
998 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 3, MARCH 2007

Optimal Transmission Scheduling in Symmetric
Communication Models With Intermittent

Connectivity
Anand Ganti, Eytan Modiano, Senior Member, IEEE, and John N. Tsitsiklis, Fellow, IEEE

Abstract—We consider a slotted system with N queues, and
independent and identically distributed (i.i.d.) Bernoulli arrivals
at each queue during each slot. Each queue is associated with a
channel that changes between “on” and “off” states according
to i.i.d. Bernoulli processes. We assume that the system has K
identical transmitters (“servers”). Each server, during each slot,
can transmit up to C packets from each queue associated with
an “on” channel. We show that a policy that assigns the servers
to the longest queues whose channel is “on” minimizes the total
queue size, as well as a broad class of other performance criteria.
We provide several extensions, as well as some qualitative results
for the limiting case where N is very large. Finally, we consider a
“fluid” model under which fractional packets can be served, and
subject to a constraint that at most C packets can be served in
total from all of the N queues. We show that when K = N , there
is an optimal policy which serves the queues so that the resulting
vector of queue lengths is “Most Balanced” (MB).

Index Terms—Longest-queue-first, minimum-delay scheduling,
stochastic coupling, transmission scheduling, wireless channel.

I. INTRODUCTION

WIRELESS and satellite nodes are often limited to a small
number of transmitters and channels, and these have to

be allocated to users in the face of competing demands. For ex-
ample, satellite systems employ hundreds or even thousands of
narrow beams over which information can be transmitted at high
data rates. Each of the downlink beams covers a different region
within the satellite’s footprint. Data packets to be transmitted
along the different beams arrive at the satellite, either from the
ground or from neighboring satellites, and are stored in on-board
buffers. In this context, there is often only a limited number of
on-board transmitters, so that not all beams can be served by
the transmitters simultaneously. This gives rise to a scheduling
problem involving the allocation of the transmitters to the dif-
ferent downlink beams. Further complicating matters is the fact

Manuscript received July 14, 2004; revised November 3, 2006. This work
was supported in part by the National Science Foundation under Grant NCR-
9627610, by DARPA under the Next Generation Internet Initiative, and by the
ARO under Grant DAAD10-00-10466. The material in this paper was presented
in part at the 40th Annual Allerton Conference on Communication, Control, and
Computing, Monticello, IL, October 2002.

A. Ganti is with the Sandia National Laboratories, Albuquerque, NM 87185
USA (e-mail: aganti@sandia.gov).

E. Modiano and J. N. Tsitsiklis are with The Massachusetts Institute of Tech-
nology, Cambridge, MA 02139 USA (e-mail: modiano@mit.edu; jnt@mit.edu).

Communicated by G. Sasaki, Associate Editor for Communication Networks.
Digital Object Identifier 10.1109/TIT.2006.890695

that, due to weather and atmospheric conditions, the transmis-
sion rate along the different beams varies with time; hence, the
quality of the links must be taken into account in making sched-
uling decisions. For a different context, a wireless base station
typically has far fewer channels available for transmissions than
the number of users to be served. Again, this raises a nearly iden-
tical problem of allocating channels to the different users. Prob-
lems of this type have received much attention recently [1]–[5],
[8], [10], [11], sometimes motivated by next-generation wire-
less data systems.

In this paper, we focus on the special case where all arrival
streams and channel-state processes are statistically identical.
This symmetry sometimes leads to rather simple optimal poli-
cies, although their optimality can be hard to establish. We
model the system as a discrete-time queueing system, with
arrivals and channel states described by independent Bernoulli
processes. More specifically, we assume that the numbers of
arrivals to the th queue during the th slot, denoted by ,
are independent Bernoulli random variables, with the same
parameter for all and . Furthermore, we assume that the state
of the th channel during the th slot, denoted by , can
only take one of two values, namely, or . We designate as
the “off” state, and as the “on” state. When the channel is in
the “off” state, no transmission is possible. When the channel
is in the “on” state, the channel can be utilized, and we will
be saying that the corresponding queue is “connected.” Again,
we assume that the are independent and identically
distributed (i.i.d.) Bernoulli random variables, which are also
independent from the arrival processes. Finally, we let
represent the number of packets in the th queue at the begin-
ning of time slot .

We assume that there are transmitters (“servers”). Each
server can only serve one queue at a time, and can only be
assigned to a connected queue. At each slot, each server can
transmit up to packets, where the number reflects power
limitations or other constraints on an individual transmitter.
Fig. 1 depicts the system considered in this paper.

Such queueing systems, with multiple queues and stochasti-
cally varying connectivities, have been studied in [11] where the
authors use a coupling argument to establish that when
(single transmitter) and (one packet per slot), a policy
that serves the longest connected queue (LCQ) maximizes the
stability region of the system, and also results in optimal average
queue lenghts. Furthermore, [1] shows that the LCQ policy re-
sults in a maximal stability region under more general assump-
tions on the arrival and channel state processes.

0018-9448/$25.00 © 2007 IEEE

GANTI et al.: OPTIMAL TRANSMISSION SCHEDULING IN SYMMETRIC COMMUNICATION MODELS WITH INTERMITTENT CONNECTIVITY 999

Fig. 1. The symmetric transmission model.

