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Logarithmic Delay for N ×N Packet Switches
Under the Crossbar Constraint

Michael J. Neely , Eytan Modiano , Yuan-Sheng Cheng

Abstract— We consider the fundamental delay bounds
for scheduling packets in an N×N packet switch operating
under the crossbar constraint. Algorithms that make
scheduling decisions without considering queue backlog
are shown to incur an average delay of at least O(N).
We then prove that O(log(N)) delay is achievable with
a simple frame based algorithm that uses queue backlog
information. This is the best known delay bound for packet
switches, and is the first analytical proof that sublinear
delay is achievable in a packet switch with random inputs.

Index Terms— stochastic queueing analysis, scheduling,
optimal control

I. INTRODUCTION

We consider an N × N packet switch with N input
ports an N output ports, shown in Fig. 1. The system
operates in slotted time, and every timeslot packets
randomly arrive at the inputs to be switched to their
destinations. Scheduling is constrained so that each in-
put can transfer at most one packet per timeslot, and
outputs can receive at most one packet per timeslot.
This constraint arises from the physical limitations of
the crossbar switch fabric that is commonly used to
transfer packets from inputs to outputs, and gives rise
to a very rich problem in combinatorics and scheduling
theory. This problem has been extensively studied over
the past decade [1]-[21], and remains an important topic
of current research. This is due to both its technological
relevance to high speed switching systems and its peda-
gogical example as a network complex enough to inspire
interesting research yet simple enough for an extensive
network theory to be developed.

In this paper, we show that if the matrix of input
rates to the switch has a sufficient number of non-
negligible entries (to be made precise in Section III),
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Fig. 1. An N ×N packet switch under the crossbar constraint.

then any scheduling strategy that does not consider queue
backlog information necessarily incurs an average delay
of at least O(N). Strategies that do not consider backlog
have been proposed in a variety of contexts, including
work by Chang et al. [2][3], Leonardi et al. [4], Koksal
[5], and Andrews and Vojnović [6]. The basic idea is
to construct a randomized or periodic scheduling rule
precisely matched for known input rates. If these rates
are indeed known a-priori and do not change with time,
then such scheduling offers arbitrarily low per-timeslot
computation complexity, as any startup complexity asso-
ciated with computing the scheduling rule is mitigated
as the same rule is repeatedly used for all time.

The O(N) delay result introduces an intuitive trade-
off between delay and implementation complexity, as
algorithms which do not consider backlog information
may have lower complexity yet necessarily incur de-
lay that grows linearly in the size of the switch. To
improve delay, we construct a simple algorithm called
Fair-Frame that uses queue backlog information when
making scheduling decisions. For independent Poisson
inputs, we show that the Fair-Frame algorithm stabilizes
the system and provides O(log(N)) delay whenever the
input rates are within the switch capacity region. This
work for the first time establishes that sub-linear delay
is possible in an N ×N switch. Furthermore, the proof
is simple and provides the intuition that logarithmic
delay is achievable in any single-hop network with a
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capacity region that is described by a polynomial number
of constraints. Such delay improvement is achieved by
taking advantage of statistical multiplexing gains, which
is not possible for backlog-unaware algorithms.

Previous work in scheduling is found in [1]-[21]. In [2]
it is shown that stable scheduling can be achieved with
a queue length-oblivious strategy by using a Birkhoff-
Von Neumann decomposition on the known arrival rate
matrix. In [7] and [8], it was shown that scheduling
according to a Maximum Weighted Match (MWM) every
timeslot stabilizes the switch whenever possible and does
not require prior knowledge of the input rates. Com-
putation of maximum weight matches requires O(N3)
operations per slot. In [9] the average delay under
the MWM algorithm was shown to be no more than
O(N). We note that MWM scheduling is queue length-
aware, and hence it may be possible to tighten the
delay bound to less than O(N), as is suggested in the
simulations of [9]. However, O(N) delay is the tightest
known analytical bound for MWM scheduling, and was
previously the best known delay bound for any algorithm
for a switch with random (Poisson) inputs. Queue length-
aware scheduling has also been considered for multi-cast
switches, for example, in [10] [11].

In [12] it is shown that if a switch has an inter-
nal speedup of 2 (allowing for two packet transfers
from input to output every timeslot), then exact output
queue emulation can be achieved via stable marriage
matchings, yielding optimal O(1) delay. To date, there
are no known delay optimal scheduling strategies for
packet switches without speedup. However, work in [13]
considers a loss-rate optimal scheduling algorithm for a
2× 2 switch with finite buffers.

Frame based approaches for stabilizing switches and
networks with deterministically constrained traffic are
considered in [14] [15] [16], and in [17] it was shown
that a frame based algorithm using ‘greedy’ maximum
size matches can be used to stabilize an N ×N packet
switch with Poisson inputs. Related early work in this
area, developed for the context of satellite switched time
division multiple access (SS/TDMA) systems, considers
the problem of minimizing the average waiting time in
a batch of packets that arrive to a switching system at
time 0 [18] [19]. The results of [18] [19] can perhaps be
used to yield a constant factor improvement in average
packet delay for frame based switching mechanisms, at
the cost of increased scheduling complexity (discussed
in more detail in Section IV-B).

Complexity and delay tradeoffs are explored in [20],
where an achievable complexity-delay curve is estab-
lished allowing for stable scheduling at any arbitrar-
ily low computation complexity with a corresponding

tradeoff in average delay. Similar complexity reductions
were developed in [21]. In this paper, we show that
the (complexity, delay) operating point of the Fair-
Frame algorithm sits below the curve achieved by the
class of algorithms given in [20]. Indeed, Fair-Frame
offers logarithmic delay and can be implemented with
O(N1.5 log(N)) total operations per timeslot. The com-
bination of low complexity and low delay makes Fair-
Frame competitive even with output queue emulation
strategies in switches with a speedup of 2.

In the next section, we describe the capacity region
of the N × N packet switch and present a simple
stabilizing algorithm designed for known arrival rates
that achieves O(N) delay without considering queue
backlog. In Section III it is shown that O(N) delay is
necessary for any such backlog-independent algorithm.
In Section IV, the Fair-Frame algorithm is developed
and shown to enable O(log(N)) delay. Sections V and
VI discuss implementation issues and provide simulation
results for uniform, non-uniform, and bursty traffic.

II. THE CROSSBAR CONSTRAINT

Consider the N ×N packet switch in Fig. 1. At each
input, memory is sectioned into distinct storage buffers
to form N virtual input queues, one for each destination.
Packets randomly arrive to each input every timeslot
and are placed in the virtual input queues according
to their destinations. These input queues are virtual
because it is actually only the pointers to the local
memory location of each packet that is buffered in the
appropriate queue upon packet arrival. Note that there
are a total of N2 virtual input queues, indexed by (i, j)
for i, j ∈ {1, . . . , N}, where queue (i, j) holds data at
input i destined for output j.

