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Equivalent Models for Queueing Analysis of Deterministic
Service Time Tree Networks

Michael J. Neely, Member, IEEE, Charles E. Rohrs, Member, IEEE,
and Eytan Modiano, Senior Member, IEEE

Abstract—In this correspondence, we analyze feedforward tree networks
of queues serving fixed-length packets. Using sample path conservation
properties and stochastic coupling techniques, we analyze these systems
without making any assumptions about the nature of the underlying input
processes. In the case when the server rate is the same for all queues, the
exact packet occupancy distribution in any queue of a multistage network
is obtained in terms of a reduced two-stage equivalent model. Simple and
exact expressions for occupancy mean and variance are derived from this
result, and the network is shown to exhibit a natural traffic smoothing
property, where preliminary stages act to smooth or improve traffic for
downstream nodes. In the case of heterogeneous server rates, a similar
type of smoothing is demonstrated, and upper bounds on the backlog dis-
tribution are derived. These bounds hold for general input streams and are
tighter than currently known bounds for leaky bucket and stochastically
bounded bursty traffic.

Index Terms—Network calculus, stochastic coupling.

I. INTRODUCTION

Manymodern data networks transmit information using fixed-length
packets. Often this takes place at lower network protocol layers, where
variable-length packets from a source are segmented into fixed-length
cells for transmission over a subnetwork. Such data segmentation fa-
cilitates network design and control and allows for many practical ad-
vantages in terms of pipelining gains, congestion control, and fairness
issues. Fixed-length packets are also advantageous from a queueing
theory perspective, as they minimize queue backlog among all packet
length distributions with the same mean [3]. It is thus important to de-
velop methods for understanding and analyzing networks of determin-
istic service time queues.

In this correspondence, we consider feedforward tree networks
with arbitrary traffic streams exogenously entering each node (Fig. 1).
Packets from these streams flow through the multiple stages of the tree
toward a single-output port at the head node. All packets have length
L bits, and hence have deterministic service times Ti = L=�i, where
�i is the service rate of packets in node i (in units of bits per second).
In the first half of this correspondence, we assume processing rates �i

are identical for all queues. Under this assumption, we use stochastic
equivalence and stochastic inequality relationships to show that the
steady-state occupancy distribution at the head node of a multistage
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Fig. 1. A multistage tree network with multiple exogenous sources.

tree network is exactly preserved in a reduced two-stage equivalent
model. Exact expressions for the mean and variance of packet oc-
cupancy are derived from this result, and the number of packets in
the head node of the tree is shown to be stochastically less than the
number there would be if all preliminary nodes were removed.We then
consider networks with heterogeneous server rates �i, and develop a
simple upper bound on the packet occupancy distribution at each of
the nodes. This analysis contributes to a stochastic network calculus
for analyzing general tree systems in terms of simpler one-queue or
two-queue equivalent models.
As queueing networks are nonlinear systems driven by stochastic

events, exact analytical results are largely limited to systems with
the special structure of time reversibility [23], [24]. Exact analysis
of nonreversible queueing systems is usually confined to small net-
works (see [4]–[6] for analysis of a single discrete time queue with
general inputs, and [7] for a moment generating function analysis of a
two-queue tandem with independent and identically distributed (i.i.d.)
arrivals every timeslot). An approximation method is developed in [8]
for modeling discrete-time tandems with arrivals and departures at
each stage in the special case when inputs have a specified Markovian
structure. Bounding techniques for general networks are developed in
[9]–[11] using a deterministic calculus of network service curves, and
bounds using stochastic calculus are developed in [13], [14].
An exact analysis of fluid tandems with a single input having ex-

ponentially distributed ON and OFF periods is presented in [15] using
stochastic Itô calculus. An exact waiting time analysis is developed
in [16], [17] for a tandem of deterministic service time queues with
Poisson inputs. This analysis uses a simple input–output invariance
property for tandems with nonincreasing service rates. A similar prop-
erty is proven in [19] for discrete-time trees with slotted service at each
queue and with independent inputs. This result is used in [18] to com-
pute the average delay in each node of a discrete-time tree when inputs
are Poisson. Our work uses a similar input–output invariance property,
but extends the techniques to demonstrate equivalence of packet oc-
cupancy distributions (rather than just averages) and to treat networks
with general stochastic inputs. Exact analysis is provided for networks
with homogeneous server rates, and bounding analysis is provided for
systems with heterogeneous server rates (without requiring the nonin-
creasing service rate assumption).
This correspondence is structured as follows: In Section II, we de-

velop an input–output relationship for tree networks with a single bot-
tleneck. In Section III, we consider networks with homogeneous server
rates and show that the steady-state packet occupancy distribution of
any node in a multistage tree is identical to the corresponding distribu-
tion in a simpler two-stage equivalent model. This analysis combines
sample path queueing properties with stochastic equivalence relations.
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Fig. 2. A two-queue system with deterministic service times T , T (with
T � T ), and its equivalent model with queue 1 replaced by a time delay.

