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Abstract—We develop a novel auction-based algorithm to allow
users to fairly compete for a wireless fading channel. We use
the second-price auction mechanism whereby user bids for the
channel, during each time slot, based on the fade state of the
channel, and the user that makes the highest bid wins use of the
channel by paying the second highest bid. Under the assumption
that each user has a limited budget for bidding, we show the ex-
istence of a Nash equilibrium strategy, and the Nash equilibrium
leads to a unique allocation for certain channel state distribution,
such as the exponential distribution and the uniform distribution
over [0, 1]. For uniformly distributed channel state, we establish
that the aggregate throughput received by the users using the Nash
equilibrium strategy is at least 3/4 of what can be obtained using
an optimal centralized allocation that does not take fairness into
account. We also show that the Nash equilibrium strategy leads to
an allocation that is Pareto optimal (i.e., it is impossible to make
some users better off without making some other users worse
off). Based on the Nash equilibrium strategies of the second-price
auction with money constraint, we further propose a centralized
opportunistic scheduler that does not suffer the shortcomings
associated with the proportional fair scheduler.

Index Terms—Auction, channel allocation, wireless communica-
tion.

I. INTRODUCTION

NETWORK resources such as bandwidth and power are
usually limited in wireless and satellite networks. A sys-

tematic procedure in place for fair resource allocation, therefore,
is often desirable. However, there is no consensus on the notion
of fairness. Any centrally imposed notion of fairness may be
against an individual user’s interest. In this paper, we address
the problem of fair resource allocation by allowing individual
users to compete for resources through bidding for the use of
the channel.

A fundamental characteristic of a wireless network is that the
channel over which communication takes place is often time-
varying. This variation of the channel quality is due to construc-
tive and destructive interference between multipaths and shad-
owing effects (fading). In a single cell with one transmitter (base
station or satellite) and multiple users communicating through
fading channels, the transmitter can send data at higher rates to
users with better channels. In a time-slotted system, time slots
are allocated among users according to their channel qualities.
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TABLE I
THROUGHPUT RESULTS USING DIFFERENT NOTIONS OF FAIRNESS

The problem of resource allocation in wireless networks has
received much attention in recent years. In [1], the authors try to
maximize the data throughput of an energy and time constrained
transmitter communicating over a fading channel. A dynamic
programming formulation that leads to an optimal transmission
schedule is presented. Other works address the similar problem,
without consideration of fairness, include [7] and [8]. In [5], the
authors consider scheduling policies for maxmin fairness allo-
cation of bandwidth, which maximizes the allocation for the
most poorly treated sessions, while not wasting any network
resources, in wireless ad hoc networks. In [4], the authors de-
signed a scheduling algorithm that achieves proportional fair-
ness, a notion of fairness originally proposed by Kelly [6]. In
[9], the authors present a slot allocation that maximizes expected
system performance subject to the constraint that each user gets
a fixed fraction of time slots. The authors did not use a formal
notion of fairness, but argue that their system can explicitly set
the fraction of time assigned to each user. Hence, while each
user may get to use the channel an equal fraction of the time,
the resulting throughput obtained by each user may be vastly
different.

The following simple example illustrates the different allo-
cations that may result from the different notions of fairness.
We consider the communication system with one transmitter
and two users, A and B, and the allocations that use different
notions of fairness discussed in the previous paragraph. We as-
sume that the throughput is proportional to the channel condi-
tion. The channel coefficient, which is a quantitative measure
of the channel condition ranging from 0 to 1 with 1 as the best
channel condition, for user A and user B in the two time slots are
(0.1, 0.2) and (0.3, 0.9), respectively. The throughput result for
each individual user and for total system under different notions
of fairness constraint are given in Table I. When there is no fair-
ness constraint, to maximize the total system throughput would
require the transmitter to allocate both time slots to user B. To
achieve maxmin fair allocation, the transmitter would allocate
slot one to user B and slot two to user A, thus resulting in a total
throughput of 0.5. If the transmitter wants to maximize the total
throughput subject to the constraint that each user gets one time
slot (i.e., the approach of [9]), the resulting allocation, denoted
as time fraction fair, is to give user A slot one and user B slot two.
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As a result, the total throughput is 1.0. In the above example, the
transmitter selects an allocation to ensure an artificially chosen
notion of fairness. From Table I, we can see that from the user’s
perspective, no notion is truly fair as both users want slot two.
In order to resolve this conflict, we use a new approach which
allows users to compete for time slots. In this way, each user is
responsible for its own action and its resulting throughput. We
call the fraction of bandwidth received by each user competi-
tive fair. Using this notion of competitive fairness, the resulting
throughput obtained for each user can serve as a reference point
for comparing various other allocations. Moreover, the competi-
tive fair allocation scheme can provide fundamental insight into
the design of a fair scheduler that make sense.

