rates
achievable in the single-wavelength setting, as well as the
corresponding maximum uniform arrival rate achievable in
the wavelength-unconstrained case, θmax, and the implied
unconstrained versus constrained performance gap. For the
tree topology T , denote Ne,1,Ne,2 as the node sets in the
cut corresponding to edge e ∈ T .
A remarkable property evident from Table I is that for all

physical topologies considered, there is no single-hop versus
multi-hop performance gap with respect to uniform arrival
rates. This follows for all physical topologies considered in
Table I, because under uniform traffic demand, RWA with and
without wavelength conversion can achieve the same minimum
number of wavelengths. It is conjectured in [26] that this result
holds generally over all physical topologies.
Note that the geometric properties listed in the table are

exact. For physical topologies besides rings, trees, tori, hy-
percubes, and others where the solution to the RWA problem
is known, the exact characterizations of (12) and (13) can be
approximated through evaluation of the RWA functions over
multiple all-to-all integer traffic demands. Techniques for solv-
ing the integer RWA problem are well-studied in the literature.
In [12], various RWA methodologies are classified, based on
their optimization criteria, and their approach to solving the
problem. Additional comments regarding the solution to the
RWA problem can be found in Appendix A.

B. Maximum scaled doubly substochastic set
In this section, we take advantage of RWA decompositions

to derive bounds on the maximum scaling that can be applied
to the set of doubly substochastic matrices, such that every
matrix in the scaled set is contained within the stability region.
For a mathematical description of this property we require the
following definitions.
Definition 5.1: For matrixA, let the maximum row/column

sum of A be given by ‖A‖max:

‖A‖max = max
{
maxi

∑
j Aij , maxj

∑
i Aij

}
.

Definition 5.2: Let the set Ds denote the doubly sub-
stochastic region, scaled by factor s,

Ds =
{
λ ∈ Rn×n

+ : ‖λ‖max ≤ s
}

.
We seek the maximum values αsh,αmh such that the sets
Dαsh ,Dαmh are respectively subsets of the single-hop and
multi-hop stability regions. We will demonstrate that there
are cases in which the multi-hop stability region provides
improved performance over the single-hop stability region, in
terms of this geometric property. Consequently, we can con-
clude that there are indeed cases in which multi-hop routing
can provide a strict throughput performance improvement over
algorithms that exclusively employ single-hop routes. This is
in contrast to the case of a crossbar switch, where single-hop
algorithms can achieve the stability region.
Definition 5.3: The integer matrix T = (T ij) ∈ Zn×n

+ is
called k-allowable if it satisfies ‖T‖max ≤ k. Let Kk be the
set of all k-allowable matrices.
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TABLE I
MAXIMUM VALUES θsh, θmh FOR VARIOUS PHYSICAL TOPOLOGIES HAVING A SINGLE WAVELENGTH PER OPTICAL FIBER. THE CORRESPONDING

WAVELENGTH-UNCONSTRAINED VALUES ARE LISTED UNDER θmax , ALONG WITH THE RESULTING THROUGHPUT PERFORMANCE GAP.

Physical topology GP Pi, ∀i W nc(lJ) = W c(lJ) θsh = θmh θmax Performance gap θmh

θmax

Tree T 1 l max
e∈T

|Ne,1||Ne,2| 1/(max
e∈T

|Ne,1||Ne,2|) 1/(n − 1)
n − 1

maxe∈T |Ne,1||Ne,2|
Unidirectional ring 1 nl(n − 1)/2 2/(n2 − n) 1/(n − 1) 2/n = O(1/n)

Bidirectional ring

n odd 2 l(n2 − 1)/8 8/(n2 − 1) 2/(n − 1) 4/(n + 1) = O(1/n)

n even 2 $ln2/8% 8/n2 2/(n − 1) 4(n − 1)/n2 = O(1/n)

2D Torus

R rows, C cols 4 $lRC(R + C)/16% 16/(RC(R + C)) 4/(n − 1) 4(n−1)
n(R+C) = O(1/(R + C))

(R, C divisible by 4)

Binary hypercube log2 n nl/2 2/n (log2 n)/(n − 1) 2(n−1)
n log2 n = O(1/ log2 n)

