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Abstract. We study the use of auction algorithm in allocating a wireless fading
channel among a set of non-cooperating users in both downlink and uplink communi-
cation scenarios. For the downlink case, we develop a novel auction-based algorithm to
allow users to fairly compete for a wireless fading channel. We use the all-pay auction
mechanism whereby user bid for the channel, during each time-slot, based on the fade
state of the channel, and the user that makes the higher bid wins use of the channel.
Under the assumption that each user has a limited budget for bidding, we show the
existence of a unique Nash equilibrium strategy. We show that the strategy achieves
a throughput allocation for each user that is proportional to the user’s budget and es-
tablish that the aggregate throughput received by the users using the Nash equilibrium
strategy is at least 3/4 of what can be obtained using an optimal centralized allocation
scheme that does not take fairness into account. We also provide a distributed algorithm
that enables user’s bidding strategy to converge to the Nash equilibrium strategy.

For the uplink case, we present a game-theoretical model of a wireless communication
system with multiple competing users sharing a multiaccess fading channel. With a
specified capture rule and a limited amount of energy available, a user opportunistically
adjusts its transmission power based on its own channel state to maximize the user’s
own individual throughput. We derive an explicit form of the Nash equilibrium power
allocation strategy. Furthermore, this Nash equilibrium power allocation strategy is
unique under certain capture rule. We also quantify the loss of efficiency in throughput
due to user’s selfish behavior. Moreover, as the number of users in the system increases,
the total system throughput obtained by using a Nash equilibrium strategy approaches
the maximum attainable throughput.
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1. Introduction. The limited bandwidth and high demand in a com-
munication network necessitate a systematic procedure in place for fair al-
location. This is where the economic theory of pricing and auction can be
applied in the field of communications and networks research, for pricing
and auction are natural ways to allocate resources with limited supply. Re-
cently, in the networks area, much work is done to address the allocation
of a limited resource in a complex, large scaled system such as the internet.
They approach the problem from a classical economic perspective where
users have utility functions and cost functions, both measured in the same
monetary unit. Pricing is used as a tool to balance users’ demand for
bandwidth.

Here, we are interested in solving a specific engineering problem of
scheduling transmission among a set of users while achieving fairness in
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a specific wireless environment. We use game theoretical concepts such
as Nash equilibrium as a tool for modelling the interaction among users.
Both the objective and the constraint of the optimization problem that
each user faces have physical meanings based on underlying system. Our
focus in this paper will be on the use of the all-pay auction in allocating a
wireless fading channel for both the uplink and the downlink.

A fundamental characteristic of a wireless network is that the channel
over which communication takes place is often time-varying. This variation
of the channel quality is due to constructive and destructive interference
between multipaths and shadowing effects (fading). In a single cell with one
transmitter (base station or satellite) and multiple users communicating
through time-varying fading channels, the transmitter can send data at
higher rates to users with better channels. In time slotted system such as
the HDR system, time slots are allocated among users according to their
channel qualities.

The problem of resource allocation in wireless networks has received
much attention in recent years. In [1] the authors try to maximize the
data throughput of an energy and time constrained transmitter sending
over a fading channel. A dynamic programming formulation that leads to
an optimal transmission schedule is presented. Other works address the
similar problem, without consideration to fairness, include [7] and [8]. In
[5], the authors consider scheduling policies for maxmin fairness allocation
of bandwidth, which maximizes the allocation for the most poorly treated
sessions while not wasting any network resources, in wireless ad-hoc net-
works. In [14], the authors designed a scheduling algorithm that achieves
proportional fairness, a notion of fairness originally proposed by Kelly [6].
In [9], the authors present a slot allocation scheme that maximizes expected
system performance subject to the constraint that each user gets a fixed
fraction of time slots. The authors did not use a formal notion of fairness,
but argue that their system can explicitly set the fraction of time assigned
to each user. Hence, while each user may get to use the channel an equal
fraction of the time, the resulting throughput obtained by each user may
be vastly different.

The following simple example illustrates the different allocations that
may result from the different notions of fairness. We consider the com-
munication system with one transmitter and two users, A and B, and the
allocations that use different notions of fairness discussed in the previous
paragraph. We assume that the throughput is proportional to the the
channel condition. The channel coefficient, which is a quantitative mea-
sure of the channel condition ranging from 0 to 1 with 1 as the best channel
condition, for user A and user B in the two time slots are (0.1, 0.2) and
(0.3, 0.9) respectively. The throughput result for each individual user and
for total system under different notions of fairness constraint are given in
Table I. When there is no fairness constraint, to maximize the total system
throughput would require the transmitter to allocate both time slots to user
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B. To achieve maxmin fair allocation, the transmitter would allocate slot
one to user B and slot two to user A, thus resulting in a total throughput of
0.5. If the transmitter wants to maximize the total throughput subject to
the constraint that each user gets one time slot (i.e., the approach of [9]),
the resulting allocation, denoted as time fraction fair, is to give user A slot
one and user B slot two. As a result, the total throughput is 1.0. In the

Throughput Throughput Total

for user A for user B throughput

No fair constraint 0 1.2 1.2
Maxmin fair 0.2 0.3 0.5
Time fraction 0.1 0.9 1.0

Table 1
Throughput results using different notions of fairness.

above example, the transmitter selects an allocation to ensure an artificially
chosen notion of fairness. From Table I, we can see that from the user’s
perspective, no notion is truly fair as both users want slot two. In order to
resolve this conflict, we use a new approach which allows users to compete
for time slots. In this way, each user is responsible for its own action and
its resulting throughput. We call the fraction of bandwidth received by
each user competitive fair. Using this notion of competitive fairness, the
resulting throughput obtained for each user can serve as a reference point
for comparing various other allocations. Moreover, the competitive fair al-
location scheme can provide fundamental insight into the design of a fair
scheduler that make sense.

In our model, users compete for time-slots. For each time-slot, each
user has a different valuation (i.e., its own channel condition). And each
user is only interested in getting a higher throughput for itself. Naturally,
these characteristics give rise to an auction. In this paper we consider the
all-pay auction mechanism. Using the all-pay auction mechanism, users
submit a “bid” for the time-slot and the transmitter allocates the slot
to the user that made the highest bid. Moreover, in the all-pay auction
mechanism, the transmitter gets to keep the bids of all users (regardless
of whether or not they win the auction). Each user is assumed to have an
initial amount of money. The money possessed by each user can be viewed
as fictitious money that serves as a mechanism to differentiate the QoS
given to the various users. This fictitious money, in fact, could correspond
to a certain QoS for which the user paid in real money. As for the solution
of the slot auction game, we use the concept of Nash equilibrium, which is
a set of strategies (one for each player) from which there are no profitable
unilateral deviation.

In the downlink communication scenario, we consider a communica-
tion system with one transmitter and two users. For each time slot, channel
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states are independent and identically distributed with known probability
distribution. Each user wants to maximize its own expected total through-
put subject to an average money constraint.

We have the following main results for the downlink case:
• We find a unique Nash equilibrium when both channel states are

uniformly distributed over [0, 1].
• We show that the Nash equilibrium strategy pair provides an al-

location scheme that is fair in the sense that the price per unit of
throughput is the same for both users.

• We show that the Nash equilibrium strategy of this auction leads to
an allocations at which total throughput is no worse than 3/4 of the
throughput obtained by an algorithm that attempts to maximize
total system throughput without a fairness constraint.

• We provide an estimation algorithm that enables users to accu-
rately estimate the amount of money possessed by their opponent
so that users do not need prior knowledge of each other’s money.

The all-pay auction can be used to model the uplink power allocation
as well. In the second part of this paper, we present a distributed uplink
power allocation scheme that based on the all-pay auction. Specifically, we
consider a communication system consisting of multiple users competing to
access a satellite, or a base-station. Each user has an average power con-
straint. Time is slotted. During each time slot, each user chooses a power
level for transmission based on the channel state of current slot, which is
only known to itself. Depending on the capture model and the received
power of that user’s signal, a transmitted packet may be captured even if
multiple users are transmitting at the same slot. If the objective of each
user in the system is to find a power allocation strategy that maximizes its
probability of getting captured based its average power constraint, we have
a power allocation game that resembles the all-pay auction. Comparing
with the all-pay auction, the average power constraint in the power alloca-
tion game corresponds to the average money constraint and transmission
power corresponds to money. Both power and money is taken away once
a bidding or a transmission is taken place. In this uplink scenario, using
the technique to solve for Nash equilibrium in the all-pay auction, we get
a similar Nash equilibrium strategy in the uplink game.

The game theoretical formulation of the uplink power allocation prob-
lem stems from the desire for a distributive algorithm in a wireless uplink.
Due to the variation of channel quality in a fading channel, one can ex-
ploit the channel variation opportunistically by allowing the user with best
channel condition to transmit, which require the presence of a centralized
scheduler who knows each user’s channel condition. As the number of users
in the network increases, the delay in conveying user’s channel conditions
to the scheduler will limit the system’s performance. Hence, a distributive
multi-access scheme with no centralized scheduler becomes an attractive
alternative. However, in a distributive environment, users may want to
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change their communication protocols in order to improve their own per-
formance, making it impossible to ensure a particular algorithm will be
adopted by all users in the network. Rather than following some mandated
algorithm, in this paper users are assumed to act selfishly (i.e., choose their
own power allocation strategies) to further their own individual interests.