In our model, users compete for time slots. For each time
slot, each user has a different valuation (i.e., its own channel
condition). And each user is only interested in getting a higher
throughput for itself. Naturally, these characteristics give rise
to an auction. In this paper, we consider the second-price auc-
tion mechanism. Using the second-price auction mechanism,
users submit a “bid” for the time slot and the transmitter allo-
cates the slot to the user that made the highest bid. Moreover,
in the second-price auction mechanism, the winner only pays
the second highest bid [13]. The second-price auction mecha-
nism is used here due to its “truth telling” nature (i.e., it is op-
timal for a user to bid its true valuation of a particular object).
Each user is assumed to have an initial amount of money. The
money possessed by each user can be viewed as fictitious money
that serves as a mechanism to differentiate the quality-of-service
(QoS) given to the various users. This fictitious money, in fact,
could correspond to a certain QoS for which the user paid in real
money. As for the solution of the slot auction game, we use the
concept of Nash equilibrium, which is a set of strategies (one
for each player) from which there are no profitable unilateral
deviation.

In this paper, we consider a communication system with one
transmitter and multiple users. For each time slot, channel states
are independent and identically distributed with known prob-
ability distribution. Each user wants to maximize its own ex-
pected throughput subject to an average money constraint. Our
major results include the following.

• We find the Nash equilibrium strategy for general channel
state distribution.

• We show that the Nash equilibrium strategy pair leads to
a unique allocation for certain channel state distribution,
such as the exponential distribution and the uniform dis-
tribution over [0,1].

• We show that the Nash equilibrium strategy of this auc-
tion leads to an allocations at which total throughput is
no worse than 3/4 of the throughput obtained by an algo-
rithm that attempts to maximize total system throughput
without a fairness constraint under uniform distribution.

• We show that the Nash equilibrium strategy leads to an
allocation that is Pareto optimal (i.e., it is impossible to
make some users better off without making some other
users worse off).

• Based on the Nash equilibrium strategies of the second-
price auction with money constraint, we also propose a
centralized opportunistic scheduler that does not suffer
the shortcomings associated with the proportional fair and
the time fraction fair scheduler.

Game theoretical approaches to resource allocation problems
have been explored by many researchers recently (e.g., [2] and
[12]). In [2], the authors consider a resource allocation problem
for a wireless channel, without fading, where users have dif-
ferent utility values for the channel. They show the existence of
an equilibrium pricing scheme where the transmitter attempts
to maximize its revenue and the users attempt to maximize their
individual utilities. In [12], the authors explore the properties of
a congestion game where users of a congested resource antici-
pate the effect of their action on the price of the resource. Again,
the work of [12] focuses on a wireline channel without the no-
tion of wireless fading. Our work attempts to apply game theory
to the allocation of a wireless fading channel. In particular, we
show that auction algorithms are well suited for achieving fair
allocation in this environment. Other papers dealing with the
application of game theory to resource allocation problems in-
clude [3], [16], and [17].

This paper is organized as follows. In Section II, we de-
scribe the communication system and the auction mechanism.
In Section III, we start by presenting the Nash equilibrium
strategy pair for the two users game with general channel distri-
bution. The uniqueness of the allocation scheme derived from
the Nash equilibrium is shown when the channel state has the
exponential or the uniform [0,1] distribution. We then derive
the Nash equilibrium for the -users game. In Section IV,
we show the unique Nash equilibrium strategy for the case
that each user can use multiple bidding functions. The Pareto
optimality of the allocation resulting from the Nash equilibrium
strategies is established in Section V. In Section VI, we compare
the throughput results of the Nash equilibrium strategy with
other centralized allocation algorithms. Finally, Section VII
concludes the paper.

II. PROBLEM FORMULATION

We consider a communication scenario where a single trans-
mitter sends data to users over independent fading channels.
We assume that there is always data to be sent to the users.
Time is assumed to be discrete, and the channel state for a given
channel changes according to a known probabilistic model in-
dependently over time. The transmitter can serve only one user
during a particular slot with a constant power . The channel
fade state thus determines the throughput that can be obtained.

For a given power level, we assume for simplicity that the
throughput is a linear function of the channel state. This can
be justified by the Shannon capacity at low signal-to-noise ratio
[1]. However, for general throughput function, it can be shown
that the method used in this paper applies as well. Let be
a random variable denote the channel state for the channel be-
tween the transmitter and user , . When transmit-
ting to user , the throughput will then be . Without loss
of generality, we assume throughout this paper.

