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Abstract— We address multi-user scheduling over the down-
link channel in wireless data systems. Specifically, we consider
a time-slotted system with a single transmitter serving multiple
users, where the channel condition of each user is time varying.
Based on the throughput requirements, the user set is divided
into two classes (i) throughput guaranteed (QoS) users, and, (ii)
best effort (BE) users. For this system we obtain the optimal
policy that serves the QoS users with the minimum time-slot
utilization and maximizes the total fraction of time-slots allocated
to the BE users. We show that the optimal policy has a simple
geometric structure that can be easily visualized graphically.
In the special case of Rayleigh fading, we obtain closed-form
formulas that relate the achievable throughput-rate guarantee of
the QoS users as a function of other system parameters, thus,
providing closed-from relationships to understand the various
system tradeoffs. Analytical comparison between the optimal and
the random-scheduling policy shows that gains on the order of
ln(N) can be achieved, whereN is the number of QoS users.
Finally, we present simulation results comparing the optimal
policy under Rayleigh and Nakagami fading with other heuristic
policies including a well known opportunistic-scheduling policy.

Index Terms— Wireless downlink channel, Opportunistic
scheduling, Multi-user diversity, Quality of Service, Rayleigh
fading, Nakagami fading.

I. I NTRODUCTION

Rapid growth of the Internet and multi-media applications
has created a fast increasing demand for data services over
wireless systems. Development of wireless data systems, such
as the 1xEV-DO system in [1], WiMAX etc., introduces
new challenges in providing Quality of Service (QoS) over a
wireless channel [2]. In contrast to conventional voice traffic,
data streams are inherently bursty and can tolerate much
higher delays, hence, reserving resources to provide QoS is
inefficient. Therefore, in order to share a common resource,
one needs efficient scheduling algorithms. Furthermore, in
a wireless system the scheduling problem has an additional
complexity associated with time-varying communication rates
since the channel conditions are time-varying. With multiple
users in the system, the transmitter can look at the communi-
cation rates of the various users and opportunistically choose
the “best user” to transmit to based on a required set of
objectives. In the literature, such an approach is referred to
as Opportunistic scheduling[4], [5], [7] or exploiting Multi-
user diversity[10].

In this work, we utilize opportunistic scheduling to address
the following downlink scenario: there is a single server that

1This work was supported by NSF ITR grant CCR-0325401, by
DARPA/AFOSR through the University of Illinois grant no. F49620-02-1-
0325 and by NASA Space Communication Project grant number NAG3-2835.

represents the base station transmitting to multiple users that
represent the mobile handsets. The system operates in a time-
slotted manner and in each time-slot the base station can
serve only one user. The set of users are divided into two
classes: (i) throughput rate guaranteed QoS users and (ii) “best
effort” (BE) users. The QoS users in the system represent
session applications such as FTP, high data-rate web-browsing,
throughput-constrained data transfers etc., which require the
base station to provide a certain data rate on the downlink. In
contrast, the BE users represent on-the-fly applications such as
email transfers, low priority and latency tolerant data transfers
etc. which do not have rate requirements and are short-lived.
The goal of this work is to design a scheduling policy that
provides the required throughput rates to the QoS users with
the least time-slot utilization and maximizes the remaining
fraction of time-slots assigned for the BE class.

Down-link scheduling and power/rate adaptation is an active
area of research in wireless systems with recent work that
includes [4]–[9], [11]–[14]. The work in [4] studied oppor-
tunistic scheduling under a utility maximization framework
and presented various formulations therein. In [5], the authors
considered the objective of maximizing the minimum through-
put rate among a set of users while [6] extended the framework
to include a dynamic user population. In [7], multiple simulta-
neous transmissions employing spread spectrum with fairness
constraints was considered and [8] presented algorithms for
scheduling users with average delay considerations. The works
in [9], [11]–[14] studied transmission power/rate adaptation.
In [9], [11] the goal of the scheduling policy was to ensure
queue stability, in [12] the aim was to minimize transmission
power subject to average delay constraints whereas [13], [14]
considered explicit hard deadline constraints over point to
point communication. Our work in this paper differs from the
above by presenting a different formulation that combines the
QoS and the BE classes of service. We adopt a geometric
approach to the problem and show that the optimal policy
satisfies a special structure. The geometric analysis is valid
for a general fading model and hence is applicable for a wide
set of scenarios. In the special case of Rayleigh fading we fur-
ther obtain closed-form formulas for the various performance
metrics. Part of the work in this paper has been presented
earlier in [3].

The rest of the paper is organized as follows. In Section II,
we present the system model and the problem description. In
Section III, we present the geometric approach to the problem
and obtain the optimal policy. The throughput results for
Rayleigh fading are presented in Section IV; simulation results
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comparing the optimal and the random scheduling policy for
Rayleigh and Nakagami fading are presented in Section V;
and Section VI concludes the work.

II. SYSTEM AND PROBLEM DESCRIPTION

A. System Model

We consider the wireless downlink scenario, namely, com-
munication from the base station (the transmitter) to the mobile
handsets (the receivers, also referred as users) in a time
slotted system. There are multiple users in the system, each
user experiencing time-varying channel condition. The channel
state of a user remains constant for a single time slot but
changes over multiple time slots. We assume that the channel
stochastic process is stationary and ergodic. This assumption
does not preclude channel correlations over time and among
the users, thus allowing the possibility of channel states over
multiple time-slots to be dependent. At the beginning of a
time-slot, the transmitter knows the channel state of each user
for that particular slot1. In a time-slot, it serves at most one
user with full powerP . Since the users have different channel
conditions the rate of communication per time slot to the users
is variable. Clearly, the transmitter can exploit this variability
and select the “best user” for transmission in a time-slot based
on some performance measure. The above system models
a TDMA system and the recently proposed 1xEV-DO data
system [1] and is a commonly used model in the literature for
the wireless downlink [4], [5], [7], [8].