In Section II, we generalize the result in [11] and establish
the optimality of a policy that allocates the servers to the longest
connected queues, for general and . In Section III, we dis-
cuss extensions to various settings where our i.i.d. assumptions
are violated. In Section IV, we consider the case where the
number of queues increases, while the total arrival rate and
the number of transmitters is held constant. We show, under a
slightly different arrival model (Poisson instead of Bernoulli ar-
rivals), that the average queue size is a bounded function of ,
under a fairly simple heuristic policy. In Section V, we consider
a “fluid” model under which fractional packets can be served,
and subject to a constraint that at most packets can be served
in total over all of the queues. We show that when ,
there is an optimal policy that serves the queues so that the re-
sulting vector of queue lengths is “Most Balanced.” Finally, Sec-
tion VI contains some brief concluding remarks.

II. OPTIMALITY OF LCQ POLICIES

We start with a precise description of the problem, to-
gether with some notation. We use to denote the vector

of queue lengths at the beginning of time
slot . Similarly, is the vector
with the number of arrivals at each queue during time slot , and

is the vector of channel connec-
tivities at time slot . Finally,
is the vector of packets withdrawn from each queue during
time slot . The dynamics of the system are described by the
equation

(1)

A policy is a family of mappings that, for any and for any
time , determines as a nonnegative integer function of
the past history and present state

and satisfies

We also introduce the history

until just before the channel states are to be observed, as well as
the history

until just before the new arrivals are to be observed. We
make the following assumption.

Assumption 1:
(a) For every and , and conditioned on , the

random variables , , are independent
and Bernoulli, with a parameter which is the same for all
, , .

(b) For every and , and conditioned on , the
random variables , , are independent
and Bernoulli, with a parameter which is the same for all
, , .

Let us now make a few remarks. The definition of the history
implies the following sequence of events. The queue

connectivities are observed, then the packet withdrawals
are determined, and finally, the new arrivals occur

and determine the next queue lengths . The policy
is allowed to be non-Markovian, because this facilitates

the proof of our subsequent results. Finally, the constraints
reflect our interpretation of

and : if , the th queue cannot be served;
otherwise, the number of packets that can be withdrawn is
limited by the number of available packets, as well as
the “server capacity” . Finally, note that we do not include
past decisions or queue lengths in the history, since
under any given policy, past decisions and queue lengths can
be recovered from the history.

A. LCQ Policies and an Ordering on Configurations

We say that a policy is a LCQ (“Longest Connected Queues”)
policy if it operates as follows. Consider the set of queues
that are “connected,” i.e., . Out of that set, select
up to queues with the largest values of , and serve

packets from each one of them. Note that
fewer than queues can be served if and only if the number
of nonempty connected queues is smaller than . Moreover,
in the event that there are multiple queues with equal values of

competing for a server, the policy can choose between
them arbitrarily.

We wish to establish that LCQ policies are optimal for a wide
class of performance criteria, expected total queue size being
one of them. The intuitive reason is that a LCQ policy tries to
keep the queued packets spread over multiple queues and has
a better chance of avoiding idling when some channels are off.
Using dynamic programming language, the cost-to-go of a par-
ticular “configuration” is lower when the packets are more
spread out to different queues. Our first step is to provide a math-
ematical definition of “more spread out,” that is suitable for our
purposes.

Let be the set of nonnegative integers, and let be
the Cartesian product of copies of . Given two vectors

1000 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 3, MARCH 2007

and in , we write
if we have for all . The relation defines a partial
order on the set . We now introduce another relation on

. (This relation depends on , but we will avoid the more
accurate notation because will be clear from the context.)
We will write if one of the following three relations hold:

(i) ;

(ii) and differ in only two components, say and , and
, ;

(iii) and differ in only two components, say and , and
there exists a positive integer such that

In Case (ii), the vectors and are permutations of each other,
and can be viewed as equivalent. In Case (iii), is “more bal-
anced” than , and can be obtained from by moving a multiple
of packets from a larger component of to a smaller one.
(We refer to such a change from to as a “balancing -inter-
change.”) For example, if and we start with ,
we can move packets from the largest component to
the smaller one to obtain . However, if
we were to move packets, to obtain the new vector

, this is not a balancing -interchange, because
.

We finally define a partial order on , by taking the union
of the partial order and the relation defined above, and
forming their transitive closure. That is, if and only if
there exists a sequence such that , , and
for , we have either or . In
words, we have (“ is preferable to ”), if we can form by
starting from and performing a sequence of operations, where
each operation is a permutation of two components, a balancing

-interchange, or a removal of some packets. We now introduce
the class of performance objectives that we will consider.

Let be the class of real-valued functions on that are
monotone nondecreasing with respect to the partial order ; that
is, if and only if

implies

Thus, consists of those functions that are nondecreasing,
permutation-invariant,1 and whose value does not increase if a
balancing -interchange is performed on its argument.

The class contains the function ,
which corresponds to the total queue size. The class also
contains any function which is permutation-invariant, nonde-
creasing, and convex. In fact, it suffices that be convex only
on one-dimensional sets of the form

and for
In the special case where , the class is closely related to
the class of “increasing Schur-convex functions” [7], the main
difference being that we are restricting to integer arguments. We

1A permutation is defined as a bijection of f1; . . . ; Ng onto itself. A function
f is said to be permutation-invariant if f(b ; . . . ; b) = f(b ; . . . ; b),
for every permutation � and every b.

note that when , the resulting class is strictly larger than
the class obtained with , as will be shown at the end of
this section.