In Sections IV and V, exact expressions for the mean and variance of
packet occupancy are derived, and a traffic smoothing result is devel-
oped to establish upper bounds on the backlog distribution at any node.
In Section VI, this bounding analysis is extended to systems with het-
erogeneous servers. The resulting bounds exploit the special structure
of deterministic service time queues as well as the probabilistic nature
of the underlying input processes, and are shown to be tighter than the
network calculus bounds derived for special classes of traffic with vari-
able length packets in [9]–[14].

II. EQUIVALENT MODELS

Here we demonstrate an important input–output sample path prop-
erty for deterministic service time queues. We begin by presenting two
simple lemmas. Consider a single queue with a general input stream
consisting of fixed-length packets arriving at times �1; �2; . . ., with ar-
bitrarily distributed and correlated interarrival times. Packets are served
according to any nonpreemptive service discipline, such as the first-in-
first-out (FIFO) policy. LetA(t) represent the arrival process, formally
written as a sum of shifted impulse functions:A(t) = 1

n=1
�(t��n).

We assume that �1 > 0, so that all packets arrive after time 0. Let T
represent the service time of each packet in the server of the queue.
Assume the system is initially empty, and let D(t) represent the cor-
responding process of queue departures during the interval [0; t]. Sup-
pose the departures next pass through a delay line of duration d, for
some value d � 0. The delay line accepts incoming packets, stores
them, and releases them after exactly d seconds, resulting in an output
process D(t � d).

Lemma 1 (Delay Permutation): The resulting output processD(t�
d) is unchanged if the delay line is situated before the queue, rather than
after it.

This elementary lemma follows because queues are time-invariant
systems, so that an input of A(t � d) leads to an output of D(t� d).
For the next lemma, consider the two-queue tandem of Fig. 2. Packets
arrive to the first queue according to an input stream A1(t), and these
packets are then delivered to the second queue after passing through
an intermediate delay line of duration d � 0. Additional packets arrive
directly to the second queue according to an input stream A2(t). Let
D(t) represent the resulting output process of the second queue. Let
T1 and T2 represent the service times of packets in the first queue and
second queue, respectively.

Lemma 2 (Queue Replacement): If both queues are initially empty
and if T1 � T2, then D(t) is unchanged if the first queue is replaced
by a pure delay line of duration T1.

Themodified system is simpler and forms an equivalent model of the
original system. Lemma 2 was independently proven in [16] and [1] for
the case when there is no intermediate delay between the two queues.
The case of an intermediate delay line of duration d > 0 follows di-
rectly from the result for no delay line by using Lemma 1 to switch the
order of the delay and the first queue. Intuitively, the result of Lemma
2 follows because the final node serves packets no faster than the first
node can deliver them. Hence, the busy period of the final node of the
original system cannot finish before the busy period of the final node

Fig. 3. Replacing all preliminary nodes of the network in Fig. 1 with delay
lines. The output processD(t) is unchanged if � � � for all i 2 f1; . . . ; 5g.

in the equivalent model. Note that although the D(t) function is un-
changed, it is possible for the packet departure order to be different in
the equivalent model.

A. Tree Reduction Principle

Consider a multistage tree network with M queues and heteroge-
neous server rates �i, so that packets have service times Ti = L=�i in
each queue i 2 f1; . . . ;Mg. The inputs to each queue i consist of an
exogenous arrival process Ai(t) together with the endogenous depar-
ture process of upstream queues (Fig. 1). Let TM represent the service
time of the final node (corresponding to service rate �M ), and letD(t)
represent the departure process of this node.

Theorem 1 (Output Invariance): If TM � Ti for all preliminary
nodes i, thenD(t) is unchanged if all other nodes i 6= M are replaced
with pure delay lines of duration Ti, as in Fig. 3.

Proof: The proof follows by iteratively applying Lemma 2.
Specifically, consider the two-queue system composed of the final
node together with any other node i situated immediately behind it
(possibly with a delay line in between). Let the preliminary node
represent “queue 1” of Lemma 2, and let all of its arrivals collectively
represent “A1(t)” from the lemma. Likewise, let all other streams
into the final node collectively represent “A2(t).” Then the departure
process of the final node is unchanged if the preliminary node is
replaced by a delay line of duration equal to Ti. Recursively repeating
this procedure replaces all preliminary nodes with pure delay lines
without affecting the overall departure process of the system.