Let r̄ = {ri} denote the vector of communication rates
to the users in a generic time-slot, say for example thekth

time-slot. This means that if useri is chosen to be served in
time-slotk, the throughput for that user in that slot is simply
ri. We will refer tori as the “channel rate” for user i andr̄ as
the “channel rate vector”. The transmitter has knowledge of
r̄ at the beginning of slotk but does not know this vector for
future slots. In thekth time-slot, r̄ is a particular realization
from the set comprising all possible channel rate vectors whose
probability distribution depends on the stochastic model of
the channels’ states. A scheduling policy, denoted asΓk(r̄),
is a rule that specifies which user the transmitter serves in
time-slot k given that the channel rate vector in that slot is
r̄. A stationary scheduling policy, denotedΓ(r̄), is one that
depends solely on̄r but does not depend on the time index.
Clearly, such a policy can be represented as a map from the
set of channel rate vectors to the user index; namely, eachr̄ is
mapped to a unique user index. As the underlying processes
are stationary, we restrict attention in this paper to stationary
scheduling policies and such a restriction suffices.

B. Problem Description

The set of users in the system are divided into two service
classes: (i) throughput rate guaranteed (QoS) users and (ii)
“best effort” (BE) users. As mentioned earlier, QoS users
represent session applications that require the base station to
provide a certain data rate on the downlink, whereas, the BE
users represent low priority data transfer applications which do

1This is a simplifying assumption that models one step channel prediction

not have a rate requirement and are short-lived. The number
of BE users is assumed large and being short-lived it changes
rapidly over time. In such a setup, the objective at the base
station is to provide the throughput rates to the QoS users with
the least time-slot utilization so that the remaining fraction of
time-slots allocated for serving the BE class is maximized2.
The scheduling problem now is to obtain a rule that assigns
time-slots dynamically over time to meet the above objective.

Let there beN QoS users in the system and denote the
channel rate vector for these users asr̄ = (r1, . . . , rN ). Let
Xi(r̄) denote the throughput per time-slot of useri. We have3,

Xi(r̄) =

{
ri, if Γ(r̄) = i (i.e. useri selected)

0, otherwise
(1)

The expected throughput per time slot isE[Xi(r̄)]. Under
stationarity of the scheduling rule, it is easy to see that
Xi(r̄) is stationary and ergodic and thatE[Xi(r̄)] equals the
long term time-average throughput per slot (called throughput
rate) of useri. Let R̄ = (R1, .., RN ) be the guaranteed
throughput rates to the QoS users. We will assume thatR̄
is feasibleand by feasibility we mean that there exists at least
one scheduling policy that achieves the throughput rates, i.e.
E[Xi(r̄)] ≥ Ri, ∀i = 1, .., N for some policy.

Let Ii(r̄) be the indicator function for selection of useri,

Ii(r̄) =

{
1, if Γ(r̄) = i

0, otherwise
(2)

With this notation we can re-writeXi(r̄) asXi(r̄) = riIi(r̄).
The optimization problem can now be formally stated as
follows,

min
N∑

i=1

E[Ii(r̄)]

subject to E[riIi(r̄)] ≥ Ri, i = 1, .., N (3)

The expectation above is taken over the joint distribution
of the channel rate vector,̄r, for the N QoS users. Note
that minimizing

∑N
i=1 E[Ii(r̄)] is equivalent to maximizing

1 − ∑N
i=1 E[Ii(r̄)] which equals the fraction of time-slots

available for the BE users. We assume thatR̄ > 0, i.e.
(R1 > 0, .., RN > 0). If someRk = 0, we can neglect that
user and the problem reduces toN − 1 dimensions. We also
assume that̄R is away from the boundary of the set, which
is characterized later, comprising all feasible throughput rate
vectors. This assumption is solely to simplify the mathematical
exposition by avoiding the limiting conditions at the boundary
and does not affect the results presented throughout the paper.

2We assume that among the BE users a greedy algorithm is used to share the
slots that are allocated for the BE class. With a large population of BE users
there is a high probability of at least one user experiencing good channel
condition. Thus, maximizing the time-slot allocation is then equivalent to
maximizing the sum total throughput of BE users.

3For notational simplicity, explicit dependence ofXi(·) on Γ is not
indicated. Also, since the service of BE users is simply the fraction of
allocated time-slots to that class, their channel rate vector is not required
for the optimization.
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III. O PTIMAL POLICY

The QoS users experience different time-varying channel
conditions, hence, intuitively the optimal policy must exploit
this variability giving preference to users with better channel
conditions. This would ensure a high throughput per slot and
would lead to a fewer fraction of time-slots being utilized to
provide the throughput guarantee. However, simply choosing
the best user is not sufficient since the throughput requirements
of the QoS users and their channel statistics might be very
different which necessitates that these parameters must also
be taken into account.

Let Ω be the set comprising all possible channel rate vectors,
r̄; we have Ω ⊆ R+N . Let the joint probability density
function bef(r̄) 4 so that the probability of a subsetZ ⊂ Ω
is given as

∫
Z

f(r̄)dr̄. We assume thatf(r̄) is such that
subsets with zero volume inΩ (or individual points) have zero
probability, thus, excluding point mass distributions. Since a
scheduling policy maps̄r ∈ Ω to a unique user index, we will
represent a scheduling policy as a partition of the setΩ into
N + 1 regions denoted asZ1, .., ZN , Zf . In a particular time-
slot, if the channel rate vector̄r lies within regionZi, useri is
selected for service whereas ifr̄ ∈ Zf , no QoS user is selected
and the slot is used to serve the BE users5. The problem thus
reduces to choosing these regions optimally to minimize the
objective function and satisfy the throughput rate constraint,∫

Zi
rif(r̄)dr̄ ≥ Ri, i = 1, . . . , N .

In the rest of the paper, the notation̄r → Z (r̄ 6→ Z)
means that there is a neighborhood aroundr̄ that is mapped
(is not mapped) to regionZ and the probability of this
neighborhood is non-zero. Formally,r̄ → Z implies that there
existsε > 0 such that all̂r ∈ Ω, ||̂r − r̄|| < ε ⇒ r̂ ∈ Z and∫
||̂r−r̄||<ε

f(r̂)dr̂ > 0; where the norm|| · || is the Euclidean
distance norm inRN. The following two lemmas give the
properties of the optimalZ1, . . . , ZN , Zf regions. The first
lemma deals with the regionZf and it states that if̄r is mapped
to Zi, all rate vectors with theith component larger thanri

cannot be mapped toZf .

Lemma 1: Under the optimal policy, supposēr =
(r1, .., rN ) → Zi then r̂ = (r̂1, .., (r̂i > ri), .., r̂N ) 6→ Zf .