Every timeslot, each input selects a packet from one
of its queues and sends the packet over its transmis-
sion line. The transmission lines for the N inputs are
shown in Fig. 1. These lines are drawn horizontally
and intersect the vertical lines leading into the output
queues. The crosspoints of these wires form a matrix,
and the switch fabric allows individual crosspoints to
be activated or deactivated—physically establishing a
connection or disconnection between inputs and outputs.
If two or more crosspoints are simultaneously activated
in the same column (corresponding to the same output
line) then two different packets may collide at the same
output port, resulting in a corrupted signal. Likewise, if
two or more crosspoints in the same row are connected,
a duplicate packet is sent to the wrong destination.1

1Such a property can be considered a feature in multicast situations,
see [5].
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Crosspoint connections are hence limited to connections
corresponding to the set of N ! permutation matrices:
N×N matrices composed of all 0’s and 1’s, with exactly
one “1” in each row and column.

Let Aij(t) represent the number of packets arriving to
queue (i, j) in slot t, and let Lij(t) represent the current
number of packets in queue (i, j). Define the control
decision variables Sij(t) as follows:

Sij(t) =
{

1 if crosspoint (i, j) is activated at slot t
0 else

The crossbar constraint limits (Sij(t)) to the set of
permutation matrices M = {M1,M2, . . . ,MN !}. The
system evolves according to the following dynamics:

Lij(t + 1) = max{Lij(t)− Sij(t), 0}+ Aij(t)

The goal is to choose the (Sij(t)) matrices every timeslot
in order to maintain low backlog and ensure bounded
average delay.

A. Stability and Delay

Here we describe the switch capacity region and give
an example of a stabilizing algorithm that does not
use queue backlog information (but does use a-priori
knowledge of the input rates). The algorithm is a simple
variation of the well known Birkhoff-Von Neumann
decomposition technique [2], and is presented to provide
a representative example of a queue length-independent
policy which offers O(N) delay.

Assume inputs are rate ergodic and define the input
rate to queue (i, j) as λij

M= limt→∞
1
t

∑t
τ=0 Aij(τ). The

capacity region of the switch is defined as the closure of
the set of all rate matrices (λij) which can be stabilized
by the switch by using some scheduling algorithm. It
is well known that the capacity region of the switch
is the set of rate matrices satisfying the following 2N
inequalities:

N∑
j=1

λij ≤ 1 for all inputs i (1)

N∑
i=1

λij ≤ 1 for all outputs j (2)

It is clear that the above inequalities are necessary for
stability. Indeed, note that the maximum rate out of any
input port is one packet per slot, and the maximum rate
into any output is one packet per slot. Hence, if any of
the above inequalities is violated, then some input port
or output port must be overloaded—leading to an infinite
buildup of packets in the system with probability 1.

Sufficiency is classically shown using a combination
of results due to both Birkhoff [22] and Von-Neumann
[23]. Specifically, consider a subset of the capacity
region consisting of rate matrices (µij) satisfying all
inequalities (1) and (2) with equality. A theorem of
Birkhoff states that this subset can be expressed as the
convex combination of permutation matrices:

Fact 1. (Birkhoff Decomposition [22])

Convex Hull{M1,M2, . . . ,MN !} ={
(µij) |

∑
i µij = 1,

∑
j µij = 1

}
�

A related result of Von Neumann [23] shows that any
rate matrix (λij) which satisfies the stability constraints
(1) and (2) with strict inequality in all entries can be
term-by-term dominated by a matrix (µij) which satisfies
all constraints with equality. By Fact 1, this dominating
matrix (µij) is within the convex hull of the permutation
matrices {M1,M2, . . . ,MN !}. This fact can immediately
be used to show that (λij) being strictly interior to the
capacity region is sufficient for stability. For a simple
way to see this, suppose (λij) is strictly interior to
the capacity region, and choose a matrix (µij) within
Convex Hull{M1,M2, . . . ,MN !} such that λij < µij for
all (i, j). By the definition of a convex hull, we can find
probabilities {p1, p2, . . . , pN !} such that:

(µij) = p1M1 + p2M2 + . . . + pN !MN ! (3)

This naturally leads to the scheduling policy of ran-
domly choosing a control matrix (Sij(t)) from among
the set of all permutation matrices, such that permutation
Mk is independently chosen with probability pk every
timeslot. From (3) it follows that every timeslot a server
connection is established for input queue (i, j) with
probability µij . This effectively creates a geometric “ser-
vice time” for each packet, where each queue (i, j) has
arrival rate λij and service rate µij . Because λij < µij ,
each queue is stable. Note that this stabilizing policy
chooses permutation matrices independent of the current
queue backlog. Below we calculate the resulting average
packet delay under this algorithm for a simple example
of Poisson inputs.

Example: Consider any rate matrix (µij) satisfying
all inequalities (1) and (2) with equality, and suppose
packet arrivals are Poisson with rates λij = ρµij for
some loading value ρ < 1. (Note that this includes the
case of uniform traffic where µij = 1/N and λij = ρ/N
for all (i, j).) Each input queue (i, j) is then equivalent
to a slotted M/G/1 queue with geometric service time
and loading ρ. The exact average delay W ij of such a
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queue can be easily calculated (see [24]):

W ij = 1/µij−1/2
1−ρ + 1

W randomized = 1
λtot

∑
ij λijW ij = N−1/2

1−ρ + 1 (4)

The above delay is clearly O(N), and hence delay
scales linearly as the number of input ports N is in-
creased. One might suspect that delay can be reduced
if the randomness of the service algorithm is replaced
by a periodic schedule that services each queue (i, j) a
fraction of time µij , as in [2] [6]. Indeed, for uniform
traffic, consider the periodic schedule that on timeslot t
connects each input port i ∈ {1, . . . , N} to output port
[(i+t) mod N ]+1. This scheduling algorithm provides
a server to each queue every N timeslots. The resulting
system is similar to an M/D/1 queue, and delay can be
calculated using the techniques in [24]:

Wperiodic schedule = N
2(1−ρ) + 1 (5)

The above delay indeed is reduced from the delay
of the random control algorithm, although it still scales
linearly with N . Intuitively, this is because each input
port can service at most one of its N queues per timeslot,
and hence it takes an average of N/2 timeslots for an
arriving packet to see a server. In the next section we
elaborate on this intuition to show that O(N) delay
is incurred by any scheduling algorithm that operates
independently of the input streams and current levels
of queue backlog. We note that the example algorithms
described above are similar to the general random and
pseudo-random algorithms described in [6] [2] [5] [3],
all of which do not consider queue backlog. Thus,
while these algorithms have many desirable properties,
the result of the next section implies that they cannot
improve upon O(N) delay.2

Output Queueing: It is useful to compare an N ×N
packet switch to a corresponding output queued sys-
tem with the same inputs. An output queued system
is equivalent to a switch with an “infinite speedup,”
where all input queues are bypassed and packets are
immediately transfered to their appropriate destination
queues upon arrival, where they are served with unit
service time. It is not difficult to show that, under any
scheduling algorithm, the average delay in an N × N
switch is greater than or equal to the corresponding delay

2We note that the Maximum Weight Matching algorithm (which
does not require a-priori rate information) was shown in [9] to also
offer an average delay of no more than O(N), which is tight in the
case when input streams are perfectly correlated. However, as the
Maximum Weight Match policy is queue length-dependent, the actual
delay performance for independent data streams could be sublinear
(as suggested by simulations) and a tight delay bound for MWM
scheduling in this scenario remains an open question.

in an output queued system. To compare with the above
example of Poisson inputs, suppose inputs are uniform
so that λij = ρ/N for all (i, j). Then the average delay
in the output queued system is the same as that of a
slotted M/D/1 queue with loading ρ, and is given by:

Woutput queue =
1

2(1− ρ)
+ 1 (6)

The above delay is significantly smaller than the cor-
responding delay for both the randomized and periodic
switch scheduling algorithms in equations (4) and (5),
and demonstrates O(1) delay independent of the size
of the switch. Such performance improvement is due to
the statistical multiplexing gains achieved by the output
queue configuration. This gap between O(1) delay and
O(N) delay suggests that dramatic improvements are
possible through queue length-aware scheduling, and
motivates our search for sublinear delay algorithms.