With each user wants to maximize its own expected throughput, we
obtain a Nash equilibrium power allocation strategy which determines the
optimal transmission power control strategy for each user. The obtained
optimal power control strategy specifies how much power a user needs to
use to maximize its own throughput for any possible channel state. Users
get different average throughput based on their average power constraint.
Hence, this transmission scheme can be viewed as mechanism for providing
quality of service (QoS) differentiation; whereby users are given different
energy for transmission. The obtained Nash equilibrium power allocation
strategy is unique under certain capture rule. When all users have the same
energy constraint, we obtained a symmetric Nash equilibrium.

Due to the selfish behavior of individual users, the overall system
throughput will be less than that of a system where users employ the same
mandated algorithm. This loss in efficiency is also quantified. In the multi-
ple users’ case, as the number of user in the system increases, the symmetric
Nash equilibrium strategy approaches the optimal algorithm specified by
a system designer (i.e., algorithm that results in the largest total system
throughput). In this case, there is no loss of efficiency when users employ
the symmetric Nash equilibrium.

Game theoretical approaches to resource allocation problems have
been explored by many researchers recently (e.g., [2][19]). In [2], the au-
thors consider a resource allocation problem for a wireless channel, without
fading, where users have different utility values for the channel. They show
the existence of an equilibrium pricing scheme where the transmitter at-
tempts to maximize its revenue and the users attempt to maximize their
individual utilities. In [19], the authors explore the properties of a conges-
tion game where users of a congested resource anticipate the effect of their
action on the price of the resource. Again, the work of [19] focuses on a
wireline channel without the notion of wireless fading. Our work attempts
to apply game theory to the allocation of a wireless fading channel. In par-
ticular, we show that auction algorithms are well suited for achieving fair
allocation in this environment. Other papers dealing with the application
of game theory to resource allocation problems include [3][23][24].

This paper is organized as follows. In Section 2, we describe the don-
wlink communication system and the Nash equilibrium bidding strategy.
Section 2.1 presents the problem formulation for the downlink case. In
Section 2.2, the unique Nash equilibrium strategy pair and the resulting
throughput for each user are provided for the case that each user can use
only one bidding function. In Section 2.3, we show the unique Nash equi-
librium strategy pair for the case that each user can use multiple bidding
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functions. In Section 2.4, we compare the throughput results of the Nash
equilibrium strategy with two other centralized allocation algorithms. In
Section 2.5, an estimation algorithm that enables the users to estimate
the amount of money possessed by their opponent is developed. Section
3 presents the Nash equilibrium power allocation function for a uplink
random access system. Section 3.1 describe the uplink communication sce-
nario. In Section 3.2, the Nash equilibrium power allocation strategy is
obtained for the two users case. In Section 3.3, we present a symmet-
ric Nash equilibrium power allocation function for multiple users with the
same average power constraint. Finally, Section 4 concludes the paper.

2. Downlink Transmission.

2.1. Downlink Problem Formulation. We consider a communica-
tion environment with a single transmitter sending data to two users over
two different fading channels. We assume that there is always data to be
sent to the users. Time is assumed to be discrete, and the channel state for
a given channel changes according to a known probabilistic model indepen-
dently over time. The two channels are also assumed to be independent of
each other. The transmitter can transmit to only one user during a partic-
ular slot with a constant power P . The channel fade state thus determines
the throughput that can be obtained.

For a given power level, we assume for simplicity that the throughput is
a linear function of the channel state. This can be justified by the Shannon
capacity at low signal-to-noise ratio, or by using a fixed modulation scheme
[1]. For general throughput function, the method used in this paper applies
as well. Let Xi be a random variable denoting the channel state for the
channel between the transmitter and user i, i = 1, 2. When transmitting
to user i, the throughput will then be P · Xi. Without loss of generality,
we assume P = 1 throughout this paper.

We now describe the all-pay auction rule used in this paper. Let α
and β be the average amount of money available to user 1 and user 2
respectively during each time slot. We assume that the values of α and β
are known to both users. Both users know the distribution of X1 and X2.
We also assume that the exact value of the channel state Xi is revealed to
user i only at the beginning of each time slot. During each time slot, the
following actions take place:

1. Each user submits a bid according to the channel condition re-
vealed to it.

2. The transmitter chooses the one with higher bid to transmit.
3. Once a bid is submitted by the user, it is taken by the transmitter

regardless of whether the user gets the slot or not, i.e., no refund
for the one who loses the bid.

The formulation of our auction is different from the type of auction
used in economic theory in several ways. First, we look at a case where
the number of object in the auction goes to infinity. While in the current
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auction research, the number of object is finite [20][21][22]. Second, in our
auction formulation, the money used for bidding does not have a direct
connection with the value of the time slot. Money is merely a tool for users
to compete for time slots, and it has no value after the auction. Therefore,
it is desirable for each user to spend all of its money. However, in auction
theory, an object’s value is measured in the same unit as the money used
in the bidding process, hence their objective is to maximize the difference
between the object’s value and its cost. Lastly, in our formulation, the
valuation of each commodity (time-slot) changes due to the fading channel
model; a notion that is not common in economic theory.

Besides the all-pay auction, first-price auction and second-price auc-
tion are two other commonly used auction mechanisms. In the first-price
auction, each bidder submits a single bid without seeing the others’ bids,
and the object is sold to the bidder who makes the highest bid. The winner
pays its bid. In the second price auction, each user independently submits
a single bid without seeing the others’ bids, and the object is sold to the
bidder who makes the highest bid. However, the price it pays is the sec-
ond -highest bidder’s bid [20]. We choose to use the all-pay auction in this
paper to illustrate the auction approach to resource allocation in wireless
networks. We believe that other auction mechanisms can be similarly ap-
plied and their application to the wireless channel allocation problem is a
direction for future research.

The objective for each user is to design a bidding strategy, which
specifies how a user will act in every possible distinguishable circumstance,
to maximize its own expected throughput per time slot subject to the
expected or average money constraint. Once a user, say user 1, chooses
a function, say f

(i)
1 , for its strategy in the ith slot, it bids an amount of

money equal to f
(i)
1 (x) when it sees its channel condition in the ith slot is

X1 = x.
Formally, let F1 and F2 be the set of continuous and bounded real-

valued functions with finite first and second derivative over the support of
X1 and X2 respectively. Then, the strategy space for user 1, say S1, and
user 2, say S2, are defined as follows:

S1 =
{

f
(1)
1 , · · · , f

(n)
1 ∈ F1

∣∣∣ 1
n

n∑

i=1

E[f (i)
1 (X1)] = α

}

S2 =
{

f
(1)
2 , · · · , f

(n)
2 ∈ F2

∣∣∣ 1
n

n∑

i=1

E[f (i)
2 (X2)] = β

} (2.1)

For each user, a strategy is a sequence of bidding functions f (1), · · · , f (n).
Without loss of generality, we restrict each user to have n different bidding
functions, where n can be chosen as an arbitrarily large number. Note
that users choose a strategy for a block of n time slots instead of just for a
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single time slot, one bidding function for each slot. In order to maximize
the overall throughput (over infinite horizon), each user chooses bidding
functions to maximize the expected total throughput over this block of n

slots. The term E[f (i)
1 (X1)] denotes the expected amount of money spent

by user 1 if it uses bidding function f
(i)
1 for the ith slot in the block.

We first consider a special class of strategies in which each user can
use only a single bidding function. More specifically, by setting f1 = f

(1)
1 =

· · · = f
(n)
1 and f2 = f

(1)
2 = · · · = f

(n)
2 , we have the following:

S̄1 =
{

f1 ∈ F1

∣∣∣ E[f1(X1)] = α
}

S̄2 =
{

f2 ∈ F2

∣∣∣ E[f2(X2)] = β
} (2.2)

By considering first the set of strategies in S̄1 and S̄2, we are able to find
the Nash equilibrium strategy pair within the set S1 and S2.

Given a strategy pair (f1, f2), where f1 ∈ S̄1 and f2 ∈ S̄2, the expected
throughput or payoff function for user 1 is defined as the following assuming
the constant power P = 1:

G1(α, β) = EX1,X2 [X1 · 1f1(X1)≥f2(X2)] (2.3)

where

1f1(X1)≥f2(X2) =
{

1 if f1(X1) ≥ f2(X2)
0 otherwise

Similarly, the throughput function for user 2 assuming P = 1:

G2(α, β) = EX1,X2 [X2 · 1f2(X2)>f1(X1)] (2.4)

Throughout this paper, for simplicity, we let the channel state Xi be
uniformly distributed over [0, 1]. However, our approach can be extended
to the case where the channel state has a general distribution. Due to space
limitations, we omit the more complex analysis for general channel state
distribution.

2.2. Unique Nash equilibrium strategy with a single bidding
function. We present in this section a unique Nash equilibrium strategy
pair (f∗1 , f∗2 ). A strategy pair (f∗1 , f∗2 ) is said to be in Nash equilibrium if
f∗1 is the best response for user 1 to user 2’s strategy f∗2 , and f∗2 is the best
response for user 2 to user 1’s strategy f∗1 . We consider here the case where
both users choose their strategies from the strategy space S̄1 and S̄2 (i.e.,
the single bidding function strategy) and the value of α and β are known
to both users.