Proof: Appendix I

A careful observation of Lemma 1 yields a special structure
on Zf as follows. Leta1 be the infimum value of the first
component among all vectors̄r → Z1; i.e. a1 = inf(r̄→Z1) r1.
Now, any r̂ → Zf must be such that̂r1 ≤ a1; otherwise
Lemma 1 will be violated. As this holds for allZi, an optimal
policy has constants{ai} whereai = inf(r̄→Zi) ri such that if
ri ≤ ai, ∀i, thenr̄ ∈ Zf . The regionZf is shown in Figure 1.

4To avoid excessive notations,r̄, depending on the context denotes both a
random vector and a particular realization for a generic time-slot.

5To eliminate uninteresting partitions the following technical assumptions
are made. The setΩ can be partitioned into a finite set of components, where,
each component is a connected set with non-zero volume and every point of
this set is arbitrarily close to an interior point. Such an assumption removes
the trivial point/zero volume sets. A scheduling policy is a partition as above
and each regionZi is a finite union of the component sets of the partition.
Further, we assume that for setΩ non-zero volume sub-sets that have zero
probability have already been removed as their mapping plays no role in the
optimization.
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Fig. 1. TheZf region forN = 3, threshold vector̄a = (a1, a2, a3) and
Ω = R+N . Note thatZf = {r̄ : 0 ≤ ri ≤ ai, ∀i = 1, . . . , N}.

This implication is quite intuitive as it suggests that when the
channel rate vector of the QoS users is below some threshold
vector (bad channel conditions), the QoS users must not be
scheduled and the slot must be used to serve the BE users.

The vector̄a depends on the required throughput vectorR̄
for the QoS users and the density functionf(r̄). Given thatR̄
does not lie on the boundary of feasible throughput rates, it
follows that ā is at least a positive vector(a1 > 0, . . . , aN >
0) and the regionZf = {r̄ | r̄ ∈ Ω, ri ≤ ai∀i} is not null
(non-zero probability). We now proceed to obtain the structure
of the regionsZi, i = 1, . . . , N .

Lemma 2: Consider regionsZi, Zj , j 6= i and the corre-
sponding thresholdsai, aj . Supposēr 6∈ Zf and satisfies,

ri

ai
>

rj

aj
(4)

then under the optimal policȳr 6→ Zj

Proof: Appendix II

The above lemma states that if the weighted comparison of
ith andjth component of̄r is in favour of theith component
(user i), it is not optimal to serve userj. The weights are
the inverse values of the corresponding components of the
threshold vectorā. The above implication is intuitive as
condition (4) means that in some sense useri has a better
channel condition than userj and hence serving userj is
not optimal. Combining the above two lemmas, we obtain the
following geometric structure for the optimal policy.

Theorem I: (Optimal Structure)Consider a channel rate
vector r̄ = (r1, . . . , rN ), then, under the optimal policy there
exists a threshold vector̄a with the following structure.

1) r̄ → Zf if it satisfies,

ri < ai, ∀i = 1, . . . , N (5)

2) r̄ → Zi, (i = 1, . . . , N ) if it satisfies,
ri

ai
>

rj

aj
, ∀j = 1, . . . , N, j 6= i (6)

ri > ai (7)

3) ∫

Zi

rif(r̄)dr̄ = Ri, ∀i = 1, . . . , N (8)
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Fig. 2. Optimal policy structure forN = 3, threshold vector̄a =

(a1, a2, a3) andΩ = R+N . The Zi regions are top truncated pyramids.

Proof: Conditions 1 and 2 follow from Lemmas 1 and 2.
Condition 3 states the obvious requirement that for optimality
the throughput constraint must be met with equality; since,
otherwise the excess fraction of slots that lead to a throughput
aboveRi can be assigned to the BE users.

The set ofr̄ that lie on the boundaries for which there is
equality in (5) and (6) can be mapped to anyZi without
affecting optimality. It can also be observed that the set of
conditions in Theorem I are exhaustive and map everyr̄ ∈ Ω to
a unique user index. Thus, given̄a, we have a unique partition
of Ω into regionsZ1, . . . , ZN , Zf . In Figure 2, we present a
geometric picture of these regions forN = 3. As seen from
the figure theZi regions are top truncated pyramids (see, for
example the light shadedZ2 region) and it can be verified that
in this region, (6) is satisfied.

Next, we present the sufficiency argument by proving that a
scheduling policy of the form as in Theorem I minimizes the
objective function in (3) and hence is optimal. First, observe
that a scheduling policy outlined in Theorem I can be re-
written in a simplified way as a maximum weighted rule (with
ties broken arbitrarily) as follows,

Γ(r̄) =

{
Zf (serve BE class) , if ri ≤ ai, ∀i = 1, .., N

argmaxi
ri

ai
, otherwise

(9)
where{ai} are such thatE[riIi] = Ri, ∀i = 1, . . . , N .

Theorem II: (Sufficiency)Consider the optimization prob-
lem in (3) and letR̄ be feasible, then policyΓ defined in (9)
is optimal.

Proof: Appendix III.

Thus, Theorem I states that the optimal policy must satisfy
certain conditions which impose a weighted comparison struc-
ture on it and conversely, Theorem II completes the argument
by stating that a policy with that structure is optimal.

The results presented so far for the optimal policy assumed
that R̄ was feasible, that is, it assumed that the optimization
problem in (3) had a solution and the throughput rateR̄ could
be guaranteed by some scheduling policy. We now go back
and characterize the set of all such feasible throughput rate
vectors. LetΠ denote this set; we claim that the interior of
Π is generated by considering each threshold vectorā > 0

and obtaining the correspondinḡR that can be achieved for
the policy in (9) for that particular̄a. To see why this is true
consider the following. Given anȳa > 0, we first construct a
policy as given in (9). Since this is a valid scheduling policy
the correspondinḡR with Ri = E[riIi] is feasible; hence,
Π must at least include all such̄R. Now, conversely, pick
a feasibleR̄ in the interior ofΠ, then, from Theorem I we
see that a scheduling policy can be re-mapped to have the
optimal geometric structure or equivalently there existsā > 0
for which the policy in (9) is optimal.

