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Abstract— We consider a multi-hop wireless network with
a connection-oriented traffic model and multiple transmission
channels that can be spatially re-used. In such a network the
blocking probability of a call that makes a channel request
depends on (a) the channel assignment scheme and (b) the
transmission radius of the nodes which affects the network link
structure. In this work, we study these two aspects for simple
wireless networks. Specifically, we develop blocking probability
analysis for a wireless line and grid network and explore the
tradeoff between transmission radius and blocking probability
for multi-hop calls. We show that for a line network a larger
transmission radius can substantially reduce the blocking prob-
ability of calls, while for a grid network with a more dense
node topology using a smaller transmission radius is better.
We, then, investigate various channel assignment schemes and
present a novel non-rearranging channel assignment algorithm
for multi-hop calls in a general network. Our algorithm efficiently
incorporates spatial channel re-use and significantly reduces call
blocking probability when compared to other algorithms.

Index Terms— Blocking probability, dynamic channel as-
signment, transmission radius, wireless networks, connection-
oriented traffic, multi-hop calls, wireless interference, quality of
service.

I. I NTRODUCTION

A MULTI-HOP wireless network is a cooperative network
where data streams may be transmitted over multiple

wireless hops to reach the destination. The network link
structure depends on the transmission radius of the nodes and
can be adjusted by varying the transmission power. In this
work, we consider such a network without node mobility and
with a connection-oriented traffic model. We consider multiple
channels that can be spatially re-used and each new call is
assigned a channel, if available, for the entire duration the
call is active1. The wireless interference and traffic models are
explained in detail in the next section. Finally for the above
network, our goal is to investigate the effect of transmission
radius of the nodes and the channel assignment scheme on
steady state call blocking probability. Some of the recent work
on other QoS issues such as routing in multi-hop networks
includes [1], [2], [3], [5].
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The effect of transmission radius can be understood as
follows. A smaller transmission radius of the nodes causes
less interference on each hop but the calls have to hop through
many nodes to reach the destination. As the same call is served
by many nodes along the route, multi-hopping increases the
internal load in the network. In contrast, a larger transmission
radius reduces the number of hops of a call but increases the
interference constraints at each hop. One of the contributions
of this paper is to examine this tradeoff in relation to its
effect on blocking probability. For analytical simplicity we
focus on two topologies: the line and the grid network. First,
we present an exact blocking probability analysis for a single
channel wireless line network. We, then, construct a model to
compute the blocking probability in the multiple channel case
for the random channel assignment policy. Using the formulas
obtained, we show that in a line network a larger transmission
radius reduces the blocking probability of calls; whereas, for
a grid network with an underlying more dense node topology
we show that it is more desirable to use a smaller transmission
radius. This suggests that for sparse networks the increase in
the internal load due to multi-hopping contributes significantly
to call blocking whereas for denser networks the increase in
the interfering neighboring nodes due to a larger radius is
a significant limiting factor. Recently there has been work
on throughput analysis addressing the issues of interference,
multi-hop transmissions and node mobility [14], [16]. The
work in [14], [16] allows queueing of data and analyzes the
throughput of the network under different interference and
mobility models. However, these objectives and the traffic
characteristics are very different from what we consider in
this paper.

Finally we also address the issue of dynamic channel
assignment to the incoming calls in a general network for a
fixed network link structure (i.e. given the transmission radii of
the nodes). For multi-hop calls a channel must be allocated on
each hop such that the wireless constraints are satisfied. Here,
we develop a novel non-rearranging algorithm that spatially
re-uses the channels in an efficient manner. Using simulations
we compare its performance with other algorithms.

The analysis of blocking probability and dynamic channel
assignment has been extensively considered in the context
of cellular networks [11], [12], [13]. However there are
significant differences between a multi-hop wireless network,
the focus of our work, and a cellular network. For example,
in a cellular network the communication is with the nearest
base-station over a single wireless link; whereas in a multi-
hop wireless network, calls hop through various links to
reach the destination. This imposes additional complexity as
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non-conflicting channels must be allocated on the wireless
links along the source-destination path. Another difference
between the two networks is that a cellular network has a
regular structure which makes the set of interfering cells fixed;
whereas in a multi-hop wireless network the set of interfering
nodes depends on the node topology and their transmission
radii.

Steady state blocking probability is an important and widely
studied performance metric for communication networks in
general. In wireless cellular networks the work includes [10],
[13] and focuses on a cellular network architecture. In all-
optical networks the work includes [17], [18] where the goal is
to study the blocking probability behavior with limited number
of available wavelengths. Finally, there has also been extensive
work on blocking probability in traditional wire-line networks
with limited link capacities, [8], [9].

The rest of the paper is organized as follows. In Section II,
we describe the system model. Section III presents blocking
probability analysis for a line network. Section IV considers
the effect of transmission radius on blocking probability in a
line and a grid network. In Section V, we present channel
assignment algorithms and simulation results that compare
their performance. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

We consider a wireless network whose node topology does
not change over time and the nodes in the network transmit
with equal power using an omnidirectional antenna.

Interference Model:We assume a disk model of interfer-
ence. Let the transmission radius of a node, sayT , be defined
as the radius of a circle centered atT such that, (a) outside
this circle there is no interference from the signal transmitted
by T and (b) within this circle there is complete interference
of the signal transmitted byT with other ongoing signal
reception. We also assume that without any interference from
other nodes, the signal transmitted by nodeT can be perfectly
received within its transmission radius. A directwireless link
(or simply link) exists between any two nodes if they lie within
each other’s transmission radius. We say that nodeR is a
neighbor of nodeT if R lies within the transmission radius of
T . As the nodes have equal transmission radius,T is also a
neighbor ofR. Let the set of neighbors ofT andR be denoted
asNT andNR respectively. Consider the uni-directional data
transfer,T → R, in channelγ. For this call to be successfully
serviced the following criteria need to be satisfied.