To get the Nash equilibrium strategy pair, we first argue that an equi-
librium bidding function must be nondecreasing. To see this, consider an
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arbitrary bidding function f such that f(a) > f(b) for some a < b. If user
1 chooses f as its bidding function, user 1 will be better off if it bids f(b)
when the channel state is a and f(a) when the channel state is b. This way,
its odds of winning the slot when the channel state is b, which is more valu-
able to it, will be higher than before, and it has an incentive to change its
strategy (i.e., f is not an equilibrium strategy). Hence, we conclude that,
for each user, an equilibrium bidding function must be nondecreasing.

We further restrict users’ bidding functions to be strictly increasing
for technical reason which will be explained later. There is no loss of gen-
erality in this assumption because any continuous, bounded, nondecreasing
function can be approximated by a strictly increasing function arbitrarily
closely.

Next, we show some useful properties associated with the equilibrium
strategy pair (f∗1 , f∗2 ).

Lemma 1. If (f∗1 , f∗2 ) is a Nash equilibrium strategy pair, f∗1 (1) =
f∗2 (1).

Proof. Suppose f∗1 (1) 6= f∗2 (1). Without loss of generality, let assume
that f∗1 (1) > f∗2 (1). Since both f∗1 and f∗2 are continuous, there exists δ > 0
such that f∗1 (x) > f∗2 (1) + f∗1 (1)−f∗2 (1)

2 ∀x ∈ [1 − δ, 1]. User 1 can devise
a new bidding strategy, say f̄1, by moving a small amount of money, say
δ · f∗1 (1)−f∗2 (1)

2 , away from the interval [1− δ, 1] to some other interval, thus
resulting in an increase in user 1’s throughput. Therefore, when f∗1 (1) >
f∗2 (1), the bidding strategy pair (f∗1 , f∗2 ) cannot be in equilibrium since the
strategy pair (f̄1, f

∗
2 ) gives a higher throughput for user 1. Similar result

holds for the case f∗2 (1) > f∗1 (1). Thus, we must have f∗1 (1) = f∗2 (1) if
(f∗1 , f∗2 ) is an equilibrium strategy pair.

We have just established that f∗1 (1) = f∗2 (1) is a necessary condition
for (f∗1 , f∗2 ) to be an equilibrium strategy pair. We also find that f∗1 (0) =
f∗2 (0) = 0 since it does not make sense to bid for a slot with zero channel
state. Thus, from now on, to find the Nash equilibrium strategy pair
(f∗1 , f∗2 ), we will consider only the function pair f1 ∈ S̄1 and f2 ∈ S̄2 that
are strictly increasing and satisfying the above two boundary conditions
(i.e., f1(1) = f2(1) and f1(0) = f2(0) = 0).

These two boundary conditions, together with strictly increasing prop-
erty of f1 ∈ S̄1 and f2 ∈ S̄2, make the inverse of f1 and f2 well defined.
Thus, we are able to define the following terms. With user 2’s strategy f2

fixed, let g
(1)
f2

: (x1, b) → R denote user 1’s expected throughput of a slot
conditioning on the following events:

• User 1’s channel state is X1 = x1.
• User 1’s bid is b.

Specifically, we can the write the equation:

g
(1)
f2

(x1, b) = x1 · P (f2(X2) ≤ b) (2.5)

where P (f2(X2) ≤ b) is the probability that user 1 wins the time slot.
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Consequently, using a strategy f1, user 1’s throughput is given by:

G1(α, β) =
∫ 1

0

g
(1)
f2

(x1, f1(x1)) · pX1(x1) dx1 =
∫ 1

0

g
(1)
f2

(x1, f1(x1)) dx1.

(2.6)

where the last equality results from the uniform distribution assumption.
With user 1’s strategy f1 fixed, similar terms for user 2 can be defined.

g
(2)
f1

(x2, b) = x2 · P (f1(X1) ≤ b)

Then, user 2’s throughput is given by:

G2(α, β) =
∫ 1

0

g
(2)
f1

(x2, f2(x2)) · pX2(x2) dx2 =
∫ 1

0

g
(2)
f1

(x2, f2(x2)) dx2.

(2.7)

Due to the uniformly distributed channel state, P (f2(X2) ≤ b) is given by

P (f2(X2) ≤ b) = P (X2 ≤ f−1
2 (b)) = f−1

2 (b)

where f−1
2 is well defined. Thus, we can rewrite Eq. (3.4) as

g
(1)
f2

(x1, b) = x1 · f−1
2 (b).

Hence we have,

G1(α, β) =
∫ 1

0

x1 · f−1
2 (f1(x1)) dx1 (2.8)

G2(α, β) =
∫ 1

0

x2 · f−1
1 (f2(x2)) dx2 (2.9)

The following lemma gives a necessary and sufficient condition of a

Nash equilibrium strategy pair. For convenience, we denote
∂g

(1)
f2

(x1,b)

∂b |||b=b∗

(i.e., the marginal gain at b = b∗) as Dg
(1)
f2

(x1, b
∗).

Lemma 2. A strategy pair (f∗1 , f∗2 ) is a Nash equilibrium strategy pair
if and only if Dg

(1)
f∗2

(x1, f
∗
1 (x1)) = c1 and Dg

(2)
f∗1

(x2, f
∗
2 (x2)) = c2, for some

constants c1 and c2, for all x1 ∈ [0, 1] and all x2 ∈ [0, 1].
To understand the lemma intuitively, suppose there exists x 6= x̃ such

that Dg
(1)
f∗2

(x, f∗1 (x)) > Dg
(1)
f∗2

(x̃, f∗1 (x̃)). Reducing the bid at x̃ to f∗1 (x̃)− δ

and increasing the bid at x to f∗1 (x) + δ will result in an increase in the
throughput by (Dg

(1)
f∗2

(x, f∗1 (x))−Dg
(1)
f∗2

(x̃, f∗1 (x̃))) · δ. Thus, user 1 has an
incentive to change its bidding function, and (f∗1 , f∗2 ) cannot be a Nash
equilibrium strategy pair in this case.

Proof. The complete proof is given in the Appendix.
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With Lemma 2, we are able to find the unique Nash equilibrium strat-
egy pair. The exact form of the equilibrium bidding strategies are presented
in the following Theorem.

Theorem 1. Under the assumption of a single bidding function, the
following is a unique Nash equilibrium strategy pair for the auction:

f∗1 (x) = c · xγ+1 (2.10)

f∗2 (x) = c · x 1
γ +1 (2.11)

where the constant γ and c are chosen such that
∫ 1

0

c · xγ+1 dx = α (2.12)
∫ 1

0

c · x 1
γ +1 dx = β (2.13)

Equations (3.11) and (3.12) impose the average money constraints. Fig. 1
shows an example of the Nash equilibrium bidding strategy pair when α = 1
and β = 2. Since user 1 has less money than user 2, user 1 concentrates its
bidding on time slots with very good channel state.

Proof. We show here that f∗1 (x) = c · xγ+1 and f∗2 (x) = c · x 1
γ +1 is

indeed a Nash equilibrium strategy pair by using the sufficiency condition
of Lemma 2, and we leave the uniqueness part to the appendix. It is
easy to check that both the condition f∗1 (1) = f∗2 (1) and f∗1 (0) = f∗2 (0)
are satisfied. Since both functions are strictly increasing, we can write
g
(1)
f∗2

(x, b) = x · f∗−1
2 (b) and g

(2)
f∗1

(x, b) = x · f∗−1
1 (b). Also, since both f∗1 and

f∗2 are differentiable, we have g
(1)
f∗2

(x, b) and g
(2)
f∗1

(x, b) both differentiable
with respect to b. Therefore,

∂g
(1)
f∗2

(x, b)

∂b

∣∣∣
∣∣∣
∣∣∣b=f∗1 (x) =

x

f∗2
′(f∗2

−1(f∗1 (x)))
=

x

f∗2
′(xγ)

=
γ

c(1 + γ)
.

Similarly,

∂g
(2)
f∗1

(x, b)

∂b

∣∣∣
∣∣∣
∣∣∣b=f∗2 (x) =

x

f∗1
′(f∗1

−1(f∗2 (x)))
=

x

f∗1
′(x1/γ)

=
1

c(1 + γ)
.

From Lemma 2, we see that (f∗1 , f∗2 ) is indeed a Nash equilibrium strategy
pair because both Dg

(1)
f∗2

(x, f∗1 (x)) and Dg
(2)
f∗1

(x, f∗2 (x)) are constants.
The proof of uniqueness of (f∗1 , f∗2 ) is given in the appendix.
Fig. 2 shows the resulting allocation scheme when both users employ

the Nash equilibrium strategy shown in Fig. 1. Above the curve, time slots
will be allocated to user 2 since user 2’s bid is higher than user 1’s in this
region. Similarly, user 1 gets the slots below the curve. Here, user 2 is
allocated more slots than user 1 since it has more money.
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Fig. 1. An example of Nash equilibrium strategy pair for α = 1 and β = 2.
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Fig. 2. Allocation scheme from Nash equilibrium strategy pair for α = 1 and β = 2.

If both players use Nash equilibrium strategies, the expected through-
put obtained are given by:

G1(α, β) =
α

α + β +
√

(α− β)2 + αβ
(2.14)

G2(α, β) =
β

α + β +
√

(α− β)2 + αβ
(2.15)

As can be seen, the ratio of the throughput obtained G1(α,β)
G2(α,β) is equal to

α
β which is the ratio of the money each user had initially. Thus, the Nash
equilibrium strategy pair provides an allocation scheme that is fair in the
sense that the price per unit of throughput is the same for both users.