For a givenR̄, we know from (8) that the threshold vector
ā for the optimal policy is chosen such that

∫
Zi

rif(r̄)dr̄ =
Ri, i = 1, .., N . This can be solved using numerous tech-
niques of finding the positive root of a non-linear vector
equation. In practice, however, the density functionf(r̄) may
not be known apriori in which case the vectorā can be ad-
justed in real time using stochastic approximation algorithms
similar to those outlined in [4], [5]. For a comprehensive and
thorough treatment of stochastic approximation algorithms see
[17]. We now consider the special case of Rayleigh fading in
the next section and obtain explicit expressions for various
system metrics.

IV. D IMENSIONING

In this section, we apply the general results obtained in the
last section to a Rayleigh fading scenario. From a practical
perspective while such a fading model might be restrictive,
nevertheless, from a systems viewpoint the closed form for-
mulas obtained provide important tradeoff limits between the
allocation of resources to the QoS and the BE users and
can be used as a first cut calculation in system design. For
other fading distributions a similar analysis can be carried out,
albeit, closed form expressions may not always be possible and
certain quantities would need to be evaluated numerically, as
done in Section V for an illustrative Nakagami fading scenario.

To proceed, we consider the following specializations to
the earlier model. The users experience independent identi-
cally distributed (i.i.d) flat Rayleigh fading, hence,|h|2 is
Exponentially distributed, where|h| is the magnitude of the
channel gain/fade state. The rate per time slot of a user is
assumed proportional to the fade state (square magnitude); i.e.
r = k(|h|2P ), wherek is a constant andP is the transmission
power. A linear power-rate relationship is a good model in
various scenarios such as the low SNR regime in which
most CDMA systems operate, ultra-wideband transmission
and fixed modulation schemes and has been studied earlier in
the literature [15]. Asr is proportional to|h|2, the distribution
of r is also Exponential and is given asf(r) = e−r/µ/µ, r ≥
0 whereµ = E[r] is the average throughput rate of a user if it
is served in all the time-slots. Lastly, we take the guaranteed
throughput rate the same for allN QoS users, namely,̄R =
(R, . . . , R).

A. Throughput Characterization

Let γ denote the fraction of time-slots allocated to the BE
users. We first obtain the threshold vector in terms ofγ as
follows. Due to symmetry inf(r̄) andR̄, clearly, the regions
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Zi, i = 1, .., N are identical, hence, the{ai}’s for the optimal
policy are equal and the threshold vector is given asā =
(a, .., a). Now, the threshold valuea in terms ofγ is as follows.

Lemma 3: Let γ be the fraction of time-slots allocated to
the BE users, then the threshold valuea for the optimal policy
is given by,

a = µ ln
(

1
1− γ1/N

)
(10)

Proof: From Theorem I, the regionZf is given as
Zf = {r̄ : 0 ≤ ri ≤ a, ∀i = 1, . . . , N}. By ergodicity,
the probability of this region equalsγ and by the i.i.d channel
assumption,f(r̄) =

∏
i fi(ri) =

∏
i f(ri). Thus we get,

∫ a

0

. . .

∫ a

0

∏

i

f(ri)dri = γ (11)

Evaluating the integrals for the exponential distribution gives,

γ =
(
1− e−a/µ

)N

(12)

Re-writing the above expression gives the result in (10).

Observe from (10) thatγ = 0 ⇒ a = 0 which agrees with
the fact thatγ = 0 (no slot for the BE users) impliesZf is
null and similarly,γ = 1 ⇒ a → ∞ which agrees with the
fact thatγ = 1 (all slots for the BE users) impliesZf = R+N .

Now, using the optimal structure of regionZi we can obtain
an expression for the required throughput rateR in terms of
the threshold valuea.

Lemma 4: Under the optimal policy, the throughput-rate
guarantee,R, for a given threshold valuea is given by,

R =
N−1∑

k=0

(
N − 1

k

)
(−1)k

(
a +

µ

k + 1

)
e−(k+1)a/µ

k + 1
(13)

Proof: Given a threshold vector̄a = (a, . . . , a), the
region Zi is given as,Zi = {r̄ : a ≤ ri < ∞, 0 ≤ rj ≤
ri, j 6= i}. As R = E[riIi] we get,

R =
∫ ∞

a

∫ ri

0

. . .

∫ ri

0

rif(ri)dri

∏

j 6=i

f(rj)drj (14)

wheref(r̄) =
∏

i fi(ri) =
∏

i f(ri) by the i.i.d assumption.
For the exponential distribution, (14) simplifies to,

R =
∫ ∞

a

rie
−ri/µ

µ

(
1− e−ri/µ

)N−1

dri (15)

Using the binomial expansion,(1 − e−ri/µ)N−1 =∑N−1
k=0

(
N−1

k

)
(−1)ke−kri/µ, (15) can be solved to get (13).

Note from (13) thatR is monotonically decreasing ina,
hence there is a one to one relationship betweenR and a.
Stated equivalently, given a certainR value, there is a unique
thresholda ≥ 0 that achieves it. Eliminatinga from (10)
and (13) we obtain a unified relationship among the system
quantities: (i) Throughput rateR, (ii) Fraction of time-slots,
γ, allocated to the BE users (iii) Number of QoS users,N ,
and (iv) The average channel condition,µ, of the users.
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Fig. 3. Plot ofR/µ versusN for the optimal policy for variousγ values.

Theorem III: Under the model assumptions stated earlier
with N QoS users in the system andγ ∈ [0, 1] fraction of
time-slots allocated to the BE users, the maximum throughput
rate R for each QoS user is given by,

R

µ
=

N−1∑

k=0

(
N − 1

k

)
(−1)k ×

(− ln(1− γ1/N )
k + 1

+
1

(k + 1)2

)
(1− γ

1
N )(k+1) (16)

Proof: The result follows from Lemmas 3 and 4.

From (16), we see thatR depends linearly onµ, thus as
expected, for a givenN, γ, the throughput guarantee is higher
if µ is increased. Now, re-phrasing (16), theoretical limits for
various performance measures can be deduced as follows.

Maximum Throughput Rate: By setting γ = 0, we can
obtain the maximum throughput rateRmax(N) for each QoS
user when no slots are allocated for the BE users. This is given
as,

Rmax(N) = µ

(
N−1∑

k=0

(
N − 1

k

)
(−1)k 1

(k + 1)2

)
(17)

Figure 3 is a plot ofR/µ versusN for differentγ values. The
function Rmax(N)/µ is the topmost curve corresponding to
γ = 0. As Rmax(N) is monotonically decreasing inN , its
maximum value is atN = 1 and equalsRmax/µ = 1. This is
expected as the maximum rate achievable when all the slots
are assigned to just one QoS user equalsE[r] (= µ).

