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Finding Minimum Energy Disjoint Paths in Wireless Ad-Hoc Networks
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Abstract. We develop algorithms for finding minimum energy disjoint paths in an all-wireless network, for both the node and link-disjoint
cases. Our major results include a novel polynomial time algorithm that optimally solves the minimum energy 2 link-disjoint paths problem,
as well as a polynomial time algorithm for the minimum energy k node-disjoint paths problem. In addition, we present efficient heuristic
algorithms for both problems. Our results show that link-disjoint paths consume substantially less energy than node-disjoint paths. We also
found that the incremental energy of additional link-disjoint paths is decreasing. This finding is somewhat surprising due to the fact that in
general networks additional paths are typically longer than the shortest path. However, in a wireless network, additional paths can be obtained
at lower energy due to the broadcast nature of the wireless medium. Finally, we discuss issues regarding distributed implementation and
present distributed versions of the optimal centralized algorithms presented in the paper.
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1. Introduction

In this paper, we address the problem of finding minimum
energy disjoint paths in wireless ad-hoc networks. An ad-hoc
network is an infrastructure-less network, where every node
assumes the role of both host and router. Generally, nodes in an
ad-hoc network are mobile as well, though in this paper we are
primarily concerned with relatively static ad-hoc networks, a
prevalent example of which are sensor networks.

The motivation for the minimum energy disjoint paths prob-
lem considered in this paper is two-fold. The first is the need
for reliability in wireless networks. This need stems from the
unpredictable nature of the wireless environment, which un-
like its wired counterpart is more easily prone to link failures
(e.g. due to channel fading or obstructions) and resulting path
failures and data loss. Additionally, node failures (e.g. due to
power loss or mobility) are also common to ad-hoc networks.
Therefore from this perspective, a potential application of our
work, i.e. simultaneous routing along multiple disjoint paths,
can result in increased resiliency against such failures. This is
especially apparent in the case of real-time data transmission,
whereby if one routes along a single path, just one node (or
link) failure is sufficient to cause path failure and transmission
interruption. In contrast, routing along k disjoint paths makes
failure much less likely, as all k disjoint paths must become
disconnected in order for transmission to be interrupted. We
consider both node and link-disjoint path routing in this paper.
Node-disjoint paths are more resilient to failures than link-
disjoint paths; as they protect against both node and link fail-
ures. However, as will be seen later in this paper, link-disjoint
paths are much more energy efficient than node-disjoint paths.
Moreover, in a wireless network, link-disjoint paths can pro-
tect against link failures that may result from mobility, fading,
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or obstructions. Hence, in many cases, individual links may
fail while the node remains operational.

The second motivation is the importance of energy effi-
ciency in wireless networks. Wireless nodes, especially sen-
sors, tend to use small batteries for energy supply that are in
many instances non-replenishable. Therefore, energy conser-
vation is a vital factor in prolonging network lifetime. It was
shown in [12] that wireless nodes often expend most of their
energy in communications. As such, our objective is to mini-
mize the aggregate transmission power (energy) used by nodes
to route data along multiple paths.

Our approach to energy-efficient routing is similar to that
discussed in [29] in that it differs in a key aspect from the
conventional layered structure. In our treatment of routing
(a network layer function), we also incorporate transmission
power level variations (hence network connectivity, a physi-
cal layer function). Traditional research on routing in ad-hoc
networks decouples these two layers by restricting nodes to
constant transmission ranges, leading to a “static” (node mo-
bility notwithstanding) network topology. These networks are
subsequently modelled as “disk graphs”, and routing is done
to minimize a link-based metric (e.g. shortest hop, minimum
weight). In recent years however, it has been argued that a de-
coupled approach, while well-suited for wired networks, does
not capture many salient properties of wireless networks. This
is especially true for transmission energy usage, where joint
consideration of the network and physical layer issues can
result in significant energy savings.

The combined problem of minimum energy disjoint path
routing has not been looked at before. However, when taken as
separate problems, considerable work has been done on energy
efficient routing in wireless networks [1,2,5,7,10,14,22,28–
30] as well as disjoint path routing in both wired and wireless
networks [4,9,13,16–18,21,24,26,27]. The energy efficiency
aspect of our work builds upon that of Wieselthier et al. [29]
on energy-efficient broadcasting and multicasting in wireless
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networks. Although they present only heuristic solutions to the
problem (the problem was subsequently proven to be NP-Hard
[1,5,10,14]), their work elucidates many of the fundamental
aspects of energy-efficient routing in wireless networks that
are used in this paper.

Other relevant work in the area of energy-efficiency in
wireless networks includes work by Chen and Huang [8] on
the minimum energy strongly connecting problem (i.e. there
exists a path between every node pair) for packet radio net-
works (also proven to be NP-Hard). Along the same lines are
the minimum energy topology control problems considered
in [6,15,19], where the minimum energy strongly connecting
problem is generalized to variants of the minimum energy k-
strongly connecting problem (i.e. there exists k-node (link)
disjoint paths between every node pair).

The distinction between these problems and the disjoint
paths problem considered in this paper is that instead of k-
disjoint paths between every node pair, our problem requires k
disjoint paths between just two nodes—the source and destina-
tion. In the minimum energy k-strongly connecting problems,
transmission ranges are assigned to all nodes such that the
resulting network topology contains k disjoint paths between
every node pair, and the aggregate transmission energy for the
entire network is minimum. However, this type of optimiza-
tion needlessly minimizes energy usage over nodes that may
not even be transmitting, and yields sub-optimal aggregate
energy usage for the specific nodes that are actively involved
in transmission, namely the nodes belonging to the k disjoint
paths between a specific source-destination pair. In this regard,
finding minimum energy k disjoint paths is the more focused
problem, as the energy optimization is done only over perti-
nent nodes. Furthermore, while most of the minimum energy
k-strongly connecting problems have been proven to be NP-
complete [6,8,15,19], we present polynomial time algorithms
that optimally solve the minimum energy k node-disjoint paths
problem, as well as the minimum energy 2 link-disjoint paths
problem.

The problem of finding k node (link) disjoint source-destin-
ation paths in a network, is a well studied problem in graph
theory. Polynomial O(k N 2) running time algorithms that find
minimum-weight k node (link) disjoint source-destination
paths have existed for decades [4,24,26]. While these algo-
rithms do not address the minimum energy disjoint paths prob-
lem, they serve as basic building blocks for the algorithms
developed in this paper.

The remainder of the paper focuses on developing optimal
polynomial running time algorithms for finding minimum en-
ergy disjoint paths. We start by introducing our network model
as well as some basic concepts pertaining to wireless transmis-
sion that will be used throughout the paper. We next discuss the
problem of finding k minimum energy node-disjoint source-
destination paths, and follow with the link-disjoint variant. We
then present a short section on alternative heuristic algorithms
with lower computational complexity, but sub-optimal per-
formance. This is followed by results, including performance
comparisons between several energy-efficient algorithms. We

conclude with a short section regarding distributed implemen-
tation.

2. Network model

We consider a wireless network consisting of N nodes that
have omnidirectional antennas and can dynamically vary their
transmission power. Specifically, each node has a maximum
transmission power level Emax, and we assume that transmis-
sions can take place at any power level in the range [0, Emax].
We assume a commonly used wireless propagation model [20]
whereby the received signal power attenuates as r−α , where r
is the transmission range and α is the loss constant, typically
between 2 and 4 depending on the wireless medium.

