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Abstract

We compare the effectiveness of uniform versus non-uniform waveband switching under the dual cost metrics of
switching requirements and fiber capacity. We consider a star topology and begin by characterizing the optimal perfor-
mance frontier achievable under no restrictions on waveband sizing, and provide algorithms employing non-uniform
waveband sizing that approach or achieve this optimum. We then consider the special case of uniform waveband sizing,
and show that the performance compares very favorably. We also extend our results to general topologies.
� 2005 Published by Elsevier B.V.
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1. Introduction

The majority of the routing and switching liter-
ature for WDM networks has focused on how to
minimize the total number of wavelengths [1–8],
since the number of wavelengths used specifies
the amount of capacity required on each fiber.
However, this single-resource approach does not
take into account the switching necessary at each
node which routes each call to its destination.
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Switching costs can easily dominate bandwidth
costs in systems with a large number of calls. In
a conventional WDM system, each input fiber is
typically demultiplexed into wavelengths, and each
wavelength relies on a N · N switch to route it to
the appropriate output fiber, where N is the nodal
degree. The number of switches required is equal
to the number of wavelengths. For large networks
with many wavelengths, this approach can require
many, often expensive switches.

Waveband switching, also known as band
switching, attempts to address this problem. The
approach is based on the observation that if the
number of input wavelengths per fiber is large rel-
ative to the number of output fibers, many of the
wavelengths will need to be switched between the
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same fiber pairs. Waveband switching tries to
group the wavelengths into wavebands such that
all wavelengths in the same waveband can be
switched together, allowing the processing to be
performed at this coarser waveband level and
reducing the number of switches required. With
waveband switching each fiber would only be
demultiplexed into wavebands, and the number
of switches required would equal the number of
wavebands. Since the number of wavebands re-
quired is typically much smaller than the number
of wavelengths, this can greatly reduce the process-
ing and switching costs.

In this paper, we consider the resources of inter-
est to be the number of wavelengths and wave-
bands required by a given banding algorithm.
Reducing the requirement for either quantity re-
duces the costs in the network. Conceptually,
every banding algorithm can be represented by a
point in a two-dimensional performance space, as
illustrated in Fig. 1, indicating the number of
wavelengths and wavebands required by the algo-
rithm. The shaded area in the figure represents the
achievable region of performance over all possible
algorithms. The goal is to characterize the optimal
frontier of achievable performance. This frontier
would give the optimal tradeoff between wave-
lengths and wavebands achievable.

There has been some work in the literature
addressing the waveband switching problem.
Many papers consider the problem of waveband
allocation for static traffic. In [9–11], integer linear
wavebands
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Fig. 1. The region of achievable wavelength–waveband
tradeoffs.
programming formulations are given for a variety
of topologies, and the problem of optimal wave-
band allocation is shown to be NP-complete. In
[12], efficient algorithms for dynamic traffic are
considered under a simplified traffic model that
limits traffic to a single source node and does not
allow wavelength overprovisioning, even if it
would result in fewer wavebands.

In this paper, we consider dynamic traffic in the
more general problem of determining the optimal
tradeoff between wavelengths and wavebands in
band switching. Furthermore, we allow a more
general traffic model where every node is permitted
to send traffic into the network. We first character-
ize the optimal tradeoff with no restrictions on
waveband sizing, and derive efficient algorithms
for achieving it. We then consider imposing the
restriction that all wavebands must be uniformly
sized, and show that the performance of uniform
waveband algorithms compare very favorably with
the optimum.

1.1. System model

In this paper, we adopt the P-port traffic model
from [4], which assumes that P transmitters and
receivers are available at each network node. This
allows each node to send and receive a total of at
most P calls at any given time. If the instantaneous
traffic is represented by a matrix where each entry
(i, j) consists of the number of calls sent from node
i to node j, the P-port model constrains each row
and column sum to be at most P. Any traffic set
with a matrix obeying this constraint is termed
admissible, and no calls in an admissible set may
be blocked. Under this model, sufficient resources
must be provisioned to support any admissible set.
Call arrivals and departures may occur in arbitrary
fashion, as long as the resultant traffic set remains
admissible; these dynamic arrivals and departures
are represented by transitions between different
admissible sets. This model is attractive because
it limits traffic in a realistic fashion based on hard-
ware constraints, and also allows dynamic aspects
of the traffic to be captured without making
assumptions about the call statistics.

We primarily consider the star topology in this
paper, with Section 5 describing extensions of our
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results to other topologies. This topology is repre-
sentative of a hub or switch node in a network. All
nodes are connected via bidirectional fibers to a
central hub, which performs the switching. We as-
sume no wavelength conversion, so calls must use
the same wavelength on all hops. To avoid colli-
sion, no two calls may use the same wavelength
in the same direction on the same fiber. We con-
sider both the single-source case, where only a
single node transmits, and the more general
multi-source case, where every node may transmit.
These situations are illustrated in Fig. 2.

The problem of band switching under this mod-
el may be formulated as a matrix decomposition.
Under the banding problem, we are given a traffic
matrix C where each entry [C]i,j represents the
number of calls transmitted from source node i

to destination node j. In the single-source case,
the traffic matrix is a vector of size 1 · N; for mul-
ti-source traffic, the traffic matrix is a square N · N

matrix. Note that C may change over time due to
call arrivals and departures. For a fixed C, the goal
is to group the calls into bands such that calls
within the same band that have the same source
node go to the same destination. This can be
expressed mathematically by

C 6 b1T 1 þ b2T 2 þ � � � þ bBT B; ð1Þ

where each bi is an integer representing the size of
waveband i, and each Ti represents the corre-
sponding switch configuration. Ti is therefore
either a unit vector (single-source case) or a per-
mutation matrix (multi-source).
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Fig. 2. (a) Single-source case, where a single source node sends
a total of at most P calls to up to N destinations. (b) Multi-
source case, where each of N nodes sends and receives a total of
P calls.
Any set of wavebands specifying a valid decom-
position is sufficient to support the particular traf-
fic matrix C to which it applies. We impose two
additional constraints: we require that B and {bi}
must be fixed over all admissible traffic sets. Fixing
B is essential since B corresponds to the number of
switches required, a hardware requirement that
should not depend on random changes in the traf-
fic. Fixing the band sizes {bi} removes the need for
dynamically tunable filters, reducing costs. Under
these two constraints, we require that banding
algorithms be characterized by fixed values of B

and {bi} such that for each admissible traffic set
C, the algorithm is able to specify a decomposition
according to (1) with specific switch configurations
Ti for each waveband i. Recall that the perfor-
mance of each banding algorithm can be judged
by the number of wavelengths and wavebands it
requires. The number of wavebands is given di-
rectly by B, while the total number of wavelengths
can be calculated as

PB
i¼1bi.

As illustrated in Fig. 1, our goal is to find the
optimal achievable frontier. The most general for-
mulation of this problem is to allow the waveband
sizes {bi} to be non-uniform. Any uniform-wave-
band algorithm will then be a valid special case.
Under the general formulation, we can divide this
problem into three parts. Note that Fig. 1 shows
two asymptotes to the achievable region: one cor-
responding to the minimum possible number of
wavelengths required (the minimum-wavelength

asymptote, shown on the bottom of the achievable
region), and the other corresponding to the mini-
mum number of wavebands (the minimum-

waveband asymptote, shown to the left of the
achievable region). The first two parts of the prob-
lem focus on these asymptotes, and attempt to
determine the optimal points on these lines. Specif-
ically, we denote any algorithm with performance
achieving the minimum possible number of wave-
lengths to be a minimum-wavelength algorithm.
The problem of finding the best minimum-wave-
length algorithm is known as the minimum-wave-

length problem. Similarly, any algorithm using
the minimum possible number of wavebands is a
minimum-waveband algorithm; finding the best
minimum-waveband algorithm is the minimum-

waveband problem.
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Once solutions to the minimum-wavelength and
minimum-waveband problems are obtained, two
points on the optimal frontier are known. It then
remains only to find the best tradeoff between
wavelengths and wavebands achievable between
these two points. Ideally, such a tradeoff should
present a curve which adheres as closely as possi-
ble to the asymptotes, presenting the best possible
tradeoff. Obtaining the best possible such tradeoff
is the subject of the final component of the band-
ing problem.