Maximum Number of QoS Users: Fix a value ofR0 and
γ, the maximum number of QoS users such that throughput
of each is at leastR0 is given by,

Nmax(R0, γ) = max
N

(R ≥ R0) (18)

Obviously if the values ofR0, γ are such that there is no
integerN ≥ 1 that achieves it, the system values in this case
are infeasible. Figure 4 is a plot ofR/µ versusγ for various
values ofN . Infeasibility arises when(γ, R0/µ) point lies
above theN = 1 curve (in Fig. 4).
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Maximum Value of γ: GivenR andN , the value ofγ that
solves the equation in (16) gives the maximum fraction of slots
that can be allocated to the BE users. Figure 4 with its axes
inverted gives a plot ofγ versusR/µ for different N .

B. Comparison with Random-scheduling Policy

To understand how much gain can be achieved, we present
an analytical comparison of the optimal policy with the
random scheduling policy. The random policy assigns a time-
slot to the BE users with probabilityγ and to the QoS users
with probability 1− γ. Among the QoS users the slot is then
randomly assigned to one of the users with equal probability
1/N . Clearly, this policy does not exploit the varying channel
conditions for scheduling the users. Due to the random nature
of the assignment each QoS user gets(1 − γ)/N fraction
of time-slots and since the users have statistically identical
channel conditions, the throughput rate of each QoS user,
denotedRr, is given as,

Rr = µ
(1− γ)

N
(19)

Let us now fix a value ofγ for both the optimal and
the random policies, i.e. under both policies,γ fraction of
slots are assigned to the BE class. LetRopt, Rr denote the
corresponding throughput rate provided to each QoS user.
Then, as shown below, the gain defined asRopt/Rr is on the
order of ln(N). To show this result, we need the following
lemma.

Lemma 5: For any γ ∈ (0, 1), we have the following
relationship6

ln
(

1
1− γ

1
N

)
= Θ(ln(N)) (20)

Proof: Appendix IV

Theorem IV: The throughput gain of the optimal policy as
compared to the random policy, defined asRopt/Rr, for γ ∈
(0, 1) satisfies the relationship,

Ropt

Rr
= Θ(ln(N)) (21)

6The following notation is followed: (i)f(N) = O(g(N)) means that there
exists a constantc and integerN0 such thatf(N) ≤ cg(N) for N > N0, (ii)
f(N) = Θ(g(N)) means thatf(N) = O(g(N)) andg(N) = O(f(N))

Proof: Appendix V

Observe that asN → ∞ the throughput rate per QoS
user for both the optimal and the random policy tends to
zero. Equation (19) states thatRr decreases as1/N whereas
(45) in Appendix V states that by using the optimal policy
Ropt decreases more slowly asln(N)/N . Hence, we get a
gain on the order ofln(N). The above logarithmic behavior
can be attributed to the exponential distribution of the rate
under Rayleigh fading and while such channel statistics are
simplified models, in practice one could expect gains along
these orders for moderate QoS user population.

V. SIMULATION RESULTS

To validate the theoretical results derived in the earlier
sections, we present simulation results obtained for two fad-
ing distributions, Rayleigh and Nakagami. The setup for the
simulations is as follows: we consider a time duration of 10
seconds and divide it into 10,000 slots, thus, each time-slot
is of length 1 millisecond. For the sake of simplicity, the
QoS users all experience i.i.d channel fading. We assume
a linear relationship between the channel rate and the fade
state (squared magnitude); i.e.r ∝ |h|2. Thus, for Rayleigh
fading the rate,r, at which data can be transmitted in a slot is
Exponentially distributed with densityf(r) = e−r/µ

µ , r ≥ 0;
while for Nakagami fading,r has a Gamma distribution given

asf(r) =
(

m
µ

)m
rm−1

Γ(m) e−mr/µ, r ≥ 0, wherem is the fading
parameter [16]. The mean channel rate,µ, for each user is
taken as,µ = 800 Kbits/sec for both the distributions. At
each time-slot, a random vector of channel rates for the QoS
users is drawn from the respective distribution. Given this
channel rate vector, the particular scheduling policy decides
which QoS user to serve or to allocate the slot to the BE class.
In the former case, the chosen QoS user, say useri, receives
a throughput rate ofri while for the others the throughput
rate is 0 in that slot. In the latter case, all QoS users get a 0
throughput in that slot.

We simulate the optimal, the random, the greedy Time Di-
vision Multi-Access (TDMA) and an opportunistic scheduling
policy studied in [10] which we refer to as “Opportunistic
Proportional Fair” (OPF) policy. In case of the optimal
policy, the scheduling decision is taken as given in (9) where
the threshold vector̄a is computed using the formulas in
Section IV. The random policy makes a scheduling decision
as described in Section IV-B. For the greedy TDMA and the
OPF policy the scheduling decision is taken as follows. Let
Tk denote the running time-average of the throughput rate
for the kth QoS user. At the beginning of each time-slot,
consider all QoS users for whichTk < R where R is the
required throughput guarantee. In the greedy TDMA policy
the user with the maximum channel rate is selected whereas
for the OPF policy the user that maximizes the metricrk/Tk

is selected. If for all QoS usersTk ≥ R, the slot is allocated
to the BE class.

We first numerically validate the theoretical results obtained
in Section IV. We consider Rayleigh fading with 3 QoS users
each having a throughput rate guarantee ofR = 200 Kbits/sec.
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Fig. 5. Running time-average of throughput rate for Rayleigh fading with 3
QoS users,R = 200 Kbits/sec.
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Fig. 6. Throughput gain,Ropt/Rr , for Rayleigh fading withγ = 0.3.