1) Nodes T and R must not be involved in any other
call transmission/reception in channelγ. This criterion
ensures that a node cannot simultaneously serve two calls
in channelγ.

2) Neighbors of T (P ∈ NT , excluding R) must not
receivefrom any other node in channelγ. Otherwise the
transmission fromT will interfere atP .

3) Neighbors of R (Q ∈ NR, excluding T ) must not
transmit to any other node in channelγ. Otherwise the
transmission fromQ will interfere atR.

Next, consider a bi-directional call between nodesT,R; i.e.
data transfer in both directionsT → R and R → T . In this
case, a node can both transmit and receive data in the reserved
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Fig. 1. Interference model for a bi-directional transmission (T ↔ R).

channel and thus all the three conditions stated above must be
satisfied at bothT and R. This means that forT ↔ R to
be successful, neighbors of nodeT and nodeR must neither
transmit nor receive in channelγ. A node is labeledinactive
in channelγ if it is not involved in transmission/reception
in that channel andactive otherwise. With this notation, we
get the following spatial channel re-use constraint.For a bi-
directional call T ↔ R to be successful inγ, neighbors
of nodeT excludingR and neighbors of nodeR excluding
T must be inactive. This “idealized” model approximates
realistic interference assumptions and is commonly used in the
study of wireless networks [1], [14], [15]. Figure 1 illustrates
a single hop bi-directional data transfer between nodesT and
R in channelγ. NodesT andR cannot service any other call
in channelγ. Neighbors of nodeT (T1, T2) and neighbors of
R (R1, R2) must be inactive while callT ↔ R is active. In
the figure, all data transfers marked ‘×’ must not take place
for call T ↔ R to be successful.

Traffic Model: We consider a connection-oriented model
wherein the arriving calls require a dedicated channel on each
hop along the path. These channels are held up while the
call is in progress and released at the end of the call. The
main purpose of such a model is to study systems in which
allocated channels are not re-assigned very often (e.g. for
streaming/voice traffic that may require dedicated channels).
Such streaming applications are of increased interest for both
military and commercial applications. One can also view a
call as an aggregation of various packet data flows which
are served on a packet basis but over a single channel. The
assumption of connection-oriented traffic simply translates
into the fact that a channel once allocated is held for some
duration, these channel requests are stochastic with some
average rate and there is no queueing of the requests. As
such there are no restrictions on these average values other
than finiteness. We also assume that all calls require asingle
channel for service on each hop. For length considerations we
consider only bi-directional calls in this paper. The reader is
referred to [4] for an analysis of uni-directional calls.

III. B LOCKING PROBABILITY ANALYSIS IN A

WIRELESSL INE NETWORK

We, now, develop an analysis for the blocking probability
of single hop bi-directional calls in a line network. We first
analyze a single channel network for which an exact solution
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Fig. 2. Constraints representing the simultaneous service of calls in a WLN-1
network.

is obtained and then extend it to multiple channels. The
expressions derived here form the basis for the study in
Section IV. In addition to facilitating elegant solutions, a line
network is an important network in practice and serves as a
good starting point in understanding network tradeoffs.

A. Single Channel

Consider a wireless line network with nodes located unit
distance apart at positionsx = −m, −m + 1,..., m. We label
these nodes asX−m, X−m+1,..., Xm. Let there be a single
channel that can be spatially re-used subject to interference
constraints. Let each node have a transmission radius ofr,
wherer ≥ 1 and r ∈ Z+, a positive integer. Let all calls in
the network be bi-directional with the source and destination
nodesr units apart, i.e. between nodesXk andXk+r, ∀k. The
calls are single hop as each node can communicate directly
with a node r units apart. CallsXk ↔ Xk+r,∀k arrive
according to an independent Poisson process of rateλ. The
holding period of each call is independent and identically
distributed as an Exponential distribution2 with mean 1/µ.
If a call cannot be accepted then it is dropped otherwise it
occupies the channel while in progress. We call this network
a wireless line network with radiusr or WLN-r for short. A
WLN-1 network is depicted in Figure 2.

Theorem 1: The blocking probability of a call in an
infinite length (m → ∞) WLN-r, r ∈ Z+, network and
ν = λ/µ (0 ≤ ν < ∞) is,

PB = 1− x2r+1

1 + 2rνx2r+1
(1)

where,x is the unique root in (0,1] ofνx2r+1 + x = 1.
Proof: See Appendix I.

The limiting argument in Theorem 1 helps eliminate edge
effects and yields the above simple expression that closely
agrees with simulation results for finite length line networks
(see [4]).

B. Multiple Channels

In this section, we extend the analysis of WLN-r to the
case of multiple channels. We consider the random policy
for assigning channels to the incoming calls. In this policy
the new call on a link is assigned a channel randomly from
among the free channels on that link. Free channels refer to
those channels such that the acceptance of a call in these
channels does not violate the interference constraints. The
random policy is easy to implement practically. However, its

2The result applies even for general service distributions as the product
form solution in the analysis holds here as well.
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Fig. 3. Three state Markov process model of the channel on a link.

exact analysis is complicated by the fact that to make a channel
allocation decision we must have knowledge of the channels
already occupied by the ongoing calls. This makes the state
space for this system very large and an analysis of the steady
state probability distribution intractable. Interestingly, since
the random policy does not differentiate between the channels
an approximate model can be constructed based on an effective
load concept. We proceed as follows. From Section III-A, we
know the exact value of the blocking probability of a call for
the single channel case. Using this result we first construct a
single channel tractable markovian model whose parameters
are chosen to match the result of (1). This markovian model
is then extended with some approximations to incorporate
multiple channels. Finally, simulations results are presented
that verify that the theoretical values from this model closely
agree with the numerical results.