Based on this model, we can clarify the concept of a wireless
link, which is quite different from the traditional wired link. In
wired networks the definition is clear: A “link” exists between
two nodes if they can communicate via a physical medium
(e.g. a wire) between them. By contrast, a wireless link is
more of a “soft” concept, where it can be said that a “link”
exists between two wireless nodes if the transmitting node
transmits with sufficiently high power such that the “signal-
to-interference-plus-noise-ratio” (SINR) at the receiving node
is greater than a given threshold value θ . The threshold value
θ is chosen to achieve a desired bit-error-rate for the given
modulation scheme and data rate. Without loss of generality,
we normalize all values such that the power required to support
a wireless link at a given data rate between node i and node j
is given by,

Ei j = rα
i j (1)

where ri j is the distance between nodes i and j . We say that
node i can “reach” node j if and only if node i transmits at a
power greater than or equal to rα

i j .
The first observation based on this model is that the network

topology is entirely dependent on the range at which nodes
transmit. Links can be added or removed by a node chang-
ing its transmission range. The second observation is that this
model severely penalizes (from an energy standpoint) longer
range transmissions. As can be seen from (1), the energy re-
quired to support such transmissions increases according to
a power function. In fact, the solution to the energy efficient
single path routing problem is based primarily on the con-
cept that shorter hops are preferred to longer ones. The actual
solution, consisting of two main steps is quite simple and is
illustrated in figure 1. The first step, consisting of a basic graph
transformation is one that we use quite extensively in all our
algorithms, and is as follows: Given a network of N nodes
and co-ordinates for each node, construct a graph G = (V, E)
such that (i, j) ∈ E ⇐⇒ rα

i j ≤ Emax and wi j = rα
i j (where

wi j is the weight of link (i, j)). The new graph, that we will
hereby refer to as the energy cost graph, provides informa-
tion about all possible network topologies, in accordance with
characteristics of the wireless environment and node power
constraints. The second and final step is simply to run a
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Figure 1. Example of algorithm that finds the minimum energy source-
destination path (with α = 2 and Emax = 702). Shown is the key step, con-
sisting of a graph transformation that we continually refer to this paper as the
“Energy Cost Graph”. The minimum energy path is highlighted in bold, and
has aggregate energy cost 607.

shortest path algorithm (e.g. Dijkstra, Bellman Ford) on the
energy cost graph, and the resultant path is the minimum en-
ergy path.

In the case of energy efficient multicast and multipath rout-
ing, however, we see that long range transmissions can actually
be used to extract energy savings. Specifically, due to the use of
omnidirectional antennas, when node i transmits at a power rα ,
the transmission is simultaneously received by all nodes j that
are a distance less or equal to than r from node i . In figure 2,
we see that for node i to multicast a message to both nodes j
and k, it has three options: (a) Transmit the message to j, and
have j transmit that message to k, (b) Transmit the message to
j, and then re-transmit the same message to k, or (c) Transmit
the message once at a range max(ri j , rik), thereby ensuring
both j and k receive the message simultaneously. Note that
without the use of omnidirectional antennas, only options (a)
and (b) would be possible. However, omnidirectional anten-
nas allow the possibility of option (c), which is clearly more
energy efficient than option (b) (i.e. the transmission at range
min(ri j , rik) in option (b) is redundant). The energy savings
that option (c) provides over option (b) is referred to in [29]
as the “Wireless Multicast Advantage” (WMA).

It should be noted that Wieselthier et al. [29] apply the
energy saving potential of the WMA only to the minimum
energy broadcast and multicast problems. In this paper, we
show that the WMA can also be exploited to provide energy

efficient reliability in the form of minimum energy multipath
transmission.

While it is clear that exploiting the WMA for maximum en-
ergy savings is desirable, it should be noted that incorporating
the WMA (i.e. allowing option (c) from figure 2) into mini-
mum energy routing problems makes finding optimal solutions
very difficult. As mentioned earlier, the majority of minimum
energy topological problems [1,5,6,10,14,15,19,29] have been
shown to be NP-complete. To understand in more detail the
complications that the WMA adds to these problems, we must
examine the relative energy cost functions with and without
the WMA.

Consider an arbitrary directed subgraph of the energy cost
graph P (i.e. an achievable topology). Let us first consider the
case without the WMA. We can express the aggregate energy
cost for this subgraph as simply the sum of all the weights on
all links belonging to P . That is,

W (P) =
∑

(i, j)∈P

wi j (2)

where wi j is the energy cost of transmitting from node i to
node j, given in (1).

Under this cost function and in the absence of the WMA,
finding k minimum energy disjoint paths between a source-
destination pair corresponds to finding a minimum energy
subgraph P such that P is made up of the edges belonging
to these k disjoint paths. One can find such a subgraph by
solving the traditional minimum weight k disjoint paths prob-
lem on the energy cost graph using standard disjoint paths
algorithms [4,24,26].

With the wireless multicast advantage, the energy cost func-
tion becomes a function of a node-based metric, where due to
the WMA, only maximum weight outgoing edges contribute
to the aggregate energy cost. That is,

E(P) =
∑

x∈P

T (x) (3)

where T (x) is the transmission power of node x , i.e. T (x) =
max{wx j : (x, j) ∈ P}.

This node-based cost function is different from the usual
link-based cost functions for which traditional graph algo-
rithms were developed. Additionally, in the context of the k
disjoint paths problem, the solution found no longer corre-
sponds exactly to the k disjoint S-D paths, P . In general, de-
pending on the transmission powers assigned to each node,

Figure 2. Examples of different ways to multicast a message to neighbouring nodes in a wireless network. The dashed edge in 2(c) indicates an edge obtained
for “free” due to the wireless multicast advantage.
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our solution is actually a subgraph of the energy cost graph
that contains P , where due to the WMA, various edges in the
subgraph may not contribute any additional energy cost. It is
this property that we exploit to lower the overall energy, E(P).

For the remainder of the paper, we refer to the quantity in
(2) as aggregate weight, and the quantity in (3) as aggregate
energy. The distinction between weight and energy is an im-
portant one, as it underscores a major difference between gen-
eral networks and wireless networks. In graph terms, weight
is an edge-based metric, that assumes that the addition of any
edge (i, j) into a solution topology P contributes wi j to W (P),
regardless of its endpoint nodes i and j . Calculating W (P) is
therefore tantamount to simply summing the weights of all
edges in P . Energy however, is a node-based metric, in that
the cost contributed to E(P) by the addition of an edge (i, j)
into P , depends both on the transmitting node i and the weights
of its outgoing edges already in P . This is due to the WMA,
whereby nodes need only expend energy corresponding to the
maximum weight outgoing edge (i.e. the transmission power).
All other edges are obtained for “free”.

3. Minimum energy node-disjoint paths

The minimum energy k node-disjoint S-D paths problem can
be stated as follows: Given an Energy Cost Graph G = (V, E)
with weights wi j and source-destination pair S, D ∈ V , find a
set of k node-disjoint S-D paths, P = {p1, p2, . . . , pk}, such
that E(P) is minimized.

An example of a k node-disjoint path topology is shown in
figure 3. Observe that since the k paths are node-disjoint, all
nodes in P other than S and D have exactly one outgoing edge
and S has exactly k outgoing edges. Hence it is clear that the
source node is the only node at which the wireless multicast
advantage (WMA) can be exploited for energy savings. Thus
the energy cost equation from (3) can be re-written in the
following manner:

E(P) = T (S) +
∑

x∈P,x �=S

T (x)

= T (S) +
∑

(i, j)∈P,i �=S

wi j (4)

where T (S) is the transmission power of the source node.

Figure 3. Example of k node-disjoint source-destination paths. Dashed lines
indicate edges achieved for “free”.

The form of this equation exposes the fact that this problem
is closely related to the minimum weight k-node-disjoint paths
problem discussed earlier. In particular, let us set the source
transmission power, T (S), to be a constant value, TS < Emax.
This is reflected in the energy cost graph by removing all edges
between the source and nodes that cannot be “reached” with
a transmission power of TS . Moreover, since we have already
expended the transmission energy cost of TS , the WMA in-
dicates that all edges between the source and nodes that can
be “reached” contribute no additional energy cost. We reflect
this change in the energy cost graph by setting the weights of
these edges to 0.