Figure 5 gives a plot of the running time-average of throughput
rate under the optimal policy. As can be seen from the plot,
the long-term required rate is achieved very quickly in time
within almost a second and is maintained thereafter within a
close range. Thus, within a very short time interval the required
throughput rate can be provided to the QoS users. A similar
trend is observed when the parameter values are varied. In
Figure 6, we fixγ = 0.3, i.e. the BE class is assigned 30% of
the slots. The figure gives a plot of the simulated throughput
gain Ropt/Rr as a function ofN ; where Ropt, Rr is the
throughput rate of each QoS user under the optimal and the
random policy respectively. In conformation with the result
in (21), we see from the plot thatR

opt

Rr
grows logarithmic

in N . We next consider Nakagami fading with the fading
parameterm = 0.6. In Figure 7, we fixγ = 0.3 and plot the
running time-average of the throughput rate for the optimal
policy with 3 QoS users. For the case of Nakagami fading,
(11) becomes,

∫ ma
µ

0 tm−1e−tdt = γ
1
N Γ(m) from which the

optimal thresholda is evaluated numerically by finding the
root of the above non-linear equation. The long-term rate
provided to each QoS user in this case isR = 494 Kbits/sec.
Again as before, the throughput rate is achieved very quickly
in time and is maintained thereafter within a close range. In
Figure 8 we compare the throughput gain of the optimal policy
versus the random policy. As seen from the plot the optimal
policy achieves a substantial gain in throughput even with
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Fig. 7. Running time-average of throughput rate for Nakagami fading with
fade parameterm = 0.6, γ = 0.3 and 3 QoS users.
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Fig. 8. Throughput gain,Ropt/Rr , for Nakagami fading with fade parameter
m = 0.6 andγ = 0.3.

Nakagami distribution. In fact, the gain is higher now because
the Gamma distribution withm = 0.6 has a larger variance
than the Exponential with the same mean. As a result, the
optimal policy which opportunistically exploits rate variations
gives a higher gain in comparison to random assignment.

We now present simulation results that compare the per-
formance of the optimal, random, TDMA and OPF policies.
We consider 3 QoS users with Rayleigh fading and the mean
channel rate of each QoS user,µ = 800 Kbits/sec. Figure 9
plots the total fraction of slots utilized by the QoS users under
each policy versus the throughput rate requirement of each
QoS user. The quantity, (1− total fraction of slots used by
QoS users), is the time-slot allocation to the BE class. First,
as expected the random policy has the worst performance and
utilizes the maximum time-slots to provide the throughput rate
guarantees. Since the OPF, TDMA and optimal policy exploit
the channel variations and opportunistically schedule the users,
the time-slot utilization is lower as compared to the random
policy. The OPF policy performs worse than the TDMA policy
which is expected since the TDMA policy by being greedy has
a high throughput per slot and hence utilizes fewer time-slots.
Finally, as expected the optimal policy uses a substantially
lower fraction of time-slots than all the policies.

VI. CONCLUSION

We addressed the issue of downlink scheduling over a wire-
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less channel incorporating the QoS and best effort services.
We considered a set ofN rate guaranteed users and obtained
the optimal policy that serves these users with the least time-
slot utilization, thereby, maximizing the time-slot allocation to
the BE users. Equivalently, the optimal policy also solves the
problem of maximizing the rate guarantee for the QoS users
given that a certain fraction of time-slots must be allocated
to the BE users. We presented a geometric visualization of
the optimal policy and under Rayleigh fading we derived
analytical expressions quantifying the various system metrics.
Analytical comparison with the random-scheduling policy
showed that throughput gains on the order ofln(N) can be
achieved by exploiting multi-user diversity. Finally simulation
results show substantial gains achieved by the optimal policy
as compared to other well-known policies in the literature.
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APPENDIX I
PROOF OFLEMMA 1

The proof is based on a contradiction argument where we
begin by supposing that for the optimal policy there is ar̂ →
Zf with r̂i > ri. By re-mapping the regions we will show that
the objective function in (3) decreases, thus, contradicting the
optimality claim and provinĝr 6→ Zf .

We are given that̄r → Zi, hence, there is a neighborhood of
r̄, which we denote asS1, that is mapped toZi, i.e. S1 ∈ Zi

and S1 = {x̄ | x̄ ∈ Ω, ||x̄ − r̄|| < δ1} for someδ1 > 0.
Further, by assumption̂r → Zf , there is a neighborhood of̂r
given as,S2 = {x̄ | x̄ ∈ Ω, ||x̄ − r̂|| < δ2} for someδ2 > 0,
such thatS2 ∈ Zf .

Now re-map the regions as follows. MapS1 ⇒ Zf and
S2 ⇒ Zi. To ensure the new mapping is feasible we must
satisfy the QoS rate constraint for useri which entails the
following equality.

∫

S2

xif(x̄)dx̄ =
∫

S1

xif(x̄)dx̄ (22)

The left side above is the throughput achieved over region
S2 under the new map and the right side is the throughput
lost by re-mappingS1 to Zf . A set of δ1, δ2 > 0 exist that
satisfy (22); to see this note that the integral over any region
{Sk}2k=1 is a positive, continuous function with respect toδk,
non-increasing asδk decreases and tends to zero asδk ↓ 0.
Hence, starting with the largestδ1, δ2 values (that satisfy the
S1, S2 definition) and then decreasing these values one can
obtain {δ1, δ2 > 0} such that each integral above is positive
and the two are equal. Now, viewingδ2 as a function ofδ1, it’s
clear that if a solution exists for someδ0

1 then for allδ1 ≤ δ0
1

a solution exists by the continuity and decreasing property of
the integrals. We now proceed by choosingδ1 ≤ δ0

1 .
Using the First Mean Value theorem, [18], we can take the

xi outside the integrals as follows,
∫

S1
xif(x̄)dx̄ = (ri +

ε1)
∫

S1
f(x̄)dx̄ and

∫
S2

xif(x̄)dx̄ = (r̂i + ε2)
∫

S2
f(x̄)dx̄,

where the{εk}2k=1 depend on{δk}2k=1 or equivalently onδ1

(asδ2 depends onδ1 through (22)). With this, we can re-write
(22) as,

(r̂i + ε2)
∫

S2

f(x̄)dx̄ = (ri + ε1)
∫

S1

f(x̄)dx̄ (23)

Now, looking at the objective function in (3), the change in
its value due to the re-map equals the probability of region
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S2 (added fromZf to Zi) minus the probability of regionS1

(removed fromZi). Thus,

∆J = −
∫

S1

f(x̄)dx̄ +
∫

S2

f(x̄)dx̄

= −
(

r̂i + ε2
ri + ε1

− 1
) ∫

S2

f(x̄)dx̄ (24)

Let c = r̂i − ri, then,c > 0 (since by assumption̂ri > ri).
Using the First Mean Value theorem, we also haveεk → 0 as
δk → 0. Thus, for anyc we can scaleδ1 to be small enough
such that

(
r̂i+ε2
ri+ε1

− 1
)

> 0. Further, since the integral in (24)
is the probability ofS2 which is strictly positive (regions with
zero probability are uninteresting and have been removed from
Ω), we finally get,∆J < 0. This completes the contradiction
argument.