Let Wnc(k) be the minimum number of wavelengths re-
quired to service any k-allowable traffic matrix in the RWA
with no conversion:Wnc(k) = maxT∈Kk W nc(T). Similarly,
let the corresponding value with wavelength conversion be
Wc(k). The RWA problem for k-allowable matrices was
introduced in [15] and subsequently studied in [10], [26]–[28].
These papers seek to understand the values of the quantities
Wnc(k),Wc(k) for various physical topologies. The bidirec-
tional ring with no wavelength conversion is considered in
[15], [28], tree topologies with no wavelength conversion were
considered in [15], [27], and ring and torus topologies with
wavelength conversion were considered in [10]. Additional
results for k-allowable traffics can be found in [26].
The following theorem establishes the quantity αsh as the

maximum scale factor on the substochastic region, such that
the scaled region is a subset of the single-hop stability region.
The analogous result for the multi-hop case is also provided.
Theorem 5.2: Let αsh = sup{α : Dα ⊆ Λ∗

sh}. Then,

αsh = lim sup
k→∞

k/Wnc(k). (14)

Similarly, let αmh = sup{α : Dα ⊆ Λ∗
mh}. Then,

αmh = lim sup
k→∞

k/Wc(k). (15)

Proof: See Appendix D.
Equations (14) and (15) provide the limiting ratios of k to

the worst-case number of wavelengths required to support any
k-allowable traffic, in their respective RWA problems. This is
a measure of the most efficient way that the worst-case k-
allowable traffic can be packed over network N , in the limit
of large k.
Applying Theorem 5.2, we can use results from the RWA

literature [9], [10], [22], [26]–[28] to characterize the val-
ues αsh,αmh for various physical topology configurations.
Consider for example the bidirectional ring having an even
number n ≥ 8 nodes. For the RWA with no wavelength
conversion, the worst-case k-allowable traffic requires ,kn/3-
wavelengths, resulting in a maximum scaling of α sh = 3/n.
The RWA with wavelength conversion requires at most ,kn/4-

wavelengths for any k-allowable traffic, yielding αmh = 4/n.
Consequently, we have a single-hop versus multi-hop perfor-
mance gap of 3/4, irrespective of the number of nodes in the
network. Designating the maximum scale value achievable in
the wavelength-unconstrained case by αmax, we note that the
bidirectional ring has αmax = 2, since the architecture em-
ploys two transceivers per node (one for each incident fiber).
This yields a constrained versus unconstrained performance
gap in the unidirectional ring of 2/n. Our results for various
physical topologies are summarized in Table II. Note that
the value of W c(k) for a bidirectional ring when n is odd
remains an open problem. Consequently, Table II provides the
tightest known interval in which this value resides [9], and
the interval in which αmh resides. The lower limit of this
interval is derived based on the next theorem (see Theorem
5.3 and the subsequent discussion). Also note that for the
tree network, throughput performance depends on the tree
topology employed, and particularly on the worst-case cut that
maximizes the number of nodes on the smaller side of the cut.
We call this number cT . Recalling our definition of Ne,1,Ne,2

as the node sets in the cut corresponding to edge e, we have
cT ! maxe∈T min{|Ne,1|, |Ne,2|}.
Theorem 5.2 provides an exact characterization of the

maximum scaled doubly substochastic region fully contained
within Λ∗

mh. If an order bound is sufficient, then we can use
[18, Lem. 1] to provide the following connection between the
geometric properties studied in this section.
Theorem 5.3: nθmh/2 ≤ αmh ≤ (n − 1)θmh

Proof: Lemma 1 of [18] can be understood in our
reconfigurable WDM network setting as follows: if θJ ∈ Λ∗

mh,
then Dα ⊆ Λ∗

mh when α ≤ nθ/2. The lower bound follows.
The upper bound follows since (αmh/(n − 1))J ∈ Dαmh ⊆
Λ∗

mh, which implies θmh ≥ αmh/(n − 1).
Theorem 5.3 allows us to obtain a refined bound on αmh

for the bidirectional ring when n is odd. For this physical
topology, Theorem 5.3 provides that αmh ≥ 4n/(n2 − 1).
Based only on the fact (from Table II) that ,k(n − 1)/4- ≤
Wc(k) ≤ ,kn/4-, we find that 4/n ≤ αmh ≤ 4/(n − 1).
However, since 4n/(n2 − 1) > 4/n for n ≥ 2, we can obtain
the refined bound, 4n/(n2 − 1) ≤ αmh ≤ 4/(n − 1).
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TABLE II
MAXIMUM VALUES αsh, αmh FOR VARIOUS PHYSICAL TOPOLOGIES HAVING A SINGLE WAVELENGTH PER OPTICAL FIBER. ALSO LISTED FOR EACH