B. The Dynamic Coupling Method

Our proof involves a dynamic coupling argument. We out-
line the structure of this method, and provide some related
definitions. Consider the process under some policy , for
a particular sample path of the underlying sequence of
random variables . Note
that under the given policy , the values of the sequences

and are completely determined by . A
dynamic coupling is a mapping that determines from a new
sequence , resulting in new sequence of random variables 2

, with , and
the following properties.

(a) Given that , is obtained from
by permuting its components, according to a permutation
that is completely determined by . In particular, given

, the mapping from to is one-to-
one.

(b) Given that , is obtained from
by permuting its components, according to a permutation
that is completely determined by . In particular, given

, the mapping from to is one-to-
one.

In particular, given the history

and knowledge of the policy , one can recover the history
under policy , as well as the values of

and . Using property (a), once is
observed, the value of can be inferred. This implies that

can be inferred. Thus, given the history

one can recover the history under policy . Using
property (b), once is observed, the value of , as
well as of , can be inferred. As a consequence, a new
policy that operates on a system driven by the sequence ,
can use the knowledge of the values of and under

and policy . Finally, since the conditional distribution of
given (respectively, the conditional distribution

of given) is permutation-invariant,3 we have that
the sequence has the same distribution as the
sequence .

Suppose now that the new policy that operates on a system
driven by results in a sequence such
that for all and all sample paths. In that case,

2More precisely, given the mapping ! 7! ~!, any random variable X , results
in a new random variable ~X defined by ~X(!) = X(~!).

3The conditional distribution of a random vector X 2 < , given some his-
tory H, is said to be permutation-invariant if (X=(x ; . . . ; x) jH=h)=
(X = (x ; . . . ; x) j H = h), for every permutation �, every pos-

sible realization h of H, and every x.

GANTI et al.: OPTIMAL TRANSMISSION SCHEDULING IN SYMMETRIC COMMUNICATION MODELS WITH INTERMITTENT CONNECTIVITY 1001

for any , we have , for all and all
sample paths, Since in a dynamic coupling the distribution of

is the same as that of , the sto-
chastic process resulting from policy is stochasti-
cally smaller than the process resulting from policy

.4 In that case, we will say that policy dominates policy ,
and we will write . Because stochastic dominance is tran-
sitive, so is policy dominance; that is, if dominates , and
if dominates , then dominates .

C. Main Result

Note that if we can establish that an LCQ policy dominates
every other policy, it will follow that an LCQ policy minimizes
performance criteria such as or

for any , any , and any . The same statement can
be made for average cost criteria such as

Our main result establishes that this is indeed the case.

Theorem 1: An LCQ policy dominates every other policy.
Proof: For the purposes of this proof, we will be working

with a “relaxed” version of the original problem. We modify the
evolution equation (1) to

(2)

where is an additional nonnega-
tive control variable which (similar to) is chosen on the
basis of the history . In this relaxed problem, we allow a
policy to add an arbitrary number of packets to any queue, right
after the packet withdrawals are determined. Let be
the set of all policies for the relaxed problem. For , let

be the set of all policies under which we have ,
for . Finally, let : this is the set of
policies that have for all (never add extra packets),
and coincides with the set of policies for the original problem. If
we show that LCQ dominates every policy on , it will follow
that it dominates every policy in , which is the desired result.

Note that within the relaxed problem, we can assume
without loss of generality, that for every and for every
queue that is served at time , we have

. Indeed, if the policy were to serve
fewer than packets, we could increase

to , and accordingly increase
, resulting in the same value for the next queue size

. We will henceforth restrict all policies to have this
property.

We say that a policy has the LCQ property at time if at that
time, it can only serve the largest connected queues (resolving

4A process f ~X(n)g is stochastically smaller than another process fX(n)g

(symbolically, ~X � X), if there exists another process fX̂(n)g defined on the
same probability space as fX(n)g, that has the same probability distribution as
f ~X(n)g, and satisfies X̂ (n) � X (n), almost surely, for every component i,
and every time n.

ties arbitarily). Let be the set of all policies for the relaxed
problem (this is the same as the set). For , let be the
set of policies that have the LCQ property at times .
Finally, let : this is the set of policies that have
the LCQ property at all times.

Consider now the set of queues served by a policy at
some time . We say that deviates from LCQ at time by at
most , if we can make have the LCQ property at time by
changing at most of the elements of . Let be the set of
policies that belong to (i.e., have the LCQ property before
time), and which deviate from LCQ at time by at most .

With these definitions and notation at hand, we can now pro-
vide an outline of the proof. The idea is to start with a general
policy and modify it progressively, to obtain a sequence of poli-
cies, each dominating the previous ones, and which have the
LCQ property for larger amounts of time. For any given time, the
argument involves a number of steps, with each step effecting a
reduction of the amount by which the LCQ property is violated.
The overall proof involves a sequence of steps that relies on the
following two lemmas.

Lemma 1: Given a policy (i.e., has the LCQ
property before time , deviates from LCQ by at most at time

, and never adds extra packets), with , we can construct
a dominating policy .

Lemma 2: Given a policy , we can construct a dom-
inating policy (i.e., which does not add extra
packets).

The proofs of the preceding lemmas can be found in the Ap-
pendix.