Once we apply these changes, it is clear that given a source
transmission power T (S) = TS , the problem of finding k node-
disjoint paths that minimize (4) amounts to running a mini-
mum weight k node-disjoint paths algorithm (e.g. Suurballe’s
algorithm [24]) on the modified energy cost graph. What re-
mains is to determine the optimal value of T (S), that results
in the overall minimum energy solution. The STPS algorithm
presented below is an algorithm that searches over all relevant
values of T (S), evaluating (4) at each step. Finally, the overall
minimum energy solution is extracted, which are the minimum
energy k node-disjoint paths.

3.1. Source transmit power selection (STPS) algorithm

The STPS algorithm takes as input an energy cost graph G =
(V, E), the number of desired node-disjoint paths k, and a
source-destination pair, S, D ∈ V . Moreover, assume S has M
outgoing edges1 m1, m2, . . . , mM , ordered such that w(mi ) >

w(m j ) ⇔ i > j , where w(mi ) is the weight of the edge mi .
Its output is the set of k minimum energy node-disjoint paths,
Pmin.

Initialize: Let Ti (S) represent the current iteration source
transmission power, corresponding to the i closest nodes
“reached” by S. Initialize i = k and thus Ti (S) = w(mk).
Note that starting with i < k would be fruitless, as the ex-
istence of k node-disjoint paths requires at least k outgoing
edges from the source. Finally, let Emin represent the overall
energy cost of the k minimum energy node-disjoint paths,
Pmin. Initialize Emin to ∞.

Step 1: Construct a new graph Gi , where Gi is a modified
version of the energy cost graph that reflects all possible
network topologies given the current iteration source trans-
mission power, Ti (S). Accordingly, let Gi be equal to G,
except remove the edges mi+1, mi+2, . . . , mM , and set the
weights of the edges m1, m2, . . . , mi equal to 0.

Step 2: Run a minimum weight k node-disjoint S-D paths
algorithm on Gi . Let Pi and W (Pi ) represent the solution
k paths found by the algorithm and their aggregate weight,
respectively. If given the current Ti (S), k-disjoint paths can-
not be found by the minimum-weight algorithm, then set
W (Pi ) = ∞ and continue.

1 M ≤ N − 1, with equality if and only if Emax is large enough such that S
can directly reach every node in the graph.
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Step 3: Evaluate the following condition: If W (Pi ) + Ti (S) <

Emin, then set Emin = W (Pi ) + Ti (S) and Pmin = Pi . This
ensures that Emin and Pmin always correspond to the overall
minimum energy k node-disjoint paths.

Step 4: Increment i = i + 1 and correspondingly increase the
source transmission power, i.e. Ti+1(S) = w(mi+1). Repeat
steps 1–4 until i > M , at which point all relevant T (S) will
have been considered, and the overall minimum energy k
node-disjoint paths, Pmin determined.

The proof that the STPS algorithm actually finds an optimal
set of minimum energy k node-disjoint paths follows from (4),
as we basically perform a brute force search over all relevant
T (S). Clearly the only relevant values of T (S) are ones that
can be used to reach its neighbouring nodes, i.e. the weights
of its outgoing edges in G.

A visual example of the operation of the algorithm with
k = 2, run on the energy cost graph of figure 1, is shown in
figure 4. The first iteration of the algorithm is illustrated in fig-
ure 4(a), in which the modified energy cost graph, reflective
of the initial source transmission power T2(S) = 85 is shown.
Also shown are the node-disjoint paths found by the mini-
mum weight algorithm given the particular value of T (S). In
figure 4(c) we see the minimum energy node-disjoint paths
are found when we set T (S) such that we reach the destination
in one hop. This is an excellent example of using long range

transmissions (i.e. WMA) to extract energy savings, as even
though we pay a heavy energy cost (i.e. 733) to achieve the
direct link between the source and destination, we realize that
by doing so we obtain the high cost (i.e. 400) first link on the
second path for “free”.

Of course setting T (S) to its maximum value does not al-
ways work, and it is important to clarify why we must indeed it-
erate over all relevant values of T (S). The key factor here is the
tradeoff between the current value of T (S) and the aggregate
weight of the paths found by the minimum weight algorithm in
step 2 of the STPS algorithm (i.e. given the current T (S) value).
Consider two different values of T (S), Ta and Tb, such that
Ta < Tb. We know that given T (S) = Tb, we can always find
the exact same paths that we could given T (S) = Ta , as edges
are added to the modified energy cost graph when T (S) is in-
creased. Moreover, since given T (S) = Tb the corresponding
energy cost graph has a “richer” topology than if T (S) = Ta ,
we may even be able to find “better” (i.e. lower aggregate
weight) paths. This may lead to the false reasoning that in-
creasing T (S) can only decrease the overall aggregate energy.
However, higher values of T (S) can result in higher energy
consumption. An example where increasing T (S) does not
lower the aggregate energy can be seen in figures 4(a) and (b),
where the overall energy of the paths found with T (S) = 400
is actually higher than those found with T (S) = 85 (i.e 1367
vs. 1257). This is despite the fact that the aggregate weight of

Figure 4. Operation of STPS algorithm when run on the energy cost graph of figure 1. In this example, the minimum energy node-disjoint S-D paths are those
in figure 4(c).
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the paths found with T (S) = 400 is lower than those found
with T (S) = 85 (i.e. 967 vs. 1172).

We conclude this section by addressing the issue of com-
plexity. The worst case complexity of the STPS algorithm, as
presented above, is O(k N 3). This is because the algorithm it-
erates M − k + 1 times, where M = N − 1 in the worst case
(i.e. Emax is sufficiently high such that the source can reach
all nodes in the graph in one hop), and in each iteration we
run a minimum weight node-disjoint paths algorithm whose
complexity is O(k N 2). The result is an overall worst case
complexity of O(k N 3).

It should be noted that certain modifications can be made
to improve the running time of the STPS algorithm. For ex-
ample, a straightforward improvement would be to initialize
i = M , and work our way down to i = k. By doing this, in
step 3, if at any point k node-disjoint paths did not exist given
the current source transmission range, we could immediately
terminate the algorithm and declare the optimal solution as the
current Pmin. A more involved modification yields an elegant
2 minimum energy node-disjoint paths algorithm that is, on
average, faster than the STPS algorithm. We refer to this as
the Enhanced Source Transmit Power Select (E-STPS) algo-
rithm, and describe it in the Appendix. We have not found any
modification, however, that improves the worst-case running
time below O(k N 3).

4. Minimum energy link-disjoint paths

The minimum energy k link-disjoint S-D paths problem can
be stated similarly to the minimum energy k node-disjoint S-D
paths problem, as follows: Given an Energy Cost Graph G =
(V, E) with weights wi j and source-destination pair S, D ∈ V ,
find a set of k link-disjoint S-D paths, P = {p1, p2, . . . , pk},
such that E(P) is minimized.

We start by noting that finding minimum energy link-
disjoint paths is a much harder problem than the node-disjoint
variant. The main reason for this is the difference in complex-
ity of the aggregate energy cost functions, which in both cases
is given by (3). However, recall that in the node-disjoint case,
as we saw in (4), T (x) = max{wx j : (x, j) ∈ P} simplified to
T (x) = wx j for all nodes x other then the source node. This
reduced the minimum energy node-disjoint paths problem to
one of finding the optimal source transmission power, T (S).

In the case of link-disjoint paths however, any node in the
resultant topology P can have up to k outgoing edges. The
implication of this is that energy savings can be realized at
potentially many nodes (i.e. any node with multiple outgoing
edges), and we therefore need to find the optimal transmission
power, T (x), for every node x in P . Clearly, we cannot use the
approach of searching over all relevant transmission powers
for every node, as this type of brute force search would be
exponentially complex and thus intractable.