In Section 2, the banding problem is investi-
gated for the single-source traffic case. In Sections
3 and 4, banding for general multi-source traffic is
considered. We will compare the special case of
uniformly-sized wavebands to the more general
non-uniform case, and show that uniform wave-
band sizing compares very favorably. Finally, Sec-
tion 5 describes extending the results of the paper
to general network topologies.
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Fig. 3. The switching configurations for the three unique
maximal traffic sets of Example 1. The traffic sets shown are:
(a) [4,0], (b) [3,1] and (c) [2,2].
2. Waveband switching for single-source traffic

In this section, we consider the banding prob-
lem for the case of single-source traffic. Under this
scenario, a single source node sends up to P units
of traffic to be switched to N possible destination
nodes. The primary purpose of investigating the
single-source model is to derive intuition for the
design of good banding algorithms that will be
beneficial in addressing the multi-source traffic
case in the next section. The single-source model
also has some merit in cases of a one-to-many
traffic scenario.

Example 1. Consider the case of P = 4, N = 2. In
this example, the source sends four calls, distrib-
uted among two destinations. There are only five
possible maximal traffic sets, which (expressed in
vector form) are [4,0], [3,1], [2, 2], [1, 3], and [0,4].
Clearly at least 4 wavelengths are required to
support the traffic, since there are four calls. We
can show that if we restrict ourselves to using only
four wavelengths (i.e. we consider the minimum-
wavelength problem), the minimum number of
wavebands required is 3: one band of size 2, and
two bands of size 1. By exhaustive verification we
can prove that this waveband sizing is sufficient for
all possible traffic sets:

½4; 0� ¼ 2 � ½1; 0� þ 1 � ½1; 0� þ 1 � ½1; 0�
¼ 2e1 þ e1 þ e1

½3; 1� ¼ 2e1 þ e1 þ e2

½2; 2� ¼ 2e1 þ e2 þ e2;

where ei is a unit vector with the ith entry equal to 1.
Note that, as required, the sizes of each band and

total number of bands are fixed, and only the
accompanying unit vectors (which correspond to
the switch configurations for each band) change
between traffic sets. The switching of each waveband
for each scenario is illustrated in Fig. 3. In this
example, the savings in switching is not large
because the number of calls is not very large relative
to the number of destinations. As the number of
calls increases, the savings will increase as well.

The number of wavebands can be further
reduced if the use of additional wavelengths is
permitted. One possibility is to have one band of
size 3, and one band of size 2. This reduces the
number of wavebands to two, and these two
wavebands can still support all five possible traffic
sets. However, the total number of wavelengths
used has increased to 5. Efficient methods of
making these sorts of tradeoffs will be discussed.

We consider the two special cases of the mini-
mum-wavelength and minimum-waveband prob-
lems. Recall that the solutions to these two
problems will provide two points on the optimal
achievable performance frontier. We will defer
the discussion of obtaining good tradeoffs between
these two points until the multi-source case.
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2.1. The minimum-wavelength problem

Recall that for the minimum-wavelength prob-
lem, we consider only banding algorithms that
use the minimum possible number of wavelengths.
Under the P-port model, a minimum of P wave-
lengths are clearly necessary and sufficient: up to
P calls can be sent, and if each wavelength is indi-
vidually switched, P wavelengths can support all
the calls. The goal is to find the optimal algorithm
that uses only P wavelengths.

Since the number of wavelengths equals the
maximum possible number of calls, given a maxi-
mal admissible traffic set, each wavelength must
be used to support a call. Therefore, the mini-
mum-waveband problem is equivalent to finding
a method of partitioning the P wavelengths into
wavebands such that, for any admissible traffic
set, there exists a method for assigning calls to
wavebands such that every wavelength is assigned
a call. Furthermore, the optimal minimum-wave-
length algorithm should accomplish this while at
the same time minimizing the total number of
wavebands. We show in this section that the opti-
mal minimum-wavelength banding algorithm is a
greedy algorithm. Specifically, the greedy algo-
rithm chooses waveband sizes recursively, where
at each step a waveband is chosen to be as large
as possible subject to the constraint that every
wavelength in that band can always be assigned
a call under any maximal admissible traffic set.
(We say that in this case every wavelength can be
fully utilized.)

Define bmax(N,P) to be the maximum wave-
band size that we can guarantee will be fully uti-
lized by any traffic set sending P calls to N

destinations. Since all calls in the waveband must
go to the same destination, this is equivalent to
providing a guarantee that a destination node
can always be found (under any admissible P-port
traffic set) which receives at least bmax(N,P) calls.
To illustrate, when considering the example in
Fig. 3, we note that over all admissible traffic sets,
a destination can always be found which receives
at least 2 calls, leading to the conclusion that
bmax(N,P) = 2 in that case. In general, we can
guarantee that at least one of the destinations re-
ceives dP/Ne calls. Furthermore, this is the largest
number for which we can make this guarantee; this
follows from the fact that one admissible traffic set
is where the traffic is divided evenly (up to a differ-
ence of one wavelength due to integer constraints)
among all destinations, and no destination receives
more than dP/Ne calls under this traffic set. There-
fore bmax(N,P) = dP/Ne.

Single-source greedy algorithm:

1. Let P1 = P be the number of calls remaining
and N be the number of nodes. Let i = 1.

2. Let waveband i be of size bi = bmax(N,Pi) = dPi/
Ne.

3. Locate a destination receiving at least
bmax(N,Pi) calls. Route waveband i to this desti-
nation, and assign bmax(N,Pi) calls to it. The
number of calls remaining becomes Pi+1 =
Pi 
 bmax.

4. If Pi+1 > 0, let i i + 1 and go to Step 2.
Example 2. We revisit Example 1 and show how
the greedy algorithm is used to obtain the mini-
mum-wavelength waveband sizes used in Fig. 3. In
that example, P = P1 = 4 and N = 2. In the first
iteration, the greedy algorithm chooses the first
waveband to be of size dP1/Ne = d4/2e = 2. As a
corollary, we are guaranteed that 2 calls can be
assigned to this waveband, leaving P2 = 2 calls
unassigned. The next two iterations partition the
remaining wavelengths into bands of a single
wavelength each, for a final partition of {2,1,1}.

We must now show that choosing the waveband
sizes using the greedy algorithm is optimal for the
minimum-wavelength problem. The full proof,
omitted here for brevity, is based on establishing
that the minimum number of wavebands required
to support a given number of calls is non-decreas-
ing in the number of calls. It therefore follows that
the optimal approach for choosing each waveband
size is to choose the band as large as possible,
thereby minimizing the amount of traffic which re-
mains (and therefore the subsequent number of
wavebands).

The greedy algorithm provides a method for
optimally determining waveband sizes for the min-
imum-wavelength problem. This also implicitly
provides a way of determining the minimum num-
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ber of wavebands required (i.e. by running the
algorithm and counting the number of wavebands
produced). We can also derive an explicit upper
bound on the minimum number of wavebands re-
quired in the minimum-wavelength scenario. We
proceed by relaxing the integer constraints on
bmax(N,P). Let Pk be the number of calls remain-
ing after running the kth iteration of the greedy
algorithm. The series progresses as follows:

P 1 ¼ P 
 P
N
¼ 1
 1

N

� �
� P ;

P 2 ¼ 1
 1

N

� �
� P 1 ¼ 1
 1

N

� �2

� P ;

..