The proof of the theorem is completed by applying Lem-
mas 1–2 repeatedly. Starting from an arbitrary policy ,
we obtain a sequence of policies each of which domi-
nates the previous one. We obtain policies that belong to

. The last such policy
belongs to . Continuing similarly, we obtain policies

that belong to for increasing values of . Further-
more, our construction is such that each such policy agrees
with the preceding policy until time . Therefore, this
sequence of policies also defines a limiting policy , which
for every , agrees with until time . Therefore, has the
LCQ property at all times, belongs to , and dominates all
of the policies in the sequence, including the original policy .
This concludes the proof of the theorem.

Given some , let be the optimal (over all poli-
cies) value of , and let us compare two
initial conditions such that . The argument in Step B of the
proof of Lemma 1 shows that no matter what the optimal policy
does starting from , there is another policy which starting from

maintains the relation for all , and results in
smaller or equal expected cost. This shows the following.

Corollary 1: For any , and any , if then
. In particular, .

Indeed, one can prove using dynamic programming and in-
duction on , that if , then for all , and an LCQ
policy minimizes , for all . However,

1002 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 3, MARCH 2007

this is a weaker result, compared to the stochastic dominance
established by Theorem 1, and the proof is not much easier.

Let us now consider a different relation , which is defined
the same as , except that we take in that definition.
Let be the class of monotonic functions such that
implies that . This class, which is closely related to
the class of increasing Schur-convex functions, clearly satisfies

. Is it true that when , the optimal value function
belongs to ? If that

were true, it would imply that a configuration obtained by
performing a balancing -interchange on another configuration

would be preferable. However, this is not the case, as shown by
the example that follows. This explains why we had to work with
the relation instead of the simpler relation . Furthermore,
since the value function in that example does not belong to
but belongs to (by the above corollary), this shows that is
strictly larger than the class obtained when , as claimed
at the end of Section II-A.

Example 1: Consider a system in which there are no arrivals,
, only two queues , and only one transmitter

. Let the cost function, defined by , cor-
respond to expected queue length. Let be the probability
that a queue is connected at any given time. If the initial state
is , the expected value of the cost at time
is , because there is probability that queue 1 is
not connected at time . Consider now the more balanced state

and note that . (On the other hand, it is not
true that .) The expected cost is equal to .
(There will always be one packet at time , and there will be
a second packet if both queues were disconnected at time .)
Since , we see that the “less balanced”
configuration is preferable.

III. EXTENSIONS

In this section, we discuss various extensions of Theorem 1.
We are mainly interested in relaxing the i.i.d. assumptions we
have made on the channel states and on the random arrivals.
All of these extensions are possible with essentially the same
proof as for Theorem 1. For this reason, we only provide brief
justifications.

In our discussion of the dynamic coupling method, the key
property that was used was that the sequence
had the same distribution as the sequence . This
was a consequence of our i.i.d. Bernoulli assumptions, but in
fact the only property required is permutation-invariance. This
shows that the result in Theorem 1 remains valid under the
following, more general, assumption. Some examples are dis-
cussed below.

Assumption 2:
(a) The conditional distribution of given is

permutation-invariant. (Recall that
.)

(b) The conditional distribution of given is
permutation-invariant. (Recall that

.

Example 2: Dependence of channel states. For an example
where the permutation invariance assumption holds, suppose
that the number, call it , of connected queues at time is
random, possibly dependent on the past history, and with an ar-
bitrary conditional distribution. (With our original model, had
a binomial distribution.) Given that , we assume that the
set of connected queues is equally likely to be any -element
subset of . In particular, need not be
the same for all (although it must be the same for all).

Example 3: Dependence in the arrival processes. A similar
example arises if the total number of arrivals at time , call it ,
has an arbitrary conditional distribution, and then the arrivals are
assigned to queues in a permutation-invariant fashion. Thus, we
can allow complicated dependencies between the numbers of ar-
rivals at different times, possibly reflecting the dynamics in the
rest of the network, or a fairly general flow control mechanism
(as long as the flow control mechanism does not distinguish be-
tween different packet classes).

Example 4: Non-Bernoulli arrivals. A special case of the
above arises when Assumption 1(a) on the channel state
holds, except that changes with time, and sim-
ilarly for . In particular, we may assume for
all , and for all in certain predetermined intervals. Arrivals
accumulate during such an interval, but since no queue can be
served, this interval is equivalent to a single time slot, but with
the number of arrivals having a more general distribution. This
establishes that Theorem 1 remains valid if the random vari-
ables are i.i.d. and each one of them can be expressed
as a sum of independent Bernoulli random variables. The spe-
cial case where all of the Bernoulli random variables have the
same parameters allows the to be independent binomial
random variables. Because a Poisson distribution can be approx-
imated by a sequence of binomial distributions, we can also use
a limiting argument to establish that Theorem 1 remains valid
if the random variables are i.i.d. Poisson. The details of
this argument are not particularly interesting, and will not be
given here. Nevertheless, we will revisit the Poisson case in Sec-
tion III-A5.

Example 5: Unknown channel states. Another interesting
variation arises if the channel states are not known at the
time that the control vector is chosen. That is, the sched-
uler selects up to queues, and will only be able to serve the
subset of the selected queues that happen to be connected. It can
be checked that the proof remains valid, with minimal modifi-
cations. In fact, a more complex channel model is possible. At
each time , and for each channel , let there be two independent
channel variables and . The th queue will be con-
nected if and only if . However, the sched-
uler only gets to observe before selecting the queues to be
served. Once more, Theorem 1 remains valid. With this model,
there can be an attempt to transmit a packet from queue , each
time that . The number of attempts until a successful
transmission occurs is the same as the number of independent
Bernoulli trials until a “success” occurs, and has a geometric
distribution.