We now describe the second-price auction rule used in this
paper. Let be the average amount of money available to
user during each time slot. We assume that the values of ’s
are known to all users. Moreover, users know the distribution
of for all . We also assume that the exact value of the
channel state is revealed to user only at the beginning of
each time slot. During each time slot, the following actions take
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place: 1) each user submits a bid according to the channel con-
dition revealed to it; 2) the transmitter chooses the one with the
highest bid to transmit; and 3) the price that the winning user
pays is the second highest bidder’s bid. Users who lose the bid
do not pay. In case of a tie, the winner is chosen among the
equal bidders with equal probability. Formally, this -players
game can be written as which speci-
fies for each player a set of strategies, or bidding functions,
(with ) and a payoff function giving the
throughput associated with outcome of the auction arising from
strategies .

The formulation of our auction is different from the type of
auction used in economic theory in several ways. First, we look
at a case where the number of object (time slots) in the auction
goes to infinity (average cost criteria). While in the current auc-
tion research, the number of object is finite [13]–[15]. Second,
in our auction formulation, the money used for bidding does not
have a direct connection with the value of the time slot. Money
is merely a tool for users to compete for time slots, and it has no
value after the auction. Therefore, it is desirable for each user
to spend all of its money. However, in the traditional auction
theory, an object’s value is measured in the same unit as the
money used in the bidding process, hence their objective is to
maximize the difference between the object’s value and its cost.

Besides the second-price auction, the first-price auction and
the all-pay auction are two other commonly used auction mech-
anisms. In the first-price auction, each bidder submits a single
bid without seeing the others’ bids, and the object is sold to the
bidder who makes the highest bid. Only the winner pays its bid.
In the all-pay auction, each user independently submits a single
bid without seeing the others’ bids, and the object is given to the
bidder who makes the highest bid. However, all users pay their
bid regardless of whether they win or loss [13]. We choose to
use the second-price auction in this paper to illustrate the auc-
tion approach to resource allocation in wireless networks. As we
will see later, second-price auction results in an allocation that
is efficient. More specifically, it is Pareto optimal.

The objective for each user is to design a bidding strategy,
which specifies how a user will act in every possible distinguish-
able circumstance, to maximize its own expected throughput per
time slot subject to the expected or average money constraint.
Once a user, say user 1, chooses a function, say , to be its
strategy, it bids an amount of money equal to when it sees
its channel condition is .

III. NASH EQUILIBRIUM UNDER SECOND-PRICE AUCTION

We begin our analysis of the second-price auction with an
average money constraint by looking at a two-users case for
simplicity. Specifically, we present here a Nash equilibrium
strategy pair for the second-price auction under gen-
eral channel distribution. We consider here the case where users
choose their strategies from the set and , respectively.
Each user’s strategy is a function of its own channel state .
Thus, is defined to be the set of continuous real-valued, and
square integrable functions over the support of . Without

loss of generality, we further assume functions in to be
increasing. We define to be an allocation
that maps the possible channel state realization, , to
either user 1 or user 2. Here, we are interested in the allocation
that result from the Nash equilibrium strategies.

We first consider a channel state that is continuously dis-
tributed over a finite interval where and are nonneg-
ative real number with . Later, we will consider the case
that is infinite (e.g., when is exponentially distributed).

To find the Nash equilibrium strategy pair, we use the fol-
lowing approach. Given user 1’s strategy with its range
from to , user 2 wants to maximize its
own expected throughput, while satisfying its expected money
constraint. For a given , if user 2 chooses a bidding function

, the expected throughput or payoff function for user 2 is given
by

(1)

where
if
otherwise

Recall that in the second-price auction rule, the price that the
winner pays is actually the second highest bid. Therefore, the
set of feasible bidding functions for user 2, denoted as ,
is given by

(2)
Note that the inverse function may not be well de-

fined for since may not be strictly increasing over
. Therefore, to avoid such problem, we define the following

function:
if
if
if

(3)

In the special case that is strictly increasing, is reduced
to the following:

if
if
if

(4)

For the rest of thise paper, it is convenient to consider the defi-
nition of given in (4).

We say the strategy is a best response for player 2 to his
rival’s strategy if for all .
A strategy pair is said to be in Nash equilibrium if is
the best response for user 1 to user 2’s strategy , and is the
best response for user 2 to user 1’s strategy . The following
theorem characterizes the best response of user 2 to a fixed user
1’s strategy.