2.3. Unique Nash Equilibrium Strategy with multiple bidding
functions. In the previous section, we restricted the strategy space of each
user to be a single bidding function (i.e., S̄1 and S̄2) instead of a sequence of
bidding functions (i.e., S1 and S2). However, the money constraint imposed
upon each user is a long term average money constraint. A natural question
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to ask is the following: Is it profitable for an individual user to change its
bidding functions over time while satisfying the long term average money
constraint? Therefore, in this section, we allow the users to use a strategy
within a broader class of strategy space, S1 and S2, and explore whether
there is an incentive for a user to do so (i.e., whether there exists a Nash
equilibrium strategy so that it can increase its throughput).

To choose a strategy (i.e., a sequence of bidding functions) from the
strategy space S1 or S2, a user encounters two problems. First, it must
decide how to allocate its money among these n bidding functions so that
the average money constraint is still satisfied. Second, once the money
allocated to the ith bidding function is specified, a user has to choose a
bidding function for the ith slot. The second problem is already solved
in the previous section (see Theorem 1). In this section, we will focus
on the first problem that a user encounters, specifically, the problem of
how to allocate money between the bidding functions while satisfying the
following condition: The total expected amount of money for the sequence
of n bidding functions is n · α for user 1 and n · β for user 2.

More precisely, the strategy space or possible actions that can be taken
by users are the following:

Ŝ1 = {α1, · · · , αn | α1 + · · ·+ αn = n · α}
Ŝ2 = {β1, · · · , βn | β1 + · · ·+ βn = n · β}

The objective of each user is still to maximize its own throughput. When
user 1 and user 2 allocate αi and βi for their ith bidding function which
is given in Theorem 1, the payoff functions are G1(αi, βi) for user 1 and
G2(αi, βi) for user 2.

The following lemma gives us a Nash equilibrium strategy pair for the
auction game described in this section.

Lemma 3. Given that user 2’s strategy is to allocate its money evenly
among its bidding functions (i.e., βi = β, i = 1 · · ·n), user 1’s best response
is to allocate its money evenly as well (i.e., αi = α, i = 1 · · ·n); and vice
versa. Therefore, a Nash equilibrium strategy pair for this auction is for
both users to allocate their money evenly.

Proof. Without loss of generality, we consider the case that n = 2
where each user’s strategy can consist of two different bidding functions.
Suppose that user 2 allocates β for both bidding functions f

(1)
2 and f

(2)
2 ,

and user 1 allocates α1 for bidding function f
(1)
1 and α2 for bidding function

f
(2)
1 where α1+α2 = 2α and α1 6= α2. We now show that the throughput for

user 1, G1(α1, β) + G1(α2, β), is maximized when α1 = α2 = α. Consider
the function G1(α1, β) with β fixed. The equation

G1(α1, β) =
α1

α1 + β +
√

(α1 − β)2 + α1β
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becomes

F (t) =
t

1 + t +
√

(1− t)2 + t

where t = α1
β . F (t) is concave for t ≥ 0. Thus, we have G1(α1, β) +

G1(α2, β) maximized when α1 = α2 = α.
We have already obtained a Nash equilibrium strategy pair from the

above Lemma. The following theorem states that this Nash equilibrium
strategy pair is in fact unique within the strategy space considered.

Theorem 2. For the auction in this section, a unique Nash equilib-
rium strategy for both users is to allocate their money evenly among the
bidding functions.

Proof. The complete proof is in the Appendix.
In this section, users are given more freedom in choosing their strate-

gies (i.e., they can choose n different bidding functions). However, as The-
orem 2 shows, the unique Nash equilibrium strategy pair is for each user to
use a single bidding function from its strategy space. Thus, the throughput
result obtained in this broader strategy space-S1 and S2–is the same as the
throughput result from previous section. Therefore, there is no incentive
for a user to use different bidding functions.

2.4. Comparison with Other Allocation Schemes. To this end,
we have a unique Nash equilibrium strategy pair and the resulting through-
put when both players choose to use the Nash equilibrium strategy. In-
evitably, due to the fairness constraint, total system throughput will de-
crease as compared to the maximum throughput attainable without any
fairness constraint. Hence we would like to compare the total throughput
of the Nash equilibrium strategy to that of an unconstrained strategy. We
address this question by first considering an allocation scheme that maxi-
mizes total throughput subject to no constraint. Then, we investigate the
throughput of another centralized allocation scheme that maximize the to-
tal throughput subject to the constraint that the resulting throughput of
individual user is kept at certain ratio.

2.4.1. Maximizing Throughput with No Constraint. To max-
imize throughput without any constraints, the transmitter sends data to
the user with a better channel state during each time slot. Then the ex-
pected throughput is E[max{X1, X2}]. Since X1 and X2 are independent
uniformly distributed in [0, 1], we have E[max{X1, X2}] = 2

3 . Using the
Nash equilibrium playing strategy, the total expected system throughput,
G1(α, β) + G2(α, β), is 1

2 in the worst case (i.e., one users gets all of the
time slots while the other user is starving). Thus, the channel allocation
scheme proposed in this paper can achieve at least 75 percent of the maxi-
mum attainable throughput. This gives us a lower bound of the throughput
performance of the allocation scheme derived from the Nash equilibrium
pair.



FAIR ALLOCATION OF A WIRELESS FADING CHANNEL 15

2.4.2. Maximizing Throughput with A Constant Throughput
Ratio Constraint. Now, we investigate an allocation scheme with a fair-
ness constraint that requires the resulting throughput of the users to be
kept at a constant ratio. Specifically, let G1 and G2 denote the expected
throughput for user 1 and user 2 respectively. We have the following opti-
mization problem:

max G1 + G2 subj.
G1

G2
= a (2.16)

where a is a positive real number.
The resulting optimal allocation scheme for the above problem is of

the form shown in Fig. 3. The space spanned by X1 and X2 is divided into
two regions by the separation line X2 = c · X1, where c is some positive
real number. Above the line (i.e., X2 > c ·X1), the transmitter will assign
the slot to user 2. Below the line (i.e., X2 < c · X1), the transmitter will
assign the slot to user 1.

To prove the above, we use a method that is similar to the one in [9].
Specifically, let A : (X1, X2) → {1, 2} be an allocation scheme that maps a
slot, in which channel states are X1 and X2 to either user 1 or user 2. By
using an allocation scheme A, the resulting throughput for user 1 and user
2 are GA

1 = E[X1 ·1A(X1,X2)=1] and GA
2 = E[X2 ·1A(X1,X2)=2] respectively.

Now, we define an allocation scheme as follows:

A∗(X1, X2) =
{

1 if X1(1 + λ∗) ≥ X2(1− a · λ∗)
2 otherwise

where λ∗ is chosen such that GA∗
1 /GA∗

2 = a is satisfied. It is straightforward
to verify that such λ∗ exists.

Consider an arbitrary allocation scheme A that satisfies GA
1 /GA

2 = a.
We have

E[X1 · 1A(X1,X2)=1] + E[X2 · 1A(X1,X2)=2]
= E[X1 · 1A(X1,X2)=1] + E[X2 · 1A(X1,X2)=2]

+ λ∗(E[X1 · 1A(X1,X2)=1]− aE[X2 · 1A(X1,X2)=2])
= E[(X1 + λ∗X1) · 1A(X1,X2)=1] + E[(X2 − aλ∗X2) · 1A(X1,X2)=2]
≤ E[(X1 + λ∗X1) · 1A∗(X1,X2)=1] + E[(X2 − aλ∗X2) · 1A∗(X1,X2)=2]
= E[X1 · 1A∗(X1,X2)=1] + E[X2 · 1A∗(X1,X2)=2]

+ λ∗(E[X1 · 1A∗(X1,X2)=1]− aE[X2 · 1A∗(X1,X2)=2])
= E[X1 · 1A∗(X1,X2)=1] + E[X2 · 1A∗(X1,X2)=2]

(2.17)

The inequality in the middle is from the definition of A∗. Specifically,
if we were asked to choose an allocation scheme A to maximize E[(X1 +
λ∗X1) · 1A(X1,X2)=1] + E[(X2 − aλ∗X2) · 1A(X1,X2)=2]. Then, A∗ will be
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Fig. 3. The optimal allocation scheme to achieve constant throughput ratio fairness.

an optimal scheme from its definition. Thus, we are able to show that
A∗(X1, X2) is an optimal solution to the optimization problem in (2.16).

To find the slope c in Fig.3, we first write the throughput for each
user:

GA∗
1 =

∫ 1

0

∫ cx1

0

x1 dx1 dx2 =
1
3
c (2.18)

and

GA∗
2 =

∫ c

0

∫ 1
c x2

0

x2 dx1dx2 +
∫ 1

c

x2 dx2 =
1
2
− 1

6
c2 (2.19)

Since GA
1 /GA

2 = a, we get c = −1+
√

1+3a2

a .
Using the Nash equilibrium strategy pair, the ratio of the resulting

throughput pair G1(α,β)
G2(α,β) is the same as the ratio of money individual user

possess (α
β ). For the optimization problem described in (2.16), by setting

a = α/β, we compare the resulting throughput with the throughput ob-
tained when both users employ the Nash equilibrium strategy. Fig. ??
and Fig. ?? show the comparison. For both users, the Nash equilibrium
throughput result is very close to the throughput obtained by solving the
constrained optimization problem (within 97 percent to be precise).