.

Pk ¼ 1
 1

N

� �k

� P . ð2Þ

If P 6 N, then the number of bands B is simply
equal to P since each band is composed of only
a single wavelength. Therefore consider P > N

and determine the number of bands k required
to reduce the number of unassigned wavelengths
to N.

Pk ¼ N ;

1
 1

N

� �k

� P ¼ N ;

k ¼
log N

P

� �
log 1
 1

N

� � .

Then the total number of wavebands is simply
k + N. Since relaxing the ceiling constraints under-
estimates the size of each waveband, this gives an
upper bound on the number of wavebands B,
namely:

B 6
N þ log N

Pð Þ
log 1
1

Nð Þ ; P > N

P ; P 6 N

8<
: . ð3Þ

From (3), we can also make the additional
observation that if P 6 N, the number of bands
B equals the number of wavelengths P, and there
is no savings from banding in the minimum-wave-
length case as each wavelength continues to be
switched individually.
2.2. The minimum-waveband problem

The optimal minimum-waveband algorithm is
the one that requires the fewest wavelengths sub-
ject to using only the minimum number of wave-
bands. In addition to providing a second point
on the optimal frontier, this will establish the min-
imum cost in wavelengths required to obtain the
maximum possible reduction in switching.

If P < N, then there exists an admissible traffic
set where each call is sent to a different destination,
and P wavebands are necessary. It follows from a
little further thought that P wavebands of a single
wavelength each are actually also sufficient to sup-
port all admissible traffic sets, since each call can
be assigned a dedicated waveband under this
provisioning.

The more interesting case arises when P P N.
Since all wavelengths in the same waveband must
be switched to the same destination, and there
are N possible destination, a minimum of N wave-
bands are necessary. One (inefficient) approach
that requires only N wavebands is to statically
switch one waveband to each destination, and pro-
vision P wavelengths per waveband; since there are
a total of only P calls, this is sufficient to support
any admissible traffic set. Our goal is to find a bet-
ter, optimal algorithm using only N wavebands
that minimizes the number of wavelengths used.
We first obtain a lower bound on the number of
wavelengths required using the following lemma.

Lemma 1. Consider a banding algorithm that uses

N wavebands, and order the wavebands from small-
est to largest. Let bi be the size of the ith waveband.

If the source sends up to P calls to the N destination

nodes, bi is bounded by

bi P
P 
 N þ i

i

	 

; i ¼ 1; . . . ;N . ð4Þ

Corollary. The total number of wavelengths W

required is bounded by the sum of the bounds on

the individual waveband sizes, namely

W P
XN
i¼1

P 
 N þ i
i

	 

. ð5Þ

This summation can be shown to increase as
OðP logNÞ.
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Proof. The proof proceeds by constructing an
admissible traffic set which requires bi to have at
least P
Nþi

i

� 
wavelengths. Consider the traffic set

where the source S sends P
Nþi
i

� 
calls each to the

first i nodes, and a single call to each remaining
node. The total traffic in this construction is

i � P 
 N þ i
i

	 

þ ðN 
 iÞ 6 P

and therefore it is admissible. Since each destina-
tion receives at least one call, each of the N wave-
bands goes to a different destination.

Without loss of generality, we assign the largest
i wavebands to nodes 1 through i. Each of these
wavebands must support P
Nþi

i

� 
calls. Therefore

bi P P
Nþi
i

� 
. h

Since Lemma 1 is a lower bound, any mini-
mum-waveband algorithm which achieves the
bound is optimal. We next present an algorithm
that can support any admissible traffic set using
wavebands of the minimal sizes specified by (4).
Since this minimum-waveband algorithm would
use no more wavelengths than the lower bound,
it is therefore optimal.

Min-band algorithm:

1. Index the N waveband in order of decreasing
size, so that waveband i has size bi ¼ P
Nþi

i

� 
,

where i = 1, . . . ,N. Note that b1 is the largest
waveband, and bN is the smallest.

2. Let i = 1.
3. Locate the destination node with the greatest

number of remaining calls. Switch waveband i

to that node. Assign up to bi calls to waveband
i, and remove these calls from the traffic set.

4. If no calls remain, the algorithm terminates.
Otherwise, increment i and return to Step 2.

By design, the algorithm uses only wavebands
of the minimum size, and therefore meets the lower
bound. It remains only to show that it is able to
support any admissible set. First, suppose that
each destination receives at least a single call. In
this case, we can rank each destination in decreas-
ing order of number of calls received, so that the
first destination receives the most calls. Then the
min-band algorithm allocates the ith waveband
to the ith destination. Since each destination re-
ceives at least one call, the first i destinations
receive at most P 
 (N 
 i) = P 
 N + i calls,
and the ith destination receives at most
b(P 
 N + i)/ic calls. Since the ith waveband has
size b(P 
 N + i)/ic, it suffices to accommodate
the calls. The proof in the case where some desti-
nations do not receive calls is more cumbersome
but follows the same approach.

Example 3. Consider the case where P = 22 calls
are distributed among N = 4 destinations. The opti-
mum minimum-waveband algorithm requires 4
wavebands. According to Lemma 1, the first wave-
band is of size b1 = bP 
 N + 1c = b22
4 + 1c =
19. Similarly, b2 = 10, b3 = 7, and b4 = 5.

These wavebands can support any P-port
admissible traffic set, P = 22. For example, con-
sider the traffic set C = [5,8,7,2]. The first wave-
band is assigned to node 2, the destination with the
most traffic, and carries all 8 calls. Similarly, b2 is
assigned to node 3, b3 is assigned to node 1, and b4

is assigned to node 4. Using the matrix decompo-
sition notation of (1), this can be written as

½5; 8; 7; 2� 6 19e2 þ 10e3 þ 7e1 þ 5e4

¼ ½7; 19; 10; 5�.

Note that here, the total number of wavelengths
available to each destination (represented by the
vector on the right-hand side of the equation) is
greater than the number of calls: more wave-
lengths were provisioned than absolutely required
for this particular traffic set. This over-provision-
ing in wavelengths is necessary in order to guar-
antee that all admissible traffic sets can be
accommodated.

It is instructive to compare this to the decom-
position obtained by the greedy algorithm of
Section 2.1. The first waveband for the greedy
algorithm consists of dP/Ne = d22/4e = 6 wave-
lengths. The remaining waveband sizes can be
shown to be {4,3,3,2,1,1,1,1}. One possible
switching configuration for these waveband sizes is

½5; 8; 7; 2� ¼ 6e2 þ 4e3 þ 3e1 þ 3e3 þ 2e1 þ e2

þ e2 þ e4 þ e4 ¼ ½5; 8; 7; 2�.

The greedy algorithm, since it is a minimum-
wavelength algorithm, did not over-provision any
wavelengths; however, more wavebands were
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required. This example also illustrates an impor-
tant point. In the decomposition given by (1),
equality is guaranteed to hold for all C if and
only if the wavebands were allocated using a min-
imum-wavelength algorithm (such as the greedy
algorithm). Algorithms such as the min-band algo-
rithm allow some overprovisioning of wavelengths
in order to further decrease the number of wave-
bands required.