APPENDIX II
PROOF OFLEMMA 2

The proof is based on a contradiction argument. To begin,
consider̄r 6∈ Zf and suppose that for the optimal policy,r̄ →
Zj such that,

ri

ai
>

rj

aj
(25)

We now give a re-mapping of the regions such that the objec-
tive function in (3) decreases or equivalently the probability
of Zf region increases, thus, proving that the earlier mapping
cannot be optimal.

As the lemma involves only theith andjth component, we
will focus only on these components. Letx̄ ∈ Ω denote a
generic rate vector. Since by assumptionr̄ → Zj , there is a
neighborhood around̄r given asS1 = {x̄ | x̄ ∈ Ω, ||x̄− r̄|| <
δ1} for some δ1 > 0, such thatS1 ∈ Zj . Next, since the
optimal policy satisfies Lemma 1 (its violation would make
the policy non-optimal to start with) we know thatai is the
infimum value of theith component amonḡx → Zi. Thus,
there exists a point̄m with mi = ai and a region around̄m,
denotedS2, that maps toZi; i.e. S2 ∈ Zi andS2 = {x̄ | x̄ ∈
Ω, 0 < (xi − mi) < δ2} for someδ2 > 0. Finally, sinceR̄
does not lie on the boundary of feasible throughput vectors the
regionZf is not null. Hence, there exists̄n with nj = aj > 0
and a region around̄n, denotedS3, that maps toZf ; namely,
S3 ∈ Zf andS3 = {x̄ | x̄ ∈ Ω, 0 < (nj −xj) < δ3} for some
δ3 > 0. The regionsS1, S2, S3 are depicted in Figure 10(a).

Now re-map these regions as follows. MapS1 ⇒ Zi, S2 ⇒
Zf andS3 ⇒ Zj as shown in Figure 10(b). To ensure the new
mapping is feasible we must satisfy the QoS rate constraints
for useri and userj, which entails the following equalities.

∫

S2

xif(x̄)dx̄ =
∫

S1

xif(x̄)dx̄ (26)
∫

S3

xjf(x̄)dx̄ =
∫

S1

xjf(x̄)dx̄ (27)

Equation (26) matches the throughput lost for useri due to the
re-map ofS2 ⇒ Zf and the throughput gained byS1 ⇒ Zi,
while (27) gives a similar equality for userj. To see why
a set of{δk}3k=1 exist that solve the above equations, note
that the integral over any regionSk is a continuous, positive
function of δk, decreasing (or non-increasing) asδk decreases
and tends to zero asδk ↓ 0. Hence, starting with the largest
δ1 (that satisfies theS1 definition), decrease it until aδ2 is
obtained that solves (26). By the non-nullity ofS1, S2 and
the above property of the integrals such a solutionδ1, δ2 > 0
exists. Similarly obtain aδ1, δ3 that solves (27). Finally, taking
δ1 as the minimum of the two solutions, re-obtainδ2, δ3 such
that both (26) and (27) are satisfied. Now, viewingδ2, δ3 as
functions of δ1, it’s clear that if a solution exists for some
δ0
1 , then, for all δ1 ≤ δ0

1 a solution exists by the continuity
and decreasing property of the integrals. We now proceed by
choosingδ1 ≤ δ0

1 .
Using the First Mean Value theorem, [18], we can re-write

the above integrals as,

(ai + ε2)
∫

S2

f(x̄)dx̄ = (ri + ε1)
∫

S1

f(x̄)dx̄ (28)

(aj + ε3)
∫

S3

f(x̄)dx̄ = (rj + ε4)
∫

S1

f(x̄)dx̄ (29)

where the{εk} above depend on the{δk} or equivalently onδ1

(asδ2, δ3 depend onδ1 through (26) and (27)). Next, looking
at the objective function in (3), the change in its value due to
the re-map equals the probability of regionS3 (added from
Zf to Zj) minus the probability of regionS2 (removed from
Zi). Thus,

∆J = −
∫

S2

f(x̄)dx̄ +
∫

S3

f(x̄)dx̄

= −
(

ri + ε1
ai + ε2

− rj + ε4
aj + ε3

) ∫

S1

f(x̄)dx̄ (30)

Let c = ri

ai
− rj

aj
, then, from (25) we havec > 0. From the

First Mean Value theorem we also haveεk → 0 as δk → 0.
Thus, for any givenc we can scaleδ1 to be small enough such
that

(
ri+ε1
ai+ε2

− rj+ε4
aj+ε3

)
> 0. Further, since the integral in (30)

is the probability ofS1 which is strictly positive, we finally
get ∆J < 0. This completes the proof.

APPENDIX III
PROOF OFTHEOREM II

We will prove optimality of policy Γ, defined in (9),
by showing that for any other feasible policỹΓ we have∑N

i=1 E[Ii] ≤
∑N

i=1 E[Ĩi] where Ii(r̄) and Ĩi(r̄) are the
indicator functions for the respective policies. We know that
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policy Γ satisfies the throughput rate constraints with equality,
i.e. E[riIi] = Ri. If Γ̃ does not, it is trivial to prove that
Γ̃ cannot be optimal. Now, supposẽΓ also satisfies the rate
constraints with equality, i.e.E[riĨi] = Ri, then, the objective
function for policy Γ̃ can be re-written as,

N∑

i=1

E[Ĩi] =
N∑

i=1

E[Ĩi]−
N∑

i=1

1
ai

(E[riĨi]−Ri) (31)

where{ai} is the threshold vector for policyΓ. Note that the
second term in (31) is zero. Re-arranging (31) we get,

N∑

i=1

E[Ĩi] = E

[
N∑

i=1

(
1− ri

ai

)
Ĩi

]
+

N∑

i=1

Ri

ai
(32)