Consider the linkLk (Xk ↔ Xk+r) of the line network.
For now, assume that there is only a single channelγ in the
network and denote its state on linkLk asSk. We modelSk

as a three state process, the free state (F), the busy state (Bu)
and the blocked state (Bl) as shown in Figure 3. The linkLk

is said to be in the blocked state if the channel is occupied by
a call on an interfering link making it unavailable on linkLk.
It is in the busy state if there is a call in progress. LetYF→Bl

be the random variable that denotes the transition time from
stateF → Bl. The distribution ofYF→Bl can be computed
through its complicated dependence on the various states of
the other links. However, a good approximation is to simply
assume it to be exponentially distributed with some rateλ′.
The random variableYBl→F can have a general distribution
with mean1/µ′. Figure 3 shows the transition rates ofSk.
Using the detailed balance equation (see [6]) of the three state
Markov process and letting,ν′ = λ′/µ′, ν = λ/µ, we get,

ν′ + ν =
PB

1− PB
(2)

wherePB is known from (1). Thus, the value ofν′ that gives
the correctPB value can be obtained from the above equation.
Define aneffective load, ν̃ , ν′ + ν, then, we can interpret
the loadν̃ as consisting of two components; the external load
ν and the loadν′ seen by the link that makes the channel
blocked. The effect of interference constraints on blocking
probability can, thus, be viewed as an additional loadν′.
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Fig. 4. State transition diagram for the random assignment policy.

Combining (1) and (2), we get,

ν̃ = ν′ + ν =
1 + (2rν − 1)x2r+1

x2r+1
(3)

The effective loadν̃ can be understood as follows. If a
link of WLN-r is isolated from the network and load̃ν
applied to it, it would have the same blocking probability as
experienced within the line network with symmetrical loadν.
An isolated link of a single channel WLN-r is equivalent to a
M/M/1/1 system. Thus, the above analogy states that in terms
of blocking, a single channel WLN-r network with loadν is
identical to a M/M/1/1 system with load̃ν.

Define theeffective load factorg as,g = ν̃/ν; then g can
be expressed as,

g =
1 + (2rν − 1)x2r+1

νx2r+1
(4)

The low load and the high load regimes can be studied by
taking the limit ν → 0 and ν → ∞ respectively in (4). This
yields limν→0 g = 4r + 1 and limν→∞ g = 2r + 1. Thus at
low loadsν̃ ≈ (4r + 1)ν and at high loads̃ν ≈ (2r + 1)ν.

Generalizing to the multiple channel case, define the state of
a link asX(t) ≡ (Xbu(t), Xbl(t)) whereXbu is the number of
busy channels andXbl the number of blocked channels on that
link at timet. Let the total number of channels available in the
network bep. At any timet, the stateX(t) ≡ (Xbu(t), Xbl(t))
must satisfyXbu(t) + Xbl(t) ≤ p. Following the single
channel process and the fact that the random policy does not
differentiate among the channels we approximate the network
as ap server system with rateλ that makes the channels busy
and rateλ′ that makes the channels blocked. The transition
rates among the various states of the processX(t) are shown
in Figure 4. Letπ(i, j) denote the steady state probability that
X takes value(i, j). The steady state blocking probability,
P rand

B , equals
∑

i+j=p π(i, j). Solving the detailed balance
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r = 1, ν = 3 andp = 20 channels.
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r = 2, 10 andp = 20 channels.

equations we get,

P rand
B =

ν̃p

p!

1 + ν̃ + ν̃2

2! + ... + ν̃p

p!

= E(ν̃, p) (5)

whereE(ν, p) is the Erlang B formula [7] for loadν and p
servers. Thus, (5) is same as the blocking probability of an
equivalent M/M/p/p system with load̃ν.

We now present plots that compare the theoretical values
obtained from (5) and the simulation results. In all the plots,
blocking probability of the center call is computed to minimize
edge effects. In Figure 5, we make the comparison by varying
the line length. We considerr = 1, p = 20 channels and
ν = 3. The plot shows that for lengths beyond 10 nodes the
values closely agree. Thus, (5) derived from the limiting result
in (1) holds fairly accurately for finite length line networks.
Note that (5) is independent of the line length and hence, in
the figure, the curve for calculated values is constant. We next
make the comparison by varyingr. In Figure 6 we consider
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p = 20 channels andr = 2, 10 for a 50 node line network. The
figure shows that even for larger the theoretical values closely
agree with simulation results. The above plots are illustrative
examples and a similar trend is observed in the simulation
results with other network parameters as well.

IV. EFFECT OFTRANSMISSIONRADIUS ON

BLOCKING PROBABILITY

It is clear that if the nodes have a smaller transmission
radius then the interference constraints on each hop are fewer
but the calls hop through many links to reach the destination.
This increases the internal load in the system. In contrast,
a larger transmission radius reduces the number of hops of a
call but increases the interference constraints at each hop. The
effect of this tradeoff on blocking probability is non-trivial and
leads to different observations under different node topologies.
In this section, we study this tradeoff for two simple node
topologies; the line and the grid network.

A. Line Network

We begin by considering the following simple but non-
trivial example that lends itself to an exact analysis and also
clearly highlights the problem. Consider a line network with
two channelsand with the source-destination nodes of the
calls two units apart. The arrival process of each call is an
independent Poisson process of rateλ and the holding time is
i.i.d with mean1/µ. Consider the following two schemes.

Scheme A:The nodes have a transmission radius of unity
(r = 1) and thus the calls are two hops long. The channels are
assigned using the rearrangement channel assignment policy
(Section V) as it uses the channel resources optimally.