Eq. (5) gives total the number of wavelengths
required by the optimal minimum-waveband algo-
rithm. We can approximate the total number of
wavelengths in closed form by relaxing the inte-
grality constraint on the terms of the summation.
This gives:

W min �
XN
i¼1

P 
 N þ i
i

¼ N þ ðP 
 NÞ
XN
i¼1

1

i

� N þ ðP 
 NÞ logN � P logN ;

where the last approximation holds for P� N.
Recall that any banding algorithm always re-

quires a minimum of P wavelengths. Our result
in this section shows that the best minimum-wave-
band algorithm requires OðP logðNÞÞ wavelengths.
One way of interpreting this result is that logðNÞ
represents the minimum wavelength inefficiency

necessary to achieve the minimum-waveband
bound. In other words, if we desire to use no more
than the minimum number of wavebands N, then
we must pay a penalty of a factor of logðNÞ
increase in the number of wavelengths used.
3. Waveband switching for multi-source traffic

We now consider the more general case of mul-
ti-source traffic. In this scenario, N nodes are con-
nected to a central hub. Each node is assumed to
have a hardware limitation of P transmitters and
receivers, and can therefore send and receive up
to P calls. The hub must switch the calls, at a band
level, from the appropriate source to destination
nodes. In our discussion, we will assume that
self-traffic is allowed; the case without self-traffic
is similar and leads to comparable results. We will
show that many of the concepts in this scenario
parallel those in the single-source case. (The pri-
mary differences are that the traffic set now con-
sists of a traffic matrix rather than a vector, and
the switching configuration for each waveband will
now consist of a permutation matrix rather than a
unit vector.) We will again begin by considering
two special cases, the minimum-wavelength and
minimum-waveband problems, followed by inves-
tigating algorithms that provide a tradeoff between
these two cases.

3.1. The minimum-wavelength problem

Recall that for the minimum-wavelength prob-
lem, we constrain ourselves to the domain of band-
ing algorithms which use only the minimum
possible number of wavelengths. Since each node
may send up to P calls, it is clear that at least P

wavelengths are necessary. In [13] it is shown that
this is also sufficient. The challenge is therefore to
first partition the P wavelengths into wavebands,
and second, to develop an algorithm that will pro-
vide a valid wavelength assignment for any admis-
sible traffic set using these wavebands.

We first address the partitioning of the wave-
bands. We consider the cases of interest to be max-
imal traffic sets, since we can add fictitious calls to
any non-maximal set to construct a maximal one.
We define a wavelength to be fully utilized if it is
used to carry a call on every link. Mathematically,
this is equivalent to stating that the matrix of calls
supported by that wavelength forms a permuta-
tion matrix. We say that a waveband is fully
utilized if every wavelength in that waveband is
fully utilized.

Every minimum-wavelength algorithm must be
able to fully utilize every waveband under any
admissible maximal traffic set. We have already
seen in Section 2.1 that a greedy approach is opti-
mal for this type of problem. Recall that the gree-
dy algorithm worked recursively by partitioning,
at each step, the largest waveband size possible
subject to the constraint that it could be fully uti-
lized by any admissible traffic set. Intuitively, this
was because the number of wavebands required
turned out to be non-increasing in the amount of
traffic; therefore at each step the optimal solution
was to minimize the residual amount of traffic.
The only remaining problem is that largest fully
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utilizable waveband size, bmax(N,P), must be
derived for the multi-source case.

We can view bmax(N,P) as the largest number of
identical permutation matrices that we are guaran-
teed to be able to find within any N · N matrix
with row and column sums equal to P. This is
equivalent to stating that sufficiently many calls
must exist within any admissible traffic set with
parameters N and P to fully utilize the waveband.

Example 4. Consider the case where P = 9 and
N = 3. One admissible maximal traffic set satisfy-
ing these constraints is given by

C1 ¼
1 5 3

3 2 4

5 2 2

2
64

3
75.

The largest waveband that could be fully utilized
by this particular traffic set is 4 wavelengths, as
shown below:

C1 ¼ 4 �
0 1 0

0 0 1

1 0 0

2
64

3
75þ

1 1 3

3 2 0

4 2 2

2
64

3
75.

The first term consists of 4 identical permutation
matrices representing calls that can be used to fully
utilize a waveband of size 4 or less; the second term
forms the remaining calls. Note that this shows
only that bmax must be at most 4; it may be possible
that some other traffic set may require an even
smaller waveband for full utilization. For example,
consider an alternate admissible set, formed by

C2 ¼
2 4 3

4 2 3

3 3 3

2
64

3
75.

In this example, since no entry in the third row
contains more than 3 calls, at best 3 identical per-
mutations can be found, with one possible assign-
ment shown below:

C2 ¼ 3 �
0 1 0

1 0 0

0 0 1

2
64

3
75þ

2 1 3

1 2 3

3 3 0

2
64

3
75.

Therefore at best the largest waveband bmax can
consist of 3 wavelengths; any larger waveband
could not be fully utilized by C2. Note that this
is still not enough to show that bmax might not
need to be lowered further; it may be possible that
some other traffic set may require an even smaller
waveband for full utilization. The challenge will be
to obtain in closed form an equation for bmax with-
out performing this sort of exhaustive examination
of all possible maximal admissible traffic sets.

We will use results from graph theory to help
derive a solution to this problem. We can represent
any admissible traffic set as a bipartite graph. The
bipartite graph consists of two sets of N nodes
each. Denote these sets by V1 = {s1, . . . , sN} and
V2 = {d1, . . . ,dN}. Nodes in V1 represent sources,
and nodes in V2 represent destinations. We also
create a set of edges E that is dependent on the
traffic set under consideration: if there is at least
one call from a source node i to a destination node
j, create an edge connecting node si to node dj. The
edge is given a weight equal to the number of calls
between that source–destination pair.

Define a maximal matching to be a subset of
edges from E such that exactly one edge is incident
on each node in V1 and V2. In our original matrix
notation, this corresponds to a matrix T where en-
try [T]i,j is nonzero if and only if an edge between si
and dj is contained in the matching. Note that T is
a permutation matrix, since there is only one non-
zero entry per row (since only one edge is adjacent
to each si) and column (due to one edge per dj).
The number of such permutation matrices that
can be found in the particular traffic set is equal
to the smallest edge weight in the maximal
matching.

Example 5. We consider again the set C1 given in
Example 4. Fig. 4(a) gives the bipartite graph
corresponding to C1, and Fig. 4(b) locates a
bipartite matching within this graph. The bipar-
tite matching corresponds to the permutation
matrix

T 1 ¼
0 1 0

0 0 1

1 0 0

2
64

3
75.

Note that as the smallest edge weight on the
matching is 4, we are able to locate 4 copies of T
in C1, as expected.



s1

s2

s3

d1

d2

d3

1

53

3
2

4

5
2

2

s1

s2

s3

d1

d2

d3

5

4

5

ba

Fig. 4. (a) The bipartite graph corresponding to C1 in Example
5. (b) One possible bipartite matching from the graph.
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Therefore, in this graph context, we wish to
choose bmax such that in any bipartite graph corre-
sponding to an admissible traffic set, a maximal
matching can be found where the smallest-weight
edge is at least bmax. Conveniently, a theorem ex-
ists which provides necessary and sufficient condi-
tions for the existence of maximal matchings on
bipartite graphs.

Hall’s Theorem [14]: In a bipartite graph
ðV 1; V 2;EÞ, define the neighborhood of a subset
v � V1 to be those nodes in V2 which are con-
nected via some edge in E to some node in v. Then
there exists a maximal matching if and only if, for
every subset v � V1, its neighborhood N(v) has size
jN(v)jP jvj.