TOPOLOGY IS THE SINGLE-HOP VERSUS MULTI-HOP PERFORMANCE GAP, AS WELL AS THE CONSTRAINED VERSUS UNCONSTRAINED PERFORMANCE GAP.

Physical topology GP Wnc(k) αsh Wc(k) αmh αsh/αmh αmh/αmax

Star k 1 k 1 1 1

Tree T kcT 1/cT kcT 1/cT 1 1/cT

Unidirectional ring kn 1/n k(n − 1) 1/(n − 1) 1 − 1/n 1/(n − 1)

Bidirectional ring (n ≥ 7)

n odd $kn/3% 3/n
⌈

k(n−1)
4

⌉
≤ Wc(k) ≤

⌈
kn
4

⌉
4n

n2−1
≤ αmh ≤ 4

n−1 ≤ 3
4 − 3

4n2 ≤ 2
n−1

n even $kn/3% 3/n $kn/4% 4/n 3/4 2/n

A similar statement to Theorem 5.3 cannot be made for
the quantity αsh, because the argument of [18, Lem. 1] is
inherently a multi-hop result.

VI. EXTENSIONS
A. Additional geometric properties
Theorem 5.2 can be easily extended to provide for any

polytope the maximum scale factor such that the scaled
polytope remains within the stability region. The proof of the
following theorem is similar to that of Theorem 5.2, and can
be found in [3].
Theorem 6.1: Let P be a convex, compact, full-dimensional

subset of Rn×n
+ , and αsh

P = sup{α : αλ ∈ Λ∗
sh, ∀λ ∈ P}.

Then
αsh
P = lim sup

k→∞
k/Wnc

P (k),

whereWnc
P (k) = maxT∈KP

k
W nc(T), and KP

k = Zn×n
+ ∩kP .

An identical result applies for the multi-hop case.
Theorem 6.1 can be used to recover the result of Theorem

5.2, by employing the set P =
{
λ ∈ Rn×n

+ : ‖λ‖max ≤ 1
}
.

B. Multi-wavelength WDM networks
Our network model in Section II is sufficiently general that

it applies much more broadly than in WDM networks having a
single wavelength per optical fiber. In particular, the model can
accommodate any number of wavelengths available in each
fiber, and other architectural assumptions that affect the logical
topologies and electronic routing allowed in the network. For
such a network, designate by S the set of allowable service
activation matrices. Recall from Section II that every matrix
belonging to S jointly represents a valid logical topology and
electronic routing. As in definitions 2.1 and 2.2, we designate
by Λ∗ the stability region of arrival rates that can be rate
stabilized when the service activation set in network N is S.
The following definition generalizes the RWA functions

W nc, W c to this more general network setting.
Definition 6.1: For the non-negative integer matrix T =

(Tij), let χ(T) equal the minimum number of service acti-
vation matrices belonging to S required to dominate T:

χ(T) = min
{
k : ∃S1, . . . ,Sk ∈ S, T ≤

∑k
l=1 d(Sl)∀i, j

}
.

The following theorems generalize Theorems 4.1, 4.2, 5.1,
and 5.2 to multi-wavelength networks. Their proofs follow

identically to the single-wavelength proofs, only replacing the
RWA function W nc(·) with χ(·).
Theorem 6.2: Define the set R as the set of integer traffic

matrices scaled by their respective χ values,

R =
{

λ =
1
W

T : T ∈ Zn×n
+ , W ∈ Z+, W ≥ χ(T)

}
.