3. Uplink Transmission.

3.1. Uplink Problem Formulation. The uplink communication en-
vironment that we consider here consists of multiple users who are sending
data to a single base station or satellite over multiple fading channels. We
assume that each user always has data to be sent to the base station. Time
is assumed to be discrete, and the channel state for a given user changes
according to a known probabilistic model independently over time. The
channels between the users and the base station are assumed to be inde-
pendent of each other. Let Xi be a random variable denoting the channel
state for the channel between user i and the base station.
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Fig. 4. Throughput result comparison for both users.

When multiple users are transmitting during the same time slot, it is
still possible for the receiver to capture one (or more) user’s data. The
capture model can be described as a mapping from the received power of
the transmitting users to the set {1, · · · , n, 0}, where 0 indicates no packet
is successfully received. In this paper, we are going to investigate two
capture models which will be presented in the later sections.

We assume that each individual user is energy constrained. Specif-
ically, each user i has an average amount of energy ei available to itself
during each time slot. We assume that the ei values are known to all users,
and that users know the distribution of Xi’s. However, the exact value of
the channel state Xi is known to user i only at the beginning of each time
slot.

With a given capture model and the energy constraint, the objective
for each user is to design a power allocation strategy to maximize its own
expected throughput (or probability of success) per time slot subject to the
expected or average power constraint. The power allocation strategy will
specify how a user will allocate power in every time slot upon observing
its channel state. Under power allocation strategy gi(·), user i transmits a
packet with power equal to gi(x) when it sees its channel condition in this
time slot is Xi = x. The received power at the base station is denoted as
fi(x) = x · gi(x).

Formally, let Fi be the set of continuous and bounded real-valued
functions with finite first and second derivative over the support of Xi.
Then, the strategy space for user i (the set of all possible power allocation
schemes), say Si, is defined as follows:

Si =
{

gi ∈ Fi

∣∣∣ E[gi(Xi)] ≤ ei

}
(3.1)

3.2. Two Users Case. We start by investigating users’ strategies
in a communication system consisting of exactly two users and one base
station. The analytical method used in this section will help us in obtain-
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ing equilibrium power allocation scheme in the multiple users case. We
begin our analysis with the assumption that channel state Xi is uniformly
distributed over [0, 1] for all i. The Nash equilibrium power allocation strat-
egy with general channel state distribution is presented in the subsequent
section.

Suppose user 1 and user 2 choose their power allocation strategies to
be g1 and g2 respectively. Given a time slot with channel state realization
(x1, x2), user 1 and user 2 will transmit their packets using power levels
g1(x1) and g2(x2) respectively. The corresponding received power at the
base station are f1(x1) = x1 · g1(x1) and f2(x2) = x2 · g2(x2). As in
[12] and [13], the capture model used in this section is the following: if
[x1 ·g1(x1)]/[x2 ·g2(x2)] ≥ K where K ≥ 1, user 1’s packet will be captured.
Likewise, user 2’s packet will be captured if [x2 · g2(x2)]/[x1 · g1(x1)] ≥ K.
Thus, given a power allocation strategy pair (g1, g2), where g1 ∈ S1 and
g2 ∈ S2, the expected throughput for user 1 is defined as the following:

G1(e1, e2) = EX1,X2 [1f1(X1)≥K·f2(X2)] (3.2)

where

1f1(X1)≥f2(X2) =
{

1 if f1(X1) ≥ K · f2(X2)
0 otherwise

Similarly, the throughput function for user 2:

G2(e1, e2) = EX1,X2 [1f2(X2)>K·f1(X1)] (3.3)

3.2.1. Nash equilibrium strategy. In this part, we present a Nash
equilibrium power allocation strategy pair (g∗1 , g∗2). The derivation of the
Nash equilibrium is similar to the derivation of the Nash equilibrium in the
all-pay auction part. We consider here the case where both users choose
their strategies from the strategy space S1 and S2 and the value of e1 and
e2 are known to both users.

To get the Nash equilibrium strategy pair, we first argue that at equi-
librium the received power function f∗i (xi) must be strictly increasing in
xi.

Lemma 4. Given a Nash equilibrium power allocation strategy pair
(g∗1 , g∗2) and its corresponding received power function (f∗1 , f∗2 ), the received
power function f∗1 (x1) must be strictly increasing in x1. Similarly, f∗2 (x2)
must be strictly increasing in x2.

Proof. For an arbitrary received power function f which is not strictly
increasing, we can always find another received power function that will
result in a larger throughput gain. To see this, consider time slots with
channel state in the small intervals (a − δ, a + δ) and (b − δ, b + δ) where
a < b. When δ is small, the received power function is close to f(a) for time
slots in the interval (a− δ, a + δ). Likewise, the received power function is
close to f(b) for time slots in the interval (b− δ, b + δ).
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For received power function f such that f(a) = a·g(a) > f(b) = b·g(b)
for some a < b. The total amount of transmission power used in time slots
with channel state in the two intervals is given by:

[g(a) + g(b)]2δ = [
f(a)

a
+

f(b)
b

]2δ.

Now, if user 1 employs a new power allocation strategy ḡ such that ḡ(b) =
f(a)

b and ḡ(a) = f(b)
a , user 1 will achieve the same expected throughput

as before. However, the amount of power used [ḡ(b) + ḡ(a)]2δ is less than
[g(a) + g(b)]2δ, and the extra power can be used to get higher throughput.
Hence, both equilibrium received power function f∗1 (x1) and f∗2 (x2) must
be strictly increasing in x1 and x2 respectively.

With one user’s power allocation strategy, say g2, fixed, we now seek
the optimal power allocation scheme for user 1. From Lemma 4, we see
that the inverse of f1 and f2 are well defined. With user 2’s strategy g2

fixed, let u
(1)
g2 : (x1, b) → R denote user 1’s expected throughput of a slot

conditioning on the following events:
• User 1’s channel state is X1 = x1.
• User 1’s allocated power is b.

For convenience, we will drop the term g2 in the expression u
(1)
g2 (x1, b), and

simply write it as u1(x1, b). Specifically, we can the write the equation:

u1(x1, b) = P (f2(X2) ·K ≤ x1 · b) (3.4)

where P (f2(X2) ·K ≤ x1 ·b) is the probability that user 1’s packet gets cap-
tured in a time slot. Consequently, using a strategy g1, user 1’s throughput
is given by:

G1(e1, e2) =
∫ 1

0

u1(x1, g1(x1)) · pX1(x1) dx1 =
∫ 1

0

u1(x1, g1(x1)) dx1

(3.5)

where the last equality results from the uniform distribution assumption.
With user 1’s strategy g1 fixed, similar terms for user 2 can be defined.

u2(x2, b) = u(2)
g1

(x2, b) = P (f1(X1) ·K ≤ x2 · b)
Then, user 2’s throughput is given by:

G2(e1, e2) =
∫ 1

0

u2(x2, g2(x2)) · pX2(x2) dx2 =
∫ 1

0

u2(x2, g2(x2)) dx2

(3.6)

Due to the uniformly distributed channel state, P (f2(X2) ·K ≤ x1 · b)
is given by

P (f2(X2) ·K ≤ x1 · b) = P (X2 ≤ f−1
2 (

1
K

x1 · b)) = f−1
2 (

1
K

x1 · b)
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where f−1
2 is well defined. Thus, we can rewrite Eq. (3.4) as

u1(x1, b) = f−1
2 (

1
K

x1 · b).

Hence we have,

G1(e1, e2) =
∫ 1

0

f−1
2 (

1
K

x1 · g1(x1)) dx1 (3.7)

G2(e1, e2) =
∫ 1

0

f−1
1 (

1
K

x2 · g2(x2)) dx2 (3.8)

We begin our analysis of the Nash equilibrium strategy pair by first
considering the power allocation on the boundary points 0 and 1. For
a pair of power allocation functions (g∗1 , g∗2) to be a Nash equilibrium, it
is straightforward to see that g∗1(0) = g∗2(0) = 0 since it does not make
sense to allocate power for a slot with zero channel state. Likewise, we
must have g∗1(1) ≤ K · g∗2(1) and g∗2(1) ≤ K · g∗1(1) since allocating power
g1(1) = Kg2(1) or g1(1) = Kg2(1) + ε, where ε > 0, will result in the same
throughput for user 1. We call these properties the boundary conditions of
a Nash equilibrium strategy pair.

With the boundary conditions satisfied, the following lemma gives a
necessary and sufficient condition for a pair of power allocation strategies
to be a Nash equilibrium strategy pair. For convenience, we denote the
marginal gain for user 1 when X1 = x1 and the allocated power b = b∗ as

∂u1(x1, b)
∂b

|||b=b∗
4
= Du1(x1, b

∗).

Lemma 5. Given a power allocation strategy pair (g∗1 , g∗2) that satisfies
the boundary conditions, (g∗1 , g∗2) is a Nash equilibrium strategy pair if and
only if Du1(x1, g

∗
1(x1)) = c1 and Du2(x2, g

∗
2(x2)) = c2, for some constants

c1 and c2, for all x1 ∈ [0, 1] and all x2 ∈ [0, 1].
Note that the above lemma does not depend on the assumption of

the uniformly distributed channel state. Thus, it is quite general and will
be used in the subsequent section where channel states are not uniformly
distributed. The proof is similar to the proof of Lemma 2.

With Lemma 5, we are able to find the Nash equilibrium strategy pair.
The exact form of the equilibrium power allocation strategies are presented
in the following Theorem.