Hall�s Theorem provides the basis for determin-
ing the existence of maximal matchings. The fol-
lowing test is applied: a subset v of the source
nodes V1 is chosen. If the neighborhood of the
subset N(v) is of size greater than or equal to the
size of the subset itself, the test is passed. This is
shown in Fig. 5. The test is then repeated for all
possible subsets v of V1. If the test is passed for
1

2

3

4

1

2

3

4

v

1

2

3

4

1

2

3

4

N(v)

Fig. 5. To apply the test given by Hall�s Theorem, a subset v of
the source nodes V1 is first chosen. In this case, v consists of 2
nodes, and the neighborhood N(v) contains 4 nodes. Therefore
the test is passed for this choice of v. This test must be repeated
for all possible choices of v.
all subsets, then a maximal matching exists. If at
least one test is failed, then no maximal matching
exists.

We can determine if a waveband of a given size
b can be fully utilized by a given traffic set as fol-
lows. Determine the bipartite graph corresponding
to the traffic set, and delete any edges with weight
less than b. This removes from consideration any
maximal matchings with edge weight less than b,
since such matchings cannot fully utilize the wave-
band. The tests given by Hall�s Theorem can then
be applied to this graph to determine if a maximal
matching exists that is sufficiently large to fully uti-
lize the waveband. If the test fails, then a wave-
band of size b is too large to be sufficiently
utilized. This test should be applied to all maximal
traffic sets to guarantee that any maximal set can
fully utilize the waveband.

In principle, the preceding approach could be
used to determine bmax(N,P) numerically by brute
force. However, we will see that a closed-form
solution can be obtained. The method for obtain-
ing the closed-form expression for bmax(N,P) relies
on attempting to construct a bipartite graph which
causes the test given by Hall�s Theorem to be
failed. (In a slight abuse of notation, we call such
a bipartite matching a ‘‘counterexample’’.)
bmax(N,P) is then the largest waveband size for
which no counterexample exists.

In order for the test to be failed, a maximal traf-
fic set must be found for which we can choose a v

such that the size of the neighborhood N(v) is
smaller than the size of v. We therefore wish to
construct a counterexample where, if jvj = n, then
jN(v)j = m, where m < n.

Under the P-port model, the nodes in v can
send at most mP calls to nodes in N(v). The
remaining residual traffic is therefore at least
(n 
 m)P. These calls are sent to nodes outside
the neighborhood, and hence must belong to edges
adjacent to a non-neighborhood node. Call these
edges non-neighborhood edges. Non-neighborhood
edges are those edges with weight less than
bmax(N,P) which are not eligible to belong to a
maximal matching, since they do not contain en-
ough calls to fully utilize the matching. This is
illustrated in Fig. 6. There are at most n Æ (N 
 m)
non-neighborhood edges.



n

m

mPmP

n N-m

(n-m)P

(n-m)P

ba

Fig. 6. At most mP calls can be sent to nodes in N(v), and hence
(n 
 m)P calls must go to non-neighborhood nodes.
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We can therefore construct a counterexample if
and only if the residual traffic can be divided
among the non-neighborhood edges such that no
non-neighborhood edge has weight greater than
or equal to bmax(N,P). Since there are (n 
 m)P
residual calls and n(N 
 m) non-neighborhood
edges, there is at least one non-neighborhood edge
with weight at least

ðn
 mÞP
nðN 
 mÞ

� �
.

If bmax(N,P) is chosen to be at most this num-
ber, then no counterexample exists for the given
values of n and m. We can choose bmax(N,P) to
guarantee that no counterexample exists by
minimizing over n and m and choosing bmax(N,P)
smaller than this minimum:

bmax 6 min
n;m

ðn
 mÞP
nðN 
 mÞ

� �
¼ min

n;m

1
 m
n

� �
P

N 
 m

� �
. ð6Þ

We fix for the moment m and consider the min-
imization over n. Since n > m, the minimization is
subject to the constraint 0 < m < n < N. Eq. (6) is
minimized by choosing n as small as possible.
Since n and m are both integer quantities, we
should choose n = m + 1; conversely, m = n 
 1.

Making this substitution, the minimization
becomes:

bmax 6 min
n

P
n½N 
 ðn
 1Þ�

� �
. ð7Þ

Since the ceiling function is monotonic,

min
n

P
n½N 
 ðn
 1Þ�

� �
¼ min

n

P
n½N 
 ðn
 1Þ�

� �
.

Ignoring integrality constraints, the right-hand
side is easily shown to be minimized at n� ¼ Nþ1

2
.

If N is odd, then Nþ1
2

is an integer and hence is a
valid choice for n*. We subsequently obtain a value
for bmax of

bmax ¼
P

Nþ1
2

� �
Nþ1

2

� �
& ’

¼ 4P

ðN þ 1Þ2

& ’
; if N odd.

If N is even, then since P=n
N
ðn
1Þ is convex, the

minimizing value of n must be one of the integers
adjacent to Nþ1

2
, namely either bNþ1

2
c ¼ N

2
or

dNþ1
2
e ¼ N

2
þ 1. It is easy to verify that either case

results in the same value of

bmax ¼
P

N
2

� �
N
2
þ 1

� �
& ’

¼ 4P
NðN þ 2Þ

� �
; if N even.

In summary,

bmax ¼
4P

NðNþ2Þ

l m
; N even

4P
ðNþ1Þ2

l m
; N odd

8><
>: . ð8Þ

Now that bmax(N,P) is known for general P-
port traffic, (8) can be used in conjunction with
the greedy algorithm to optimally partition the
wavebands. Again, note that the waveband sizing
is independent of the particular traffic set and de-
pends only on the network parameters N and P.
Therefore wavebands of constant size can be used
for any admissible traffic set. The assignment of
calls to the wavebands can be obtained by a bipar-
tite matching algorithm; by using the expression
bmax(N,P) to size each waveband, we have guaran-
teed that maximal matchings can be found which
fully utilize each waveband for any admissible
traffic set.

Example 6. We continue with the 3-node network
from Example 4 where P = 9. Using the greedy
algorithm, we would determine that the largest

waveband should be 4P
ðNþ1Þ2

l m
¼ ð4Þð9Þ

ð4Þ2

l m
¼ 3.

After this step, 9 
 3 = 6 wavelengths remain to
be partitioned. We repeat this process until all
wavelengths have been assigned to bands. The
final waveband partition is {3, 2, 1, 1, 1, 1}. By
choice of bmax, this partitioning can be fully
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utilized by any admissible traffic set. For example,
consider the traffic set C1 from Example 4. One
possible decomposition is

1 5 3

3 2 4

5 2 2

2
64

3
75 ¼ 3 �

0 1 0

0 0 1

1 0 0

2
64

3
75þ 2 �

0 0 1

1 0 0

0 1 0

2
64

3
75

þ 1 �
0 0 1

0 1 0

1 0 0

2
64

3
75þ 1 �

0 1 0

1 0 0

0 0 1

2
64

3
75

þ 1 �
1 0 0

0 1 0

0 0 1

2
64

3
75þ 1 �

0 1 0

0 0 1

1 0 0

2
64

3
75.

Note that the equality in this decomposition indi-
cates that all wavelengths are fully utilized. Fur-
thermore, by the optimality of the greedy
algorithm, we are guaranteed that this is the min-
imum possible number of wavebands subject to
the minimum-wavelength constraint.

Notice that there are ðNþ1Þ2
4 
 1 ¼ 3 wavebands

consisting of a single wavelength. This results from
the fact that once P becomes less than the
denominator, the greedy algorithm will choose
all remaining wavebands to be of size 1. This
indicates that banding is only useful when P > N2/
4 if no wavelength inefficiency is allowed. Essen-
tially, this fact is based on the intuition that if the
number of nodes is large relative to the number of
calls, then we cannot guarantee that sufficiently
many calls will belong to the same source–desti-
nation pairs for banding to take place.