We therefore need an alternative approach to finding k
minimum energy link-disjoint paths in polynomial time. To
this end, we start with k = 2, and try and simplify the prob-
lem by exploiting properties of a pair of link-disjoint paths,

Figure 5. Example of a pair of link-disjoint paths expressed as the union of
a set of node-disjoint path pairs.

P = {p1, p2}. We first define the notion of a “common node”,
which is a node that is “common” to both paths and therefore
has exactly 2 outgoing edges. Next, we define the ordered set
of common nodes, C(P) = {c1, c2, . . . , cZ } as follows: If we
trace along either of the paths in P , starting from S towards
D, the first common node (after S, which we define as c1)
encountered is c2, the next is c3, and so forth. As a matter of
semantics, the destination node is not considered a common
node per se, but for notational convenience is defined as cZ+1.
This is because even though it belongs to both paths, it has
no outgoing edges. This means that it does not transmit, and
can be ignored in our energy calculations. It is important to
note that it is only at the common nodes where we can exploit
the WMA to realize energy savings. If we apply the common
node analogy to the node-disjoint problem, clearly the source
node is the only “common node”, i.e. C(P) = {S}.

We can now make the critical observation that any set of
two link-disjoint source-destination paths can be represented
as the union of node-disjoint path pairs between successive
common nodes. This is shown in figure 5, where we see that
the pair of link-disjoint paths P can be broken into the cor-
responding set of 2 node-disjoint paths between successive
common nodes. We use the notation γ

i, j
P to represent the pair

of node-disjoint paths between node i and node j belonging
to P . We can thus re-express P , i.e. P = ⋃Z

i=1 γ
ci ,ci+1
P , where

c1, c2 . . . , cZ are the common nodes. Moreover, we can also
re-express the aggregate energy cost of P , as

E(P) =
Z∑

i=1

E
(
γ

ci ,ci+1
P

)
(5)

These observations, coupled with the following theorem
make up what we refer to as the Common Node Decomposition,
and it forms the basis of our solution to finding the pair of
minimum energy link-disjoint S-D paths.

Theorem 1. Let P∗ = {p∗
1, p∗

2} be a pair of optimal mini-
mum energy link-disjoint S-D paths with corresponding set
of common nodes, C(P∗) = {c∗

1, c∗
2, . . . , c∗

Z }. Then, ∀i, i =
1, 2, . . . , Z , the γ

c∗
i ,c∗

i+1
P∗ node-disjoint path pairs are minimum

energy node-disjoint path pairs.

Proof. Consider a pair of successive common nodes in P∗,
c∗

i and c∗
i+1. Suppose γ

c∗
i ,c∗

i+1
P∗ is not a pair of minimum

energy node-disjoint paths, i.e. there exists γ
c∗

i ,c∗
i+1

P ′ , such
that E(γ

c∗
i ,c∗

i+1
P ′ ) < E(γ

c∗
i ,c∗

i+1
P∗ ). Hence, replacing γ

c∗
i ,c∗

i+1
P∗ with

γ
c∗

i ,c∗
i+1

P ′ will reduce the aggregate energy cost of the paths.
In order to complete our proof, we must also show that the

new S-D paths that result from replacing γ
c∗

i ,c∗
i+1

P∗ with γ
c∗

i ,c∗
i+1

P ′

are also link-disjoint. This subtlety arises because the pair of



FINDING MINIMUM ENERGY DISJOINT PATHS 407

node-disjoint paths, γ
c∗

i ,c∗
i+1

P ′ could potentially intersect with
some of the other node-disjoint path pairs γ

c∗
j ,c

∗
j+1

P∗ , j �= i com-
prising P∗. However, we show that if such an intersection
took place, then a cycle would form that could be removed
to further reduce the aggregate energy cost of the link-disjoint
S-D paths. This contradicts the assertion that P∗ are minimum
energy link-disjoint S-D paths; and the Theorem is shown.

To see this, suppose such an intersection exists. That
is, a node w exists such that w ∈ γ

c∗
i ,c∗

i+1
P ′ and w ∈ γ

c∗
j ,c

∗
j+1

P∗ ,
j �= i . Let P ′ be the new set of paths that result from
replacing γ

c∗
i ,c∗

i+1
P∗ with γ

c∗
i ,c∗

i+1
P ′ . Starting from the source, we

can trace two paths in P ′ towards the destination; p′
1 and

p′
2. Without loss of generality, let p′

1 take the form, p′
1 =

{S, . . . , ci , . . . , w, . . . , ci+1, . . . , c j , . . . , w, . . . , c j+1, . . . , D},
and p′

2 the remaining edges in P ′. We first note that both p′
1

and p′
2 are S-D paths, except that p′

1 contains a cycle starting
from node w that can be removed. The result is the new
pair of link-disjoint S-D paths with the cycle in p′

1 removed.
Since the energy cost of the cycle must be strictly positive, its
removal further reduces the cost of the S-D path pair. Here it
should be noted that the energy cost of the cycle could not
have been masked by the WMA, since the WMA only applies
to links outgoing from a common node, while the cycle must
contain at least one node that is not a common node. Similarly,
it can be shown that if multiple intersections occur between
γ

c∗
i ,c∗

i+1
P ′ and a subset of the γ

c∗
j ,c

∗
j+1

P∗ , they form multiple cycles
that can similarly be eliminated by removing each cycle
individually.

The common node decomposition reduces the minimum
energy link-disjoint path pair problem in the following way.
Instead of looking for optimal transmission powers for every
node, the problem is reduced to finding the optimal ordered
set of common nodes and minimum energy node-disjoint paths
between them. We know that there are N (N −1) distinct node
pairs in the graph and from our discussion in the previous
section, we know how to find minimum energy node-disjoint
paths between them in polynomial time. Therefore, all that
remains is to find the optimal ordered set among these N (N−1)
minimum energy node-disjoint path pairs, whose union results
in the pair of minimum energy link-disjoint source-destination
paths. This can be accomplished by a brute force search over
all possible combinations of minimum energy node-disjoint
path pairs. However, such a search would be computationally
difficult, as there are O(2N 2

) such combinations.
Fortunately, Theorem 1 and (5) allow us to express the ag-

gregate energy cost of a pair of minimum energy link-disjoint
S-D paths, as the sum of the energy costs of minimum en-
ergy node-disjoint paths between the common nodes. Hence
we can efficiently find the optimal common node decompo-
sition, using a graph-based approach as follows. We define
a new graph where the weight of an edge (i, j) corresponds
to the energy cost of the minimum energy node-disjoint path
pair between nodes i and j. We then note that because (5)
expresses the aggregate energy of a pair of link-disjoint S-D
paths in the new graph as an additive link-based metric, the
optimal common node decomposition can be found by run-

ning a simple shortest path algorithm (e.g. Dijkstra) on the
new graph. Note that an edge must be defined for every node
pair (i, j), as any node in the graph could potentially belong
to the optimal common node decomposition. Thus finding the
shortest path from S to D in this new graph corresponds to find-
ing the set of minimum energy node-disjoint path pairs whose
union result in a pair of minimum energy link-disjoint S-D
paths. Additionally, the nodes belonging to the shortest S-D
path, H = {S, h2, . . . , hZ , D}, are the ordered set of optimal
common nodes. The last step, constructing the optimal link-
disjoint solution P , is done by concatenating the appropriate
hi − hi+1 node-disjoint path pairs. The algorithm is detailed
below.

4.1. Optimal common node decomposition (OCND)
algorithm

The OCND algorithm takes as input an “Energy Cost Graph”
G = (V, E), and a source-destination pair, S, D ∈ V . Its out-
put are the minimum energy 2 link-disjoint S-D paths, P =
{p1, p2}.