Theorem 3. Given the average power constraint e1 and e2, the Nash
equilibrium power allocation strategy pair has the following form:

g∗1(x) = c1 · xγ (3.9)

g∗2(x) = c2 · x
1
γ (3.10)
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where the constants c1, c2 and γ are chosen such that

∫ 1

0

c1 · xγ dx = e1 (3.11)
∫ 1

0

c2 · x
1
γ dx = e2 (3.12)

Equations (3.11) and (3.12) impose the average power constraints.
The proof of the above theorem is similar to the proof of Theorem 1.

From the above theorem, we see that equations (3.9) and (3.10) specify
the Nash equilibrium power allocation strategy pair. Since there are two
equations with three unknowns, the resulting Nash equilibrium may not be
unique in general. However, if a packet with stronger received power can
always be captured (i.e., K = 1), the Nash equilibrium power allocation
strategy is unique.

Corollary 1. For K = 1, the unique Nash equilibrium power alloca-
tion pair has the following form:

g∗1(x) = c · xγ , g∗2(x) = c · x 1
γ (3.13)

where the constants c and γ are chosen such that the average power con-
straints are satisfied.

Fig. 5 shows an example of the Nash equilibrium power allocation
strategy pair when e1 = 1 and e2 = 2. Since user 1 has less average power
than user 2, user 1 concentrates its power on time slots with very good
channel state. Fig. 6 shows the capture result when both users employ the
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Fig. 5. An example of Nash equilibrium strategy pair for e1 = 1 and e2 = 2.

Nash equilibrium strategy shown in Fig. 5. For a time slot with channel
state realization that fall into the region above the curve, user 2’s packet
will be successfully captured since user 2’s received power is higher than
that of user 1 in this region. Here, user 2 has more successful transmissions
than user 1 since it has more power.
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Fig. 6. Results obtained when using the Nash equilibrium strategy pair for e1 = 1
and e2 = 2.

3.2.2. General Channel State Distribution. In this section, we
specify the conditions that a general channel state distribution has to satisfy
in order for a Nash equilibrium strategy pair to exist.

From Lemma 4, one can see that f1 and f2 have to be increasing
functions regardless of the distribution of the Xi’s. Let pXi(·) denote the
probability density function of Xi with the support over an interval starting
at zero. Assuming K = 1, the probability that user 1’s packet will be
captured in a time slot with X1 = x1 and g1(x1) = b can be written as the
following:

u1(x1, b) = P (f2(X2) ≤ x1 · b) = P (X2 ≤ f−1
2 (x1 · b))

=
∫ f−1

2 (x1·b)

0

pX2(x2) dx2

(3.14)

From the optimality condition stated in Lemma 2, we have Du1(x1, b) = c1

where c1 is some constant. This condition can be expanded as follows:

∂u1(x1, b)
∂b

= pX2(f
−1
2 (x1 · b)) x1

f ′2(f
−1
2 (x1b))

= c1 (3.15)

Now, let’s focus on finding a symmetric Nash equilibrium power alloca-
tion strategy. Substituting b = g1(x1), the term f−1

2 (x1 · b) is equal to
f−1
2 (f1(x1)) = x1 since f1 = f2. Thus, Eq.(3.15) can be reduced to the

following:

pX2(x1)
x1

f ′2(x1)
= c1 ⇒ f ′2(x1) =

1
c1

x1 · pX2(x1) (3.16)

The above equation provides a condition on the distribution of the Xi

such that there exists a Nash equilibrium power allocation scheme. The
condition can be restated as the following:

x1 · g1(x1) =
∫

1
c1

x1 · pX2(x1) dx1 (3.17)
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From the above condition, for example, we see that if pX2(·) is a strictly in-
creasing polynomial, there exist a Nash equilibrium power allocation strat-
egy.

3.3. Multiple Users Equilibrium Strategies. In this section, we
explore the Nash equilibrium power allocation strategies when n users are
competing to access the single base station. User i’s power allocation
function is denoted as gi(·). Given a time slot with channel state real-
ization ~x = (x1, · · · , xn), the transmitting power for each user is gi(xi).
The corresponding received power at the base station is again denoted as
fi(xi) = xi ·gi(xi). The new capture rule used in this section is given as the
following: a packet from user 1 will be successfully received if the following
holds:

f1(x1) ≥ (1 + ∆) max(f2(x2), · · · , fn(xn))

Similar capture model can be found in [15] (i.e., protocol model). The
quantity ∆ models situations where a guard zone is specified to prevent
interference. Note also that the capture rule used in the two users’ case
can be viewed as a special case the above capture rule.

We start with each user facing the same average power constraint (i.e.,
e1 = e2 = · · · = en). Since users are identical, it is reasonable to seek a
symmetric Nash equilibrium power allocation strategy. Specifically, the set
of strategies (g1 = g, · · · , gn = g) is said to be a symmetric Nash equi-
librium strategies if gi = g is the best power allocation strategy for user
i when all other users are also employing the power allocation strategy
g. For a power allocation function g to be a symmetric Nash equilibrium
strategy, f(x) = xg(x) must be a strictly increasing function using a sim-
ilar argument as in the two users case. The following theorem shows the
existence and the form of a symmetric Nash equilibrium power allocation
strategy.

Theorem 4. Given that each user has the same average power con-
straint, there exists a symmetric Nash equilibrium power allocation strategy
with the following form:

gi(xi) = c · xn−1
i ∀ i ∈ {1, · · · , n} (3.18)

where c is chosen such that the average power constraint is satisfied.
Proof. The complete proof is given in the Appendix.
With the symmetric Nash equilibrium power allocation strategy given

in Eq.(3.18), the expected throughput for each user is given by:

P (f(X1) ≥ (1 + ∆) max(f(X2), · · · , f(Xn)))
= P (Xn

1 ≥ (1 + ∆) max(Xn
2 , · · · , Xn

n ))

= P (X1 ≥ (1 + ∆)
1
n max(X2, · · · , Xn))

(3.19)
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To quantify the loss of efficiency due to users’ selfish behavior, we consider a
system where all users implement the same power allocation policy provided
by a system designer such that the overall system throughput is maximized.
To find such scheme, we solve the following optimization problem as in the
two users’ case:

max
v∈S1

P (X1v(X1) ≥ (1 + ∆) ·max(X2v(X2), · · · , Xnv(Xn))

By symmetry, we have the following upper bound for the above probability:

P (X1v(X1) ≥ (1 + ∆) ·max(X2v(X2), · · · , Xnv(Xn)) <
1
n

As in the two users’ case, we consider a series of functions, vm(x) = xm for
m ≥ 1. As m →∞, we have

P (Xm+1
1 ≥ (1 + ∆) ·max(Xm+1

2 , · · · , Xm+1
n ))

= P (X1 ≥ (1 + ∆)
1

m+1 max(X2, · · · , Xn)) → 1
n

Thus, there indeed exists a power allocation scheme that will achieve the
maximum possible throughput. In other words, it is possible to have a
packet successfully captured in every time slot. Now, when users behave
selfishly, the expected throughput for each user is given as follows from
Eq.(3.19):

P (X1 ≥ (1 + ∆)
1
n max(X2, · · · , Xn)) (3.20)

As n increases, the above equation goes to 1/n which is the maximum
attainable throughput. Therefore, as the number of users becomes large,
the symmetric Nash equilibrium power allocation scheme is optimal in the
sense that the throughput obtained approaches the maximum attainable
throughput.

For the special case where ∆ = 0, the capture rule becomes that the
user with the largest received power get captured. With this simple rule, a
Nash equilibrium strategy can be derived with general channel state distri-
bution (i.e., Xi has probability density function pXi(·)). From Eq.(4.23),
we have

pZ(f−1(x1 · b)) x1

f ′(f−1(x1 · b)) = c

f ′(x1) =
1
c
x1pZ(x1)

(3.21)

where

pZ(z) = (n− 1)pX1(z)[
∫ z

0

pX1(x) dx]n−2.
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Hence, we can write the received power function as the following:

f(x) =
1
c

∫
xpZ(x) dx

From the above equation, one can get the optimal power allocation function
by using g(x) = f(x)

x .

4. Conclusion. We apply an auction algorithm to the problem of fair
allocation of a wireless fading channel. Using the all-pay auction mecha-
nism, we are able to obtain a unique Nash equilibrium strategy. Our strat-
egy allocated bandwidth to the users in accordance with the amount of
money that they possess. Hence, this scheme can be viewed as a mecha-
nism for providing quality of service (QoS) differentiation; whereby users
are given fictitious money that they can use to bid for the channel. By al-
locating users different amounts of money, the resulting QoS differentiation
can be achieved.

We also show that the Nash equilibrium strategy of this auction leads
to an allocation at which total throughput is no worse than 3/4 the maxi-
mum possible throughput when fairness constraints are not imposed (i.e.,
slots are allocated to the user with the better channel). In this paper, we
focused on finding a Nash equilibrium strategy when both channels are
uniformly distributed. However, as we mentioned earlier, our analysis can
be extended to channel state with general distribution. An interesting ex-
tension could be to find the exact form of a Nash equilibrium with general
channel state distribution.

In the uplink communication scenario, we consider a communication
system with multiple users competing, in a non-cooperative manner, for the
access of a single satellite, or base station. With a specified capture rule
and an average power constraint, users opportunistically adjust their trans-
mission power based on their channel state to maximize their throughput.
A Nash equilibrium power allocation strategy is characterized, and the re-
sulting throughput efficiency loss, due to selfish behavior, is quantified. As
the number of users increases, the Nash equilibrium power allocation strat-
egy approaches the optimal power allocation strategy that can be achieved
in a cooperative environment.