III. AN O(N) DELAY BOUND FOR

BACKLOG-INDEPENDENT SCHEDULING

Consider an N × N packet switch with general
stochastic inputs arriving to each of the N2 input queues.
All inputs are assumed to be stationary and ergodic.
Assume the system is initially empty and let Xij(t)
represent the arrivals to input queue (i, j) during the
interval [0, t] (i.e., Xij(t) =

∑t
τ=0 Aij(τ)). Recall that

Lij(t) represents the current number of packets queued
at input (i, j), and Sij(t) represents the server control de-
cision at slot t (where (Sij(t)) is a permutation matrix).
Here we show that if the control decisions (Sij(t)) are
stationary and independent of the arrival streams, and if
the rate matrix has a sufficiently large set of positive rate
entries, then average delay in the switch is necessarily
O(N). Because backlog is directly related to the arrival
streams, it follows that stationary switching schemes that
operate independently of queue backlog incur at least
O(N) delay.

Specifically, we assume that for all inputs (i, j) and all
slots τ ∈ {0, 1, 2, . . .} the scheduling decisions satisfy:

E {Sij(τ) | X} = E {Sij(0)} M=µij (7)

where X represents the arrival processes (Xij(t)) over
the entire infinite timeline t ∈ {0, 1, 2, . . .}. The condi-
tion (7) allows for a slightly larger class of scheduling
processes (Sij(t)) than the class of stationary processes.

As a caveat, we note that periodic scheduling schemes
such as round-robin are by definition not stationary.
Furthermore, the deterministic schedules developed to
achieve guaranteed rate services in [2] are both non-
stationary and potentially non-periodic. These schemes
are designed to deterministically achieve a given target
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scheduling rate matrix (µij), in the sense that over any
time interval of size P , the empirical average scheduling
rate for each port (i, j) satisfies:

µij − φ(P ) ≤ 1
P

P−1∑
τ=0

Sij(t + τ) ≤ µij + φ(P )

where φ(P ) is a function such that limP→∞ φ(P ) = 0.
However, for such a process (Sij(t)), we can de-

fine a new process (S̃ij(t)) with a randomized phase
as follows: Fix an integer P ∗, and choose a random
integer Z independently and uniformly over the set
{0, 1, . . . , P ∗ − 1}. Define (S̃ij(t))M=(Sij(t + Z)). It
follows from the above inequality that for any input
(i, j) and any timeslot τ , we have E

{
S̃ij(τ) | X

}
=

1
P ∗

∑P ∗−1
v=0 E {Sij(t + v) | X}, and hence:

µij − φ(P ∗) ≤ E
{

S̃ij(τ) | X
}
≤ µij + φ(P ∗)

If the original scheduling process (Sij(t)) is periodic
with period P ∗, then the random phase process (S̃ij(t))
will satisfy (7) exactly. Otherwise, for any value γ such
that 0.5 < γ < 1, a sufficiently large value of P ∗ can be
chosen to ensure that for each (i, j) with µij > 0 and
for all τ , we have:

E
{

S̃ij(τ) | X
}
≤ µij/γ (8)

which can also be used to prove our O(N) result [see
eqs. (30)(29) in Appendix A]. However, if the arrival
process is stationary and independent of the server
process, then such phase randomization does not change
the average delay. Hence, the following O(N) delay
result also holds for any scheduling algorithm that is
independent of backlog and that can be made to satisfy
either (7) or (8) by phase randomization.

The following lemma is useful for obtaining lower
bounds on delay. The proof uses a technique similar
to that used in [25] to show that fixed length packets
minimize delay over all packet length distributions with
the same mean, and is given in Appendix A.

Lemma 1: For a switch with general arrival processes,
any scheduling algorithm that satisfies (7) yields a time
average queue occupancy Lij for each queue (i, j)
satisfying:

Lij ≥ U ij

where Uij represents the unfinished work (or “fractional
packets”) in a system with the same inputs but with
constant server rates of µij packets/slot, for at least one
existing set of rates (µij) such that

∑
j µij ≤ 1 for all

i, and
∑

i µij ≤ 1 for all j.
Proof: The proof is given in Appendix A. Intuitively,

the result holds because the congestion in a queue with

a time varying server is greater than or equal to the
corresponding congestion in a queue with a constant
server with service rate equal to the time average rate
of the original process.

The lemma above produces a lower bound on delay
in terms of a system of queues with the same inputs
but with constant server rates, and leads to the following
theorem.

Theorem 1: If inputs Xij are Poisson with uniform
rates λij = ρ/N (for ρ < 1 representing the loading on
each input), then any scheduling algorithm that satisfies
(7) incurs an average delay of at least N

2(1−ρ) .
Proof: The unfinished work in an M/D/1 queue

with arrival rate λij and service time 1/µij is equal
to U ij(µij) = λij

2(µij−λij)
, which can be computed by

adding ρij/2, the average portion of a packet remaining
in the server, to the expresion for the average number
of packets in the buffer of an M/D/1 queue [24]. From
Lemma 1, there exists a rate matrix (µij) with row
and column sums bounded by 1, so that Lij ≥ U ij

for all (i, j). Define Λ as the set of all rate matrices
(µij) satisfying

∑
i µij ≤ 1,

∑
j µij ≤ 1. Using Little’s

Theorem, and the fact that
∑

ij λij = ρN , we have the
following average delay W :

W =
1

ρN

∑
ij

Lij ≥ inf
(µij)∈Λ

 1
ρN

∑
ij

U ij(µij)


However, because the U ij(µij) functions are identical
and convex, the expression inside the infimum is a
convex symmetric function and attains its minimum at
µij = 1/N for all (i, j), and the result follows.

Note that this lower bound differs by one timeslot from
the delay expression in (5) for the periodic scheduling
algorithm given in Section II. Because of the 1/(1− ρ)
factor, delay in the N × N packet switch with Poisson
inputs necessarily grows to infinity as the loading ρ
approaches 1. For any fixed loading value, delay grows
linearly in the size of the switch. This O(N) result holds
more generally. Indeed, consider general stationary and
ergodic arrival streams Xij with data rates λij , and define
the average rate into input ports of the switch to be
λav

M= 1
N

∑
ij λij . (Note that in the uniform loading case,

λav = ρ, and λij = ρ/N .) We assume that there are at
least O(N2) entries of the rate matrix which have rates
greater than or equal to O(λav/N).