Theorem 1 allows the departure function of the final node in a mul-
tistage tree network to be modeled by the departures of a single queue
with a set of delayed input streams, provided that the service rate of the
final node is less than or equal to all other service rates. We note that a
similar reduction principle for trees was developed in [19] for the spe-
cial case of discrete-time systems with slotted service and independent
inputs. In Section III, we use this theorem to analyze tree networks with
homogeneous servers.
As an aside, we note that for heterogeneous networks, Theorem 1

implies that routing according to a shortest path tree is optimal when
sending fixed-length packets from multiple sources to a single bottle-
neck nodeM , where �M � �i for all nodes i. Specifically, consider a
network of queueing nodes defined by an arbitrary graph (with no tree
structure yet determined), and define the path length of a route between
any two nodes as the sum of service times Ti = L=�i over all nodes of
the route. It is clear that under any routing policy, every exogenously
arriving packet is delayed from entering the final node by at least the
sum of service times over its shortest path. Each packet is delayed by
exactly this amount in the shortest path tree model where all prelimi-
nary nodes are replaced by pure time delays (Fig. 3). Hence, at every
instant of time the number of departures in this reducedmodel is greater
than or equal to the number of departures under any routing scheme in
the actual network. However, Theorem 1 implies that the departures of
this reduced model are identical to the actual departures in the network
under shortest path tree routing, and hence shortest path tree routing
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minimizes the total number of packets in the system at every instant of
time.

III. TREES WITH HOMOGENEOUS SERVER RATES

Here we consider tree networks with homogeneous server rates, so
that packet service times satisfy Ti = T for all i.

Theorem 2: If Ti = T for all i, then at every instant of time the
number of packets in the final node of the tree is the same as the number
of packets in the final node of a reduced two-stage tree, where all nodes
more than one stage beyond the final node are replaced with delay lines
of duration T .

Proof: The endogenous inputs to the final node are the departure
processes from the previous stages. By Theorem 1, these departure pro-
cesses are unchanged when their preliminary queues are replaced with
time delays. Because the endogenous and exogenous inputs to the final
node remain the same in the reduced system, the number of packets in
the final node is unchanged.

Theorem 2 allows the occupancy dynamics in the final node of a tree
to be modeled by a reduced two-stage system with preliminary time
delays. Intuitively, it is clear that if the inputs Ai(t) are stationary and
independent of each other, then the steady-state occupancy distribution
in the final node of the reduced system is preserved when the delay
lines are removed. Here we use stochastic coupling to formally prove
this result, and show that steady-state behavior exists in the equivalent
model if and only if it exists in the original system. We first present the
basic concepts of stochastic coupling theory.

A. Stochastic Dominance and Equivalence

Definition 1: A random variable N1 is stochastically greater than
another random variable N2 if there exists a third “coupling variable”
~N1 such that N1 � ~N1, and ~N1 has the same distribution as N2. In
this case, we write N1 �

st:
N2.

An equivalent definition can be stated by coupling with respect to
N2, so that there is an external variable ~N2 with the same distribution
as N1 and such that ~N2 � N2. It is well known that N1 �

st:
N2 if and

only if Pr[N1 � �] � Pr[N2 � �] for all real numbers � (see [22]).
This fact immediately implies that stochastic inequality relations are
transitive: If N1 �

st:
N2 and N2 �

st:
N3, then N1 �

st:
N3.

IfN1 andN2 have the same distribution, we writeN1 =
st:
N2, and say

that the random variables are stochastically equivalent. It is also essen-
tial to have a notion of stochastic equivalence for random processes:

Definition 2: A random process A1(t) is stochastically equivalent
to another process A2(t) if fh(A1)g = fh(A2)g for all measur-
able operators h(�) that map a process A(t) to a single real number.

It is clear that if stochastically equivalent input processes A1(t) and
A2(t) are applied to identical queues at time 0, they produce stochas-
tically equivalent packet occupancy processes N1(t) and N2(t), and
that at any particular time instant � , the random variables N1(�) and
N2(�) satisfyN1(�) =

st:
N2(�). Indeed, this can be seen from the defi-

nition by defining the operator h(�) that maps an arrival process to the
number of packets N(�) at time � via the queueing law.

B. Removing Delays Via Stochastic Coupling

Consider now the two-node tandem with nodes 1 and 2 and input
streams A(t), B(t), and C(t) delivering packets destined for node 2,
as shown in Fig. 4. This system represents any two sequential nodes
of a multistage tree, where the general inputs consist of the combined

Fig. 4. A canonical two-queue system with inputX(t) delayed by time d.

exogenous streams and endogenous streams from other nodes. As be-
fore, we assume all arrivals occur after time 0, so that A(t) = B(t) =
C(t) = 0 for all t � 0.
Note that the A(t) process is explicitly shown with a time delay of

duration d. We show that if A(t),B(t), and C(t) are independent and
stationary, the delay can be removed without affecting the steady-state
distribution of packets in node 1 or node 2. We first define the notions
of steady state and stationarity.

Definition 3: Let the stochastic process N(t) represent the number
of packets in a queue as a function of time. The steady-state distribution
F [n] for the queue is defined as follows:

F [n] lim
t!1

1

t

t

�=0

Pr[N(�) � n]d�; n 2 f0; 1; 2; . . .g (1)

whenever the limit exists.

We now define the notion of stationarity for processes that only have
arrivals after time 0. For any arrival processA(t) and any positive delay
d, we define the partially deleted process ~Ad(t) as follows:

~Ad(t)
0; if t � d

A(t); if t > d.