By reinterpreting this model, we see that Theorem 1 remains
valid if the random variables are absent, but packets have

GANTI et al.: OPTIMAL TRANSMISSION SCHEDULING IN SYMMETRIC COMMUNICATION MODELS WITH INTERMITTENT CONNECTIVITY 1003

i.i.d. geometric transmission times, of duration unknown to the
transmitter (i.e., after a transmission attempt, the packet departs
the system with some fixed probability), in a model that allows
preemptive service (i.e., when a “transmission attempt” fails,
we can switch to serving a different packet). This can be used
to model, for example, an error-prone system where even when
the channel is in the “on” state, packets may incur transmission
errors and require retransmission. A similar result has also been
established for the case of and in [11].

IV. COMPARISON OF LCQ AND A NAIVE POLICY

In this section, we consider the legitimate question whether an
optimal (i.e., LCQ) policy results in a substantial performance
improvement, compared to a naive policy. Given that closed-
form expressions are not possible, we approach this question by
considering the asymptotic case where the number of queues
becomes large, while keeping the number of transmitters and
the total arrival rate constant. We consider the
model of Section II, with and the same i.i.d. assump-
tions (as in Assumption 1), except that we allow the to
take values larger than . We will first consider a naive, and
clearly nonoptimal, randomized policy and show that it has the
largest possible stability region. However, we show that the ex-
pected sum of the queue lengths, in steady state, increases lin-
early with . In contrast, we show that with an optimal policy,
the expected sum of the queue lengths does not increase with

, at least when the are Poisson.
Let us first discuss the stability region. The largest possible

service rate occurs when all queues have available packets, in
which case, the expected number of packets served per time slot
is equal to

where is the number of connected queues.
As one would intuitively expect, and as established in [1], there
exists a policy under which the system is stable (positive recur-
rent) if and only if . Note that as , we
have .

We now describe a naive randomized policy, denoted by .
This policy operates as follows. If the number of con-
nected queues is no larger than , all connected queues are
served. Otherwise, serves a -element subset of the con-
nected queues, with every subset being equally likely to be se-
lected, regardless of the queue lengths.

In essence, , unlike LCQ policies, disregards queue length
information. In fact, may even select a connected queue that
has no packets. A somewhat more reasonable policy might be
one that only selects at random between connected queues with
a nonzero number of packets. However, this should make only a
small difference at the boundary of the stability region (when
approaches), because one would expect almost all of
the queues to have a nonzero number of packets. Furthermore,
this modified policy is difficult to analyze.

Theorem 2: Under policy , and if , the
system is stable. Furthermore, if , we have

where the expectation is taken with respect to the steady-state
distribution.

Proof: At each time slot, the expected number of selected
queues is . Thus, at each time, queue has probability

to be selected for service. Therefore, for queue
viewed in isolation, the expected number of arrivals per unit
time is , and the service rate is . As long as

, it is stable. By a standard argument based on the Lya-
punov function , and using the assumption

, one also obtains that .
Let us now consider queue in steady state, and the evolution

equation

Taking expectations of both sides, we obtain
, where the first equality follows because

, which implies that . Also, if we square
the above equation, and then take expectations, we obtain

where we have used the independence of from and
. In steady state, we have .

Furthermore, whenever , the conditional expectation
of is equal to the probability that queue is selected for
service, which is . Thus,

We solve for and recover the desired result.

According to Theorem 2, the naive policy has the largest pos-
sible stability region. However, the total expected number of
packets in queue increases linearly with . In the special case of
Bernoulli arrivals, we have , and as ,
the total expected number of packets in queue behaves like

The same asymptotic applies if the random variables are
Poisson.

Let stand for the total number of
packets in the system at time , when the number of queues
is , arrivals are i.i.d. Poisson, and an optimal policy is used
starting from zero initial queue lengths. Let be defined
similarly, and with the same initial conditions, except that the
number of queues is doubled (while and are held constant).
Our next result, to be contrasted with the preceding discussion
of , indicates that doubling does not increase the expected
total queue size.

Theorem 3: Suppose that the random variables are
i.i.d. and Poisson. Let the initial queues be empty. Then,

, for all .

1004 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 3, MARCH 2007

Proof: We consider an optimal policy that operates on
an “original” system with queues. We will use a coupling ar-
gument to construct a policy that operates on a “new” system
with queues under which , for all . This
will then imply that ,
for all . Throughout, we use a tilde to indicate quantities asso-
ciated with the new system, and no tilde for the original system.

At each time , we map arrivals to queue in the original
system to queues and in the new system, as follows.
Each arrival to in the original system is independently assigned
to queue or in the new system, with equal probability.
This ensures that arrivals to individual queues in the new system
are i.i.d. Poisson, with rate .

Also, at each time , we map the channel state of queue
in the original system to the longest queue among queues

and in the new system. We generate the channel state of
the shortest queue among queues and by drawing an
independent Bernoulli random variable with the same parameter

.
The policy is defined in terms of the actions of policy , as

follows. If serves queue , then serves the longest of queues
and .