Step 1: Construct a graph G∗ = (V, E∗) such the weight of
every edge (i, j) ∈ E∗, i �= j is equal to E(γ i, j

opt ), i.e. the ag-
gregate energy cost of the minimum energy 2 node-disjoint
i- j paths. This amounts to running the STPS algorithm for
every distinct node pair in G.

Step 2: Run a minimum weight (shortest) S-D path algorithm
(e.g. Dijkstra) on G∗, resulting in a minimum weight path
H = {h1, h2, . . . , hZ , D}, where h1 = S. The set H repre-
sents the ordered set of common nodes that make up the
optimal common node decomposition.

Step 3: Construct the solution minimum energy link-disjoint
source-destination paths, P = {p1, p2}, by concatenating
the minimum energy node-disjoint hi -hi+1 path pairs, i =
1, 2, . . . , Z .

The optimality of the OCND algorithm follows directly
from Theorem 1 and the following lemma.

Lemma 1. The minimum energy node-disjoint hi -hi+1 path
pairs picked by the OCND algorithm never intersect.

Proof. Suppose 2 of the path pairs picked by the OCND
algorithm intersected, e.g. a node w exists such that
w ∈ γ

hi ,hi+1
P and w ∈ γ

h j ,h j+1

P , j �= i . However, as we saw
in the proof of Theorem 1, this intersection causes a cycle
to appear, which can be removed. Specifically, upon re-
moval of the cycle, we end up with link-disjoint S-D paths
P ′ = {p′

1, p′
2}, where p′

1 = {S, . . . , hi , . . . , h j+1, . . . , D}
and p′

2 = {S, . . . , hi , . . . , hi+1, . . . , h j , . . . , h j+1, . . . , D},
and where in P ′, hi and h j+1 are now successive com-
mon nodes. Moreover, we have that E(P ′) < E(P) and
E(γ

hi ,h j+1

P ′ ) <
∑ j

m=i E(γ hm ,hm+1
P ). However if this was the

case, then to get from node hi to node h j+1 in G∗ (step 2),
the shortest path algorithm would have picked the lower
cost path, i.e. the edge (hi , h j+1) instead of the edges
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Figure 6. Operation of OCND algorithm, with α = 2 and Emax = 702.

(hi , hi+1), (hi+1, hi+2), . . . , (h j , h j+1) that caused the inter-
section in the first place. Thus the OCND algorithm always
chooses “disjoint” minimum energy node-disjoint path pairs,
and the Lemma is shown.

An example of its operation, run on the energy cost graph of
figure 6(a) is illustrated in figure 6. The construction of G∗ in
the first step of the algorithm is illustrated in figure 6(b), along
with the shortest S-D path in G∗ from step 2. It is important
to note that not all edges in G∗ are shown. This was done for
legibility, but in general G∗ is a complete graph, where edges
are defined in both directions. Finally, figure 6(c) shows the
solution minimum energy link-disjoint paths, whose aggregate
energy in this case is 922.

We next address the issue of complexity of the OCND al-
gorithm. Step 1 is clearly the most complex step, as we must
run the STPS algorithm N (N − 1) times. This results in an
overall complexity of O(N 5) which is high, but a vast im-
provement over an exponentially complex brute force search
approach. Through a slightly more complicated implemen-
tation of step 1, we can actually lower the complexity of
the OCND algorithm to O(N 4); We present this implementa-

tion as the Enhanced Optimal Common Node Decomposition
(E-OCND) algorithm, in the appendix.

Note that the notion of common node decomposition can-
not be easily extended to k > 2 disjoint paths. This is because
when k > 2 a node may be common to a subset (as opposed
to exactly 2, for k = 2) of the paths. The result of this is that
in general, k link-disjoint paths cannot be decomposed into a
concatenation of k node-disjoint paths. We were not able to
find an optimal polynomial time algorithm for the minimum
energy link-disjoint problem for k > 2, however in the follow-
ing section we present efficient heuristic algorithms that find
energy-efficient link-disjoint paths for general k.

5. Lower complexity heuristics

Although both the STPS and OCND algorithms find minimum
energy solutions in polynomial time, their respective running
times of O(k N 3) and O(N 5) are still quite high. Moreover, the
OCND algorithm only finds a pair of minimum energy link-
disjoint paths, which is not sufficient when a greater number
of link-disjoint paths are required. To address these concerns,
we present three sub-optimal heuristic algorithms that find
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energy-efficient disjoint paths in O(k N 2) running time. All
three algorithms have extremely similar node and link-disjoint
versions, but for brevity only the link-disjoint versions are
presented.

5.1. Heuristic 1: Naive Dijkstra algorithm

This algorithm is a very basic algorithm that finds link-disjoint
paths. It entails running Dijkstra’s shortest path algorithm k
times on the energy cost graph G, where after each run, links
belonging to the last path found are removed, ensuring link-
disjointness among the k paths. As a final step, we remove
redundant transmissions at every common node of the paths
found by applying the WMA (i.e. nodes with multiple outgo-
ing edges need only expend transmission power once, corre-
sponding to the weight of the maximum weighted outgoing
edge). Note that the algorithm does not take into account the
benefits of the WMA in searching for the paths. Although,
after finding the disjoint paths the WMA is applied to reduce
the energy cost of the paths.

5.2. Heuristic 2: Link-Disjoint Min-Weight (LD-MW)
algorithm

This algorithm uses a minimum weight k link-disjoint S-D
paths algorithm on the energy cost graph G, to find k link-
disjoint paths, P = {p1, p2, . . . , pk}. The final step is the
removal of redundant transmissions at every common node
belonging to the paths. What is key to note here is that the LD-
MW algorithm (similar to the Naive Dijkstra algorithm) does
not consider the WMA when finding paths. However, once
the paths are found, they are post-processed and any incidental
WMA benefit is realized. An interesting property of both node
and link-disjoint versions of this heuristic is that they produce
solutions whose resultant overall energy is k-approximate to
the optimal minimum energy solution; the proof for this is
given in the appendix. As an example of its operation, when
run on the Energy Cost Graph of figure 6(a), the pair of disjoint
paths found by the LD-MW algorithm are shown in figure 7.

Figure 7. Solution paths found by LD-MW algorithm run on energy cost
graph of figure 6(a). E(P) = 1063 for these paths.

Note the difference in energy cost with respect to the optimal
solution in figure 6(c), i.e. 1063 vs. 922.

5.3. Heuristic 3: WMA enhanced link-disjoint shortest path
(LD-ESP) algorithm

The LD-ESP algorithm is an enhancement to the Naive
Dijkstra algorithm discussed above. The enhancement is as
follows. After each iteration i , for every node v along the last
path found, pi , modify its outgoing edges to all neighbours
j , (v, j), as follows: wi

v j = max{0, min{wi−1
v j , w0

v j − w0
vk}},

where wi
v j refers to the weight of edge (v, j) after the i th iter-

ation, w0
v j refers to the original weight (i.e. from the original

energy cost graph) of the edge (v, j), and (v, k) is the outgoing
edge from node v which belongs to pi .

This enhancement allows the algorithm to incorporate the
WMA after choosing a path in the current iteration. It does
this by modifying the weights on the outgoing edges from
the nodes along the last path found, such that they repre-
sent the new incremental power (i.e. w0

v j − w0
vk) needed to

add those edges in a future iteration. The solution paths found
by the LD-ESP algorithm when run on the energy cost graph
of figure 6(a) are identical to those found by the OCND al-
gorithm, shown in figure 6(c). However, while in this specific
example the LD-ESP found the optimal solution, in general
the LD-ESP does not find optimal solutions. In the specific
case of k = 2, it can be shown that if the path selected in the
first iteration belongs to the optimal solution, then the LD-ESP
algorithm is guaranteed to find the optimal solution. However,
if the initial path is not in the optimal solution, the LD-ESP
(similar to the Naive Dijkstra) algorithm can have arbitrarily
bad performance.