Theorem 1: Given user 1’s bidding strategy with its
range from to , user 2’s best response
has the following form:

(5)

where and , .
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Proof: Given user 1’s bidding strategy and user 2’s bid
at a particular time slot is , the probability that user 2 wins this
slot, denoted as , is given by

Therefore, the optimization problem that user 2 faces is to find
a strategy that maximize its expected throughput, which can
be written as the following:

(6)

where the integration is over the region that user 2’s bid is
higher than user 1’s bid. The constraint term denotes the ex-
pected money that user 2 has to pay over the region which it
has a higher bid than user 1. To solve the above optimization
problem, we use the optimality condition in [11]. First, we write
the Lagrangian function below

(7)

We then choose a function to maximize the above equation.
Also, a positive , which depends on , is chosen such that
the inequality constraint is met with equality. Specifically, for
each value , we solve for the optimal

(8)

For convenience, we let . Then, (8) becomes

(9)

For a fixed , the term is a decreasing func-
tion in since is increasing. To maximize , it is
equivalent to choosing a value for that includes all value
of such that is positive, or maximizes the area
under the curve . It is apparent that the optimal
value should be chosen such that
or . However, if for all

, we let . Similarly, if
for all , we let . Thus, from (3), we see that the
optimal bidding function has the following form:

where and , .

The above theorem indicates that for user 2 to maximize its
throughput given user 1’s strategy , the optimal strategy may
not be unique following the definition of the Nash equilibrium.
For , as long as , user 2 always loses
the bid, and the throughput for user 2 does not change. How-
ever, from second-price bidding rule, user 2’s strategy affects
user 1’s strategy through the expected budget constraint that
user 1 must satisfy. This way, user 2 will choose
for . Intuitively, even if user 2 knows that it will
not win a particular time slot, it will still choose to maximize
its bid in order to force user 1 to pay more. Hence, user 2’s
best response is in this sense unique. Therefore, although the
second-price auction with average money constraint does not in
general have an unique Nash equilibrium, it does have an unique
outcome. We will elaborate on this more in Section III-B where
the users’ channel distributions are different.

Similarly, given user 2’s bidding function , we can carry
out the same analysis to find that the best response for user 1
has the form . The next theorem shows that
indeed we can always find a pair and such that both users’
money constraints are satisfied simultaneously, and thus show
the existence of a Nash equilibrium strategy pair.

Theorem 2: A Nash equilibrium exists in the second-price
auction game with and de-
fined in (2) and (1), respectively.

Proof: For the channel state distributed over the
interval , the best response given in (5) indicates that

for all in is a valid best response.
Without loss of generality, we consider only linear bidding

functions (i.e., ,
and ) for the purpose of

showing the existence of a Nash equilibrium strategy pair. A
Nash equilibrium exists if we can find a pair of and which
satisfy the following two constraints:

(10)

(11)

Given user 2’s strategy , we define the set
to be the set of feasible strategy for user 1. Specifically,

.
The best response for user 1 when user 2 chooses , , is
given by

To show that Nash equilibrium exists, we need to show
that the best response correspondence is nonempty,
convex-valued, and upper hemicontinuous [19]. Note first
that is the set of maximizer of a continuous function,
here the function , on a compact set

. Hence, it is nonempty. The convexity of follow
because the set of maximizers of a quasi-concave function,
i.e., , on a convex set (here ) is
convex. is quasi-concave because it
is nondecreasing in . Finally, since the set is compact
for all , following the Berge Maximum Theorem
[20], we have is upper hemicontinuous. Now, all the
conditions of the Kalkutani fixed point theorem are satisfied
[19]. Hence, there exists a Nash equilibrium for this game.
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The Nash equilibrium strategy discussed above is in general
not unique. However, under a continuous channel state distribu-
tion that starts with zero, such as the uniform distribution over
[0,1] or the exponential distribution, the Nash equilibrium bid-
ding strategies are unique and lead to an unique allocation. Next,
we will discuss the Nash equilibrium strategy pair of these two
distribution.

A. Uniform Channel Distribution

In this section, we examine the two users game with the
channel state uniformly distributed over [0,1]. Following
the approach discussed in the previous section, we find the
unique allocation resulting from the Nash equilibrium strategy.
Given a strategy pair to be in Nash equilibrium, we
first investigate the bids that users submit when the channel
state is equal to 0 (i.e., the value of and ). The
result is stated in the following lemma.

Lemma 1: For a strategy pair to be a Nash equilib-
rium strategy pair, we must have when the
channels are uniformly distributed over [0,1].

Proof: We consider the following three cases regarding
the bidding strategy when the channel state is at 0.

• Case 1) and .
• Case 2) with and , or

and with .
• Case 3) and with and .

Case 2 cannot be true from the discussion in the pre-
vious section. To see this, consider with
and . Given a time slot with user 1’s channel
states , the expected money user 1 has to pay is
positive since user 2’s bidding function is continuous and

. But the expected throughput rewarded for that
time slot is zero for user 1. Hence, user 1 should bid zero
when its channel state is zero. Similar idea can be used
to show that case 3 is also impossible. Given a time slot
with user 1’s channel state and ,
the expected money user 1 has to pay is positive since user
2’s bidding function is continuous and . How-
ever, the expected throughput for that time slot is zero for
user 1. So user 1 would rather bid zero in this time slot.