We will now use induction on , to show that

This is trivially true for . Suppose it is also true at some
time . If , and queue is served by (in particular,
queue is connected), then the longest among queues and

is also nonempty and connected. Thus, whenever there is a
withdrawal from queue in the original system, there is a with-
drawal from queue or in the new system. Furthermore,
because of the way arrivals have been coupled, the number of
arrivals to queue in the original system equals the total number
of arrivals in queues and in the new system. Therefore,

which completes the induction. It then follows that
for all , which completes the proof.

We conjecture that, for large , Theorem 3 remains valid in
many cases where does not have a Poisson distribution,
e.g., if each is Bernoulli with parameter , or more
generally, if the distance (suitably defined) between the distri-
bution of and a Poisson distribution with the same mean
decays faster than as . Another interesting ques-
tion is whether for every
(Theorem 3 only deals with the case).

V. A FLUID MODEL WITH A TOTAL SERVICE CONSTRAINT

In this section, we consider a different type of constraint on
the transmitters. Instead of requiring that there can be up to
packets served from each queue selected for service, we intro-
duce an aggregate constraint, namely, that the total number of
packets served is bounded by). This is a reasonable model if
there is a power constraint that applies to the entire system. If
we further assume that , we are dealing with the model in
[11], and an LCQ policy is optimal. If we assume that ,

we are dealing with a special case of the model of Section II
and an LCQ policy is again optimal. Other than these cases, the
structure of optimal policies is unknown. We will henceforth
focus on the special case where (unlimited number of
transmitters), and a variant of the model, which allows serving a
noninteger number of packets from each queue. We will estab-
lish that a generalization of LCQ, which we call a “Most Bal-
anced” (MB) policy is optimal.

We use the same notation as in Section II, and make the fol-
lowing assumption.

Assumption 3:
(a) The distributions of and of are permutation-

invariant.
(b) The random vectors are inde-

pendent.

Let be the set of nonnegative reals. Suppose that at time
we have , for some vectors and .

We assume that the set of feasible vectors of packet
withdrawals, when the system is in state , is of the form

for all and

A Most Balanced policy always chooses a that
minimizes

For example, if , , and
, a most balanced policy will let ,

resulting in the configuration . It
is not hard to show that the most balanced policy is uniquely
defined. Finally, for the purposes of this section, we let be the
set of all functions that are convex, nondecreasing,
and permutation invariant.

Theorem 4: Let be the vector of queue sizes at time .
For any function and for every , the MB policy
minimizes .

Proof: The proof uses a dynamic programming argument.
Let be the minimum of , over all policies,
starting from the initial condition . We then have

, and the following recursion, for :

Lemma 3: The functions and belong to (convex,
nondecreasing, and permutation invariant), for all . The func-
tion is nondecreasing and convex for every . Fi-
nally,

for every and every permutation .

GANTI et al.: OPTIMAL TRANSMISSION SCHEDULING IN SYMMETRIC COMMUNICATION MODELS WITH INTERMITTENT CONNECTIVITY 1005

Proof: Monotonicity is immediate from the structure of the
above recursion, and the monotonicity of the function

that starts the recursion. Permutation invariance is also an
easy consequence of this recursion, the permutation invariance
of the function , and the permutation invariance of
the mappings and .

It remains to establish convexity, which is done by induction.
The function is convex, by definition. Assuming that

is convex, is a convex function of , for any
, from which it follows that is convex. Let us now fix some
, and using the notation , note that is the

minimum of subject to the constraints

if then

This is a convex optimization problem and by a standard argu-
ment, the optimal value is a convex function of the pa-
rameter vector appearing in the right-hand side of the linear
constraints. Thus, is a convex function of . Finally,

is a weighted average of convex functions and is therefore
convex.

Fix some , and let , .
Consider the vector obtained by the MB policy, which is an
optimal solution to the optimization problem

minimize

subject to

if

We will now show that also minimizes , subject to the
same constraints, which will then imply that is an
optimal decision when , and therefore
the MB policy is optimal. For simplicity, and without loss of
generality, let us assume that for all . If ,
then and . Since is a nondecreasing function
of , it follows that minimizes as well. We can therefore
assume that , in which case we can replace the constraint

by the equality constraint .
Consider the compact and convex set of optimal solutions

to the problem of minimizing subject to the constraints
and . We will show that the

MB vector in must be equal to , implying that indeed
minimizes .

Let be an optimal solution to the problem of minimizing
within the set . If , then (this

is because the optimization problem defining has a unique
solution). Let us therefore assume that . In
particular, there exists some such that for all . Fur-
thermore, since , there also
exists some such that , which also implies that .
Consider a new vector obtained by making components and

of more balanced. More precisely, let be a small positive
number, and let

for

Note that satisfies the required constraints
and when is chosen small enough, e.g.,

. Furthermore, we restrict to satisfy
.

Lemma 4: We have , and therefore, .
Proof: Since and differ only in the th and th compo-

nents, it suffices to consider a function of two variables,
denoted by and , and show that if , , and

, then . Note that
lies on the interval joining and .

In particular, for some , we have
. Using the convexity of , we obtain

where the last equality made use of the permutation-invariance
of .

We have thus constructed a new element of with one less
component equal to . By repeating this procedure a
number of times, we obtain a new vector which is in , but
with . But this contradicts the definition of
, establishes that , and completes the proof.