Then Λ∗ = cl(R).
Theorem 6.3: Define θ∗ = sup{θ : θJ ∈ Λ∗}. Then

θ∗ = lim sup
k→∞

k/χ(kJ)

Theorem 6.4: Define α∗ = sup{α : αD ⊆ Λ∗}. Then

α∗ = lim sup
k→∞

k/ max
T∈Kk

χ(T)

While these theorems broaden the class of networks to
which generalized RWA decompositions can be applied to
characterize network stability properties, their key drawback
is that they rely on the function χ, which does not in general
tie to a well-studied optimization problem. This is in contrast
to the special case of single-wavelength networks, where we
characterized the stability region and geometric properties in
terms of the well-known RWA problem.
Because the function χ may be difficult in general to

characterize, we can use the single-wavelength geometric
properties to bound their multi-wavelength counterparts. It can
be shown (see [3] for details) that the stability region when
the network has w wavelengths available in each optical fiber,
denoted Λ∗

mh,w, satisfies

Λ∗
mh,w ⊆ conv

(
wΛ∗

mh ∩ Λport ∩Zn×n
+

)
.

This outer bound in combination with Theorems 5.1 and 5.2
provides simple outer bounds for the throughput properties
of w-wavelength networks, based on the single-wavelength
characterizations of this paper.

VII. SUMMARY
We have studied the optimal throughput performance prop-

erties of reconfigurable WDM-based packet networks. We
developed a theory of RWA decompositions that establishes
the stability regions of WDM networks having single-hop and
multi-hop routing capability in terms of the RWA problem.
This characterization enabled us to exactly determine certain

geometric properties of the stability region under any physical
topology, restricted to a single-wavelength per optical fiber:
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the maximum all-to-all arrival rate and maximum doubly
substochastic region that can be supported by the network. We
presented closed-form solutions for certain network topologies
such as rings, trees, and tori.
These geometric properties provide a measure of the optimal

achievable throughput under any physical topology. Conse-
quently, a network designer could use such a metric in com-
paring and evaluating network topologies and/or varying node
functionality. For example, we have exactly demonstrated the
throughput performance gap between wavelength-limited and
wavelength-unconstrained networks having particular physical
topologies. Additionally, we have exactly characterized the
throughput performance gap between networks employing
exclusively single-hop routing and those employing multi-hop
routing. In the case of the bidirectional ring, we have observed
a performance improvement of 33% of multi-hop over single-
hop enabled networks.

APPENDIX A
THE RWA OPTIMIZATION

The RWA problem with full wavelength conversion is an in-
teger multicommodity flow problem, which can be formulated
as follows [21]. Let T = (Tij) ∈ Zn×n

+ represent the set of
lightpath demands, and let f e

ij be a flow variable that represents
the number of lightpaths from node i to node j that cross the
fiber link e. For physical topology graph GP , let Eσ

v be the set
of edges originating at node v: Eσ

v = {e ∈ EP : σ(e) = v}.
Similarly, let Eτ

v denote the set of edges terminating at node
v: Eτ

v = {e ∈ EP : τ(e) = v}.

min W (16)
s.t. W ≥

∑
i,j∈V fe

ij , ∀e ∈ EP (17)

∑

e∈Eσ
v

fe
ij −

∑

e∈Eτ
v

fe
ij =






Tij v = i

−Tij v = j

0 else
∀v, i, j ∈ V

(18)
fe

ij ∈ Z+, ∀i, j ∈ V, e ∈ EP (19)

The minimum valueW reached by the optimization isW c(T).
The RWA problem with no wavelength conversion can be

formulated through the addition of the following constraints
in the optimization (16)-(19), which impose the wavelength-
continuity constraint on the RWA problem.

fe
ij =

∑W
w=1 ce,w

ij ∀i, j ∈ V, e ∈ EP

∑

e∈Eσ
v

ce,w
ij −

∑

e∈Eτ
v

ce,w
ij






≥ 0 v = i

≤ 0 v = j

= 0 else
∀v, i, j ∈ V

ce,w
ij ∈ {0, 1} ∀i, j ∈ V, e ∈ EP , w ∈ {1, . . . , W}

The minimum value W reached by this optimization is
W nc(T).
Commonly, the RWA problem is solved in two stages, first

by solving the lightpath routing problem, followed by obtain-
ing a wavelength assignment for the routing determined in the
first step [12]. The routing problem can be solved sequentially
using shortest-path algorithms, or through standard integer

programming solution methods such as randomized rounding.
The wavelength assignment algorithm is typically studied as
a graph coloring algorithm, with common approaches to the
problem including sequential assignment, genetic algorithms,
simulated annealing, and randomized rounding. See [12] and
the references contained therein for details.