Appendix.

Proof of Lemmma 2. Proof: We first show that if (f∗1 , f∗2 ) is a Nash
equilibrium strategy pair, Dg

(1)
f∗2

(x1, f
∗
1 (x1)) and Dg

(2)
f∗1

(x2, f
∗
2 (x2)) must be

constants for all x1 ∈ [0, 1] and x2 ∈ [0, 1]. From user 1’s perspective
with f∗2 fixed, consider a small variation of the function f∗1 . Specifically, let
fδ = f∗1 +δ(f̂−f∗1 ) where f̂ is an arbitrary function in S̄1. Since both f̂ and
f∗1 are in S̄1, they are both bounded (i.e., |f̂(x1)| ≤ B and |f∗1 (x1)| ≤ B
for all x1 ∈ [0, 1]). Therefore, we have |fδ(x1) − f∗1 (x1)| ≤ 2Bδ for all
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x1 ∈ [0, 1]. Using the Lagrange’s form of Taylor’s theorem, we get for any
x1 ∈ [0, 1], there exists a real number c[x1] ∈ [f∗1 (x1), fδ(x1)] such that

g
(1)
f∗2

(x1, fδ(x1)) = g
(1)
f∗2

(x1, f
∗
1 (x1))

+ δ(f̂(x1)− f∗1 (x1))
∂g

(1)
f∗2

(x1, b)

∂b

∣∣∣
∣∣∣
∣∣∣b=f∗1 (x1)

+
1
2
δ2(f̂(x1)− f∗1 (x1))2

∂2g
(1)
f∗2

(x1, b)

∂b2

∣∣∣
∣∣∣
∣∣∣b=c[x1]

(4.1)

The last term is bounded by K · δ2 for some K since both f̂ and f∗1 are
bounded, and g

(1)
f∗2

(x1, b) has finite second derivative. Therefore, for small
enough δ, it is negligible comparing with the other terms.

Now we show that if Dg
(1)
f∗2

(x1, f
∗
1 (x1)) is not a constant for all x1 ∈

[0, 1], we can find a strategy fδ which gives user 1 a higher throughput than
f∗1 . To do that, we can write the following equations:

∫ 1

0

g
(1)
f∗2

(x1, fδ(x1)) dx1 −
∫ 1

0

g
(1)
f∗2

(x1, f
∗
1 (x1)) dx1

= δ

∫ 1

0

(f̂(x1)− f∗1 (x1))
∂g

(1)
f∗2

(x1, b)

∂b

∣∣∣
∣∣∣
∣∣∣b=f∗1 (x1) dx1 + o(δ)

(4.2)

Now, since Dg
(1)
f∗2

(x1, f
∗
1 (x1)) is not a constant for all x1 ∈ [0, 1], we can

find a f̂ such that the above equation is positive which implies that there is
an incentive for user 1 to use fδ. Hence, (f∗1 , f∗2 ) is not a Nash equilibrium
strategy pair. Similarly, we can show that Dg

(2)
f∗1

(x2, f
∗
2 (x2)) is a constant

for all x2 ∈ [0, 1] if (f∗1 , f∗2 ) is a Nash equilibrium strategy pair.
For the converse, consider again Eq.(4.2). Since Dg

(1)
f∗2

(x1, f
∗
1 (x1)) =

∂g
(1)
f∗2

(x1,b)

∂b

∣∣∣
∣∣∣
∣∣∣b=f∗1 (x1) equals to a constant c1 for all x1 ∈ [0, 1]. We have

δ

∫ 1

0

(f̂(x1)− f∗1 (x1))
∂g

(1)
f∗2

(x1, b)

∂b

∣∣∣
∣∣∣
∣∣∣b=f∗1 (x1) dx1

= δc1

∫ 1

0

(f̂(x1)− f∗1 (x1)) dx1 = 0

(4.3)

for all f̂ ∈ S̄1 (i.e.,
∫ 1

0
f̂(x1) dx1 = α). Thus, there is no incentive for user 1

to use strategy f̂ . Therefore, (f∗1 , f∗2 ) is a Nash equilibrium strategy pair.

Proof of Theorem 1 (the Uniqueness ). Consider any Nash equi-
librium strategy pair (f1, f2) under the all-pay auction rule. From previous
discussion, we know that the inverse functions, f−1

2 and f−1
1 , are well de-

fined. With user 2’s strategy f2 fixed, we have

g
(1)
f2

(x1, b) = x1 · P (f2(X2) ≤ b) = x1 · f−1
2 (b)
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Similarly, with user1’s strategy f1 fixed, we get

g
(2)
f1

(x2, b) = x2 · P (f1(X1) ≤ b) = x2 · f−1
1 (b)

From Lemma 2, we know that Dg
(1)
f2

(x1, f1(x1)) and Dg
(2)
f1

(x2, f2(x2)) are
two constants for all x1 ∈ [0, 1] and x2 ∈ [0, 1] since (f1, f2) is a Nash
equilibrium strategy pair.

Now, consider the set of channel state pair (x1, x2) such that f1(x1) =
f2(x2) (i.e., two users’ bids are equal). It forms a separation line in space
span by X1 and X2. Mathematically, this line can be defined as h : [0, 1] →
[0, 1] such that x2 = h(x1) = f−1

2 (f1(x1)). By the all-pay auction rule, a
slot with channel state (x1, x

′
2) will be assigned to user 2 if (x1, x

′
2) is

above the line x2 = h(x1) and to user 1 if (x1, x
′
2) is below the separation

line. Fig.2 shows an example of h(x1). The following lemma shows the
uniqueness of h(x1). We then derive the uniqueness of the strategy pair
(f1, f2) from the lemma.

Lemma 6. If Dg
(1)
f2

(x1, f1(x1)) and Dg
(2)
f1

(x2, f2(x2)) are two con-
stants, c1 and c2 respectively, for all x1 ∈ [0, 1] and x2 ∈ [0, 1], then
h(x1) = x

c1/c2
1 .

Proof. Since Dg
(1)
f2

(x1, f1(x1)) = c1, from g
(1)
f2

(x1, b) = x1 · f−1
2 (b), we

have

Dg
(1)
f2

(x1, f1(x1)) =
∂g

(1)
f2

(x1, b)
∂b

∣∣∣
∣∣∣
∣∣∣b=f1(x1) =

x1

f ′2(f
−1
2 (f1(x1)))

= c1

f ′2(h(x1)) =
x1

c1
(4.4)

Similarly, for user 2, we get

Dg
(2)
f1

(x2, f2(x2)) =
∂g

(2)
f1

(x2, b)
∂b

∣∣∣
∣∣∣
∣∣∣b=f2(x2) =

x2

f ′1(f
−1
1 (f2(x2)))

= c2

f ′1(h
−1(x2)) =

x2

c2
(4.5)

We also know that f1(x1) = f2(h(x1)) and f ′1(x1) = f ′2(h(x1)) ·h′(x1).
Thus, we have

f ′1(h
−1(x2)) = f ′2(h(h−1(x2))) · h′(h−1(x2))

= f ′2(x2) · h′(x1) = f ′2(h(x1)) · h′(x1)
(4.6)

By combining the equations f ′1(h
−1(x2)) = x2

c2
and f ′1(h

−1(x2)) =
f ′2(h(x1)) · h′(x1), we get

x2

c2
= f ′2(h(x1)) · h′(x1).
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Next we substitute Eq.(4.4) and x2 = h(x1) in the above equation to obtain,

x1 · dh(x1)
dx1

=
c1

c2
h(x1) ⇒ dh(x1)

h(x1)
=

c1

c2

dx1

x1

ln |h(x1)| = c1

c2
ln |x1|+ c3 ⇒ h(x1) = ec3 · x

c1
c2
1

Combined with fact that h(1) = 1, we get h(x1) = x
c1
c2
1 .

Now, we are in a position to derive the exact form of the Nash equilib-
rium strategy pair. From the equations f ′1(h

−1(x2)) = x2
c2

and x2 = h(x1),

we get f ′1(x1) = h(x1)
c2

= x
c1
c2
1 /c2. Combined with the condition that

f1(0) = 0, we have f1(x) = 1
c1+c2

x
c1
c2

+1. Following the similar method,

we get f2(x) = 1
c1+c2

x
c2
c1

+1. Let γ = c1
c2

and c = 1
c1+c2

, the Nash equilib-
rium strategy pair for the all-pay auction must have the following form:

f∗1 (x1) = c · xγ+1
1 , f∗2 (x2) = c · x

1
γ +1

1 (4.7)

The constant γ and c are chosen such that equations (3.11) and (3.12)
are satisfied. The uniqueness of the above Nash equilibrium strategy comes
from the fact that there is a unique pair of c and γ that satisfy equations
(3.11) and (3.12).