Using Theorem 4, it is easily seen that the most balanced
policy is optimal for a wide variety of performance criteria,
such as a discounted sum of the over a finite or
infinite horizon, or an undiscounted sum over a finite horizon.
Furthermore, the theorem covers the important special case of

(total queue length).

VI. CONCLUDING REMARKS

We have studied symmetric on–off queueing systems, which
form a special case of queueing systems with time-varying
service rates, with the objective of finding policies that mini-
mize buffer occupancies (or equivalently, delays). In general,
very few results exist on minimum delay scheduling over
time-varying channels. Under the assumption of i.i.d. Bernoulli
arrivals and connectivity variables, we showed that the “Longest
Connected Queue” policy (LCQ) is optimal for the case of
servers each able to serve packets per slot from a connected
queue. Using a fluid service model, we also showed that the
“Most Balanced” (MB) policy is optimal for the case of
servers and a total capacity, between all servers, of units. We
established these results using stochastic coupling techniques
and dynamic programming, respectively.

We have argued that our results also hold for certain non-i.i.d.
models, as long as the arrival and connectivity distributions re-
main permutation-invariant. However, the use of stochastic cou-
pling techniques relies heavily on symmetry between the queues
and cannot be applied in the absence of such symmetry.

Even in the symmetric case, many problems remain open.
For example, consider the simple extension where we have
servers, with , that can serve a total of packets
from of the connected queues (notice that here we do not im-
pose the limit on the number of packets that can be served from
each queue). In this case, it is not difficult to show that a “Most
Balanced” policy is not optimal, even if all the queues are always

1006 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 3, MARCH 2007

connected. In fact, we suspect that the problem of minimizing
the total queue length is NP-hard, even for the deterministic and
static special case where all channels are always on and there
are no arrivals.

We finally note that a closed-form description of the optimal
policy under general conditions on the arrival and channel state
processes is not feasible. However, it would be interesting to ex-
amine simple suboptimal policies and bound their performance
for more general models of time-varying queueing systems.

APPENDIX

PROOFS OF LEMMAS 1 AND 2

Proof of Lemma 1: This lemma, as well as the next one, are
proved using the dynamic coupling method described in Sec-
tion II-B.

Let us fix a policy , and a sample path con-
sisting of the values of the random
variables (the “original” system). We
construct a new sample path and policy (the “new” system),
with the same initial condition . We use a tilde to de-
note quantities associated with the new system. Before time ,
we let arrivals and channel states be the same in the two systems
(and , for), and let be iden-
tical to . As a consequence, . At time , we let the
channel states of the two systems be the same .
Step A: Policy at time .

If (at time and for that particular sample path) deviates
from LCQ by less than , we let choose the same controls as ,
and set , , resulting in .

Suppose now that (at time and for that particular sample
path) deviates from LCQ by . Let be such that

, that is, corresponds to a longest connected
queue that is not served by . Similarly, let be such that

, that is, corresponds to a shortest
connected queue that is served by . It can be seen that
(otherwise, the connected queues that are served are at least as
long as the connected queues that are not served, and would
have the LCQ property). We now let serve the same queues
as , except that queue is replaced by queue . It can be seen
that such a will deviate from LCQ by at most .

We now proceed to describe the action of in detail. Without
loss of generality, we assume that and . Thus,
serves queue 2, and is of the form

for some and . We distinguish three cases.
(i) Suppose that . Policy removes packets

from queue 2. We let policy remove packets from
queue 1. We also let and . The
resulting configurations are of the form

(ii) Suppose that . In this case, drives down
to zero. We let serve queue 1, also driving it down to
zero. Furthermore, adds packets to queue 2 to drive it
up to , i.e., . We also let

if ,
if ,
otherwise.

The resulting configurations are of the form

Thus, and are permutations of each other.
(iii) Suppose finally that . In this case, drives

down to zero. We let serve queue 1 and remove
packets. We also let add packets to queue 2, i.e.,

, driving it up to , and . The
resulting configurations are of the form

This completes the description of policy at time . Note
that our construction of at time guarantees that

.
Step B: Policy at times .

We now construct the policy for times . We proceed
recursively. Suppose that has been defined up to some time

and that . (For , this has already
been accomplished, in Step A, which starts the recursion.) We
consider three cases, which correspond to the three cases in the
definition of the relation .

Case (i) If , we let the channel states, arrivals,
and controls be the same for both systems, which ensures that

and .
Case (ii) Suppose that is obtained from by per-

muting components and . Without loss of generality, we as-
sume that , . For queues we let the channel
states, arrivals, and controls be the same for both systems. For
queues 1 and 2, we let channel states, arrivals, and controls for
queue 1 in the new system be the same as for queue 2 in the orig-
inal system, and vice versa. Then, the last components of

and are equal, whereas the first two remain
permutations of each other. In particular, .

Case (iii) We finally consider the remaining case (iii) in the
definition of . Without loss of generality, we assume that
and . In particular, for some and , for some positive

GANTI et al.: OPTIMAL TRANSMISSION SCHEDULING IN SYMMETRIC COMMUNICATION MODELS WITH INTERMITTENT CONNECTIVITY 1007

integer with with , and for some ,
we have

Note that at the start of the recursion (time), the above con-
dition would hold with . The rest of the argument will be
different, depending on whether we have
(“Type I”), (“Type II”), or

(“Type III”).
Type I Suppose that . We couple the

channel states and arrivals by letting and
. For queues , we let take the same action as ,

that is, and , resulting in
. If serves queue 1, bringing it down to
, policy also removes packets from

queue 1. (This is possible because .) If
removes packets from queue 2 (note that either

if , or otherwise), then effectively
removes the same number of packets from queue 2. (This is done
by removing packets and then adding
packets.)