6. Results

In this section we compare the performance of the algorithms
discussed in this paper. We focus on three main aspects: (a) The
performance difference between the optimal algorithms and
the sub-optimal heuristics, (b) The energy cost of multipath
routing along link-disjoint paths vs. node-disjoint paths, and
(c) The incremental energy cost of adding paths (i.e. additional
reliability).

We simulate networks of a varying number of nodes, N ,
placed randomly within a 50 × 50 plane. We use α = 2 and
Emax = 1002. Note that setting Emax in this way results in every
node being able to reach every other node in one hop (if it trans-
mits at a sufficiently high power level). Finally, for each plot
shown, the results are averaged over 100 randomly generated
network instances.

We begin with the evaluation of the various node-disjoint
algorithms (we refer to the node-disjoint versions of LD-MW
and LD-ESP as ND-MW and ND-ESP respectively). Figure 8
shows the average energy cost of the various algorithms vs.
the number of nodes in the graph. We first observe that both
incarnations of the dijkstra algorithm (i.e. node-disjoint naive
dijkstra and ND-ESP) are the least energy efficient. We expect
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Figure 8. Comparison between energy-efficient node-disjoint algorithms.

bad performance from the naive dijkstra algorithm because it
does not attempt to capture the wireless multicast advantage in
its search for disjoint paths. The ND-ESP algorithm however,
takes into account the WMA at the source node, but like the
naive dijkstra algorithm does not minimize the aggregate paths
weight. Therefore in the node-disjoint case, even though the
ND-ESP may achieve maximum energy savings at the source
node, we see that in general this energy savings is far lower
than the additional energy expended due to the (weight) sub-
optimal paths it finds. Finally, we see that the performance gain
of the optimal STPS algorithm over the ND-MW algorithm is
highest for low values of N . This is because in “sparse” (in
terms of number of nodes per unit area) graphs, it is more likely
that every node, including the source, will be forced to take
longer range hops, resulting in a greater overall expenditure of
energy (this can be seen in figure 8 as E(P) for all algorithms
decreases with increasing N ). The consequence of this is that
for such graphs, the STPS algorithm can maximally exploit
energy savings at both the source node (WMA) as well as
along the paths (weight).

We next explore the performance of the link-disjoint al-
gorithms, shown in figure 9. For the same reasons as in the
node-disjoint case, the link-disjoint version of the naive dijk-
stra algorithm has the worst performance. However, in contrast
to the node-disjoint case, the LD-ESP algorithm actually out-
performs the LD-MW algorithm. The reason for this is that
with link-disjoint paths, there are more opportunities for the
LD-ESP algorithm to exploit the WMA (i.e. at the common
nodes). Therefore, while in the node-disjoint case the energy
saved at the source node was less than the additional energy
spent on weight sub-optimal paths, we see that the opposite is
true for link-disjoint paths. Moreover, we see that with increas-

ing N , the gap between the LD-ESP and LD-MW algorithms
widens, as with more nodes there are even more potential
common nodes where energy savings can be realized. We also
see this with the performance of the OCND algorithm, as its
relative performance also increases with larger N .

Figure 10 shows an energy cost comparison between opti-
mal pairs of node and link-disjoint paths. Clearly, link-disjoint
paths are far more energy efficient than node-disjoint paths,
with the difference widening drastically with increasing N
(e.g. for N = 50, the optimal node-disjoint path pair con-
sumes 25% more energy than the optimal link-disjoint path
pair). This obviously has great consequences when one consid-
ers this in the context of reliability. While transmission along
node-disjoint paths is, from a reliability perspective, more de-
sirable, figure 10 shows that it is much more energy efficient
to transmit along link-disjoint paths.

We finally explore the “cost of additional reliability”.
Figure 11 shows an energy cost comparison between a single
path, found by dijkstra’s algorithm, up to 4 node disjoint paths,
found using the optimal STPS algorithm. Figure 12 shows an
energy cost comparison between a single path up to 4 link
disjoint paths, where the 2 disjoint paths are found using the
optimal OCND algorithm, and the 3 and 4 disjoint paths are
found using the sub-optimal LD-ESP algorithm. Note that our
intuition about the WMA tells us that the greater the number
of paths, the more it can be exploited for energy savings. How-
ever, this is counter-balanced by the fact that additional paths
tend to be longer than the shortest path. In the node-disjoint
case we see from figure 11 that 4 node-disjoint paths seem to
cost on average well over 4 times the energy cost of a single
path. This can be explained by the fact that the energy savings
attained at the source node by additional exploitation of the
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Figure 9. Comparison between energy-efficient link-disjoint algorithms.

Figure 10. Comparison between pair of optimal node-disjoint vs. link-disjoint paths.

WMA is counter-acted by the additional cost of using longer
and longer node-disjoint paths (i.e. the second shortest path is
longer than the shortest path, etc.). In the case of link-disjoint
paths however, we see from figure 12 that the path pairs found
by the OCND algorithm are on average less than twice the cost
of a single path (e.g. for N = 50, the cost of the minimum en-
ergy path pair is only 1.6 times the cost of the shortest path).
Moreover, for larger N , the savings seem to increase (albeit
marginally) as the number of paths increases.

7. Distributed implementation

In this section, we discuss issues regarding distributed im-
plementation of the centralized algorithms presented in this
paper. Such a discussion is important for most practical situ-
ations where global topology knowledge is not immediately
available to all nodes in the network. Moreover, distributed im-
plementation is important in instances where the topology may
be changing frequently. For the purposes of this discussion, we
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Figure 11. Incremental cost of adding additional node-disjoint paths.

Figure 12. Incremental cost of adding additional link-disjoint paths.

assume that nodes have only local topology knowledge, i.e. the
weights of the outgoing edges in the energy cost graph. For
example, this can be easily found by each node employing a
physical-layer probing mechanism using incremental power
level increases [28].

First, we note that the algorithms can be made “distributed”
in the sense that any centralized algorithm can be made dis-
tributed via some global topology dissemination mechanism
(e.g. flooding or broadcast). Moreover, such a distributed algo-
rithm can be made robust to topology change by periodically

re-disseminating the topology information, re-running the al-
gorithms locally upon change or when appropriate. Of course,
there may be situations where one may not want to rely on such
a dissemination mechanism, and a “truly” distributed imple-
mentation, where nodes need only to exchange information
with their neighbours, is desirable.

Fortunately, the algorithms presented in this paper lend
themselves to such a distributed implementation. To see this,
note that optimal algorithms for both the shortest paths and
minimum weight k disjoint paths problems have efficient
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distributed implementations [3,9,17,18]. As discussed previ-
ously, the centralized versions of these algorithms serve as ba-
sic building blocks for the centralized algorithms presented in
this paper. Similarly, the distributed versions of these building
block algorithms can be used to construct distributed analogs
to the STPS and OCND algorithms. A brief high level descrip-
tion of those algorithms follow:

Distributed STPS: Similar to the centralized STPS algorithm,
run a distributed minimum weight k node-disjoint paths al-
gorithm M −k +1 times, in each iteration adding/removing
outgoing edges from the source node. After each iteration,
the algorithm keeps the lowest energy paths found thus far as
the current estimation of the minimum energy node-disjoint
paths. The algorithm both converges and terminates after
M − k + 1 iterations. Note that to conserve total running
time (at a cost of additional bandwidth), all M − k + 1 in-
stances of the distributed minimum weight disjoint paths
algorithm are independent, and can thus be run simultane-
ously. This would result in a total convergence time equal to
that of a single execution of the distributed minimum weight
k disjoint paths algorithm.