Thus, ~Ad(t) can be viewed as a version of the A(t) data stream in
which packets during the first d seconds are thrown away.

Definition 4: An arrival processA(t) is stationary if for any positive
delay d, the delayed process A(t � d) is stochastically equivalent to
~Ad(t).

Note that for two stationary arrival processesA(t) andB(t) that are
also independent, the superposition A(t� d) +B(t) is stochastically
equivalent to the superposition ~Ad(t)+B(t), and hence, either super-
position applied to a queue yields the same steady-state packet occu-
pancy distribution, provided that the distribution exists.We further note
that the total number of packets in a deterministic service time queue
cannot increase if some packets from the input stream are deleted [2].

Theorem 3: For any general inputs A(t), B(t), C(t) that are inde-
pendent and stationary, the steady-state occupancy distribution in node
1 of Fig. 4 exists if and only if the steady-state occupancy distribution
exists when the time delay on the A(t) input stream is removed. If the
distributions exist, they are identical.
Similarly, the steady-state distribution in node 2 is the same with or

without the time delay on the A(t) stream, provided the distribution
exists.

Proof: It is useful to define N[A(t)](�) as the number of packets
at time � in a queue that is initially empty with a general arrival process
A(t) applied at time 0, where A(t) could represent a superposition of
processes. Note that N[A(t)](� ) is always greater than or equal to the
number of packets in a queue at time � with the same input process
but with some of the arriving packets deleted. Hence, the following
inequalities hold deterministically for all time instants � :

N[ ~A (t)+~B (t)](� ) � N[ ~A (t)+B(t)](� ) � N[A(t)+B(t)](� ): (2)

The random variable N[A(t)+B(t)](� ) on the right of the above in-
equality represents the number of packets in node 1 of Fig. 4 at time �
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in the case when the A(t) and B(t) streams are applied directly with
no time delay, while the middle term of the above inequality represents
the corresponding number of packets when arrivals during the first d
seconds are deleted from the A(t) stream. Likewise, the leftmost term
considers the case when packets from both the A(t) and B(t) streams
are deleted during the first d seconds.

However, by stationarity, the arrival process ~Ad(t) + ~Bd(t) is
stochastically equivalent to the process A(t � d) + B(t � d), which
represents a delayed version of A(t) + B(t). Likewise, by indepen-
dence, the arrival process ~Ad(t) +B(t) is stochastically equivalent to
the process A(t � d) + B(t). We thus have the following stochastic
equalities for all time instants � :

N[~A (t)+~B (t)](�) =st:
N[A(t)+B(t)](� � d)

N[ ~A (t)+B(t)](� ) =st:
N[A(t�d)+B(t)](� ):

Using these stochastic inequalities in (2) yields

N[A(t)+B(t)](� � d)�
st:
N[A(t�d)+B(t)](� )�

st:
N[A(t)+B(t)](� ):

The upper and lower bounds in the above inequality are time delayed
versions of the same process, namely, the process of packets in node 1
of Fig. 4 when A(t) and B(t) are applied directly. It follows that their
time average distributions (defined in (1)) are equal, and converge if
and only if the middle term converges. The middle term represents the
process of packets in node 1 when theA(t) stream first passes through
the d-second delay. Thus, the steady-state distribution in node 1 is un-
changed if the time delay is removed.

The proof of the corresponding property for node 2 is similar, and
follows from the fact that, because both nodes have the same service
time T , the number of packets in node 2 is greater than or equal to the
resulting number of packets if some arrivals from A(t), B(t), or C(t)
are deleted before entering the system (see the Appendix). It follows
that for all instants �

N1(�) � N2(�) � N3(�)

where N3(�) represents the packet occupancy in the second node of
Fig. 4 when the streamsA(t),B(t), andC(t) are applied with no time
delays; N2(t) represents the corresponding occupancy in the second
node in the case when all packets arriving from A(t) during the first
d seconds are deleted; and N1(t) represents the occupancy in the case
when arrivals from all streams are deleted for the first d seconds. The
result follows by noting that

N1(�) =
st:
N3(� � d)

and that N2(�) is stochastically equal to the number of packets in the
final node of Fig. 4 (with A(t) delayed by d seconds).

C. The Two-Stage Reduction Theorem

We can now present the main reduction theorem for homogeneous
tree networks with general stationary and independent arrival pro-
cesses. Consider a multistage tree network with exogenous arrival
processes Ai(t) at each node i, and define its two-stage equivalent
model as the system with the same inputs, but with all queues more
than one stage behind the final node removed.

Theorem 4 (Two-Stage Equivalent Models): If exogenous inputs
Ai(t) are stationary and independent of each other, a steady-state oc-
cupancy distribution exists in the final node of the original network if
and only if a steady-state occupancy distribution exists in the two-stage
equivalent model. Furthermore, if the distributions exist, they are ex-
actly the same.

Fig. 5. (a) The canonical two-stage equivalent model of a homogeneous tree
network, and (b), (c) reduced systems with the same total packets.