Proposition 1: The steady state blocking probability for
Scheme A in the limit as the length of the line network tends
to infinity andν = λ/µ (0 ≤ ν < ∞) is,

PB = 1− y3

1 + 2νy3
(6)

where,y is the unique root in(0, 1] of νy3 + y = 1.
Proof: See Appendix II.

Scheme B:The nodes have a transmission radius of two
units (r = 2) and hence all calls are single hop. Here, we
consider a sub-optimal channel assignment policy that selects
a channel randomly from the two channels for each new
arriving call. If the channel is free (non-blocked and non-busy)
then it is allocated otherwise the incoming call is dropped.

Proposition 2: The steady state blocking probability for
Scheme B in the limit as the length of the line network tends
to infinity andν = λ/µ (0 ≤ ν < ∞) is,

PB = 1− x5

1 + 2νx5
(7)

where,x is the unique root in(0, 1] of x + ν
2x5 = 1.

Proof: The channel assignment policy in Scheme B
performs a simple random splitting of the arrival stream into
two independent poisson processes of rateλ/2 applied to each
channel. Thus, the blocking probability of a call is equal to
the blocking probability with loadν/2 in a single channel

WLN-2 network. Pluggingr = 2 and ν/2 in (1) we get the
desired result.

It is clear that the channel assignment policy in Scheme B
under-utilizes the channels as it rejects a call if the randomly
selected channel is not free without considering the state of
the other channel. The following theorem shows that even with
this inefficient random policy Scheme B with a larger radius
has a lower blocking probability as compared to Scheme
A. Thus, for any fixed blocking probability thresholdβ the
supportable loadν is higher for Scheme B than Scheme A.
The result, thus, highlights that in networks with low node
density a larger transmission radius can lead to better network
performance.

Theorem 2: The blocking probability for Scheme B is
lower than the blocking probability for Scheme A for all load
ν = λ/µ satisfying0 < ν < ∞.

Proof: See Appendix III.
Consider, next, a more general setting of a line network

with p channels and calls of lengthk > 1, i.e. between nodes
k units apart (k = 1 is the trivial case). The traffic model is
identical to that considered earlier. We consider the random
channel allocation policy and use the expressions derived in
Section III-B to compare the following transmission schemes.

Scheme 1:The transmission radius of the nodes iss(< k)
and hence each call isn = k

s hops long. To simplify the
mathematical exposition, we consider thoses for which n
is an integer. This simplified system gives an indication of
the results that would be observed in the general non-integer
case. Further, the assumption can be justified for the following
cases; (a)ks is large and hence rounding to an integer would
not affect the results significantly; and (b)k is non-prime so
that we can always finds that would maken an integer.
We also consider the low blocking probability regime as
it is practically significant and helps us make simplifying
approximations. In this regime almost all calls get served and
the average load on each link (Xm ↔ Xm+s, ∀m) is ≈ nν,
since there aren calls hopping through a link andnν is the
sum of the loads of all these calls. Assuming this load to be
Poisson, the probabilityPL that none of the channels on a link
are free can be computed by considering this as an equivalent
WLN-s system withp channels, loadnν on each link and
r = s. Using (3) and (5) we get,

ν̃1 =
1 + (2nsν − 1)x2s+1

x2s+1
, (nνx2s+1 + x = 1) (8)

PL = E(ν̃1, p) (9)

Let P 1
B denote the blocking probability of an hop call, then,

its clear thatP 1
B is greater than the blocking probability on the

first hop. As the latter value equalsPL we get,P 1
B > PL =

E(ν̃1, p).
Scheme 2 :The transmission radius of the nodes isk and

hence each call is single hop. For this system Theorem 1 gives
the exact blocking probability in the single channel case. Let
P 2

B denote the blocking probability with multiple channels,
then, following the methodology of Section III-B we have,

ν̃2 =
1 + (2kν − 1)x2k+1

x2k+1
, (νx2k+1 + x = 1) (10)

P 2
B = E(ν̃2, p) (11)
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Fig. 7. Line network with calls of length 3 and 6 and 20 channels.

It can be shown (see [4]) thatP 2
B < PL < P 1

B , ∀ν >
0, k ∈ Z+. The proof is omitted for brevity but it follows
along similar lines as the proof of Theorem 2. Mathematically,
the tradeoff in the above two schemes can be understood by
examining their polynomial equations given in brackets in (8)
and (10). In Scheme 1 we have a higher loadnν but a smaller
exponent2s+1 of x due to less interference at each hop; while
in Scheme 2 the load isν but a higher exponent2k + 1 of x
due to more interference.

The intuition behind this result is that for a line network
with a sparse node topology the blocking probability increase
due to a larger set of interfering nodes (larger radius) is smaller
as compared to an increase due to larger effective link load
caused by multi-hopping. Figure 7 presents simulation plots
verifying this claim. Blocking probability is computed for the
center call to minimize edge effects. The first plot has calls
of length 3 and two scenarios of radius 1 and 3. The second
plot has calls of length 6 with radius 1, 2, 3 and 6. Note
that the reduction in blocking probability by using a larger
transmission radius is a few orders of magnitude and this
difference increases with the length of the calls.

B. Grid Network

We observed in Section III-B that asν → 0, ν̃ ≈ (4r+1)ν.
A similar observation can be shown to hold for a single-
hop single channel general network as well i.e. asν → 0,
ν̃ ≈ αν, α = total number of interfering calls + 1 (see
[4]). Extending to multiple channels, as in Section III-B, the
blocking probability withp channels isPB = E(ν̃, p).

Consider an infinite grid network (to avoid edge effects)
with calls of length 3 between nodes{x, y} → {x + 3, y}
and {x, y} → {x, y + 3} and loadν. The arguments can be
easily generalized to longer length calls. In the first scenario,
transmission radius of each node is 3 and hence calls are single
hop. Here, each link has 134 interfering links all of which
carry loadν (see [4]). Thus,̃ν = 134ν + ν and the blocking
probability of a call isPB ≈ E(135ν, p).