Distributed OCND: Over time, each node x collects informa-
tion regarding the minimum energy node-disjoint path pair
between x and all other nodes y (e.g. by running a dis-
tributed STPS algorithm between x and y). Based on the
current information node x has, it can individually set new
edge weights on its outgoing edges (x, y) equal to the energy
cost of the minimum energy node-disjoint path pair between
x and y (analogous to the construction of the graph G∗ in the
centralized OCND algorithm). Finally, a distributed short-
est paths algorithm is periodically run on the current G∗, re-
sulting in a current estimation of the optimal common node
decomposition, and thus the minimum energy link-disjoint
paths.

Similarly, it should be clear that the distributed imple-
mentation of the heuristic algorithms presented earlier fol-
low directly from the optimal distributed shortest paths and
minimum weight k disjoint paths algorithms.

Dealing with Topology Changes: In a wireless ad-hoc network,
the topology may change frequently. In part, the disjoint
paths algorithms developed in this paper are designed to
provide some resilience against such topological changes.
When a link or a node “fails”, the alternate paths are there
to keep the connection active.

However, once a link or node has failed, the connection,
while still active, is no longer supported by all of the origi-
nal disjoint paths. It is therefore necessary to “recompute” the
failed paths. One simple way to accomplish this is to find a new
set of disjoint paths. While this solution may not be the most el-
egant, it is certainly feasible; especially because the connection
is still active and hence there is no urgency in finding the new
paths. An alternative approach, albeit (energy) sub-optimal,
is to simply find new additional paths that consume the min-
imum amount of incremental energy. An example of this ap-
proach are the two heuristics presented in Section 5 based on

the shortest path algorithms. This approach is computationally
efficient as it only involves applications of a shortest-path al-
gorithm. Moreover, it is also energy efficient as we observed in
Section 5. In particular, the LD-ESP algorithm, which finds en-
ergy efficient link-disjoint paths sequentially, performed very
close to the optimal algorithm.

8. Conclusion

In this paper, we presented a novel polynomial time algo-
rithm that finds a pair of minimum energy link-disjoint paths
in a wireless network. In addition, we presented an optimal
algorithm that solves the minimum energy k node-disjoint
paths problem in polynomial time, as well as fast, but sub-
optimal heuristics for both problems. Our results show that
link-disjoint paths consume substantially less energy than
node-disjoint paths. We also found that the incremental energy
of additional link-disjoint paths is decreasing. This finding is
somewhat surprising due to the fact that in general graphs ad-
ditional paths are typically longer than the shortest path. We
determined that for the case of node-disjoint paths, the energy
savings due to the use of the optimal algorithm (over a sub-
optimal heuristic) was most notable in sparse graphs (i.e., N
small); while for the link-disjoint case the energy savings were
most notable in dense graphs.

It should be noted that the algorithms presented in this
paper work for general graphs, as long as the objective
is to minimize a node based aggregate metric of the form
C(x) = max{wx j : (x, j) ∈ E}. The general nature of these
algorithms makes them applicable to other wireless environ-
ments where the energy radiation may not be symmetric and
the path losses between the nodes are not just a function of
the distance between them (e.g., due to the physical terrain
variations).

Lastly, although the algorithms presented in this paper are
centralized, they lend themselves to distributed implementa-
tion as well. We presented distributed versions of the STPS
and OCND algorithms. Further study of issues related to dis-
tributed implementation remain an important area for future
work.

Appendix I: Enhanced source transmit power select
(E-STPS) algorithm

The E-STPS Algorithm improves on the STPS algorithm for
the specific case of k = 2, by performing a more efficient
search over the source transmission ranges, T (S). Before pro-
ceeding, we first need the following two lemmas, which form
the basis for the algorithm.

Lemma 2. Consider a set of 2 node-disjoint S-D paths,
P = {p1, p2} with corresponding “source edges” (i.e. edges
outgoing from the source) {m1, m2}, w(m1) ≤ w(m2), found
by running a minimum weight 2 node-disjoint paths algorithm
on a graph G. Next, consider a different set of 2 node-disjoint
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paths, P ′ = {p′
1, p′

2}, P ′ �= P . Then,

∀ such P ′, if w(m ′
1) < w(m1), E(P ′) > E(P) (6)

Proof. Express the aggregate energy of a node-disjoint
path pair, P = {p1, p2}, as E(P) = W (p1) + W (p2) − w(m1),
where W (pi ) is the sum over the weights of all edges in the
path pi . Then,

E(P ′) − E(P) = [(W (p′
1) + W (p′

2)) − (W (p1) + W (p2))]

+ [w(m1) − w(m ′
1)] (7)

The first square brackets term is non-negative, as (W (p1)+
W (p2)) is minimum. Therefore, E(P ′) − E(P) > 0, and
E(P ′) > E(P).

Lemma 3. Consider a set of 2 node-disjoint S-D paths, P =
{p1, p2}, found by running a minimum weight 2 node-disjoint
S-D paths algorithm on a transformed graph G∗, where G∗ is
equal to G, except all source edges are given weight 0. Define
the residual path, Rpi , of a path pi as equal to pi − mi (i.e.
the path with the source edge removed). Again, consider a
different set of 2 node-disjoint paths, P ′ = {p′

1, p′
2}, P ′ �= P .

Then,

∀ such P ′, if w(m ′
2) > w(m2), then E(P ′) > E(P) (8)

Proof. Express the energy of a node-disjoint path pair P =
{p1, p2} in a form similar to (4), i.e. E(P) = W (Rp1 ) +
W (Rp2 ) + w(m2), where T (S) = w(m2). We then have that:

E(P ′) − E(P) = [(
W

(
Rp′

1

) + W
(
Rp′

2

))

− (
W

(
Rp1

) + W
(
Rp2

))] + [w(m ′
2) − w(m2)] (9)

The first square brackets term is positive, as (W (Rp1 ) +
W (Rp2 )) is minimum. Therefore, E(P ′) − E(P) > 0, and
E(P ′) > E(P).

Lemmas 2 and 3 give us a way of intelligently deciding
which T (S) values to search over. Lemma 2 tells us that once
we have discovered a set of 2 node-disjoint S-D paths, P ,
as defined in the theorem, then we immediately know that
any different set of paths that includes a source edge whose
weight is less than the weight of the minimum weight source
edge of P , cannot possibly have lower overall energy. Thus,
we can eliminate all such source edges from the search space.
Similarly, Lemma 3 allows us to eliminate from the search
space, source edges with weight greater than the weight of the
maximum weight source edge of the set of paths as defined in
Lemma 3. These results lead directly to an elegant minimum
energy 2 node-disjoint S-D paths algorithm, which we now
present.

The E-STPS algorithm takes as input an energy cost graph
G = (V, E), and a source-destination pair, S, D ∈ V . More-
over, assume S has M outgoing edges m1, m2, . . . , mM , or-
dered such that w(mi ) > w(m j ), ⇔ i > j . Its output is the
set of 2 minimum energy node-disjoint paths, Pmin.

Initialize: Let G1 and G2 represent two graphs, both equal
to G, except the source edges in G2 are given weight 0.
Maintain two pointers, LEFT and RIGHT , initialized to 1
and M respectively, where [mLEFT , mRIGHT ] represents the
range of source edges that we allow the minimum weight
algorithm to use in any iteration.

Step 1: Run a minimum weight 2 node-disjoint paths algorithm
on G1 to obtain P1 = {p1, p2} with corresponding source
edges {mx , my} as the minimum weight paths, where the
integers x and y index the source edges with respect to the
ordered source edges of the original graph, LEFT ≤ x <

y ≤ RIGHT . Set E(P1) = W (p1) + W (p2) − w(mx ) and
increase LEFT, LEFT = x + 1.