Proof: Reduce the multistage tree network to a two-stage net-
work in tandem with delay lines, as described in Theorem 2. Note that
this does not change the packet occupancy process N(t) in the final
node. By the delay removal theorem (Theorem 3), we can iteratively
remove each of the delay lines without changing the steady-state dis-
tribution in the final node. The resulting system has no time delays and
is exactly the two-stage equivalent model.

Note that any node i of a tree can be viewed as the final node of the
smaller network consisting only of nodes with arrival streams that pass
through node i. Hence, the steady-state occupancy distribution of any
node of a tree network can be exactly analyzed according to a two-stage
equivalent model.

IV. MEAN AND VARIANCE ANALYSIS

Here we use the two-stage reduction theorem to develop simple ex-
pressions for the mean and variance of packet occupancy in terms of
the corresponding moments in systems with only one queue and two
queues, respectively. Consider a multistage tree with homogeneous ser-
vice times T in each node, and with stationary and independent ex-
ogenous arrival processesAi(t). By Theorem 4, the steady-state occu-
pancy in any such network can be analyzed by a two-stage equivalent
model. The canonical two-stage model is shown in Fig. 5(a), and has
G first stage queues. In this model, the inputs A1(t); . . .AG(t) repre-
sent superpositions of the exogenous inputs of the original multi-stage
network, and A0(t) is the exogenous input to the final node. Assume
this system exhibits steady state behavior, and let N1; . . . ; NG repre-
sent the steady state number of packets in the first stage queues. Let
Y represent the steady state occupancy in the final node. That is, the
collection fN1; . . . ; NG; Y g can be viewed as random variables with
joint distribution given by the steady-state system occupancy distribu-
tion. Altenatively, these random variables can be viewed as samples of
queue occupancy at a time when the system is in steady state.

A. Mean Occupancy

Here we compute fY g, the mean occupancy in the final node
of the canonical two-stage tree of Fig. 5(a). Assume inputs A0(t);
A1(t); . . . ; AG(t) are rate ergodic with arrival rates �0; �1; . . . ; �G,
and define the sum rate � = �0 + � � � + �G. Define QT (Ai + � � � +
Aj) to be the expected occupancy in a single queue with determin-
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istic service time T and with a superposition of the arrival streams
Ai(t) + � � � + Aj(t) entering as inputs. Thus, the mean occupancy in
the first stage queues of Fig. 5(a) can be written as fNig = QT (Ai)
for i 2 f1; . . . ; Gg. Now consider the system of Fig. 5(b), where
the first stage queues are replaced by delay lines of duration T . Let
W = W1 + � � � + WG represent the sum number of packets in the
delay lines (where Wi represents the number of packets in the delay
line from stream Ai(t)). Let Z represent the number in the final node.
We have

fN1+� � �+NG+Y g =QT (A1)+� � �+QT (AG)+ fY g

fW+Zg = fWg+QT (A0+A1+� � �+AG)

= (���0)T+QT (A0+A1+� � �+AG):

By Theorem 1, we know that the departures of both the system of
Fig. 5(a) and (b) are the same for all times, and hence, the total number
of packets in the two systems is always the same. The equalities above
can thus be equated, yielding the following exact expression for fY g:

fY g=(���0)T+QT (A0+A1 + � � �+AG)�

G

i=1

QT (Ai):

The preceding equation expresses the expected occupancy in any node
of a homogeneous multistage tree network in terms of the expected oc-
cupancy in single-queue systems with a superposition of the original
exogenous inputs, and can be evaluated whenever the average occu-
pancy in such single-queue systems can be computed.

We note that expected occupancy for tree networks with Poisson
inputs was derived previously in [18]. We can obtain the result of
[18] from the above formula by using the QT (A) function for the
special case of Poisson inputs. In this case, QT (A) can be written
as a pure function of the arrival rate �, and is given by the standard
Pollaczek–Khinchin fornula for expected occupancy in an M/D/1
queue: QT (�) = �T + (�T )

2(1��T )
.

B. Occupancy Variance

To compute the variance Var(Y ) for packet occupancy in the final
node, consider the following alternative modification of the canon-
ical two-stage system in Fig. 5(a): Replace all preliminary nodes i 2
f1; . . . ; Gg�fkgwith time delays of duration T , but keep the prelimi-
nary node k unchanged. By Theorem 1, this modification also contains
the same aggregate number of packets as the original system. Let Zk

represent the corresponding number of packets in the final node of this
modified system.

Lemma 3: The variables Y , Z , fZkg, fWkg, and fNkg satisfy

Y
2 =

G

k=1

Z
2
k � (G� 1)Z2 +

i6=j

(Wi �Ni)(Wj �Nj): (3)

Proof: Using the fact that all three systems in Fig. 5 have the
same total number of packets within them, we have

N1 + � � �+NG + Y =W1 + � � �+WG + Z

=Nk + Zk +
i2f1;...;Gg�fkg

Wi:

The above equalities hold for all k 2 f1; . . . ; Gg, and hence,

Wk �Nk =Zk � Z; for all k 2 f1; . . . ; Gg (4)

Y =Z +

G

k=1

[Wk �Nk] = Z +

G

k=1

[Zk � Z] : (5)

Squaring both sides of (5) (working only with the Zk and Z variables)
and then using (4) establishes the result.