In the second scenario, transmission radius of each node
is 1 and hence the calls are three hop in length. In the low
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Fig. 8. Grid network with calls of length 3.

blocking regime almost all calls get served and the average
load on each link is≈ 3ν. Treating the system as an equivalent
network with load3ν on each link, and with each link having
23 interfering links including itself, the effective load equals
ν̃ = 23∗3ν. The probability that no channel is free at a link is
E(69ν, p). Making a further simplification that the links block
independently the probability that a 3-hop call is blocked is
≈ 1− (1− E(69ν, p))3 ≈ 3E(69ν, p).

It can be easily checked that for lowν and moderate number
of channels we haveE(135ν, p) > 3E(69ν, p) which suggests
that it is preferable to use a smaller transmission radius. The
intuitive reason is that a grid network has a denser node
topology than a line network. As a result the number of
interfering links increase much rapidly with an increase in the
transmission radius of the nodes leading to higher blocking
probability than using a smaller transmission radius. Figure 8
presents simulation results that justify this conclusion. The
plot shows the blocking probability of the center call in a
20×20 grid with 30 channels. All calls are of length 3 and
two cases of radius 1 and 3 are considered. As is evident from
the plot, blocking probability for radius 1 is lower than that
for radius 3.

V. CHANNEL ASSIGNMENTALGORITHMS

In the earlier sections we studied the effect of transmission
radius on call blocking probability. We next address the issue
of channel assignment to multi-hop calls. We assume in this
section that the transmission radius of the nodes is fixed and
study various channel assignment algorithms. We propose a
new algorithm called the Local Channel Reuse Algorithm
(LCRA) that spatially re-uses the channels in an efficient way
thereby reducing the blocking probability of calls as compared
to other algorithms such as rearrangement, random and first
fit algorithms. Next, we describe these algorithms in detail.

Rearrangement Algorithm: The rearrangement algorithm
was first presented in [11] for cellular networks. This policy
admits an incoming call even if it requires rearrangement of
the allocated channels to the calls in progress. If no such
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rearrangement is feasible that can accommodate the new in-
coming call then it is dropped. It is clear that this policy cannot
be easily implemented in practice due to the computationally
intensive search for feasible assignments. However, as shown
in [4] there is a simple characterization of this feasibility for
a line network.

Non-rearranging Algorithms: Here we consider algo-
rithms that are not allowed to rearrange the channels allocated
to the existing calls. Such algorithms are clearly more prac-
tical. The algorithms that we study are the random, first fit
and LCRA. These algorithms base their decision on the set of
free channels available at a node. Free channels refer to the
non-busy and non-blocked channels. For a nodeN , the set of
free channelsFN contains all those channels in which node
N and its neighbors are inactive. The set of free channels for
a link N ↔ M is the set of all those channels that are free
at both nodesN and M . We have,FN↔M = FN ∩ FM .
The channels are arbitrarily assigned an index number for the
implementation of the algorithms.

Single Hop Calls: Consider a single hop call between
nodesS andD. Let g̃() be the decision function that selects
a channel from the setFS↔D then the chosen channel
γc = g̃(FS ∩ FD). The decision functioñg() for the various
algorithms is as follows.

Random Algorithm: g̃() chooses a channel randomly from
the set of free channels.

First Fit Algorithm: g̃() chooses a channel that has the
lowest index among the set of free channels. This algorithm
has been studied earlier in WDM optical networks [19].

Local Channel Re-use Algorithm (LCRA): Consider a link
S ↔ D on which the channel needs to be allocated. LetNS

andND be the neighbors of nodesS andD respectively. Let
the nodes inNS ∪ ND be denoted asN1, N2, .., N|NS∪ND|
and the set of free channels beΓ = FS ∩FD. LCRA chooses
a channelγc ∈ Γ such thatγc minimizes the number of nodes
in NS∪ND that haveγc as a free channel in the present state.
This leads to blocking of that channel for the least number of
neighboring nodes. Mathematically, letINi(γk) = 1 if γk is
free at nodeNi andINi(γk) = 0 otherwise. LetΩ(γk) be the
number of nodes inNS ∪ND with γk free, then,

Ω(γk) =
∑

N∈NS∪ND

IN (γk)

γc = g̃(Γ) = arg minγk∈Γ Ω(γk)

If there are more than oneγk that minimizeΩ() then the
smallest indexedγk is selected.

To understand how this algorithm uses the channels in an
efficient manner suppose channelγc is chosen. Then, nodes in
NS∪ND cannot use channelγc as long as the allocated call is
active. Therefore, all those nodes that hadγc as a free channel
before the call request was made removeγc from their set of
free channels.LCRA minimizes the number of nodes that get
blocked by the choice of a particular channel. The fact that
some nodes inNS ∪ ND do not haveγc in their set of free
channels also implies that there is presently an active call in
their neighborhood but that call does not interfere with the
new incoming call onS ↔ D. Choosing such a channel will
then lead to a local re-use of the channels. Thus,LCRA tries
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Fig. 9. Line network with unit length calls.

to locally re-use the channels. A more general weight based
LCRA can be found in [4].

Multihop Calls: A multihop call is regarded as a sequence
of single hop calls where the first call arrives on the first
link followed by an arrival on the second link and so on
until the last link along the path. With this interpretation, we
assign channels to a multihop call by repeating the single hop
procedure in a sequence over the multihop path. Along the
multihop path if at any link there are no free channels available
then the call is dropped.