APPENDIX B
PROOF OF THEOREM 4.1

Here we divide the proof as follows. First we demonstrate
that cl(Rnc) ⊆ Λ∗

sh, and second we prove Λ∗
sh ⊆ cl(Rnc).

Proof that cl(Rnc) ⊆ Λ∗
sh: Suppose λ ∈ Rnc. Then from

(9) there must exist T, W such that λ = (1/W )T, with T ∈
Zn×n

+ andW ≥ W nc(T). We establish a RWA decomposition
for λ as a subconvex combination of W nc(T) matrices as
follows. For each index i = 1, . . . , W nc(T), we construct the
matrix π̃i, corresponding to a valid single-wavelength logical
topology configuration: let π̃ i

kl = 1 if logical link k → l is
enabled on the i-th color of the RWA ofT employingW nc(T)
wavelengths, and π̃i

kl = 0 otherwise. Clearly π̃i is a valid
logical topology subject to the single-wavelength constraint,
since the same configuration had a valid routing on the i-th
color under the RWA of T. Let the elements of ΠN be indexed
by π1, . . . ,π|ΠN |, where |ΠN | is the cardinality of ΠN . Thus,
it must be true that

λ = 1
W

∑Wnc(T)
j=1 π̃j ,

=
∑|ΠN |

i=1

∑ Wnc(T)
j=1 1{π̃j=πi}

W πi,

=
∑|ΠN |

i=1 α
iπi, (20)

where 1{·} is the indicator function and for all i,

αi !
(∑Wnc(T)

j=1 1{π̃j=πi}

)
/W.

By definition we have that αi ≥ 0, ∀i, and since W ≥
W nc(T),

∑
i α

i ≤ 1. We conclude that λ ∈ Λ∗
sh.

Next, suppose λ ∈ cl(Rnc
P ) \ Rnc. By the definition of

the closure of a set, there must exist a sequence {λk}, with
λk ∈ Rnc for all k, such that λk → λ as k → ∞. From (20),
each λk has a RWA decomposition given by

λk =
∑|ΠN |

i=1 α
i
kπi.

For each k, the vector (α1
k, . . . ,α|ΠN |

k ) belongs to the compact
set of non-negative real vectors having L1 norm no greater
than one. Using this compactness property, the Bolzano-
Weierstrass Theorem [19] guarantees the existence of a vector
(α1, . . . ,α|ΠN |) and a subsequence {kj}∞j=1 with

αi
kj

→ αi as j → ∞, for i = 1, . . . , |ΠN |. (21)

To demonstrate that λ =
∑

i α
iπi, we make use of the

following chain of relations. Let ε > 0, and let ‖ · ‖ be the L1

norm operator.
∥∥λ −

∑
i α

iπi
∥∥ ≤

∥∥∥λ − λkj

∥∥∥ +
∥∥∥λkj −

∑
i α

iπi
∥∥∥ ,

=
∥∥∥λ − λkj

∥∥∥ +
∥∥∥
∑|ΠN |

i=1 (αi
kj

− αi)πi
∥∥∥ ,

< ε. (22)
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Equation (22) follows for j sufficiently large from the conver-
gence property of the sequence {λk} and by (21). Finally, we
have that αi

k ≥ 0, ∀k, i, and that
∑

i α
i
k ≤ 1, ∀k, from which it

must be true that the limiting quantities α1, . . . ,α|ΠN | satisfy
αi ≥ 0, ∀i, and

∑
i α

i ≤ 1. This implies λ ∈ Λ∗
sh.