With the above lemma, we can get the exact form of the Nash
equilibrium strategy pair.

Theorem 3: With the channel states, and , uniformly
and independently distributed over [0,1], the unique Nash equi-
librium pair has the following form:
and , where and are chosen such that the
expected money constraints are satisfied.

Proof: Combine Lemma 1 and the linear form of the bid-
ding function shown previously, we have the above theorem.

We now calculate the exact value of and . Without loss
of generality, we assume that user 2 has more money than user
1 (i.e., ). Since the form of the optimal bidding strategy
for both users is known, we need to get the exact value of and

from the money constraint that users must satisfy. Thus, from
(10) and (11), the constraint for user 1 is given by

(12)

Note that the function is well defined for
. Therefore, the constraint for user 1 is given by:

(13)

Solving the two equations, we get

(14)

(15)

The throughput of each user is then given by

(16)

(17)

Note that the linear bidding function leads to the following al-
location: Given that the channel states are and during a
time slot, the transmitter assigns the slot to user 1 if ,
where , and to user 2, otherwise. We will see later that
this form of allocation leads to the Pareto optimality.

B. The Unique Outcome of the Game

As we mentioned previously, the Nash equilibrium is not
unique in general (although unique for the cases where channel
states are exponentially distributed or uniformly distributed over
[0,1]); however, the outcome of this second-price auction with
money constraint is unique. To see this, consider an example
where is uniformly distributed over the interval [0,10], and

is uniformly distributed over the interval with
arbitrarily small. If both users have the same average money

constraint, two strategy pairs are given in Fig. 1(a), (b), (d), and
(e). They are both Nash equilibrium strategy pairs by defini-
tion. Given user 2’s strategy shown in Fig. 1(b), user 1 can bid
anything less than , which is the lowest bid of user 2, during
the interval since its throughput will be unaffected (this is
the reason that multiple Nash equilibriums exist). In Fig. 1(a),
we show the case that user 1 implements a strict linear bidding
function, resulting in an expected throughput of 2.78 for user 1
and 3.33 for user 2. Although user 1’s bid during interval
will not change its own throughput, it will affect the amount of
money user 2 has to pay (i.e., user 2 has to pay more to win a
slot if user 1’s bid is close to instead of 0 during ; conse-
quently, user 2 will have less money to bid in other slots). Thus,
a rational decision for user 1 is not to bid anything less than the
smallest bid of user 2. Therefore, the Nash equilibrium strategy
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Fig. 1. (a) Bidding function for user 1 when using linear bidding function. (b) Bidding function for user 2. (c) Resulting allocation shown in the support of X
andX . (d) Bidding function for user 1 when it tries to make user 2 to pay more. (e) User 2’s bidding function. (f) Resulting allocation when users using bidding
function shown in (d) and (e).

pair shown in Fig. 1(d) and (e) is a more reasonable equilibrium
strategy pair for this game. The outcome of the game is in this
sense unique.

C. Exponential Distribution

When the channel state is exponentially distributed with
rate , the analysis in the general distribution section is still
valid. The unique Nash equilibrium strategy pair has the same
form as the uniform case: and .
Using (10) and (11), we get a relationship between and to
be . Thus, the optimal allocation is given
by

if

otherwise

Write the decision in another form .
We see that only the normalized channel state distribution (i.e.,

and , where ,
) are used in the comparison. This result corroborates the

score-based scheduler proposed by [18], which selects a user
when its transmission rate is high relative to its own rate statis-
tics. The expected throughput for each user is given by

D. The N-Users Game

In this section, we explore the Nash equilibrium of the
second-price auction in which users, each with an average
money constraint , compete for time slots. Given user ’s
strategy with range from to
for , user 1 wants to maximize its own expected
throughput, while satisfying its expected money constraint. For
a given , if user 1 chooses a bidding function ,
the expected throughput or payoff function for user 1 is given
by

(18)
The set of feasible bidding functions for user 1, denoted here as

, can be written as

(19)

Similar to the two-users case, we define the inverse function as
the following for :

if
if
if

(20)

The following theorem characterizes the best response of user 1
for fixed in this -user game.

Theorem 4: Given fixed bidding functions for
user 2 to user , and and
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for
, user 1’s best response has the following form:

(21)

where and , .
Proof: See the appendix.

Theorem 5: A Nash equilibrium exists in the second-price
auction game with and
defined in (19) and (18), respectively.

Proof: We can then follow the steps in the two users case
to show the existence of a Nash equilibrium. The analysis is
omitted for brevity.