We next present simulation results that compare the per-
formance of the above stated algorithms in a line and a grid
network. These plots are illustrative examples of the trend that
follows in the extensive simulations we carried out by varying
different parameters. In all the cases, we compute the blocking
probability of the center call to minimize edge effects. In both
networks, the transmission radius of each node is fixed at
unity. The arrival process of all the calls is Poisson with rate
λ while the departure time is Exponentially distributed with
mean1/µ = 1. The load in the plots equalsλ/µ. The number
of channels in all cases is,p = 50.

Figure 9 compares the blocking probability in a line network
with 30 nodes and unit length calls. LCRA performs better
than both the random and the first fit algorithms. Observe that
if we fix a particular value of blocking probability, then, LCRA
can support a higher load per call as compared to random and
first fit algorithms. As expected the rearrangement algorithm
has the lowest blocking probability. Simulating the rearrange-
ment policy in a grid network is practically difficult. Therefore,
in a grid network we compare the blocking probability for
the random, the first fit and the LCRA algorithms. Figure 10
shows the comparison plot for a 20×20 grid with unit length
calls. LCRA performs better than both the random and the
first fit policy. In a grid network, a node has more interfering
neighbors than a line network; therefore, an efficient spatial
re-use of the channels will have a greater impact on blocking
probability. This is evident from the wider spread between
the curves in Figure 10 as compared to the plot for the
line network. Finally considering multihop calls, Figure 11
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compares the blocking probability for random, first fit, LCRA
and the rearrangement algorithms in a line network with all
calls 6-hop long. Here again, LCRA outperforms both the
random and the first fit policies and is fairly close to the
rearrangement policy.

VI. CONCLUSION

We studied the blocking probability behavior of connection
oriented traffic for multi-hop wireless line and grid topologies.
We focused on two aspects, namely, the effect of transmission
radius of the nodes and the dynamic channel assignment
algorithm. We presented a blocking probability model and
derived formulas that yielded useful insights. For example,
we showed that in the line topology using a large transmis-
sion radius substantially reduces blocking probability; while
the opposite is true in the more dense grid topology. We,
then, developed a novel channel assignment algorithm that
reduces blocking probability by spatially re-using the channels
in an efficient manner. Using simulations, we compared its
performance with other algorithms and showed significant
improvements. In this work, we considered networks with

linear and quadratic increase in the number of interfering
nodes; an interesting future research direction is to study the
relationship between blocking probability and a general rate
of increase of interfering nodes with the transmission radius.
It would also be interesting to develop channel assignment
algorithms with node mobility.

APPENDIX I
PROOF OFTHEOREM 1

The proof is structured as follows. First, we obtain the local
constraints for the successful service of a call. We, then, define
a state vector that describes the system evolution over time and
obtain its steady state distribution. We evaluate the blocking
probability of call C0 and then derive the result by taking
appropriate limits. Before we present the details we state the
following lemma that will be useful in the analysis. Its proof
is straight forward and omitted for brevity.

Lemma 1:Let X andY be finite disjoint discrete sets and
f(x) and g(y) are any two functions defined onX and Y,
then

∑

(x,y)∈X×Y
f(x)g(y) = (

∑

x∈X
f(x))(

∑

y∈Y
g(y)) (12)

Consider a line network as stated in Section III-A. Based
on the wireless model outlined in Section II, we can specialize
the interference constraints to a line network as follows. Let
Ck denote the call between nodesXk andXk+r. A nodeXl is
activeif either callCl−r (Xl−r ↔ Xl) or callCl (Xl ↔ Xl+r)
is active; otherwise nodeXl is inactive. From Section II, call
Ck can be successfully serviced if neighbors of nodesXk

and Xk+r are inactive. These include nodesXk−r,..,Xk+2r;
excluding Xk and Xk+r . This implies that callsCk−2r,..,
Ck+2r must be inactive for callCk to be successful. We
refer to this as thelocal constrainton call service. Figure 2
illustrates this constraint for WLN-1 and callCk.

Next, we define a state vector that describes the system
evolution over time. Letnk(t) denote the number of callsCk

in progress at timet. Let ν = λ/µ and define the state vector
n(t) = (n−m(t), . . . , nm−r(t)). The vector,n(t), enlists the
number of active calls between all the distinct node pairs
that arer units apart. Staten is admissible ifn ≥ 0 and
satisfies the local constraint for all active calls. LetG(m)
denote the set of all admissible states for WLN-r withm
nodes. For the network that we consider there are2m + 1
nodes (X−m, . . . , Xm) and hence with the above notation
this set isG(2m + 1). It is easy to see that the stochastic
process(n(t), t ≥ 0) is an aperiodic, irreducible, finite state
Markov process and hence has a unique stationary distribution
π(n) = P (n = [n−m, .., nm−r]) given by the product form
solution,

π(n) =
1

S(2m + 1)

m−r∏

i=−m

νni

ni!
, n ∈ G(2m + 1) (13)

whereS(2m + 1) is the normalization constant. For a single
channel networkni = 0 or 1 and ni! = 1. Let ntotal =
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n−m + .. + nm−r, then simplifying (13) we get,

π(n) =
νntotal

S(2m + 1)
, n ∈ G(2m + 1) (14)

S(2m + 1) =
∑

n∈G(2m+1)

νntotal (15)

where the last equation follows from
∑

n∈G(2m+1) π(n) = 1.
Now, in principle, we can obtain the blocking probability of
any call by summingπ(n) over the blocking states; however,
evaluatingS(2m + 1) is not easy. In the rest of the proof
we focus on callC0 of the network and obtain its blocking
probability in the limitm →∞. This eliminates edge effects
and yields a simple elegant expression. The non-blocking
states for callC0 are{n : n ∈ G(2m+1) andn−2r, .., n2r =
0}. Denote this set asGN (2m + 1) and let P 0

NB be the
probability that in steady state callC0 is not blocked. We
then have,

P 0
NB =

∑

GN (2m+1)

π(n) (16)