Proof of Theorem 2. Proof. Again, we consider n = 2 case for
simplicity. For α1+α2 = 2α and β1+β2 = 2β, this theorem stated that the
pair (α1, β1) and (α2, β2) cannot be in equilibrium if α1 6= α2 and β1 6= β2.
We will show this by contradiction. Suppose the pair (α1, β1) and (α2, β2)
are in equilibrium for α1 6= α2 and β1 6= β2. That is, for given β1 and β2,
α1 and α2 are chosen such that user 1’s throughput G1(α1, β1)+G1(α2, β2)
is the maximum. This implies the following:

∂G1(α, β1)
∂α

∣∣∣
∣∣∣
∣∣∣α=α1 =

∂G1(α, β2)
∂α

∣∣∣
∣∣∣
∣∣∣α=α2 . (4.8)

To see this, if ∂G1(α,β1)
∂α

∣∣∣
∣∣∣
∣∣∣α=α1 > ∂G1(α,β2)

∂α

∣∣∣
∣∣∣
∣∣∣α=α2 , we will have G1(α1+δ, β1)+

G1(α2 − δ, β2) > G1(α1, β1) + G1(α2, β2) by first order expansion, thus
contradicting the statement that G1(α1, β1) + G1(α2, β2) is the maximum
throughput for user 1 for given β1 and β2.

Similarly, for given α1 and α2, if β1 and β2 maximize G2(α1, β1) +
G2(α2, β2) then,

∂G2(α1, β)
∂β

∣∣∣
∣∣∣
∣∣∣β=β1 =

∂G2(α2, β)
∂β

∣∣∣
∣∣∣
∣∣∣β=β2 . (4.9)

By taking the derivative of equations (2.14) and (2.15), we get the
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following:

∂G1(α, β1)
∂α

∣∣∣
∣∣∣
∣∣∣α=α1 = − β1(−2

√
α2

1 − α1β1 + β2
1 + α1 − 2β1)

2(α1 + β1 +
√

α2
1 − α1β1 + β2

1)2
√

α2
1 − α1β1 + β2

1

(4.10)

∂G2(α1, β)
∂β

∣∣∣
∣∣∣
∣∣∣β=β1 = − α1(−2

√
α2

1 − α1β1 + β2
1 + β1 − 2α1)

2(α1 + β1 +
√

α2
1 − α1β1 + β2

1)2
√

α2
1 − α1β1 + β2

1

(4.11)

Substituting Eq.(4.10) into Eq.(4.8) and Eq.(4.11) into Eq.(4.9), we
then have the following after combining Eq.(4.8) and Eq.(4.9):

β1(−2
√

α2
1 − α1β1 + β2

1 + α1 − 2β1)
β2(−2

√
α2

2 − α2β2 + β2
2 + α2 − 2β2)

=
α1(−2

√
α2

1 − α1β1 + β2
1 + β1 − 2α1)

α2(−2
√

α2
2 − α2β2 + β2

2 + β2 − 2α2)

(4.12)

To simplify the above equation, we multiply α2
2

α2
1

on both sides, and let

γ1 = β1
α1

, γ2 = β2
α2

. We get

γ1(−2
√

1− γ1 + γ2
1 + 1− 2γ1)

γ2(−2
√

1− γ2 + γ2
2 + 1− 2γ2)

=
−2

√
1− γ1 + γ2

1 + γ1 − 2
−2

√
1− γ2 + γ2

2 + γ2 − 2
(4.13)

or, after rearranging terms, the following:

γ1(−2
√

1− γ1 + γ2
1 + 1− 2γ1)

−2
√

1− γ1 + γ2
1 + γ1 − 2

=
γ2(−2

√
1− γ2 + γ2

2 + 1− 2γ2)
−2

√
1− γ2 + γ2

2 + γ2 − 2
(4.14)

We define

f(γ) =
γ(−2

√
1− γ + γ2 + 1− 2γ)

−2
√

1− γ + γ2 + γ − 2
.

Then Eq.(4.14) becomes f(γ1) = f(γ2). Now we show that this implies
γ1 = γ2 by observing that

∂f(γ)
∂γ

= − (γ + 1)(2
√

1− γ + γ2 − 1 + 2γ)√
1− γ + γ2(−2

√
1− γ + γ2 + γ − 2)

,

and it is easy to check that ∂f
∂γ > 0 ∀γ ≥ 0. Now, we have β1

α1
= β2

α2
. We

further show that α1 = α2 and β1 = β2. Observe that for fixed β1 and β2,
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we can write

G1(α, β1) =
α

α + β1 +
√

(α− β1)2 + αβ1

=
α
β1

1 + α
β1

+
√

(1− α
β1

)2 + α
β1

, F (
α

β1
)

(4.15)

where

F (σ) =
σ

1 + σ +
√

(1− σ)2 + σ
.

Thus, we have

∂G1(α, β1)
∂α

∣∣∣
∣∣∣
∣∣∣α=α1 =

1
β1

∂F (σ)
∂σ

∣∣∣
∣∣∣
∣∣∣σ=

α1
β1

(4.16)

∂G1(α, β2)
∂α

∣∣∣
∣∣∣
∣∣∣α=α2 =

1
β2

∂F (σ)
∂σ

∣∣∣
∣∣∣
∣∣∣σ=

α2
β2

(4.17)

From Eq.(4.8), we have

1
β1

∂F (σ)
∂σ

∣∣∣
∣∣∣
∣∣∣σ=

α1
β1

=
1
β2

∂F (σ)
∂σ

∣∣∣
∣∣∣
∣∣∣σ=

α2
β2

(4.18)

It is easy to verify that ∂F (σ)
∂σ 6= 0 ∀σ ≥ 0. Therefore, since β1

α1
= β2

α2
,

the above equation implies that β1 = β2 which contradicts our original
assumption of β1 6= β2. Therefore, the pair (α1, β1) and (α2, β2) cannot be
in equilibrium if α1 6= α2 and β1 6= β2.

Proof of Theorem 4. Proof. With all users i 6= 1 using a fixed power
allocation strategy g, we now explore the optimal power allocation strategy
for user 1 which is denoted by g∗1 . Let u

(1)
g : (x1, b) → R denote user 1’s

expected throughput during a slot conditioning on the following events:
• User 1’s channel state is X1 = x1.
• User 1’s allocated power is b.

As before, we will drop the term g in the expression u
(1)
g (x1, b), and simply

write it as u1(x1, b). Specifically, we can the write the equation:

u1(x1, b) =P ((1 + ∆) max(f2(X2), · · · , fn(Xn)) ≤ x1 · b)
=P ((1 + ∆)Y ≤ x1 · b)

where Y = max(f2(X2), · · · , fn(Xn)). Since all users i 6= 1 use the same
strategy g, we have Y = max(f(X2), · · · , f(Xn)) where f(Xi) = Xi · g(Xi)
for all i 6= 1. Moreover, since f is strictly increasing, we can write:

Y = max(f(X2), · · · , f(Xn)) = f(max(X2, · · · , Xn))
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Denoting Z = max(X2, · · · , Xn), we have the following:

u1(x1, b) = P ((1 + ∆)Y ≤ x1 · b) = P (Z ≤ f−1(
1

1 + ∆
x1 · b))

=
∫ f−1( 1

1+∆ x1·b)

0

pZ(z) dz

(4.19)

where pZ(·) denote the probability density function of the random variable
Z. The optimization problem that user 1 faces can be written as the
following:

maxG1(e) =
∫ 1

0

u1(x1, g1(x1)) · pX1(x1) dx1 =
∫ 1

0

u1(x1, g1(x1)) dx1

subj.
∫ 1

0

g1(x1) dx1 ≤ e

(4.20)

Writing the Lagrangian function, we have
∫ 1

0

u1(x1, g1(x1)) dx1 − λ(
∫ 1

0

g1(x1) dx1 − e)

=
∫ 1

0

[u1(x1, g1(x1))− λg1(x1)] dx1 + λe

(4.21)

Therefore, for each fixed x1, we want to choose a g1(x1) to maximize the
term u1(x1, g1(x1)) − λg1(x1). For convenience, let b = g1(x1). Then, we
have

max
b

L(b) = max
b

u1(x1, b)− λb = max
b

∫ f−1( 1
1+∆ x1·b)

0

pZ(z) dz − λb (4.22)

Maximizing L(b) with respect to b yields the first order condition:

∂L(b)
∂b

= pZ(f−1(
1

1 + ∆
x1 · b))

x1
1+∆

f ′(f−1( 1
1+∆x1 · b))

− λ = 0 (4.23)

Since Z = max(X2, · · · , Xn) and Xi’s are i.i.d, we have

pZ(z) = (n− 1)zn−2.

Now, consider b = g1(x1) = cxm
1 . Since we are seeking a symmetric Nash

equilibrium power allocation strategy, user i 6= 1 will adopt the same strat-
egy as user 1. Thus, we have f(x) = x · g(x) = x · cxm = cxm+1. The
second term in Eq.(4.23) can be written as the following:

f ′(f−1(
1

1 + ∆
x1 · b)) = f ′(f−1(

c

1 + ∆
x1 · xm

1 ))

= f ′((
1

1 + ∆
x1 · xm

1 )
1

m+1 ) = c(m + 1)(
1

1 + ∆
)

m
m+1 xm

1

(4.24)
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Similarly,

pZ(f−1(
1

1 + ∆
x1 · b)) = pZ((

1
1 + ∆

)
1

m+1 x1) = (n− 1)(
1

1 + ∆
)

n−2
m+1 xn−2

1

(4.25)

Eq.(4.23) can be re-written in the following form:

(n− 1)(
1

1 + ∆
)

n−2
m+1 xn−2

1

x1
1+∆

c(m + 1)( 1
1+∆ )

m
m+1 xm

1

− λ = 0 (4.26)

Since the above equality has to hold for all x1 ∈ [0, 1], the following must
be true

xn−2
1 · x1 · x−m

1 = 1

Thus, we have m = n− 1 and gi(x) = cxn−1 for all i = 1, · · · , n.
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