Theorem 5 (Variance): If A0(t); A1(t); . . . ; AG(t) are stationary
and independent of each other, then

Var(Y ) =

G

k=1

Var(Zk)� (G� 1)Var(Z): (6)

Proof: Note that (3) of the preceding lemma is simply an alge-
braic statement about any variables Y , Z , fZkg, fWkg, and fNkg
that satisfy (4) and (5). Any random variables satisfying these two
linear equations will also satisfy these equations in their expected
values. Hence, we can replace Y , Z , fZkg, fWkg, and fNkg in (4)
and (5) with their expectations fY g, fZg, f fZkgg, f fWkgg,
and f fNkgg to find that the lemma also implies

fY g2 =

G

k=1

fZkg
2 � (G� 1) fZg2

+
i6=j

fWi �Nig fWj �Njg : (7)

Taking expectations over (3) and subtracting (7) yields

Var(Y ) =
G

k=1
Var(Zk)� (G� 1)Var(Z)

+
i6=j

f(Wi �Ni)(Wj �Nj)g

�
i6=j

fWi �Nig fWj �Njg :

Because the input processes are stationary and independent, (Wi �
Ni) is independent of (Wj �Nj) whenever i 6= j. The last two terms
of the above equation thus cancel, proving the theorem.

Expressions for the varianceVar(Zk) for a tandem of 2 queues with
Poisson inputs and for a discrete-time tandem with i.i.d. arrivals and
general arrival distributions are presented in [2] using a moment gener-
ating technique developed in [7]. These expressions can be used with
Theorem 5 to yield exact variance expressions for any node of a mul-
tistage tree with such inputs.

V. TRAFFIC SMOOTHING

Here we show that tree networks of homogeneous, deterministic ser-
vice time queues naturally act to “smooth” traffic, making the patterns
better for downstream nodes to receive. All inputs are again assumed
to be independent and stationary.

Theorem 6 (Smoothing): The steady-state packet occupancy in the
final node of a homogeneous tree is stochastically less than its resulting
occupancy when all preliminary nodes are removed and the exogenous
inputs are applied directly to the final stage.

Proof: By Theorem 4, we can first reduce the multistage tree to
its canonical two-stage equivalent model (as in Fig. 5(a)), where the
inputs to the equivalent model represent superpositions of the inputs
to the tree. The total number of packets in this two-stage system is the
same as the total number of packets in a modified system where all
nodes at the first stage are replaced by time delays of duration T , as
in Fig. 5(b). However, it is clear that the number of packets in the set
of first stage queues is always greater than or equal to the number in
the corresponding delay lines. It follows that the number of packets Y
in the final node of the two-stage system is less than or equal to the
number of packets Z in the final node of the modified system. Thus,
Y � Z . However, from Theorem 3, we know that Z =

st:
Z 0, where

Z 0 represents the steady-state occupancy of the modified system when
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the preliminary delay lines are removed. Hence, Y �
st:
Z 0, proving the

theorem.

This result provides a simple bound on the occupancy distribution
of the final node of a homogeneous tree in terms of the occupancy in a
single queue with the same exogenous inputs.

VI. TREES WITH HETEROGENEOUS SERVICE RATES

Note that the results of the previous section are derived from the
output invariance properties of tree networks with homogeneous ser-
vice rates, as characterized by Theorem 1. The theorem holds when-
ever the service rate of a given node of the tree is less than or equal
to the rates of all of its preliminary nodes. Hence, all results for ho-
mogeneous trees derived in the previous section apply equally to trees
with nonincreasing service rates on every path to the destination. How-
ever, it is common for service rates to increase at one or more stages,
so that downstream nodes have the ability to support the sum traffic
load from earlier queues. In this section, we consider the general case
of trees with arbitrary service rates �i at each node i. Specifically, we
consider a tree with M nodes with labels i 2 f1; . . . ;Mg, where the
final node is labeled as node M (see Fig. 6(a) for the case M = 5).
Let Ai(t) represent a general arrival process of packets exogenously
entering the network at node i, and let �i represent the arrival rate. All
packets have fixed lengths L with service times L=�i in each node i.
Let NM represent the steady-state packet occupancy in the final node.
For each i 2 f1; . . . ;Mg let N ( )

i represent the steady-state occu-
pancy in a virtual queue with service rate i and input process Ai(t)
entering it alone (we assume throughout that a steady state exists).