=

∑
n∈GN (2m+1) νntotal

S(2m + 1)
(17)

Evaluating the numerator in (17):To characterizeGN (2m+
1), we need to determine the feasible state space of the
remaining callsC−m,..,C−2r−1 and C2r+1,..,Cm−r. Let the
feasible state space of callsC−m,..,C−2r−1 be L and that
of calls C2r+1,..,Cm−r be M. Then, using our notation
we have the following equivalence,L ≡ G(m − r) (since
C−m,..,C−2r−1 denote the distinct calls among node pairs
within X−m, .., X−r−1 which is a WLN-r withm−r nodes).
Similarly, M≡ G(m− 2r). Now, given{C−2r, .., C2r} = 0,
the state of callsC−m,..,C−2r−1 is not constrained by the state
of calls C2r+1, .., Cm−r, since an active callCk only affects
calls Ck−2r,.., Ck+2r. Therefore,GN (2m + 1) is simply the
cartesian product ofL andM and we have,GN (2m + 1) =
{L ×M, n−2r, .., n2r = 0}. Let nL = n−m + .. + n−2r−1

andnM = n2r+1 + .. + nm−r, then using Lemma 1 we get,
∑

n∈GN (2m+1)

νntotal =
∑

G(m−r)×G(m−2r)

νnLνnM (18)

= S(m− r)S(m− 2r) (19)

Evaluating the denominator in (17):We partition the set
G(2m + 1); evaluateS(2m + 1) over each partition and
then sum up. To do this, condition on the state of calls
C−r,..,Cr−1. For these calls, other than the all zero state,
there are2r distinct feasible states corresponding to one call
being active and the rest inactive, i.e.Cp = 1, Cl 6=p = 0
∀p, l ∈ {−r, .., r − 1}. A state with more than one call being
active amongC−r,..,Cr−1 is infeasible. LetS()|{constraint}
represent the evaluation of the functionS() under the specified
constraint and l ∈ {−r, .., r − 1}. Then,

S(2m + 1) = S(2m + 1)|{C−r, .., Cr−1 = 0}

+
r−1∑

p=−r

S(2m + 1)|{Cp = 1, Cl 6=p = 0} (20)

To evaluate (20), letp = r − j. For a particular term
in the summation, the conditionCp = 1 can be written

as Cr−j = 1. The set of calls that must be inactive (for
Cr−j = 1) are C−r−j ,..,C3r−j . This leaves the state of
calls C−m, .., C−r−j−1 independent of the state of calls
C3r−j+1, .., Cm−r. Thus for this term, applying Lemma 1,
the normalization constantS(2m + 1) (with the constraint
Cr−j = 1, Cl 6=(r−j) = 0, l ∈ {−r, .., r − 1}) equalsνS(m −
j)S(m− 3r + j) 3. Similarly for the term with the constraint
C−r, .., Cr−1 = 0, the state of calls{C−m, .., C−r−1} and
{Cr, .., Cm−r} are independent andS(2m + 1) evaluates to
S(m)S(m− r + 1). Thus, we get,

S(2m + 1) = S(m)S(m− r + 1)

+ ν

2r∑

j=1

S(m− j)S(m− 3r + j) (21)

We have, thus far, evaluatedP 0
NB in terms of theS()

function. It turns out that if we consider the limiting behavior
(m → ∞) then an elegant solution is obtained. To see this,
let limm→∞

S(m−1)
S(m) = x (the existence of this limit is shown

later). As the length of the line network tends to infinity, we
have limm→∞ P 0

NB = PNB , the probability of non-blocking
of any call. Combining (17), (19), (21) and taking limits we
get,

PNB =
limm→∞

S(m−r)S(m−2r)
S(m)S(m−r+1)

1 + ν
∑2r

j=1 limm→∞
S(m−j)S(m−3r+j)

S(m)S(m−r+1)

(22)

=
x2r+1

1 + 2rνx2r+1
(23)

where S(α)
S(β) = S(α)

S(α+1)
S(α+1)
S(α+2) . . . S(β−1)

S(β) → xβ−α, ∀β ≥
α. To prove the existence of the limit,limm→∞

S(m−1)
S(m) ,

we evaluateS(m) by conditioning on the state of the call
associated with the leftmost node. The two conditioning cases
are: the call inactive and the call active.

S(m) = S(m− 1) + νS(m− 2r − 1) (24)

1 = lim
m→∞

(
S(m− 1)

S(m)
+

νS(m− 2r − 1)
S(m)

)
(25)

First, note thatS(m) is non-negative and non-decreasing for
ν ∈ [0,∞) and hence the sequenceS(m−1)

S(m) is bounded

and satisfies0 < S(m−1)
S(m) ≤ 1, ∀m. For every bounded

sequence there exists a convergent subsequence,{mi}, for
which S(mi−1)

S(mi)
converges to some limit, sayx. Take the

limit in (25) over this subsequence which gives the following
polynomial equation1 = x+ νx2r+1 andx is the root of this
equation in(0, 1]. Now, x+ νx2r+1 = 1, has a unique root in
(0, 1]; to see this re-write it asνx2r +1 = 1/x. Forx ∈ (0, 1],
1/x is a decreasing function taking values in[1,∞); while
νx2r + 1, r ≥ 1 is a non-decreasing function taking values
in (1, 1 + ν]. Hence, the two curves intersect at a unique
x ∈ (0, 1]. This means that any convergent subsequence
converges to the same limit. In particular,lim infm→∞

S(m−1)
S(m)

and lim supm→∞
S(m−1)

S(m) are the limit points of convergent
subsequences and by the above argument they are equal. Thus,

3Feasible state space of callsC−m, .., C−r−j−1 is G(m−j) and the that
of calls C3r−j+1, .., Cm−r is G(m− 3r + j)
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limm→∞
S(m−1)