Proof that Λ∗
sh ⊆ cl(Rnc): Suppose λ /∈ cl(Rnc). Then

we must show that λ /∈ Λ∗
sh. Suppose λ ∈ Λ∗

sh. Then there
exist α1, . . . ,α|ΠN | such that λ =

∑
i α

iπi. Define αi
k to be

the value αi truncated to k decimal places. This truncation
ensures that αi

k ≥ 0, ∀i, k,
∑

i α
i
k ≤ 1, ∀k, and that αi

k → αi

as k → ∞ for i = 1, . . . , |ΠN |. For each k, define λk =∑
i α

i
kπi, Tk = 10kλk, and Wk =

∑
i 10kαi

k. Clearly Tk is
an integer matrix for every k. The decomposition property of
λk implies

Tk =
∑|ΠN |

i=1 10kαi
kπi. (23)

Since 10kαi
k is an integer for all i, k, we may interpret (23) as

a valid RWA for traffic Tk usingWk ≤ 10k wavelengths. This
follows because each πi can be routed on a single wavelength.
By definition, it must be true that Wk ≥ W nc(Tk). Thus,
λk = Tk/Wk ∈ Rnc for each k. Since λk → λ, then λ ∈
cl(Rnc), which is a contradiction.

APPENDIX C
PROOF OF THEOREM 5.1

We consider the single-hop case only, since the multi-hop
case follows similarly. Denote θ∗ = lim supk→∞ k/W nc(kJ).
From the definition of θ∗, there must exist a sequence {kl}

such that kl → ∞ as l → ∞, and

kl/W nc(klJ) → θ∗. (24)

Define the uniform arrival rate matrix λl = klJ/W nc(klJ).
From the definition of the set Rnc, we have that λl ∈ Rnc

for all l. Due to the convergence property (24), it must be
true that θ∗J ∈ cl(Rnc). By Theorem 4.1 we then have that
θ∗J ∈ Λ∗

sh.
Conversely, suppose that λ is a uniform arrival rate matrix,

with uniform arrival rate r > θ∗, for which λ ∈ Λ∗
sh.

Theorem 4.1 provides that λ ∈ cl(Rnc). Thus, there must
exist a sequence of matrices {λk} such that λk → λ as
k → ∞, and λk ∈ Rnc for all k. Consequently, by the
definition of the set Rnc, there must exist a sequence of
traffics {Tk} and integers {Wk} such that λk = Tk/Wk with
Wk ≥ W nc(Tk) for all k. Define the sequence of traffics
{T̃k}, with T̃k = (mini&=j T k

ij)J. Since λk
ij → r for all

i (= j, it must be true that (mini&=j λk
ij) → r. This implies that

T̃k/Wk = (mini&=j T k
ij/Wk)J → rJ. Clearly, since the traffic

T̃k is integer and fully dominated (entry-by-entry) by T k, it
must be true that T̃k can be satisfied using Wk wavelengths.
This follows by using the RWA for Tk using Wk wavelengths
in order to build a RWA for T̃k using Wk wavelengths. Since
r > θ∗, there must exist k∗ such that when k > k∗, for
i (= j, T̃ k

ij/Wk > θ∗. Since Wk wavelengths are sufficient for
a RWA with no conversion of traffic T̃k, we must have that
Wk ≥ W nc(T̃k). Thus for all i (= j, T̃ k

ij/W nc(T̃k) > θ∗,
which implies by the definition of T̃k that for k > k∗,

(mini&=j T k
ij)/W nc((mini&=j T k

ij)J) > θ∗. (25)

For integer c > 0, the traffic cT̃k can be satisfied using cWk

wavelengths, by simply repeating the RWA for traffic T̃k a
total of c times. Consequently, we must have W nc(cT̃k) ≤
cWk. Combining this fact with (25), we have for any k > k ∗,
and any c ≥ 1,

(c mini&=j T k
ij)/W nc(c(mini&=j T k

ij)J) > θ∗.

This violates the definition of θ∗ and provides a contradiction.

APPENDIX D
PROOF OF THEOREM 5.2

In this appendix, we focus on the single-hop quantity, α sh.
The proof for the multi-hop quantity αmh follows identically.
Denote α∗ = lim supk→∞ k/Wnc(k).
Definition D.1: Let the set ∂Ds denote the set of doubly

substochastic matrices having at least one row or column sum
equal to s: ∂Ds = {λ ∈ Ds : ‖λ‖max = s}.