In principle, with the greedy algorithm, we can
obtain the exact minimum number of wavebands
required under the minimum-wavelength con-
straint simply by iterating through the algorithm
and counting the number of wavebands produced.
We can also obtain in closed form an upper
bound on the number of wavebands by relaxing
the integer constraints and using arguments
analogous to the single-source case. Let Pk be
the value of P after running the kth iteration of
the greedy algorithm. The series progresses as
follows:
P 1 ¼ P 
 4

ðN þ 1Þ2
� P ¼ 1
 4

ðN þ 1Þ2

" #
� P ;

P 2 ¼ 1
 4

ðN þ 1Þ2

" #
� P 1 ¼ 1
 4

ðN þ 1Þ2

" #2

� P ;

..

.

Pk ¼ 1
 4

ðN þ 1Þ2

" #k
� P . ð9Þ

If P 6
ðNþ1Þ2

4
, then the number of bands B is sim-

ply equal to ðNþ1Þ2
4

since each band is composed of
only a single wavelength. Therefore consider
P > ðNþ1Þ2

4
and determine the number of bands k

required to reduce the number of unassigned
wavelengths to ðNþ1Þ2

4
. Then the total number of

wavebands would be k þ ðNþ1Þ2
4

.

Pk ¼
ðN þ 1Þ2

4
;

1
 4

ðN þ 1Þ2

" #k
� P ¼ ðN þ 1Þ2

4
;

k ¼
log ðNþ1Þ2

4P

h i
log 1
 4

ðNþ1Þ2

h i .

Again, since removing the ceiling constraint
underestimates the size of each waveband, this
gives an upper bound on the number of wave-
bands B, namely:

B 6

ðNþ1Þ2
4
þ log

ðNþ1Þ2
4P

�  
log 1
 4

ðNþ1Þ2

h i ; P > ðNþ1Þ2
4

P ; P 6
ðNþ1Þ2

4

8>><
>>: . ð10Þ

It can be show from (10) that the number of
wavebands required grows as OðN 2 logðP=N 2ÞÞ.
Since the number of wavebands required by the
greedy algorithm is the minimum possible for
any minimum-wavelength algorithm, this allows
us to quantify the maximum switching reduction
possible without wavelength inefficiency.

Example 7. Recall the case of Example 6, where
N = 3 and P = 9. From (10), we obtain an upper
bound on the number of wavebands of 6.82. Since
the number of wavebands must be an integer, we
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can safely round the bound down to 6, which is
exactly equal to the true value of 6 wavebands. We
can also use (10) to approximate the number of
wavebands by 5.4, which is still close to the true
value of 6 wavebands.
3.2. The minimum-waveband problem

Recall that a minimum-waveband algorithm is
defined to be a banding algorithm that uses the
minimum possible number of wavebands. Since
all wavelengths in the same waveband must go to
the same destination, and there are N possible dif-
ferent destinations, a minimum of N wavebands
are required. One way to achieve this is to stati-
cally provision P wavelengths between each
source–destination pair, using a total of PN wave-
lengths. The minimum-waveband problem is
therefore to find a better, dynamic algorithm that
uses fewer wavelengths. Since the single-source
traffic model is a special case of the multi-source
model, we can also use (5) to provide a lower
bound on the number of wavelengths required:

W P
XN
i¼1

P 
 N þ i
i

	 

.

However, in this case it is possible to show that the
bound is not tight. We therefore do not know the
achievable minimum number of wavelengths, only
that it cannot be less than that specified by (5).

We next propose a wavelength-efficient mini-
mum-banding algorithm which requires OðP

ffiffiffiffi
N
p
Þ

total wavelengths, which improves on the O(PN)
worst case. The algorithm operates by decompos-
ing the traffic set into N sub-matrices, and at-
tempts to group entries with heavy weights and
light weights into separate sub-matrices. This will
allow some wavebands to use less than the worst
case of P. The algorithm relies on the following
lemma:

Lemma 2. Consider a P-port traffic set on an N-

node star. For any value of k such that 1 6 k 6 N,

there exists a decomposition satisfying (1) where

b1 ¼ � � � ¼ bk ¼ P ;

bkþ1 ¼ � � � ¼ bN ¼
P

k þ 1

� �
.

Proof. See Appendix A. h

Corollary. Any P-port N-node traffic set can be

routed using k bands of size P and N 
 k bands of

size P
kþ1

l m
.

The proof of Lemma 2 forms the basis of the
SQRT(N) algorithm. Since it holds for any value
of k, it is logical to use the value of k which results
in the fewest total number of wavelengths used. To
determine this, we write down the expression for
the number of wavelengths required:

W k ¼ kP þ ðN 
 kÞ P
k þ 1

� �
. ð11Þ

It can be shown that this expression is minimized
at k ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1
p


 1. If we relax the integer con-
straint on k and substitute this back into the equa-
tion, we obtain:

W ¼ 2P ð
ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1
p


 1Þ
leading to the observation that the SQRT(N) algo-
rithm requires OðP

ffiffiffiffi
N
p

) wavelengths. The results
of this section show that the maximum amount
of switching reduction can be achieved by, at
worst, a factor of

ffiffiffiffi
N
p

increase in the number of
wavelengths.

Example 8. We examine the case of Example 6
under the minimum-waveband restriction. Using
the SQRT(N) algorithm, we see that for N = 3 and
P = 9, we should choose k ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1
p


 1 ¼ 1. We
therefore require only 1 waveband of size 9 and
N 
 1 = 2 bands of size dP/(k + 1)e = 5, producing
a final waveband sizing of {9, 5, 5}, for a total of 19
wavelengths and 3 bands. We can compare this
with the optimal minimum-wavelength solution of
{3, 2, 1, 1, 1, 1}, which uses the minimum of 9
wavelengths but requires 6 wavebands.

Shown below is one possible call assignment
using these waveband sizes for the specific traffic
set C1.

1 5 3

3 2 4

5 2 2

2
4

3
5 6 9 �

0 1 0

0 0 1

1 0 0

2
4

3
5þ 5 �

0 0 1

1 0 0

0 1 0

2
4

3
5

þ 5 �
1 0 0

0 1 0

0 0 1

2
4

3
5 ¼ 5 9 5

5 5 9

9 5 5

2
4

3
5.
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Note that wavelengths were overprovisioned in
this case for some source–destination pairs. How-
ever, the additional wavelengths are required to
guarantee that all admissible traffic sets can be
accommodated by the 3 wavebands.
3.3. Hybridization: wavelength–waveband tradeoffs

The greedy algorithm previously discussed pro-
vides us with one point on the optimal frontier.
The SQRT(N) algorithm provides us with a sec-
ond point which, while not necessarily optimal,
nonetheless provides good performance in the
minimum-waveband case. As in the single-source
traffic case, we can now investigate the use of a
dual-algorithm approach to obtaining a tradeoff
between these two performance points.

To review, in the dual algorithm approach, the
initial g wavebands are allocated using the greedy
algorithm. The motivation for this is that the gree-
dy algorithm performs well when the number of
calls is large relative to the number of nodes. The
remaining calls are allocated using the SQRT(N)
algorithm, which always uses the minimum num-
ber of wavebands N. By varying the number of
wavebands g given over to the greedy algorithm,
more emphasis can be given to reducing either
wavelengths or wavebands. At g = 0, the dual-
algorithm approach is reduced to exactly the
SQRT(N) algorithm; conversely for g sufficiently
large, only the greedy algorithm will be used.

Example 9. Consider a 10-node star with P =
1000. Suppose the greedy algorithm is used to
assign the first g = 25 wavebands, and the remain-
ing calls use the SQRT(N) algorithm. Using the
equation for bmax(N,P) given by (8), the greedy
algorithm chooses waveband sizes of {34, 33, 32,
31, 29, 29, 28, 27, 26, 25, 24, 23, 22, 22, 21, 20, 20,
19, 18, 18, 17, 17, 16, 15, 15}. Summing the band
sizes shows that a total of 581 wavelengths are
used.