S(m) exists and is the unique root ofx+νx2r+1 =
1. Finally, the blocking probability of a call,PB , is given by,

PB = 1− x2r+1

1 + 2rνx2r+1
, x + νx2r+1 = 1 (26)

APPENDIX II
PROOF OFPROPOSITION1

The blocking probability analysis follows the methodology
used in Appendix I. LetCk denote the call between nodesXk

and Xk+2 and nk(t) be the number of callsCk in progress.
Define the state vector asn(t) = (nk(t), k ∈ −m, ...,m− 2).
Since we use the rearrangement policy for assigning channels
the vectorn = (n−m, .., nm−2) completely describes the
system behavior. The stochastic processn(t) is an aperiodic,
irreducible, finite state Markov process with a product form
steady state distributionπ(n). Let N(2m+1) be the normal-
ization constant andH(2m + 1) denote the admissible state
space for the line network (with2m + 1 nodes). Then,

π(n) =
1

N(2m + 1)

m−2∏

j=−m

νnj

nj !
, n ∈ H(2m + 1) (27)

Since the calls are two hops and adjacent hops cannot
share the same channel, each call requires two channels to
get served. As there are only two channels in the network
we get the constraint0 ≤ nj ≤ 1, ∀j and nj ! = 1. Let
ntotal = n−m + .. + nm−2 then (27) simplifies to,

π(n) =
νntotal

N(2m + 1)
, n ∈ H(2m + 1) (28)

N(2m + 1) =
∑

n∈H(2m+1)

νntotal (29)

Suppose callCk is active with channelγ1 assigned on
Xk ↔ Xk+1 andγ2 assigned onXk+1 ↔ Xk+2. Call Ck−3

can be simultaneously active by having an assignmentγ1 on
Xk−3 ↔ Xk−2 and γ2 on Xk−2 ↔ Xk−1. This assignment
satisfies the wireless constraints for unit transmission radius.
Similarly we can have a feasible assignment for callCk+3

while Ck is active. Thus only callsCk−2, Ck−1, Ck+1, Ck+2

must be inactive for callCk to be successfully serviced. These
local constraints define the setH(2m + 1). Now, consider
call C0 of the line network. The non-blocking states (denoted
H0

N (2m + 1)) for call C0 are {n : n ∈ H(2m + 1)
and n−2, .., n2 = 0}. Given (C−2,..,C2) = 0, the state of
calls C−m,..,C−3 is not constrained by the state of calls
C3,..,Cm−2. Thus,H0

N (2m+1) = H(m)×H(m− 2) where,
by our notation, the feasible state space of callsC−m,..,C−3

isH(m) and ofC3,..,Cm−2 isH(m−2). From Lemma 1 and
n−2, .., n2 = 0 we get,

P 0
NB =

(
∑
H(m) νn−m+..+n−3)(

∑
H(m−2) νn3+..+nm−2)

N(2m + 1)
(30)

=
N(m)N(m− 2)

N(2m + 1)
(31)

whereP 0
NB is the probability of non-blocking ofC0. We next

evaluateN(2m + 1) by partitioningH(2m + 1) conditioned
on the states ofC−1, C0; evaluatingN(2m + 1) over each

partition and summing up. The steps involved are identical to
those in Appendix I and can be found in [4].

N(2m + 1) = N(m + 1)N(m) + νN(m)N(m− 2)
+ νN(m− 1)N(m− 1) (32)

Let y = limm→∞
N(m−1)

N(m) . Combining (31), (32) and
limm→∞ P 0

NB = PNB we get (33) and (34) on the next page.
As in Appendix I, we can prove the existence and uniqueness
of y by evaluatingN(m) by conditioning on the state of the
leftmost call. This gives,N(m) = N(m− 1) + νN(m− 3);
divide byN(m) and take the limits. The steps are omitted for
brevity. The polynomial equation, thus, obtained is1 = y+νy3

and we get,

PB = 1− y3

1 + 2νy3
, νy3 + y = 1 (35)

APPENDIX III
PROOF OFTHEOREM 2

To compare Schemes A and B, we need to compare (6)
and (7) for the same loadν. For loadν = 0, PB is zero for
both schemes. Excluding theν →∞ case, we show that there
does not exist a loadν such that the two blocking probabilities
are equal (and hence the twoPB curves never cross). The
proof is by contradiction. Let̂ν > 0 be such that the blocking
probability for Schemes A and B are equal. Equating (6) and
(7), we get,

x̃5

1 + 2ν̂x̃5
=

ỹ3

1 + 2ν̂ỹ3
⇒ x̃5 = ỹ3 (36)

where x̃ and ỹ are the unique roots in (0,1) ofν̂2x5 + x = 1
and ν̂y3 +y = 1 respectively. Note that aŝν is strictly greater
than 0,x̃, ỹ are strictly less than 1. Rearranging,

ν̂x̃5 = ν̂ỹ3 = 1− ỹ (as ν̂ỹ3 + ỹ = 1) (37)

= 1− x̃5/3 (From (36)) (38)

Substituting (38) in ν̂
2 x̃5 + x̃ = 1 we get 2x̃ − x̃5/3 = 1.

However, forx̃ ∈ (0, 1), 2x̃ − x̃5/3 is an increasing function
taking values in (0,1). Thus, for̃x ∈ (0, 1), 2x̃ − x̃5/3 6= 1
and we arrive at a contradiction. This proves that for finite
ν > 0, PB for Schemes A and B cannot be equal. For a
particular value, sayν = 1, it can be easily shown that
PB(Scheme B) < PB(Scheme A). Combining this with
the fact that the twoPB curves do not cross each other we
conclude that for allν ∈ (0,∞), blocking probability for
Scheme B is smaller than that for Scheme A.
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