Step 2: Run a minimum weight 2 node-disjoint paths algorithm
on G2 to obtain P2 = {p′

1, p′
2} with corresponding source

edges {mu, mv} as the minimum weight paths, where u and v

are integers defined similar to x and y in step 2. Set E(P2) =
W (p′

1) + W (p′
2) + w(mv) and decrease RIGHT , RIGHT =

v − 1.
Step 3: Remove all source edges from both G1 and G2 except

for those in the range [mLEFT , . . . , mRIGHT ]. This is the step
where we narrow the search space in accordance with the
results of Lemmas 2 and 3.

Step 4: Evaluate the minimum energy condition, Emin =
min{Emin, E(P1), E(P2)}, and update Pmin accordingly.

Step 5: Repeat steps 2 to 5 until LEFT ≥ RIGHT , at which
point we would have exhausted the T (S) search space.
Moreover, at any iteration, if in step 2 there do not exist
2 minimum weight node-disjoint paths, we can exit the al-
gorithm and conclude that the current Pmin is the optimal
minimum energy solution. This is because successive itera-
tions would remove more source edges, which would only
further inhibit the ability of the minimum weight 2 node-
disjoint S-D paths algorithm to find node-disjoint paths.

The correctness of the E-STPS algorithm follows directly
from Lemmas 2 and 3, as all we are basically doing is perform
an “intelligent” brute force search over the T (S) values. Note
that the E-STPS algorithm terminates after at most  M−1

2 �
iterations, since after each iteration the pointers LEFT and
RIGHT are incremented/decremented by at least 1.

A final note about the lemmas, is that while they can be
generalized to any k, the subsequent results do not seem to
give us an intuitive way to proceed as they do for k = 2.

Appendix II: LD-MW k-approximateness proof

Theorem 2. Let P = {p1, p2, . . . , pk} be the set of k link-
disjoint S-D paths found by running the LD-MW algorithm on
G, and let P∗ = {p∗

1, p∗
2, . . . , p∗

k } be a set of optimal minimum
energy k link-disjoint S-D paths. Then,

∀G, E(P) < kE(P∗) (10)

Proof. Let N (P) represent the total weight of edges in the
solution set P that we obtain “for free”, i.e. the aggregate
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energy savings at the common nodes. We upper bound the
total energy of the algorithm solution, E(P), by using the fact
that N (P) > 0; this is true because at minimum the weight of
at least one outgoing edge from the source will be saved by
the WMA.

E(P) =
k∑

i=1

W (pi ) − N (P) <

k∑

i=1

W (pi ) (11)

Let k link-disjoint paths p1, p2, . . . , pk be ordered such that
W (pi ) > W (p j ) ⇔ i > j . We now establish a lower bound
on the optimal minimum energy solution, E(P∗), noting that
in the best case scenario N (P∗) will account for maximum
energy savings at the common nodes, which will at most be
the weight of all paths other then the “maximum weight path”
(i.e. in this best case scenario, this path corresponds to both
the maximum weight path as well as the path consisting of the
maximum weight outgoing edges from the common nodes),
i.e. N (P∗) <

∑k−1
i=1 W (p∗

i ).

E(P∗) =
k∑

i=1

W (p∗
i ) − N (P∗)

> W (p∗
k )

≥ 1

k

k∑

i=1

W (pi ) (12)

Where the last line follows comes from the following ob-
servation, based on the LD-MW solution, P , being minimum
weight (different from energy!):

k∑

i=1

W (p∗
i ) ≥

k∑

i=1

W (pi ) ⇔ kW (p∗
k )

≥
k∑

i=1

W (pi ) ⇔ W (p∗
k ) ≥ 1

k

k∑

i=1

W (pi ) (13)

It should be noted that the the result of equation 13 follows
from the general fact that if the sum of k numbers is greater
than some value z, then at least one (e.g. the maximum) of the
k numbers must be greater than or equal to the average (e.g.
z/k). Finally, combining the results of equations (11) and (12),
we have the following relations, and the result is shown.

1

k

k∑

i=1

w(pi ) < E(P∗) ≤ E(P) <

k∑

i=1

w(pi ) (14)

The above result applies to the ND-MW algorithm as well,
since node-disjoint paths are simply link-disjoint paths with 1
common node, namely the source node.

Appendix III: Enhanced optimal common node
decomposition (E-OCND) algorithm

Thus far, we have only used the basic single-source single
destination minimum weight k disjoint paths algorithms as

the main building blocks for the minimum energy algorithms
described in this paper. However, there exist very efficient
algorithms [25,26] that find minimum weight disjoint path
pairs between a single-source and all other nodes in a single
shot; these algorithms solve the single-source N-destination
minimum weight 2 disjoint paths problem. It turns out we can
use these algorithms to significantly reduce the complexity of
our minimum energy 2 link-disjoint S-D paths algorithm (i.e.
the OCND algorithm).

To this end, we first note that the O(N 5) complexity of the
OCND algorithm is concentrated in step 1, where by compar-
ison steps 2 and 3 take just O(N 2) time. Therefore, reducing
the complexity of step 1 is the key to reducing the complexity
of the OCND algorithm.

Next, we note that the function of step 1 is to find minimum
energy 2 node-disjoint paths between all distinct node pairs in
the network. In the original OCND algorithm, we did this by
simply running our minimum energy node-disjoint paths algo-
rithm (i.e. the STPS algorithm) N (N −1) times; once for each
distinct node pair. However, we can do this more efficiently
by changing our implementation of the STPS algorithm, such
that in step 2 (of the STPS) we employ a single-source N-
destination minimum weight node-disjoint paths algorithm,
instead of a single-source single-destination minimum weight
node-disjoint paths algorithm. Our complete modification of
step 1 of the OCND algorithm, incorporating the above change
to the STPS implementation, is presented below; the resulting
algorithm is referred to as the Enhanced Optimal Common
Node Decomposition (E-OCND) algorithm.

Modified Step 1a: Consider a node v, and assume v has M out-
going edges m1, m2, . . . , mM , ordered such that w(mi ) >

w(m j ) ⇔ i > j . Let Pv,w
min represent the current minimum

energy node-disjoint path pair between node v and node w,
and Ev,w

min their aggregate energy cost. Initialize an integer
variable c = 2.

Modified Step 1b: Remove edges mc+1, . . . , mM from the
graph. Set w(m1), w(m2), . . . , w(mc) equal to 0. Run
a single-source N-destination minimum weight 2 node-
disjoint paths algorithm on the modified graph, where v

is the source. Let Pv,w represent the solution paths between
v and w found by the algorithm, and W (Pw) their aggregate
weight.

Modified Step 1c: For every node w, evaluate the following
condition: if W (Pv,w) + w(mc) < Ev,w

min , then set Ev,w
min =

W (Pv,w) + w(mc) and Pv,w
min = Pv,w.

Modified Step 1d: Increment c = c+1. Repeat steps 1b through
1d until c > M , at which point for all nodes w, Pv,w

min will
represent the minimum energy node-disjoint path pair be-
tween v and w.

Modified Step 1e: Repeat steps 1a through 1d for all nodes v.

Steps 2 and 3 are kept the same as in the original OCND
algorithm. Note that the modified step 1 is correct since for
every source v, it performs the exact same brute force search
over all relevant T (v) values as in the original STPS algorithm.



416 SRINIVAS AND MODIANO

We next address the complexity of the E-OCND algorithm.
First, we observe that steps 1a–c take O(N 2) time (e.g. using
Suurballe and Tarjan’s implementation of the single-source N-
destination minimum weight 2 node-disjoint paths algorithm
[26]). Next we note that steps 1a–1c are executed (M −1)(N −
1) times (where M = N −1 in the worst case), which results in
an overall complexity for the E-OCND algorithm of O(N 4);
much better than the O(N 5) complexity of the original OCND
algorithm.
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