After this assignment, 419 calls per node
remain. Using the SQRT(N) algorithm, 10 addi-
tional wavebands are required to accommodate
them. Since

ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1
p


 1 ¼ 2:317, the minimizing
value of k must be either 2 or 3; substituting both
values into (11) shows that k = 2 is optimal.
Therefore we choose 2 wavebands of size 419,
and 8 wavebands of size d419/(2 + 1)e = 140, for a
total of 1958 wavelengths.

Therefore in this example a total of 35 wave-
bands, containing 1958 + 581 = 2539 wavelengths,
are required.

We can obtain an approximate expression for
the tradeoff curve from the dual-algorithm ap-
proach as follows. The greedy algorithm is initially
employed for g iterations. From (9), we know that
after g iterations, the remaining traffic is given by

P 0 ¼ 1
 4

ðN þ 1Þ2

" #g
� P .

The greedy algorithm is therefore responsible
for using g wavebands, of total size P 
 P 0. The
remaining traffic is handled using the SQRT(N)
algorithm, which uses N wavebands and
¼ 2P 0ð

ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1
p


 1Þ wavelengths. Therefore the to-
tal number of wavelengths and wavebands used
can be expressed by

W dual ¼ W greedy þ W min -band

¼ 1
 1
 4

ðN þ 1Þ2

" #g !
� P

þ 1
 4

ðN þ 1Þ2

" #g
� 2P

ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1
p


 1
$ %

¼ 1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1
p


 3
$ %

1
 4

ðN þ 1Þ2

 !g" #
� P

� 1þ 2
ffiffiffiffi
N
p

1
 4

ðN þ 1Þ2

 !g" #
� P ;

Bdual ¼ Bgreedy þ Bmin-band ¼ g þ N .

Combining, we obtain

W dual ¼ 1þ 2
ffiffiffiffi
N
p

1
 4

ðN þ 1Þ2

 !Bdual
N" #
� P .

The dual-algorithm approach actually produces
a family of algorithms. Choosing the number of
wavebands B specifies the number of wavelengths
W, and vice versa. Fig. 7 shows the performance
of this approach for a star with N = 10, P =
1000. The two asymptotes represent the SQRT(N)
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Fig. 7. Performance of the uniform waveband algorithm for a
star with N = 10, P = 1000. The red (dashed line) and blue
(dotted line) asymptotes represent the SQRT(N) and greedy
algorithms, respectively.
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and greedy algorithms, which operate in the mini-
mum-waveband and minimum-wavelength re-
gimes, respectively. The dual-algorithm approach
essentially interpolates between the minimum-
waveband and minimum-wavelength cases to pro-
duce algorithms with intermediate waveband and
wavelength requirements.
4. The uniform waveband approach

Thus far in discussing multi-source traffic, we
have allowed wavebands to be non-uniformly
sized. Here we consider fixing all wavebands to a
constant size b and derive the number of wave-
lengths and wavebands required. By varying b,
a family of banding algorithms with varying
numbers of wavebands and wavelengths can be
obtained. Somewhat surprisingly, we will see that
in the multi-source case, by using uniform wave-
band sizes, most of the maximum banding gain
can be obtained at a very small cost in additional
wavelengths.

We begin by first deriving the minimum number
of wavebands required for a fixed waveband size b.

Theorem 1. Given a fixed band size b, the neces-

sary and sufficient minimum number of wavebands

required to support P-port traffic in an N-node
star is
Buniform ¼ N þ P 
 N
b

	 

. ð12Þ
Corollary. The corresponding necessary and suffi-

cient minimum number of wavelengths required is
W uniform ¼ bN þ b
P 
 N

b

	 

. ð13Þ

We first prove necessity of (12) by providing an
example which requires at least this number of
wavelengths. Sufficiency will be shown by con-
struction. Eq. (13) then follows directly from the
fact that each band is of size b.

Consider the traffic set where node 1 sends a
single call to nodes 1 to N 
 1, and P 
 (N 
 1)
calls to node N. In this case, N 
 1 bands are re-
quired to support traffic to the first N 
 1 nodes,

while P
ðN
1Þ
b

l m
bands are required to support traf-

fic to node N. This gives a lower bound on the
number of wavebands of

Buniform P ðN 
 1Þ þ P 
 ðN 
 1Þ
b

� �

¼ N þ P 
 N
b

	 

;

where the last step follows from the observation

that P
ðN
1Þ
b

l m
¼ P
N

b

� 
þ 1.

We will show using a bipartite matching ap-
proach that these quantities are sufficient as well.
We will first construct a bipartite multi-graph. A
multi-graph differs from a graph in that it allows
multiple edges between the same two nodes. We
consider two sets of nodes V1 = {s1, . . . , sN} and
V2 = {d1, . . . ,dN}. For a given admissible traffic
set, define the number of calls from node i to node
j to be ci,j. Then create dci;jb e edges connecting node
si to dj. The complete set of edges E represents the
traffic to be carried, now in units of wavebands
(each of size b) instead of wavelengths.

The number of edges adjacent to each source
node si can be obtained by summing

ci;j
b

& '
over j.

Let the number of destinations receiving non-zero
traffic from node i be Ni. Without loss of general-
ity, assume these are nodes 1 through Ni. We
decompose the traffic to these destinations by

ci;j ¼ xi;j þ ri;j; ð14Þ
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where ri,j is chosen such that xi,j is a nonnegative
integer multiple of b, and 1 6 ri,j 6 b. We can then
express the summation of interest as

XN
i¼1

ci;j
b

l m
¼
XN
i¼1

xi;j þ ri;j
b

l m

¼
XNi

i¼1

ri;j
b

l m
þ
XNi

i¼1

xi;j

b

¼ Ni þ
1

b

XNi

i¼1

xi;j; ð15Þ

where the second step relies on xi
b being integer,

and the third on the fact that ri 6 b.
By summing (14) over i and noting thatPNi
i¼1ci;j ¼ P , we can obtain the following useful

relation:

P ¼
XNi

i¼1

xi;j þ
XNi

i¼1

ri;j )
XNi

i¼1

xi;j ¼ P 

XNi

i¼1

ri;j

6 P 
 Ni;

where the last line results from observing that
ri,j P 1. Using this result, (15) becomes

XN
i¼1

ci;j
b

l m
6 Ni þ

P 
 Ni

b
¼ 1
 1

b

� �
Ni þ

P
b

6 1
 1

b

� �
N þ P

b
¼ N þ P 
 N

b
.

Since both the summation on the left and N on the
right are integers, by taking the floor of both sides
we can conclude

XN
i¼1

ci;j
b

l m
6 N þ P 
 N

b

	 

.

Similar arguments can be used to show that the
number of edges adjacent to each destination node
dj is given by

XN
j¼1

ci;j
b

l m
6 N þ P 
 N

b

	 

.

Therefore each node has at most N þ P
N
b

� 
edges

adjacent to it. The following lemma will now prove
useful.

Lemma 3. In a bipartite multi-graph where each

node is adjacent to at most k edges, a partitioning
exists that divides the edges into at most k

matchings.

Proof. See [14]. h

By Lemma 3, at most an equal number of
matchings are required. Since calls in each match-
ing can share the same waveband, at most
N þ P
N

b

� 
wavebands are required. The number

of wavelengths follows directly from the fact that
each waveband is of size b.