For any vector̄r we have the following two cases.
Case 1: Supposeri ≤ ai, ∀i, then, policyΓ does not choose

any QoS user (Equation (9)) andIi = 0, ∀i = 1, . . . , N . Now,
since ri ≤ ai, we have(1 − ri

ai
) ≥ 0, ∀i. This implies that

whetherΓ̃ chooses or does not choose a QoS user we have
the following inequality,

N∑

i=1

(
1− ri

ai

)
Ĩi ≥ 0 =

N∑

i=1

(
1− ri

ai

)
Ii (33)

Case 2: Supposeri > ai for some indexi. Let j be the
chosen user for policyΓ, then, from (9) we see thatrj/aj has
the maximum value. Thus,(1 − rj

aj
) ≤ (1 − ri

ai
),∀i and also

(1− rj

aj
) < 0. Again irrespective of what̃Γ chooses,

N∑

i=1

(
1− ri

ai

)
Ĩi ≥

(
1− rj

aj

)
=

N∑

i=1

(
1− ri

ai

)
Ii (34)

From (32), (33) and (34) we get,

N∑

i=1

E[Ĩi] ≥ E

[
N∑

i=1

(
1− ri

ai

)
Ii

]
+

N∑

i=1

Ri

ai
=

N∑

i=1

E[Ii]

where the last equality follows from (31) replacingĨi with Ii.
This completes the proof.

APPENDIX IV
PROOF OFLEMMA 5

To prove the lemma we need to show the following two
relationships,ln(1/(1 − γ

1
N )) = O(ln(N)) and ln(N) =

O(ln(1/(1−γ
1
N ))). We begin by proving the first relationship.

Since γ ∈ (0, 1) and N ≥ 1 is a positive integer, we have

0 < γ
1
N < 1. Taking a power series expansion of

(
1

1−γ
1
N

)

we get,

ln
(

1
1− γ

1
N

)
= ln

(
1+γ1/N + . . . + γ(N−1)/N

+γ(1 + γ1/N + . . .) + γ2(. . .)
)

(35)

= ln
(

1 + γ1/N + . . . + γ(N−1)/N

1− γ

)
(36)

≤ ln
(

N

1− γ

)
= ln(N)− ln(1− γ) (37)

The inequality above follows, sinceγ < 1 ⇒(
1 + γ1/N + . . . + γ(N−1)/N

) ≤ N ; thus we getln(1/(1 −
γ

1
N )) = O(ln(N)). To prove the reverse relationship, i.e.

ln(N) = O(ln(1/(1 − γ
1
N ))), proceed as follows. Using the

standard inequality,ln(N) ≤ 1 + 1
2 + . . . + 1

N−1 , we get,

γ ln(N) ≤ γ +
γ

2
+ . . . +

γ

N − 1

≤ γ1/N +
γ2/N

2
+ . . . +

γN/N

N − 1
(since0 < γ < 1)

≤ ln
(

1
1− γ

1
N

)
(38)

where the last inequality above follows by truncating the
power series expansion of− ln(1 − γ

1
N ). Thus, ln(N) ≤

1
γ ln(1/(1− γ

1
N )) which givesln(N) = O(ln(1/(1− γ

1
N ))).

APPENDIX V
PROOF OFTHEOREM IV

Starting with (16) we can write it as,

R

µ
= ln

(
1

1− γ
1
N

) N−1∑

k=0

(
N − 1

k

)
(−1)k(1− γ

1
N )(k+1)

k + 1

+
N−1∑

k=0

(
N − 1

k

)
(1− γ

1
N )(k+1)

(k + 1)2
(39)

Consider the first term in (39) above; it can be evaluated as
follows. Let α = (1 − γ

1
N ), then, sinceγ ∈ (0, 1) we have

α ∈ (0, 1).

N−1∑

k=0

(
N − 1

k

)
(−1)k α(k+1)

k + 1
=

N−1∑

k=0

(
N − 1

k

) ∫ α

0

(−x)kdx

(a)
=

∫ α

0

(1− x)N−1dx (40)

=
1− (1− α)N

N
=

1− γ

N
(41)

Equality (a) above follows by interchanging the summation
and the integral and using the Binomial expansion. Thus,
we get, ln

(
1
α

) ∑N−1
k=0

(
N−1

k

)
(−1)k α(k+1)

k+1 = ln
(

1
α

)
1−γ
N .

Now, consider the second term in (39) and proceed as fol-
lows. First, since (41) holds for allα, we get the identity,∑N−1

k=0

(
N−1

k

)
(−1)k x(k+1)

k+1 = 1−(1−x)N

N . Dividing both sides
by x and integrating from0 to α, gives,

∫ α

0

N−1∑

k=0

(
N − 1

k

)
(−1)k xk

k + 1
=

∫ α

0

(
1− (1− x)N

Nx

)
dx

⇒
N−1∑

k=0

(
N − 1

k

)−1kαk+1

(k + 1)2
=

∫ α

0

(
1− (1− x)N

Nx

)
dx

≤
∫ α

0

dx = α = (1− γ
1
N ) (42)

The inequality above follows by noting that1−(1−x)N

Nx is
positive, monotonically non-increasing overx ∈ [0, 1], for
fixed N ≥ 1, and has a maximum value equal to1 at x = 0.
Equation (42) further gives,N1−γ

(∑N−1
k=0

(
N−1

k

)−1kαk+1

(k+1)2

)
≤
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N
1−γ (1 − γ

1
N ) N→∞−−−−→ − ln(γ)

1−γ (which is finite for0 < γ < 1)

and since N
1−γ (1−γ

1
N ) is monotonically increasing inN with

a finite limiting value, it is bounded for allN . Thus, we get,

N

1− γ

(
N−1∑

k=0

(
N − 1

k

)−1kαk+1

(k + 1)2

)
≤ ln(1/γ)

1− γ
(43)

Now, using the above simplifications we can re-write (39) as,

R

µ
=

1− γ

N

(
ln

(
1
α

)
+

N

1− γ

N−1∑

k=0

(
N − 1

k

)−1kαk+1

(k + 1)2

)

(44)
For γ ∈ (0, 1), the first term within brackets above, grows
as ln( 1

α ) = Θ(ln(N)) (using Lemma 5) whereas the second
term is bounded (from (43)). Hence, for largeN , Ropt can be
expressed as,

Ropt

µ
=

1− γ

N
Θ(ln(N)) (45)

From (19) and (45) we get the result in (21),