Theorem 2: For general stationary and ergodic inputs
with data rates λij , if O(N2) of the rates are greater than
O(λav/N), then average delay under any algorithm that
satisfies (7) is at least O(N).

Proof: As in the proof of Theorem 1, we have from
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Lemma 1:

W ≥ inf
(µij)∈Λ

 1
λavN

∑
ij

U ij(µij)

 (9)

where U ij(µij) is the time average unfinished work in a
queue with a constant service rate µij . This unfinished
work is at least as much as the average unfinished work
in the server of queue (i, j), which by Little’s Theorem
is equal to λij/(2µij). Furthermore, the infimum in (9)
is greater than or equal to the (less restricted) infimum
taken over all µij such that

∑
ij µij ≤ N . By a simple

Lagrange Multiplier argument, it can be shown that the
infimum of

∑
ij λij/(2µij) over this larger set of rates

is achieved when µij = N
√

λij

/∑
ij

√
λij . It follows

that Delay ≥ (
P

ij

√
λij)2

2λavN2 . Because O(N2) of the rates
are greater than O(λav/N), the numerator is greater than

or equal to
(
O(N2)

√
λav/N

)2
, and the result follows.

A simple counter-example shows that delay can be
O(1) if the rate matrix does not have a sufficient number
of entries with large enough rate: Consider a rate matrix
equal to the identity matrix multiplied by the scalar λ <
1. Then, the switch can be configured to always transfer
input 1 to output 1, input 2 to output 2, etc., and average
delay is the same as the O(1) delay of an output queue.

Similar results can be obtained for N × N packet
switches with a speedup of R, where R is an integer
greater than or equal to 1. That is, the input rate matrix
(λij) is assumed to still satisfy the original constraints
(1) and (2), but the internal crossbar switching can be
done at a rate that is R times faster. In this situation,
the statement of Theorems 1 and 2 can be repeated to
prove that delay in the input queues is greater than or
equal to the delay in a system with constant input rates
µij such that the sum of any row or column of the
the (µij) rate matrix is less than or equal to R. Using
reasoning similar to the arguments in Theorems 1 and
2, it follows that average delay is at least O(N/R) for a
switch with speedup R that makes scheduling decisions
independent of queue backlog. Thus, constant speedups
(typically on the order of 2, 4, or 8), cannot change the
O(N) characteristic for backlog-independent scheduling.

IV. AN O(log(N)) DELAY BOUND FOR

BACKLOG-AWARE SCHEDULING

Here we show that O(log(N)) delay is possible by
using a backlog-aware scheduling strategy. This result
for the first time establishes that sublinear delay is
possible in an N × N packet switch without speedup.

The algorithm is similar to the frame based schemes
considered in [14] [17], and is based on the principle of
iteratively clearing backlog in minimum time. Minimum
clearance time policies have recently been applied to
stabilize networks in [26], [16]. We begin by outlining
several known results about clearing backlog from a
switch in minimum time.

A. Minimum Clearance Time and Maximum Matchings

Consider a single batch of packets present in the
switch at time zero. We represent the initial backlog as
an occupancy matrix (Lij), where entry Lij represents
the number of packets at input port i destined for
output port j. Suppose that no new packets enter, and
the goal is simply to clear all packets in minimum
time by switching according to permutation matrices.
The following fundamental result from combinatorial
mathematics provides the solution to this problem [27]:

Fact 2. Let T ∗ represent the minimum time required
to clear backlog associated with occupancy matrix
(Lij). Then T ∗ is exactly given by the maximum sum
over any row or column of the matrix (Lij).

It is clear that the minimum time to clear all backlog
can be no smaller than the total number of packets in
any row or column, because the corresponding input
or output can only serve 1 packet at a time. This
minimum time can be achieved by an algorithm similar
to the Birkhoff-Von Nuemann algorithm described in [2].
Indeed, The matrix is first augmented with null packets
so that every row and column has line sum T ∗. Using
Hall’s Theorem [27], it can be shown that the augmented
backlog matrix can be cleared by a sequence of T ∗

perfect matches of size N .
Such matchings can be found sequentially using any

Maximum Size Matching algorithm, where each match
requires at most O(N2.5) operations (see [2] [28] [29]
[14]). Note that the preliminary matrix augmentation
procedure can be accomplished with O(N) computations
each timeslot by updating a set of vectors row sum
and column sum each timeslot, and then augmenting the
matrix at the beginning of each frame by using these row
and column sum vectors to sequentially update each row
in the next column which does not have a full sum.

It is useful to also consider scheduling according
to maximal matches, which are matches where no
new edges can be added without sharing a node with
an already matched edge. Maximal matchings can be
found with O(N2) operations and the computation is
easily parallelizable to O(N) complexity [14]. Given a
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backlog matrix (Lij) with minimum clearance time T ∗,
the following well known result establishes an upper
bound on the time required for backlog to be cleared
by maximal matches.

Fact 3. If the minimum clearance time of a backlog
matrix is T ∗, then arbitrary maximal matchings will
clear all backlog in time less than or equal to 2T ∗ − 1.

A one-sentence proof of this result is given in [14].

B. Fair-Frame Scheduling for Logarithmic Delay

We now present a frame based scheduling algorithm
that iteratively clears backlog associated with successive
batches of packets. Packets which are not cleared during
a frame are marked and handled separately in future
frames. The algorithm is “fair” in that when the empirical
input rates averaged over a frame are outside of the
capacity region of the switch, decisions about which
packets to serve are made fairly. We show that if inputs
are Poisson and rates are strictly within the capacity
region, the switch is stable and yields O(log(N)) delay.

The Fair-Frame Scheduling Algorithm: Timeslots are
grouped into frames of size T slots.

1) On the first frame, switching matrices (Sij(t)) are
chosen randomly so that the probability of serving
any particular queue is uniformly 1/N .

2) On the (k + 1)th frame, the matrix (Lij(kT ))
consisting of packets that arrived during the pre-
vious frame is obtained and the maximum row and
column sum T ∗ is computed.

3) If T ∗ ≤ T , the matrix is augmented with null
packets so that all row and column sums are equal to
T ∗. Else, if T ∗ > T , then some row or column sum
of (Lij(kT )) exceeds T , and an overflow occurs.
In the case of an overflow, a subset of the packets
are retained to form a new matrix (L̃ij(kT )) that
does not violate the row and column constraints.
These packets will be scheduled on the next frame,
and the remaining packets are marked as overflow
packets. Choice of which packets to mark is based
upon some type of utility function, such as the
maximum throughput utility or max-min fair utility
described in [2]. We assume only that the resulting
(L̃ij(kT )) matrix has the maximal property, in that
adding back any individual overflow packet would
cause a row or column constraint to be violated.
The (L̃ij(kT )) matrix is then augmented with null
packets so that all rows and columns sum to T .

4) All non-overflow packets are scheduled during
frame (k + 1) by performing maximum matches
every timeslot to strip off permutations from the
augmented backlog matrix.