IV. NASH EQUILIBRIUM STRATEGY WITH

MULTIPLE BIDDING FUNCTIONS

In the previous section, we restricted the strategy space of
each user to be a single bidding function. Specifically, once a
user, say user 1, chooses a function, say , for its strategy,
it bids an amount of money equal to when it sees its
channel condition is . In other words, user 1 uses the
same bidding function for all time slots. In this section, we
will relax this single bidding function assumption, and investi-
gate whether users have incentive to use different bidding func-
tion for different time slot (i.e., user 1 employs the bidding func-
tion for time slot 1, and for time slot 2) as long
as their average constraint is not violated, and, given that users
can choose multiple bidding functions, we explore whether the
Nash equilibrium exists.

Again, for simplicity, we consider a two-users game where
the user’s channel state is uniformly distributed over [0,1]. Let

and be, as before, the set of continuous, increasing, square
integrable real-valued functions over the support of and ,
respectively. Then, the strategy space for user 1, say , and user
2, say , are defined as follows:

(22)

For each user, a strategy is a sequence of bidding functions
. Without loss of generality, we restrict each

user to have different bidding functions, where can be
chosen as an arbitrarily large number. Note that users now
choose a strategy for a block of time slots instead of just for a
single time slot, one bidding function for each slot. In order to
maximize the overall throughput (over infinite horizon), each
user chooses bidding functions to maximize the expected total
throughput over this block of slots. The term
denotes the expected amount of money spent by user 1 if it uses
bidding function for the th slot in the block. The strategy
space discussed in the previous section can be considered to be
a special class of strategies of and in which each user

can use only a single bidding function. More specifically, set
and .

To choose a strategy (i.e., a sequence of bidding functions)
from the strategy space or , a user encounters two prob-
lems. First, it must decide how to allocate its money among these

bidding functions so that the average money constraint is still
satisfied. Second, once the money allocated to the th bidding
function is specified, a user has to choose a bidding function for
the th slot. The second problem is already solved in the previous
section (see Theorem 3). In this section, we will focus on the first
problem that a user encounters, specifically, the problem of how
to allocate money between bidding functions, while satisfying
the following condition: The total expected amount of money
for the sequence of bidding functions is for user 1 and

for user 2. For convenience, we let , , and
further denote to be the average money allocated in slot
for user 1 and user 2, respectively. The strategy space or possible
actions that can be taken by users are given by the following:

The objective of each user is still to maximize its own
throughput. When user 1 and user 2 allocate and for their
th bidding function which is given in Theorem 3, the payoff

functions are for user 1 and for user 2.
The following lemma gives us a Nash equilibrium strategy

pair for the auction game described in this section.
Lemma 2: Given that user 2’s strategy is to allocate its money

evenly among its bidding functions (i.e., ),
user 1’s best response is to allocate its money evenly as well
(i.e., ); and vice versa. Therefore, a Nash
equilibrium strategy pair for this auction is for both users to
allocate their money evenly.

Proof: Without loss of generality, we consider the case
that where each user’s strategy can consist of two dif-
ferent bidding functions. Suppose that user 2 allocates for
both bidding functions and , and user 1 allocates for
bidding function and for bidding function , where

and . We will show that the throughput for
user 1 is maximized when .
Assume . First, we consider the case that
and . The equation with fixed

becomes

where . is concave for . Thus, we have
maximized when . For the

case that and , we have from (16)
and (17)

The above function can be shown to be strictly decreasing for
. Hence, it is optimal to choose for in
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the interval . We also know that in the case and
, is maximized when

. Therefore, given user 2 allocates its money evenly among
its bidding functions (i.e., ), user 1’s best
response is to allocate its money evenly as well.

We have already obtained a Nash equilibrium strategy pair
from the above lemma. The following theorem states that this
Nash equilibrium strategy pair is in fact unique within the
strategy space considered.

Theorem 6: For the second-price auction with user’s strategy
space defined in (22), a unique Nash equilibrium strategy for
both users is to allocate their money evenly among the bidding
functions.

Proof: The complete proof is in the appendix.
In this section, users are given more freedom in choosing

their strategies (i.e., they can choose different bidding func-
tions). However, as Theorem 6 shows, the unique Nash equi-
librium strategy pair is for each user to use a single bidding
function from its strategy space. Thus, the throughput result ob-
tained in this broader strategy space- and is the same as
the throughput result from previous section. Therefore, there is
no incentive for a user to use different bidding functions.

V. PARETO OPTIMALITY OF THE NASH

EQUILIBRIUM STRATEGIES

Thus far, we have a Nash equilibrium strategy pair and the
resulting throughput when both players choose to use the Nash
equilibrium strategy. In this section, we want to address the
question whether the allocation resulting from the Nash equi-
librium strategy is efficient, or Pareto optimal. An allocation is
said to be Pareto optimal if it is impossible to make some indi-
viduals better off without making some other individuals worse
off. This concept is a formalization of the idea that there is no
waste in the allocation process.