Proof that αsh ≥ lim supk→∞ k/Wnc(k) : Suppose
λ ∈ Dα∗ , with λ (= 0 (since λ = 0 has a trivial RWA
decomposition). Define the sequence of integer traffic matrices
{Tk}, such that for i (= j, T k

ij = (0λijWnc(k) − ηk1)+. Here,
the operator (·)+ sets to zero any negative elements of its
matrix operand, and 0·1 is the floor operator. We seek to ensure
that Tk ∈ Kk, ∀k. To this end, consider the following series of
relations. For sequence {ηk}, which we define subsequently,
and k sufficiently large,

‖Tk‖max =
∥∥∥(0λWnc(k) − ηkJ1)+

∥∥∥
max

≤
∥∥∥(λWnc(k) − ηkJ)+

∥∥∥
max

(26)

≤ ‖λWnc(k)‖max − ηk (27)
≤ α∗Wnc(k) − ηk (28)
≤ k + εkWnc(k) − ηk, (29)

where for k ∈ Z+,

εk = supk̃≥k

∣∣∣(k̃/Wnc(k̃)) − α∗
∣∣∣ .

In (26), if we assume that ηk/Wnc(k) → 0 as k → ∞, then
(27) follows for k sufficiently large, since there is at least one
non-zero element on the row/column having maximum sum
in λ. Note that Wnc(k) increases at least linearly in k. Since
λ ∈ Dα∗ , (28) must follow. By (14) we then have (29).
To ensure Tk ∈ Kk, we simply choose ηk = εkWnc(k).

Clearly, ηk/Wnc(k) → 0 as k → ∞, since (14) implies that
εk → 0 as k → ∞. Next, define λk = (1/Wnc(k))Tk . Since
Tk ∈ Kk, it must be true that λk ∈ Rnc. To demonstrate that
λ has a RWA decomposition, we need to show that λk → λ
as k → ∞. Since ηk/(Wnc(k)) → 0 as k → ∞, this is clearly
true. Thus, λ ∈ cl(Rnc), which implies by Theorem 4.1 that
λ ∈ Λ∗

sh. Since this holds for all λ ∈ Dα∗ , it must be true
that αsh ≥ α∗.

Proof that αsh ≤ lim supk→∞ k/Wnc(k) : Suppose
there exists α > α∗ such that Dα ⊆ Λ∗

sh. Consider any
positive integer u. Let λu,1, . . . ,λu,Ku be a finite set of
matrices belonging to ∂Dα, such that

∂Dα ⊆
Ku⋃

l=1

{
λ : |λij − λu,l

ij | ≤ 1/u, ∀i, j ∈ V
}

.
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In words, the set of points {λu,1, . . . ,λu,Ku} are the center
locations of a set of (1/u)-balls that cover the outer boundary
∂Dα. The compactness of Dα is sufficient to ensure the
existence of a covering such that Ku is finite-valued [19].
Since λu,l ∈ Dα, and by our assumption that Dα ⊆ Λ∗

sh,
Theorem 4.1 provides that there must exist a set of integer
traffics {Tu,1, . . . ,Tu,Ku}, and a set of positive integers
{Wu,1, . . . , Wu,Ku} such that for l = 1, . . . , Ku,

(1/Wu,l)Tu,l ∈
{
λ : |λij − λu,l

ij | ≤ 1/u, ∀i, j ∈ V
}

, (30)

where W u,l ≥ W nc(Tu,l) for all l. Since Ku is finite and
Tu,l is an integer matrix for all l, there must exist integers
κu

1 , . . . ,κu
Ku

and k∗
u, such that for l = 1, . . . , Ku,

κu
l ‖Tu,l‖max = k∗

u.

The integer traffic κu
l T

u,l must have a RWA using κu
l Wu,l

wavelengths. This RWA is constructed by repeating the RWA
for traffic Tu,l, that makes use of W u,l wavelengths, a total
of κu

l times over κu
l Wu,l wavelengths. While the maximum

row/column sum of λu,l is α, that of (κu
l /Wu,l)Tu,l is

k∗
u/Wu,l for each l. Applying (30), we then have for l =

1, . . . , Ku,
∣∣α− k∗

u/(κu
l Wu,l)

∣∣ ≤ (n − 1)/u. (31)

Consider any traffic T ∈ Kk∗
u
, with maximum row/column

sum equal to k∗
u. Then (α/k∗

u)T ∈ ∂Dα, which implies there
exists l∗ such that for all i, j ∈ V ,

∣∣∣(α/k∗
u)Tij − λu,l∗

ij

∣∣∣ ≤ 1/u. (32)