5) If all packets of the augmented backlog matrix are
cleared in less than T slots, uniform and random
scheduling is performed on the remaining slots
to serve the overflow packets remaining in the
system from previous overflow frames. Note that
the probability of serving any queue (i, j) during
such a slot is 1/N .

6) Repeat from step 2.

Note that the manner in which conforming packets
are cleared every frame (using maximum size matches)
is not unique, and different sequences of switching
decisions will lead to different average waiting times
for packets within the frame. The problem of finding
the optimal sequence of switching decisions to min-
imize this average time is considered in [18], where
it is shown the optimal algorithm also clears the ini-
tial batch of packets in minimum time. The optimal
algorithm of [18] has geometric complexity, although
lower complexity heuristics are also presented there.
The problem of optimally adding “best effort” packets
into an existing load requirement is considered in [19]
(where NP completeness results are derived), and the
algorithms developed there could potentially be used
to schedule overflow packets more efficiently, perhaps
yielding constant factor delay improvements. For our
purposes, we analyze delay under the assumption that
any minimum clearance time schedule is used on each
frame, and hence our O(log(N)) results do not rely on
optimizing average waiting times within a frame.

Let Xij(t) represent the number of packets that arrive
to port (i, j) during the first t timeslots. If any packet
arriving during a frame k is not cleared within the next
frame, at least one of the following inequalities must
have been violated:∑

j

[Xij((k + 1)T )−Xij(kT )] ≤ T for all i (10)∑
i

[Xij((k + 1)T )−Xij(kT )] ≤ T for all j (11)

Traffic that satisfies the above inequalities during a frame
is said to be conforming traffic. Packets remaining in the
switch because of a violation of these inequalities are
defined as non-conforming packets and are served on a
best effort basis in future frames. Note that, by definition,
the Fair-Frame algorithm clears all conforming traffic
within 2T timeslots.

Here we describe the performance of the Fair-Frame
algorithm with random inputs. Suppose inputs are Pois-
son with rates λij satisfying:∑

j

λij ≤ ρ for all i ,
∑

i

λij ≤ ρ for all j (12)
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where ρ represents the maximum loading on any input
port or output port. Note that if the sum rate to any input
or output exceeds the value 1, the switch is necessarily
unstable. In the following, we show that if ρ < 1, the
Fair-Frame algorithm can be designed to ensure stability
with delay that grows logarithmically in the size of the
switch. We start by presenting a lemma that guarantees
the overflow probability decreases exponentially in the
frame length T .

Lemma 2: For a given (arbitrarily small) overflow
probability δ, choose an integer frame size T such that:

T ≥ log(2N/δ)
log(1/γ)

(13)

where γ M=ρe1−ρ. Then a switch operating under the
Fair-Frame algorithm with a frame size T ensures the
probability of a frame overflow is less than δ. All
conforming packets have a delay less than 2T . Further,
if T

∑
ij λij ≥ 1, then the long term fraction of packets

that are non-conforming is less than or equal to 2δ.
Proof: Packets are lost during frame k only if one

of the 2N inequalities of (10), (11) is violated during
the previous frame. Let X(T ) represent the number of
packets arriving from a Poisson stream of rate ρ during
an interval of T timeslots. Then any individual inequality
of (10) and (11) is violated with probability less than or
equal to Pr[X(T ) > T ]. By the Chernov bound, we
have for any r > 0:

Pr[X(T ) > T ] ≤ E
{

erX(T )
}

e−rT

= exp(ρT (er − 1)− rT ) (14)

where the identity E
{
erX(T )

}
= exp(ρT (er − 1)) was

used for the Poisson variable X(T ).
To form the tightest bound, define the exponent in

(14) as the function g(r) = ρT (er − 1) − rT . Taking
derivatives reveals that the optimal exponent for the
Chernov bound is achieved when er = 1/ρ. Using this
in (14), we have:

Pr[X(T ) > T ] ≤
[
ρe1−ρ

]T
We define γ M=ρe1−ρ. The γ parameter is an increasing
function of ρ for 0 ≤ ρ ≤ 1, being strictly less than 1
whenever ρ < 1. By the union bound, the probability
that any one of the 2N inequalities in (10) and (11) is
violated is less than or equal to 2NγT . Hence, if we
ensure that:

2NγT ≤ δ (15)

then each frame successfully delivers all of its packets
with probability greater than 1− δ. Taking the logarithm

of both sides of (15), we obtain the requirement:

T ≥ log(2N/δ)
log(1/γ)

Now let θ M=T
∑

ij λij represent the expected number
of packet arrivals during a frame. It can be shown that for
Poisson arrivals, the extra amount of packets that arrive
given that the number of arrivals is greater than some
value T is stochastically less than the original Poisson
variable plus 1 (see Appendix B). It follows that the
expected number of extra arrivals to a frame in which
one of the inequalities (10), (11) is violated is less than
or equal to 1 + θ. Thus, the ratio of non-conforming
packets to total packet arrivals is no more that δ(1+θ)/θ.
Assuming θ ≥ 1, it follows that this ratio is less or equal
to 2δ.

We note that the same bound in (13) applies if pack-
ets arrive according to Bernoulli processes rather than
Poisson processes, as the moment generating function
E
{
erX(T )

}
for a Poisson variable dominates that of a

sum of i.i.d. Bernoulli variables with the same rate. The
log(2N) delay bound in (13) arises because of the 2N
constraints describing the switch capacity region. In a
switch with Bernoulli traffic rather than Poisson traffic,
no more than one packet can enter any input port. In this
case, the constraints in (10) are necessarily satisfied and
can be removed from the union bound expression in (15),
which reduces the delay bound. A similar argument can
be used to prove that logarithmic delay is achievable in
any single-hop switching network with a capacity region
described by a polynomial number of constraints, as the
logarithm of Nk remains O(log(N)).

It is useful to understand how the frame size grows
for a fixed overflow probability δ as the loading ρ
approaches 1. The formula for the frame size T contains
a log(1/γ) term in the denominator. Using the definition
of γ and taking a Taylor series expansion about ρ = 1
shows that log(1/γ) = (1−ρ)2

2 + O(1 − ρ)3. Thus, the
denominator is O((1− ρ)2). This suggests that the cost
of achieving O(log(N)) delay is to have a delay which
is more sensitive to the loading parameter ρ (confer with
eqs. (4)- (6)).

We note that the Poisson assumption is not essential to
the proof—a similar proof can be constructed for any in-
dependent input streams Xij such that Pr[

∑
j Xij(T ) >

T ] and Pr[
∑

i Xij(T ) > T ] decreases geometrically
with T . It is necessary that the streams be independent
for this property to hold. Indeed, consider a situation
where all inputs experience the same processes, so that
Xij(t) = X(t) for all (i, j). Whenever a packet arrives
to input 1 destined for output 1, all other inputs receive a



9

packet destined for output 1, and the minimum average
delay is O(N/2).

To provide a true delay bound, the delay of non-
conforming packets must be accounted for, as accom-
plished in the theorem below.

Theorem 3: For Poisson inputs strictly interior to the
capacity region with loading no more than ρ, a frame size
T ≥ 2 can be selected so that the Fair-Frame algorithm
ensures logarithmic average delay.