Theorem 7 (Stochastic Occupancy Bound): For any virtual service
rates fig such that 1 + � � �+ M = �M , we have the following.

a) If exogenous inputs fAi(t)g are stationary and independent,

then variables N
( )
i are independent, and

NM �
st:
N

( )
1 +N

( )
2 + � � �+N

( )
M (8)

b) If exogenous inputs are not stationary and independent, then
there exist variables fN̂ ( )

i g such that

NM � N̂
( )
1 + N̂

( )
2 + � � �+ N̂

( )
M (9)

N̂
( )
i =

st:
N

( )
i for all i 2 f1; . . . ;Mg: (10)

The stochastic bounds described above can be easily visualized in
terms of the parallel queue system of Fig. 6(d), where each of theM ex-
ogenous inputs of the tree is given a separate virtual queue. Notice that
the rates i of the virtual queues must sum to the rate of the final node,
but are otherwise left unspecified. Hence, the rates can be chosen for
convenience, or can be optimized to achieve the tightest upper bound.
Before proving the theorem, we demonstrate its implications.

Example 1 (Averages): LetQL= (Ai) represent the average occu-
pancy in a single queue with service rate i, packet length L, and input
streamAi(t). From Theorem 7, we have the following upper bound for
the average occupancy in the final node of a multistage tree:

fNMg � min
 =�

M

i=1

QL= (Ai):

The QL= (Ai) function can be shown to be a convex function of i
[20], and hence, the minimization above represents a convex optimiza-
tion. A simpler bound is obtained by the assignment i = �M

�
�

Fig. 6. An illustration of the iterative reduction technique to stochastically
bound the occupancy in the final node. Note that  = � .

(where � = �1 + � � � + �M is the sum input rate). This choice of
the i values ensures all virtual queues are stable whenever the orig-
inal network is stable.

Example 2 (Leaky Bucket Inputs): Suppose the exogenous inputs
fAi(t)g are leaky bucket constrained with rate and burst parameters
(�i; �i) [9], so that with probability 1 a queue with input Ai(t) and
server rate i will never have more than �i packets, provided that
i � �iL. If the sum arrival rate � from all inputs to the tree satisfies
�L � �M , then using the proportional rate allocation i = �M�i=�
guarantees each virtual queue i receives a service rate i � �iL. The-
orem 7 thus verifies the well-known result that the number of packets in
the head node is always less than or equal to M

i=1 �i [10], [12]. Fur-
thermore, the probability of achieving this worst case backlog can be
bounded if more detailed statistical information about the arrival pro-
cesses is available.

Example 3 (Moment Generating Functions): If inputs fAi(t)g are
stationary and independent, then we have from part a) of Theorem 7
that for any rates fig that sum to �M

erN �

M

i=1

erN

for any value r � 0. Hence, the moment generating function for the
number of packets in the final node of a tree is less than or equal to the
product of moment generating functions for queues with single inputs
Ai(t) and server rates i.
If inputs are not necessarily stationary or independent, then part b)

of Theorem 7 implies there exist variables fN̂ ( )
i g such that the occu-

pancy NM in the final node of the tree satisfies

NM � N̂
( )
1 + � � �+ N̂

( )
M

where N̂ ( )
i =

st:
N

( )
i for each i 2 f1; . . . ;Mg. Let fp1; p2; . . . ; pMg

be any collection of nonnegative numbers that sum to 1. Using the fact
that

M

i=1

xi � max
i2f1;...;Mg

[xi=pi]

for any values fxig, we have

erN � e
rmax N̂ =p

�

M

i=1

erN̂ =p
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for any r � 0. Because N̂ ( )
i =

st:
N

( )
i , the moment generating func-

tion satisfies

erN �

M

i=1

erN =p :

Example 4 (Complementary Occupancy Distribution): A bound on
the complementary occupancy distribution can similarly be derived for
the general case when inputs are not necessarily stationary or indepen-
dent. Again let fp1; p2; . . . ; pMg be a collection of nonnegative num-
bers that sum to 1. Using the same technique as [14], we observe the
following inclusion of events:

N̂
( )
1 + � � �+ N̂

( )
M > k � N̂

( )
1 > p1k [ � � �

[ N̂
( )
M > pMk :

Hence, because Pr N̂
( )
i > x = Pr N

( )
i > x for any x, we

have from the union bound

Pr[NM > k] � min
 =� ; p =1

Pr N
( )
1 > p1k + � � �

+Pr N
( )
M > pMk : (11)

The above bound is simpler and tighter than the bounds derived for
variable-length packet systems in [13], [14] with inputs that are char-
acterized by a class of exponentially bounded bursty arrivals (EBB)
or stochastically bounded bursty arrivals (SBB). Indeed, in the special
case when inputs are EBB or SBB, then neglecting the optimization
over i and simply choosing the proportional rate assignment i =
�M�i=�, the bound of (11) becomes identical to the bound offered in
[13], [14] for the occupancy distribution of a single queuewith a super-
position of EBB or SBB sources. When this queue is situated within a
multistage network, the bounding techniques of [13], [14] can be used
recursively to compute updated bounds by considering the effects of
each stage. However, these updated bounds require more computation
and have the disadvantage of getting progressively larger and larger at
each stage—suggesting that congestion may increase with the size of
the network in systems with variable-length packets. The bound in (11)
holds equally well for any node at any stage of the network. Hence,
it is always tighter and is immune to any pejorative effects when the
size of the network is scaled. This independence to scaling is due to
the intrinsic traffic smoothing properties of deterministic service time
queues. Furthermore, the bound of (11) holds for any general input
processes, and incorporates the particular statistical properties of each
process by relating performance to the resulting backlog in a system of
single queues with each of these inputs applied individually.