Combining (30) with (32), we have
∣∣∣(α/k∗

u)Tij − T u,l∗

ij /Wu,l∗
∣∣∣ ≤ 2/u. (33)

Multiplying (33) through by κu
l∗W

u,l∗ provides
∣∣∣(ακu

l∗Wu,l∗/k∗
u)Tij − κu

l∗T
u,l∗

ij

∣∣∣ ≤ (2/u)κu
l∗W

u,l∗ . (34)

Note that if a > 0, and |ax−y| ≤ c, then if ax−y > 0, we
have x− y ≤ c/a+((1− a)/a)y, and if ax− y < 0, we have
x − y ≤ ((1 − a)/a)y. Consequently, equation (34) implies

∣∣∣Tij − κu
l∗T

u,l∗

ij

∣∣∣ ≤
2
u
κu

l∗W
u,l∗ k∗

u

ακu
l∗Wu,l∗

+ κu
l∗T

u,l∗

ij

(
k∗

u/(ακu
l∗W

u,l∗) − 1
)

.

The difference between the integer traffic demand matrix T
and the matrix κu

l∗T
u,l∗ can then be bounded as

∑
i,j

∣∣∣Tij − κu
l∗T

u,l∗

ij

∣∣∣ ≤ n(n − 1)
2
u
κu

l∗W
u,l∗ k∗

u

ακu
l∗Wu,l∗

+ nk∗
u

(
k∗

u/(ακu
l∗W

u,l∗) − 1
)

! ωu,l∗ .

Then,
ωu,l∗

k∗
u

= n(n − 1)
2
αu

+ n

(
k∗

u

ακu
l∗Wu,l∗

− 1
)

.

Applying (31), it is clear that ωu,l∗/k∗
u → 0 as u → ∞.

If each additional integer demand in traffic T over that in
traffic κu

l∗T
u,l∗ is serviced using a unique wavelength, the

value of ωu,l∗ can be used to infer an upper bound on the
minimum number of wavelengths required to service T. This
holds, given the appropriate choice for the index l ∗, for any
T ∈ Kk∗

u
having maximum row/column sum of k ∗

u, from
which we obtain Wnc(k∗

u) ≤ maxl(κu
l Wu,l + ωu,l). Thus,

k∗
u/Wnc(k∗

u) ≥ k∗
u/(maxl κu

l Wu,l + maxl ωu,l). (35)

Applying (31), the right side of (35) must converge to α as
u → ∞. Thus, there must exist ū such that for all u ≥ ū,

k∗
u/Wnc(k∗

u) ≥ (α+ α∗)/2 > α∗.

Clearly, if k∗
u → ∞, this is in violation of (14), which provides

a contradiction. Thus, it remains to show that k∗
u → ∞ as

u → ∞. Suppose this is not true, and there exists integer
k̃∗ such that k∗

u ≤ k̃∗ for all u. We can then bound the
cardinality of Kk̃∗ as |Kk̃∗ | ≤ (k̃∗)n(n−1). The number of
distinct (1/u)-balls required to cover ∂Dα must increase with
u. This can be seen as follows: consider any two neighboring
(sharing the same face) non-zero vertices of Dα. The line
segment joining these two vertices is completely contained
in ∂Dα. This line segment is isomorphic to an interval of
equal length on the real line, for which a covering by (1/u)-
balls clearly requires an increasing number of balls as u
increases. Furthermore, since the line segment is not collinear
with the origin (this would violate that one of the end points
is a vertex of Dα), the number of covering (1/u)-balls that
exist such that no two balls contain any matrices that are
scaled versions of one another, is also increasing with u.
Consequently, for sufficiently large u, there must be more than
(k̃∗)n(n−1) traffics in the set {Tu,1, . . . ,Tu,Ku} that are not
scaled versions of one another. Since the line joining each of
these traffics to the origin has a unique direction, the common
boundary that these traffics will be scaled to (using the integers
from the set {κu

l }) must contain more than (k̃∗)n(n−1) integer
matrices. This however, is in violation of our assumption that
|Kk∗

u
| ≤ (k̃∗)n(n−1) for all u. Thus, k∗

u → ∞ as u → ∞.
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