Proof: It suffices to consider only the case when
T
∑

ij λij ≥ 1.3 For an overflow probability δ (to be

chosen later), we choose the frame size T =
⌈

log(2N/δ)
log(1/γ)

⌉
so that overflows occur with probability less than or
equal to δ. The backlog associated with non-conforming
packets for any queue (i, j) can be viewed as entering a
virtual GI/GI/1 queue with random service opportunities
every frame. Let q represent the probability of frame
‘underflow’: the probability that there is at least one
random service opportunity for non-conforming packets
during a frame. This is the probability that all backlog
of the previous frame can be cleared in less than T
slots. Using a Chernov bound argument similar to the
one given in the proof of Lemma 2, it can be shown that
Pr[X(T ) > T − 1] ≤ 1

ργT , and hence:

q ≥ 1− 2N

ρ
γT (16)

Expressed in terms of δ, this means that:

q ≥ 1− 2N

ρ
γ

log(2N/δ)
log(1/γ)

= 1− 2N

ρ
γlogγ(δ/(2N))

= 1− δ/ρ (17)

Given a non-conforming service opportunity, any par-
ticular queue is served with probability 1/N . The av-
erage delay for non-conforming packets in queue (i, j)
is thus less than or equal to T (the size of the frame
in which they arrived) plus the average delay associated
with a slotted GI/GI/1 queue where a service opportunity
arises with probability q/N . Every slot, with probability
1− δ no new packets arrive to this virtual queue (as all
packets are conforming), and with probability δ there are
1+X packets that arrive, where X is a Poisson variable
with mean ρT (where we again use the Appendix B
result that excess arrivals are stochastically less than the
original). Note that this is a very large overbound, as all
overflow packets arriving to an input i are treated as if

3If T
P

ij λij < 1, then it can easily be shown that average delay
is less than or equal to that of a slotted M/D/1 queue with unit
service times and loading ρ = 1/T ≤ 1/2.

they arrived to queue (i, j). Conforming packets consist
of at least a fraction 1− 2δ of the total data and have a
delay bounded by 2T . Thus, the resulting average delay
satisfies:

W ≤ 2T (1− 2δ) + 2δ(T + TDelay(GI/GI/1))

≤ 2T + 2δTDelay(GI/GI/1) (18)

where Delay(GI/GI/1) represents the average delay
of non-conforming packets in the virtual GI/GI/1 queue
(normalized to units of frames).

The average delay of a slotted GI/GI/1 queue with
Bernoulli service opportunities can be solved exactly.
However, we simplify the exact expression by providing
the following upper bound, which is easily calculated
using standard queueing theoretic techniques:

Delay(GI/GI/1) ≤
1 + E

{
A2
}

/λ

2(µ− λ)
(for µ > λ)

(19)
where, in this context, we have:

λ = δ(1 + ρT ) (20)

µ = q/N (21)

E
{
A2
}

= δE
{
(1 + X)2

}
= δ

[
1 + 3ρT + ρ2T 2

]
(22)

The virtual queue is stable provided that µ > λ. This
is ensured whenever the parameter δ is suitably small.
Indeed, we have:

µ− λ =
q

N
− δ(1 + ρT )

≥ 1
N
− δ

ρN
− δ(1 + ρT ) (23)

=
1
N

[
1− δ

(
1
ρ

+ N + NρT

)]
(24)

where inequality (23) follows from (17). Hence, we have
µ > λ whenever the following condition is satisfied:

δ

(
1
ρ

+ N + NρT

)
< 1 (25)

Choose δ = O(1/N2) and note that T =
d log(2N/δ)

log(1/γ) e = O(log(N3)) = O(log(N)). It follows that
the left hand side of (25) can be made arbitrarily small
for suitably small δ. In particular, we can find a value δ

such that δ
(

1
ρ + N + NρT

)
≤ 1/2, so that (24) implies

(µ− λ) ≥ 1/(2N). In this case, we have from (18) and
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(19) that:

W ≤ 2T + 2δT
1 + E

{
A2
}

/λ

2(µ− λ)
(26)

≤ 2T + 2δTN

(
1 +

1 + 3ρT + ρ2T 2

1 + ρT

)
= 2T + 2δTN

(
1 +

(1 + ρT )2 + ρT

1 + ρT

)
≤ 2T + 2δTN (2 + 2ρT )

Because δ = O(1/N2) and T = O(log(N)), it follows
that the resulting average delay is O(T ), that is, Delay ≤
O(log(N)).

An explicit delay bound can be obtained for a given
loading value ρ as follows: Again define γ M=ρe1−ρ, and
define the frame size as a function of δ: Tδ

M=d log(2N/δ)
log(1/γ) e.

Using the definitions for λ, µ, and E
{
A2
}

given in (20)-
(24), the average delay bound of (26) can be expressed
as a pure function of the parameter δ (as well as the
parameter ρ). This bound can be minimized as a function
of δ, subject to the constraint that δ

(
1
ρ + N + NρTδ

)
<

1. The resulting value δmin defines a suitable frame size
Tδmin

and gives the tightest bound achievable from the
above analysis.

In Fig. 2 we plot the resulting delay bound as a func-
tion of N for the fixed loading value ρ = 0.7. The delay
bound for the Fair-Frame algorithm follows a logarithmic
profile exactly (the plot is linear when a logarithmic
scale is used for the horizontal axis). The bound is
plotted next to the exact average delay expressed in (4)
for the queue length-independent randomized algorithm.4

Recall that both curves correspond to any rate matrix
(λij) that satisfies (12). Note the rapid growth in delay
as a function of the switch size for the randomized
algorithm, as compared to the relatively slow growth of
the Fair-Frame bound. From the plot, the curves cross
when the switch size is approximately 200. However, the
Fair-Frame curve represents only a simple upper bound.
Tighter delay analysis would likely reveal that the Fair-
Frame algorithm is preferable even for much smaller
switch sizes (see also the simulations in Section VI).

We note that although only average delay is compared,
the Fair-Frame algorithm has the property that all con-
forming packets have a worst case delay that is less than
or equal to 2T (where T is logarithmic in N ), and the
fraction of conforming packets is at least 1−O(1/N2).
That is, worst case delay is logarithmic for all but a
negligible fraction of all packets served.

4The delay expression (4) for the randomized algorithm is almost
identical to the bound obtained for the MWM algorithm in [9], and
hence the plot in Fig. 2 can also be viewed as a comparison between
the MWM bound and the Fair-Frame bound.
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Fig. 2. The logarithmic delay bound for the Fair-Frame algorithm
as a function of the switch size N , as compared to the O(N) delay
of the randomized algorithm.

C. Robustness to Changing Input Rates

Note that the Fair-Frame algorithm requires a loading
bound ρ on each input but otherwise does not require
knowledge of the exact input rates. For this reason, it
can be shown that the Fair-Frame algorithm is robust to
time varying input rates. Indeed, it is not difficult to show
that the Chernov bound of (14) applies even when rates
are arbitrarily changing every timeslot, provided that on
each timeslot the new rates always satisfy the constraints
in (12). In the case when input rates are outside of the
capacity region, it is not possible to stabilize the switch.
However, the utility metric of the Fair-Frame algorithm
can be used to make fair scheduling decisions in this
situation.