We start by investigating an allocation with a fairness con-
straint that requires the resulting throughput of the users to be
kept at a constant ratio. Specifically, let and denote the
expected throughput for user 1 and user 2, respectively. We have
the following optimization problem: for some nonnegative

(23)

The optimal allocation is to divide the possible channel state
realizations, , into two regions by the separation line

, where is some positive real number. Above the
line (i.e., ), the transmitter will assign the slot to user
2. Below the line (i.e., ), the transmitter will assign
the slot to user 1.

To prove the above, we use a method that is similar to the one
in [9]. By using an allocation , the resulting throughput for
user 1 and user 2 are and

, respectively. Now, we define an allocation
as follows:

if
otherwise

where is chosen such that is satisfied.

Consider an arbitrary allocation that satisfies .
We have

The inequality in the middle is from the definition of .
Specifically, if we were asked to choose an allocation
to maximize

. Then, will be an optimal scheme
from its definition. Thus, is an optimal solution to
the optimization problem in (23).

So far, we have shown that the optimal allocation for the
problem in (23) has the same form as the allocation scheme
resulted from the Nash equilibrium strategy of second-price
auction (i.e., both allocation schemes compare channel state
realization with where is a constant). Examining
the optimization problem in (23), we see that the resulting
throughput obtained is Pareto optimal. To show this, suppose

and are the throughput of a Pareto optimal allocation,
and . If the optimal solution of the problem
maximizing subject to the constraint are

and , we must have which implies
and since and .

From the assumption that and are the throughput of
a Pareto optimal allocation, we must have and

. Therefore, the solution to the optimization problem
(23) is Pareto optimal which also implies the Pareto optimality
of the allocation resulting from equilibrium strategy since they
have the same form.

VI. COMPARISON WITH OTHER ALLOCATION SCHEMES

Based on our previous analysis on the Nash equilibrium
strategy of the second-price auction with average money con-
straint, we can implement a centralized opportunistic scheduler
that is fair and efficient. Instead of allowing users to actually
bid for each time slot, the centralized scheduler will assign time
slots according to the Nash equilibrium strategy based on users’
average money amount. If users are assumed to have equal
priority (as in the cases of maxmin fairness and proportion fair-
ness), the scheduler simply let each user have an equal money
constraint, and assigns time slots according to the equilibrium
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strategy. Later in this section, we will compare our centralized
scheduling scheme with proportional fair scheduling scheme.
But first, we need to quantify the loss of efficiency by using
Nash equilibrium strategies. Due to the fairness constraint, total
system throughput will decrease as compared with the max-
imum throughput attainable without any fairness constraint.
Hence, we would like to compare the total throughput of the
Nash equilibrium strategy to that of an unconstrained strategy.
We address this question by first considering an allocation that
maximizes total throughput subject to no constraint.

A. Maximizing Throughput With No Constraint

To maximize throughput without any constraints, the trans-
mitter serves the user with a better channel state during each
time slot. Then, the expected throughput is .
For and independent uniformly distributed in [0,1], we
have . Using the Nash equilibrium
strategy, the total expected system throughput, , is 1/2
in the worst case (i.e., one users gets all of the time slots, while
the other user is starving). Thus, the channel allocation pro-
posed here can achieve at least 75% of the maximum attainable
throughput. This gives us a lower bound of the throughput per-
formance of the allocation derived from the Nash equilibrium
pair.

B. Proportional Fairness

In this section, we examine the well-known proportional fair-
ness allocation. Let , be defined similarly as in the
previous section. The objective of proportional fairness is to
maximize the term [4]. Specifically, the op-
timization problem is given by

(24)

It is straightforward to see that the optimal allocation policy
has to be a threshold rule. That is, for given on the
threshold and a particular time slot with channel state ,
the scheduler will assign the time slot to user 1 if the channel
state pair and , and to user
2 if and . To get the op-
timal allocation policy, we consider again a point on
the threshold and a small region with probability around that
point. Intuitively, since this region is on the threshold, an optimal
scheduler can allocate it to either user 1 or user 2. If allocating
the small region to user 1 will result in more gain than allocating

Fig. 2. (a) The proportional fair allocation scheme. (b) The second-price
auction scheme with equal money constraint.

it to user 2, this region will not be on threshold anymore but be-
longs to user 1. Thus, for to be an optimal allocation rule,
we have the following first-order approximation:

(25)

Similar equation can be written for . Combine both equations,
we have the following that describes the threshold of :