The resulting configurations are of the form

Note that , and also

. Thus, , as desired.
Type II Suppose now that . We let

, , and for .
That is, we “couple” the channel state for queue 1 in the new
system with the channel state for queue 2 in the original system,
and vice versa. For all other queues, the channel states are the
same in the two systems. We also let .

For queues , we let take the same action as ,
that is, and , resulting in

. For , let if serves queue
, and , otherwise.

Regarding queue 1, policy brings it down to .
Accordingly, we let take the same action for queue 2, bringing
it down to . This is possible because
(if can serve queue 1, then can serve queue 2) and .

We now have two subcases.
(a) If serves queue 2 and removes packets (this

happens when and), or if does not serve queue
2 , we let remove the same number of packets from
queue 1. The resulting configurations are of the form

For all four possible values of , we have
(this is because) and

(because and). It follows
that . (To see this, use the definition of
but with replaced by .)

(b) If serves queue 2 and removes packets
(this happens when), then removes packets from
queue 1, and adds packets to queue 2. The
resulting configurations are of the form

where indicates whether queue 1 is served by . It
follows that , with replaced by .

Type III Suppose, finally, that .
Similar to the discussion of Type II, we let ,

, and for . For queues
, we let take the same action as , that is,

and , and let , resulting in
. As before, let if serves queue 1,

and , otherwise.
If serves queue 1, bringing it down to ,

policy removes packets from queue 2, bringing it down to
. This is possible because and

.
We now have two subcases:
(a) If does not serve queue 2, we let and

, and the resulting configurations are

which shows that , with replaced by .
(b) If does serve queue 2, then it drives it to zero, because

. Then, serves queue 1, driving it also to
zero (since), and adds
packets to queue 2 driving it to . We finally let

, . The resulting configurations are of the
form

1008 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 3, MARCH 2007

where . In this case, is a
permutation of , and we again have
(case (ii) in the definition of).

At this point, we have completed the recursive construction
of . Under the new policy, we have , which implies
that , for all , so that dominates . Furthermore,
by construction (cf. Step A), we have .

Proof of Lemma 2: We use again a coupling argument. Sup-
pose that . We let and coincide until time . In
particular, has the LCQ property until time , and .
From time onward, the process associated to evolves ac-
cording to

We let and for all times. We let the
policy correspond to the evolution equation

(The “ ” operation on vectors is defined componentwise.)
Thus, acts similar to but never adds any packets, so that

. Furthermore, serves the same queues as at time
, and therefore has the same deviation from LCQ. It follows

that .
An easy inductive argument shows that , for all .

Indeed, assuming this to be true for some , we have
, and also ,

which imply that ,
and .

Also, if serves queue at time , it is seen that it removes
packets, the maximum possible number. Indeed,

if , then , so that the number of packets
removed by is . Otherwise, if , then

, and removes packets.
Since is a legitimate policy in , and

for all , it follows that for all and, therefore,
.

REFERENCES

[1] M. Andrews, A. Stoylar, K. Kumaran, R. Vijayakumar, K. Ramanan,
and P. Whiting, “Scheduling in a queueing system with asynchronously
varying service rates,” Probab. Eng. Inf. Sci., vol. 18, pp. 191–217,
2004.

[2] M. Armory and N. Bambos, “Queueing dynamics and maximal
throughput scheduling in switched processing systems,” Queueing
Syst., vol. 44, no. 3, pp. 209–252, 2003.

[3] N. Bambos and G. Michailidis, “On parallel queueing with random
server connectivity and routing constraints,” Probab. Eng. Inf. Sci., vol.
16, no. 3, Apr. 2002.

[4] S. Shakkottai, R. Srikant, and A. L. Stolyar, “Pathwise optimality of
the exponential scheduling rule for wireless channels,” in Proc. The
High-Speed Networking Workshop (HSN), New York, Jun. 2002.

[5] R. A. Berry and R. Gallager, “Communication over fading channels
with delay constraints,” IEEE Trans. Inf. Theory, vol. 48, no. 5, pp.
1135–1149, May 2002.

[6] A. Ganti, “Transmission Scheduling for Multi-Beam Satellite Sys-
tems,” Ph.D. dissertation, Dept. EECS, MIT, Cambridge, MA, 2002.

[7] M. Hazewinkel, Encyclopaedia of Mathematics. Norwell, MA:
Kluwer Academic, 1988, vol. 6.

[8] M. Neely, E. Modiano, and C. Rohrs, “Power allocation and routing in
multi-beam satellites with time varying channels,” IEEE/ACM Trans.
Networking, vol. 11, no. 3, pp. 138–152, Jun. 2003.

[9] D. Stoyan, Comparison Methods for Queues and other Stochastic
Models. New York: Wiley, 1983.

[10] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. Automatic Control, vol. 37, no.
12, pp. 1936–1948, Dec. 1992.

[11] ——, “Dynamic server allocation to parallel queues with randomly
varying connectivity,” IEEE Trans. Inf. Theory, vol. 39, no. 2, pp.
466–478, Mar. 1993.