V. IMPLEMENTATION COMPLEXITY

Here we elaborate on Steps 2-4 of Fair-Frame.

A. Steps 2 and 3

In these steps of the Fair-Frame algorithm, the backlog
matrix of the previous frame is modified by adding null
packets and/or by removing some packets that are non-
conforming. The complexity of this procedure depends
on the fairness criterion used for marking overflow
packets. The simplest procedure is the “First-Come-First-
Served Fairness Rule” (FCFS), where vectors row sum
and col sum are updated every timeslot, and any set of
packets arriving to a particular input port are marked
as overflow packets if they cause the corresponding
row sum or col sum entries to exceed the frame size T .
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It is not difficult to implement such a scheme with O(N)
operations per timeslot (requiring only O(1) operations
per port). The addition of null packets is also very simple
and can be done in a greedy manner. The complexity
bottleneck occurs at Step 4 of the algorithm.

B. Step 4

The Fair-Frame algorithm relies on Maximum Size
Matchings every timeslot. Such matchings can be per-
formed using the algorithm in [29] which requires
O(MN1/2) operations, where M is the number of
nonzero entries of the backlog matrix. For backlog
matrices with many nonzero entries, M can be as
large as N2. However, the Fair-Frame algorithm by
definition performs maximum matchings on a backlog
matrix for which the total number of packets at any
input is no more than T , where T is O(log(N)). It
follows that the number of nonzero entries is less than
or equal to NT , i.e., M is O(N log(N)). Thus, the
Fair-Frame algorithm achieves logarithmic delay and
requires O(N1.5 log(N)) total operations every timeslot.
This (delay, complexity) operating point lies below the
delay-complexity curve established for the class of stable
algorithms given in [20]. Indeed, in [20] it is shown that
for any parameter choice α such that 0 ≤ α ≤ 3, a
stable scheduling algorithm can be developed requiring
O(Nα) per-timeslot computation complexity and en-
suring O(N4−α) average delay. Thus, the Fair-Frame
algorithm reduces delay by approximately O(N2.5) at
the O(N1.5 log(N)) complexity level. We conjecture that
a new complexity-delay tradeoff curve can be established
using the techniques given in [20].

The complexity of maximal matchings is also reduced
when using the backlog matrices of the Fair-Frame
algorithm. Indeed, it can be seen that maximal matchings
can be performed using only O(N log(N)) operations.
From Fact 3, it is not difficult to show that implementing
the Fair-Frame algorithm with these low complexity
maximal matches yields stability and logarithmic delay
whenever the switch is at most half-loaded (i.e, ρ < 1/2),
or whenever the switch has a speedup of at least 2.

C. Improvements and FIFO Service

A simple improvement that preserves the analytical
delay properties of Fair-Frame is as follows: If the switch
is scheduled to serve a null packet from port (i, j) during
a slot when there is an actual packet waiting at this port,
this actual packet can be served (thus reducing either
the total number of packets served in the next frame
or the number of buffered overflow packets). Further
note that the Fair-Frame algorithm serves conforming

packets with higher priority than non-conforming pack-
ets. Hence, it is possible for a non-conforming packet
that arrived in a previous frame to be served after a
conforming packet that arrived to the same port at a
later time. However, FIFO service can easily be enforced
by appropriately exchanging the identities of conforming
and non-conforming packets. This would not change the
number of conforming or non-conforming packets at any
queue at any time, and would not change any sample path
of system dynamics. Thus, average occupancy and (by
Little’s Theorem) average delay would not change.

VI. SIMULATIONS

Here we demonstrate the performance of the Fair-
Frame scheduling algorithm under both uniform and
non-uniform traffic.

A. Poisson Inputs

We consider independent Poisson inputs with a port
loading set to ρ = 0.7. For each switch size N , the
simulations were run for 1000 frames, with a frame
size T = d log(2N/δmin)

log(1/γ) e, where δmin was chosen to
minimize the bound in equation (26) under the constraint
in equation (25). We first consider uniform input traffic,
i.e., λij = 0.7/N for all N × N virtual input queues.
The results are shown in Fig. 3. The dashed line in Fig.
3 is the theoretical average delay for the randomized
matching algorithm of Section II (given in equation
(4)), and the concave curve without marks shows the
theoretical logarithmic delay bound for the Fair-Frame
algorithm derived in Section IV. It is clear from the
figure that the simulated average delay under the Fair-
Frame scheduling algorithm indeed increases sublinearly
with N , and that it sits well inside the logarithmic
analytical bound.

The bottom curve in Fig. 3 illustrates the simulated
performance of a very simple improvement to the Fair-
Frame algorithm that allows for dynamic frame siz-
ing. The improvement only differs from the Fair-Frame
scheduling algorithm in Step 5: When all backlogs are
cleared within T slots and there are no overflow packets,
the switch starts another frame immediately (rather than
continuing to randomly choose switching configurations
for the remainder of the frame). It can be analytically
shown that the average delay of this modified algorithm
is upper bounded by the same logarithmic curve derived
for the Fair-Frame algorithm. However, as seen by the
figure, this modification yields significantly less average
delay in our experiments, as expected. We note that we
have also conducted limited simulations of the original
Maximum Weight Match (MWM) algorithm for several
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Fig. 3. Simulation results of Fair-Frame scheduling algorithm with
uniform input traffic, ρ = 0.7.
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Fig. 4. Simulation results of Fair-Frame scheduling algorithm with
non-uniform input traffic, ρ = 0.7

small values of N . While there is no logarithmic bound
for MWM, we found that MWM produced lower delay
than all other algorithms tested. We expect this trend to
persist even for large values of N . However, it is difficult
to run extensive simulations of MWM for large N due
to the O(N3) complexity associated with computing
a Maximum Weight Match, whereas the Fair-Frame
algorithm is easier to implement for large N due to the
complexity savings discussed in Section V.

Fig. 4 shows the influences of non-uniform input
traffic for the Fair-Frame scheduling algorithm. We let
λij = ρ

2N when i 6= j and λij = N+1
2N ρ when i = j.

These values satisfy the 2N constraints of (12). The
figure illustrates that delay in this case is slightly better
than the uniform traffic case. This verifies that Fair-
Frame scheduling is indeed robust under nonuniform
traffic, as proven in the analysis of Section IV.
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Fig. 5. Delay performance for N2 independent ON/OFF sources
for both uniform and non-uniform traffic. Note that it is possible for
N packets to arrive to a single input port (one for each destination).

B. Bursty Traffic

Here we consider the case when all N2 inputs have
independent but non-Poisson traffic. Specifically, we
assume the traffic for each input port is described by
an independent Markov modulated ON/OFF process. A
traffic stream in the ON state during a timeslot produces
a single packet on that slot, and produces no packet
if in the OFF state. For each (i, j), the probability of
transitioning from ON to OFF is εij , and the probability
of transitioning from OFF to ON is δij . Throughout, we
assume that εij = ε = 0.1, so that the average duration of
an ON period is 10 timeslots, and this average does not
change as the network size N is increased. The values δij

were selected to ensure the desired time average arrival
rates λij (so that δij = ελij/(1− λij)).