The optimal allocation can then be stated as

if
otherwise

where the constant . We find the allocation with
proportional fairness criteria has the same form as the alloca-
tion that resulted from the Nash equilibrium strategy (i.e., both
of them are straight lines). Therefore, it is interesting to com-
pare the performance of the proportional fairness algorithm to
that of the auction algorithm. Consider an example where
is uniformly distributed over the interval [0,10] and is uni-
formly distributed over the interval (consistent with
our previous example). Assuming is small, we can treat
as a constant. Using the proportional fairness scheme, we need
to find a threshold such that and .
From Fig. 2(a), we see that and

. Setting , we have
. As a result of the proportional fair algo-

rithm, the scheduler will assign almost 71% of the time slots to
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user 2. The user with a constant channel states obviously ben-
efits more from the proportional fairness algorithm. For com-
parison, we use the centralized scheduler (based on the auction
algorithm) described in the early part of this section (i.e., we
let each user have the same average money constraint when em-
ploying the second-price auction algorithm). From Fig. 2(b), we
see that both users get almost half of the time slots (it does not
bias toward user with a constant channel state). Furthermore,
it also results in a higher total system throughput than that of
the proportion fairness scheme. Specifically, the auction scheme
yields a total throughput of 6.25, while the proportional fairness
scheme yields a total throughput of 6.0.

VII. CONCLUSION

We apply an auction algorithm to the problem of fair alloca-
tion of a wireless fading channel. Using the second-price auction
mechanism, we are able to obtain the Nash equilibrium strate-
gies for general channel state distribution. Our strategy allocates
bandwidth to the users in accordance with the amount of money
that they possess. Hence, this scheme can be viewed as a mecha-
nism for providing QoS differentiation; whereby users are given
fictitious money that they can use to bid for the channel. By al-
locating users different amounts of money, the resulting QoS
differentiation can be achieved.

In this paper, we find the unique Nash equilibrium strategy
for certain commonly used channel state distribution. We also
show that the Nash equilibrium strategy of this auction leads
to an allocation at which total throughput is no worse than 3/4
the maximum possible throughput when fairness constraints are
not imposed (i.e., slots are allocated to the user with the better
channel) under uniform distribution. Moreover, the equilibrium
strategies leads to an allocation that is Pareto optimal. Based on
the Nash equilibrium strategies of the second-price auction with
money constraint, we also propose a centralized opportunistic
scheduler that does not suffer the shortcomings associated with
the proportional fair and the time fraction fair scheduler. How-
ever, the problem of how to obtain the multiplicative constant
in user’s equilibrium bidding strategy using a computational ef-
ficient way has yet to be explored. Also, to make our proposed
centralized scheduler (based on the Nash equilibrium strategy)
suitable for real-time implementation, an algorithm that does
not require the prior knowledge of channel distribution but still
results in the Nash equilibrium allocation for each user will be
an important topic for the future research.

APPENDIX

Proof of Theorem 4:
Proof: If user 1 bids for a particular time slot, the prob-

ability that it win, denoted as , is given by

The optimization for user 1 can be written as follows:

(26)

(27)

After writing the Lagrangian function, we then solve the fol-
lowing optimization problem:

(28)

Writing for convenience, we have the following:

The term is decreasing
since is increasing. Therefore,
it is desirable to choose as large as possible, while keeping

.
For a fixed , if the term

is positive for all
for , the optimal can be

chosen such that . Likewise, if
the term is negative
for all for , the optimal can
be chosen such that . In the case
that for some

, we can choose
such that .
From the definition of in (20), each term
equals to for . Hence, we have the
following:

Consequently, the optimal bid for user 1, , is . Again,
the optimal bidding strategy for a user in the N-user game is a
linear function of the user’s channel state. The constant coef-
ficient, i.e., , is chosen such that the average money con-
straint is met with equality.

Proof of Theorem 6:
Proof: Again, we consider case for simplicity. For

and , this theorem stated that the
pair and cannot be in equilibrium if
and . We will show this by contradiction. Here, we
present the proof for the case that and . Other
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cases can be shown similarly. Now, suppose the pair
and are in equilibrium for and . That
is, for given and , and are chosen such that user
1’s throughput is the maximum. This
implies the following:

(29)

To see this, if
, we will have

by first-order expansion, thus con-
tradicting the statement that is the
maximum throughput for user 1 for given and .

Similarly, for given and , if and maximize
, then

(30)

By taking the derivative of (16) and (17), we get the
following:

(31)

(32)

Substituting (31) into (29) and (32) into (30), we then have the
following after combining (29) and (30):

(33)

(34)

(35)

Now, we have . We further show that
and . Observe that for fixed and , we can

write

(36)

where

Thus, we have

(37)

(38)

From (29), we have

(39)

It is easy to verify that . Therefore,
since , the above equation implies that

which contradicts our original assumption of .
Therefore, the pair and cannot be in equilib-
rium if and .
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