Example 10. Consider a star with N = 10 and
P = 1000, and consider uniform band sizes
of b = 40. By Theorem 1, N þ P
N

b

� 
¼ 10þ

1000
10
50

� 
¼ 29 wavebands are required. Since each

waveband consists of 50 wavelengths, a total of
50 Æ 29 = 1711 wavelengths are used as well.

We now have a method for obtaining necessary
and sufficient conditions on the number of wave-
bands and wavelengths are necessary and sufficient.
By ignoring the integrality constraints, we can
solve for the number of wavelengths as a function
of the number of wavebands and obtain an approx-
imate characterization of the waveband-wave-
length tradeoff using uniformly-sized wavebands:

W uniform ¼ P þ P 
 N
Buniform 
 N


 1

� �
N . ð16Þ

Fig. 7 illustrates the performance of the uniform
waveband algorithm for a star with N = 10,
P = 1000. The two asymptotes represent the
SQRT(N) and greedy algorithms, which operate
in the minimum-waveband and minimum-wave-
length regimes, respectively. Note that although
the uniform waveband algorithm performs poorly
in the minimum-waveband regime (where it re-
quires many more wavelengths than the SQRT(N)
algorithm), the performance improves dramati-
cally once a few additional wavebands are intro-
duced. By around 40 wavebands, it requires only
slightly more wavelengths than the greedy algo-
rithm, which uses 121 wavebands. We observe that
by allowing slightly more wavelengths than the
minimum-wavelength case, the fixed-waveband
algorithm can greatly reduce the number of wave-
bands required, approaching the minimum-wave-
band bound significantly.
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From this graph, two observations can be made:

1. As the number of wavebands increases, the per-
formance of the uniform-waveband algorithm
appears to approach the optimal performance
of the greedy algorithm. In particular, at the
right endpoint, it appears to be almost wave-
length-efficient.

2. Because of the slow increase in the number of
wavelengths required as the number of wave-
bands decreases, it appears that the majority
of the reduction in the number of wavebands
can be achieved at very little cost in wavelength
inefficiency (as compared to the greedy
algorithm).

The first observation can be verified by
comparing the number of wavelengths used by
the uniform-waveband algorithm to the greedy
algorithm. For P large we can approximate Bgreedy

by N2

4
log 4P

N2

$ %
. For this number of bands, the num-

ber of wavelengths used by the uniform-waveband
algorithm is approximately

W uniform � P þ PN
B
¼ 1þ 1

N2

4
log 4P

N2

$ %
2
4

3
5 � P

¼ ð1þ aÞ � P ;

where a is a term that goes to zero as P increases.
Recall that the greedy algorithm, which was wave-
length-efficient, uses the minimum ofPwavelengths.
Therefore the performance of the uniform-wave-
band algorithm approaches the optimum asymptot-
ically in the minimum-wavelength regime.

It is also possible to show analytically by slope
analysis that Wuniform approaches its final value
very quickly; this gives rise to the second observa-
tion, which is extremely significant from a practical
perspective. If we are interested in building an ac-
tual implementation, it indicates that a majority
of the gain from using banding can be achieved
with very little wavelength inefficiency. For exam-
ple, in the graph of Fig. 7, the processing granular-
ity can be reduced from 1000 wavelengths (without
banding) to 30 wavebands, a reduction of 97%, at a
cost of only a 50% increase in the number of
wavelengths.
5. Banding on general topologies

Thus far all our results have been for the star
topology. In this section we extend the preceding
banding results to general topologies for which
routing algorithms for P-port traffic are known.

Recall that we have shown that banding can be
considered as a matrix decomposition problem,
where for a given admissible traffic set C, our goal
is to decompose it into the sum of a fixed number
B of weighted permutation matrices:

C 6 b1T 1 þ b2T 2 þ � � � þ bBT B; ð17Þ
where the band sizes {bi} and the total number of
wavebands B are constant for all traffic sets. The
goal was to minimize, over all possible admissible
traffic sets, the two cost parameters corresponding
to the number of wavebands B and the number of
wavelengths

PB
i¼1bi.

In the star, each permutation Ti could be
accommodated using a single waveband consisting
of bi wavelengths. This approach can be extended
to other topologies in a straightforward manner,
with the main difference being that each permuta-
tion Ti may now require multiple wavebands of
size bi to support it. In general, if the RWA algo-
rithm requires /(N) wavelengths for permutation
traffic on the topology, and a banding algorithm
is considered which uses B wavebands and W

wavelengths on a star, then the extension of that
banding algorithm to the new topology requires:

Btotal ¼ B � /ðNÞ;
W total ¼ W � /ðNÞ.

Routing algorithms for permutation traffic exist
in the literature for rings with [8] and without [4]
conversion, trees [13], and torus networks [7].

For example, in the case of a ring, [4] provides
an optimal RWA algorithm for the bidirectional
ring topology without conversion using the mini-
mum number of wavelengths. Specifically, it shows
that dN/3e wavelengths are necessary and sufficient
to support any single-port traffic set. Since Ti is a
permutation matrix, it can be supported using
dN/3e wavelengths. Each set of calls biTi from
the decomposition of (17), can therefore be sup-
ported using dN/3e wavebands, each consisting
of bi wavelengths.
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Using this approach, the entire traffic set T can
be supported using B sets of wavebands, where
each such set i consists of dN/3e wavebands of bi
wavelengths. The total numbers of wavebands
and wavelengths are

Btotal ¼ B
N
3

� �
;

W total ¼
N
3

� �XB
i¼1

bi ¼ W
N
3

� �
.

6. Conclusion

In this paper, we considered waveband switch-
ing as a method for reducing overall network costs.
We provide wavelength-efficient algorithms that
use the minimum possible number of wavebands,
and show that the optimal approach is to use a
greedy algorithm. We provided minimum-wave-
band algorithms that allow for small wavelength
inefficiencies in return for reducing the number of
wavebands down to just the nodal degree. We use
these results to help characterize the optimal per-
formance frontier. We also provided a uniform
waveband approach that compares very favorably
to the optimal performance frontier and achieves
large reductions in switching requirements at very
little cost in wavelength inefficiency. Finally, we ex-
tend our results to general topologies where permu-
tation traffic routing algorithms are known.
Appendix A

The proof of Lemma 2 will be by construction.
We will first decompose the traffic matrix C into
two sub-matrices: the ‘‘heavy’’ matrix CH, contain-

ing all entries with weight greater than P
kþ1

l m
, and

the ‘‘light’’ matrix CL, containing no entries great-

er than P
kþ1

l m
.

We first assign any entry in C greater than P
kþ1

l m
to CH. Note that at this point each row and col-
umn in CH contains at most k entries. (If any
row or column exceeds k entries, then that row
or column in C must have had a sum greater than
P, meaning C is not an admissible traffic set.) We
next continue assigning entries in C to CH until
each row and column of CH has exactly k entries.

Suppose there exists a row in CH that contains
fewer than k entries. Then there must also be a col-
umn that has fewer than k entries. (This follows
from the fact that CH is square; if all columns have
k entries, and each row has no more than k entries,
then all rows must also have k entries.) Locate the
entry corresponding to that row and column in C,
and assign it to CH. Repeat until each row has k en-
tries. By the same reasoning as before, all columns
must now have k entries also. It is well known that
any such matrix can be decomposed into at most k
matrices with only one non-zero entry per row and
column. Therefore, by performing this further
decomposition and noting that all entries in CH

are at most P, we have shown that CH can be
supported by at most k wavebands of size P.

Assign all remaining entries in C to CL; this
gives CL therefore has exactly N 
 k entries per
row and column. This can similarly be decom-
posed into N 
 k matrices with only one entry
per row and column; since each entry is at most

P
kþ1

l m
, we can support CL using at most N 
 k

wavebands of size P
kþ1

l m
.
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