As our analysis of the necessary frame size T was
conducted for Poisson inputs, the same frame size may
not be valid for this bursty scenario. Thus, simulations
were conducted using the dynamic frame sizing approach
as in the previous example for Poisson inputs, but no
bound on the maximum frame size was specified. It
was observed that, indeed, this bursty traffic generally
produced larger frame lengths than the corresponding
Poisson simulations, and overall delay was larger but
still sub-linear in N . Fig. 5 illustrates results for both
uniform and non-uniform traffic, with ρ = 0.7 and with
the same λij values as in the Poisson examples.

VII. CONCLUSIONS

We have considered scheduling in N × N packet
switches with random traffic. It was shown that queue
length-independent algorithms, such as those using ran-
domized or periodic schedules designed for known input
rates, necessarily incur average delay of at least O(N).
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However, a simple queue length-aware algorithm was
constructed and shown to provide average delay of
O(log(N)). This is the first analytical demonstration that
sublinear delay is possible in a packet switch, and proves
that high quality packet switching with the crossbar
architecture is feasible even for very large switches of
size N > 1000. The Fair-Frame algorithm provided
here is based on well established framing techniques
and requires only O(N1.5 log(N)) computations every
timeslot. Our logarithmic delay analysis can similarly
be applied to other single-hop networks with capacity
regions that are described by a polynomial number of
constraints. An important question for future research
is that of developing delay-optimal scheduling. Such
scheduling would yield delay that is upper bounded by
O(log(N)) and lower bounded by O(1), which now
serve as the tightest known bounds on optimal delay.

APPENDIX A

Here we prove Lemma 1: For a switch with general
arrival processes, any stationary scheduling algorithm
that operates independently of the input streams yields
Lij ≥ U ij , where Uij represents the unfinished work (or
“fractional packets”) in a system with the same inputs but
with constant server rates of µij packets/slot, for some
rates µij satisfying

∑
j µij ≤ 1 for all i, and

∑
i µij ≤ 1

for all j.
Proof: For the course of this proof, it is useful to

consider queueing analysis in continuous time, so that
Sij(t) is defined for all real number times t ≥ 0, but
is constant on unit intervals (so that Sij(t) = Sij(btc)).
Consider a queue occupancy process L̃ij(t) representing
the unfinished work (or fractional packets) in a queue
with the same input and server processes Xij(t) and
Sij(t), but operating without the timeslot structure. In
this way, if Sij(t) = 1 for t ∈ [0, 2] and a single
packet arrives to an empty system at time 0.5, the packet
will start service immediately in the new system, but
will wait until the start of the next slot in the original
(slotted) system. Thus, L̃ij(1) = 0.5 and L̃ij(1.5) = 0,
while Lij(1) = Lij(1.5) = 1. Because the original
system delays service until the next slot and holds packet
occupancy Lij(t) at a fixed integer value until a service
completion, it is not difficult to show that:

Lij(t) ≥ L̃ij(t) for all t (27)

The continuous time process L̃ij(t) can be written:

L̃ij(t) = sup
τ≥0

[
(Xij(t)−Xij(t− τ))−

∫ t

t−τ
Sij(v)dv

]
(28)

The above expression is a well known queueing result
that is easily verified: L̃ij(t) is at least as large as the
difference between the number of packet arrivals and
service opportunities over any interval, and the bound is
met with equality on the interval defined by the starting
time of the current busy period.

Taking expectations of the queue occupancy Lij(t)
over the stochastic arrival and server processes Xij(t)
and Sij(t) and using (27) and (28), we have:

E {Lij(t)} ≥ E
{

L̃ij(t)
}

= EXES|X

{
sup
τ≥0

[
Xij(t)−Xij(t− τ)

−
∫ t

t−τ
Sij(v)dv

]∣∣∣∣X}
≥ EX

{
sup
τ≥0

[
Xij(t)−Xij(t− τ)

−
∫ t

t−τ
ES|X {Sij(v) | X} dv

]}
(29)

= EX

{
sup
τ≥0

[Xij(t)−Xij(t− τ)− τµij ]
}

(30)

where µij
M=E {Sij(0)} is the expected rate of service to

queue (i, j). Inequality (29) follows from convexity of
the sup{} function together with Jensen’s inequality, and
(30) follows because Sij(v) = Sij(bvc), and the server
process Sij(bvc) is stationary and independent of the
arrival process (so that ES|X{Sij(v)|X} = µij). Notice
that at any time v, the sum of any row or column of the
matrix (Sij(v)) is less than or equal to 1. Hence, from its
definition, the (µij) matrix inherits this same property.

The expression on the right hand side of inequality
(30) represents the expected unfinished work U ij in
a continuous time queue with input Xij(t) and fixed
service rate µij (compare with (28)), and the proof is
complete.

APPENDIX B

Here we show that the excess packets from a Poisson
stream of rate λ are stochastically less than the original
Poisson stream.

Theorem 4: For a Poisson random variable X and for
all integers n, r ≥ 0, we have:

Pr[X ≥ n + r | X ≥ r] ≤ Pr[X ≥ n] (31)
We prove this result by means of the following two

lemmas.
Lemma 3: Let a, b, c, d > 0. If a

b ≥ c
d , then a

b ≥
a+c
b+d ≥

c
d .

Proof: Omitted for brevity.
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Lemma 4: Let {ak} > 0, {bk} > 0, and assume that∑∞
k=0 ak < ∞,

∑∞
k=0 bk < ∞. Suppose that ak

bk
is

decreasing in k. Then:∑∞
k=0 ak∑∞
k=0 bk

≥
∑∞

k=r ak∑∞
k=r bk

Proof: Choose an arbitrary positive integer K. Be-
cause ak

bk
is decreasing in k, we have that aK

bK
≤ aK−1

bK−1
.

By the preceding lemma, we thus know that:

aK

bK
≤ aK + aK−1

bK + bK−1
≤ aK−1

bK−1
≤ aK−2

bK−2

where the last inequality follows because we again use
the fact that ak

bk
is decreasing in k. Applying the lemma to

the last and third to last inequalities in the chain above,
we have:
aK

bK
≤ aK + aK−1

bK + bK−1
≤ aK + aK−1 + aK−2

bK + bK−1 + bK−2
≤ aK−2

bK−2

≤ aK−3

bK−3

Proceeding recursively, it follows that for any K and any
r ≤ K: ∑K

k=r ak∑K
k=r bk

≤
∑K

k=0 ak∑K
k=0 bk

Taking limits as K →∞ and using the fact that each of
the individual sums converge yields the result.

We can now prove the theorem. Note that the desired
result (31) is equivalent to:∑∞

k=r
λk+n

(k+n)!∑∞
k=r

λk

k!

≤
∑∞

k=0
λk+n

(k+n)!∑∞
k=0

λk

k!

To prove the above inequality, define ak = λk+n

(k+n)! and
bk = λk

k! . From Lemma 4, it suffices to show that ak

bk
is

decreasing in k. We have:

ak

bk
=

λn

n!

(
k + n

n

)−1

which indeed decreases with k, proving the theorem.
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