A. Derivation of Theorem 7

To prove Theorem 7, we use two preliminary lemmas that hold for
one-queue and two-queue systems with fixed-length packets. Consider
a queue with server rate � and with a superposition of M input pro-
cessesA1(t)+ � � �+AM (t). LetN(t) represent the number of packets
in this queue as a function of time (assuming the system is initially
empty). For a given rate i � �, letNi(t) represent the corresponding
number of packets in a queue with server rate i and with input stream
Ai(t) alone.

Lemma 4 (Multiplexing Inequality): For arbitrary input streams
fAi(t)g and for any rates fig such that 1 + � � �+ M = �, we have
at every instant of time

N(t) � N1(t) + � � �+NM(t):

The lemma is an immediate consequence of the multiplexing re-
sults proven in [21]. Intuitively, Lemma 4 follows by observing that
the single-queue system is either empty or is processing data at a rate
that is greater than or equal to the sum processing rate of the combined
system of M queues.
Next consider two tandem queues with a single input. Packets of

length L bits arrive to the first queue according to an arrival process
A(t)with rate �, and these packets enter the second queue after service
at the first. Service rates of the first and second queues are �1 and �2,
respectively. Assume the system exhibits a steady state, and let random
variable N2 represent the steady-state number of packets in queue 2.
Let ~N2 represent the corresponding steady-state occupancy in the case
when the first queue is removed and all packets directly enter queue 2.

Lemma 5 (Smoothing in Single-Input Tandems): For arbitrary ser-
vice rates �1 and �2, we have N2 �

st:

~N2. That is, removing the first

queue creates a stochastically greater packet occupancy at the second
queue.

Proof: If �1 � �2, then the proof is the same as the proof of
Theorem 6, as the total number of packets in the tandem is unchanged
if the first queue is replaced by a pure delay line. In the case �1 < �2,
there is never more than one packet in the second queue. Thus,

Pr[N2 > k] = 0 � Pr[ ~N2 > k]

for all integers k � 1. Furthermore, by Little’s theorem, we have that

Pr[N2 > 0] = Pr[ ~N2 > 0] = �L=�2:

Thus, N2 is stochastically less than ~N2.

These two lemmas can be used iteratively to bound packet occupancy
in any node of a heterogeneous tree. Consider the final node in the
network of Fig. 6(a), which has rate �5. Let N5 represent the random
number of packets in this final node when the system is in steady state.
We see from the figure that there are three separate streams flowing
into this node. Thus, in the first iteration of our reduction technique we
split this node into three virtual subnodes with rates [it=1]

5 , [it=1]
3 ,

and [it=1]
4 that individually service the three streams (where [it=1]

5 +


[it=1]
3 + 

[it=1]
4 = �5, see Fig. 6(b)). From Lemma 4, the resulting

number of packets N [it=1]
5 , N [it=1]

3 , N [it=1]
4 in the subnodes satisfy

N5 � N
[it=1]
5 +N

[it=1]
3 +N

[it=1]
4 :

(Here, the “it = 1” superscript designates values obtained on the first
iteration of the reduction, and the subscript index represents the highest
numbered exogenous input corresponding to the particular subnode).
Now notice that several two-queue tandem situations have been

created (Fig. 6(b)). Consider, for instance, the queue with rate �3 in
tandem with the N [it=1]

3 queue. From Lemma 5, removing this front
queue creates a stochastically greater occupancy ~N

[it=1]
3 . Likewise,

the queue with rate �4 can be removed to generate a new variable
~N
[it=1]
4 that is stochastically greater than N

[it=1]
4 , creating the sim-

plified system in Fig. 6(c). The number of stages in this simplified
system is one less than the original.
For a second iteration, the same procedure can be applied to split

queue ~N
[it=1]
3 into queues with rates [it=2]

1 , [it=2]
2 , [it=2]

3 such that


[it=2]
1 + 

[it=2]
2 + 

[it=2]
3 = 

[it=1]
3 :

Proceeding this way, we remove nodes and split nodes until we are
left with a parallel collection of 5 queues of rates 1; . . . ; 5 such that
1 + � � � + 5 = �5, and each new node i has its own exogenous
input stream Ai(t). At each step of the iteration, the component vari-
ablesNi are stochastically increasing. Thus, we are left with variables
N

( )
1 ; . . . ; N

( )
5 , where each N ( )

i is distributed as a packet occu-
pancy in a single queue with input streamAi(t) and processing rate i
(Fig. 6(d)).
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In this way, we can bound packet occupancy in the head node
of a multistage heterogeneous tree with arbitrary exogenous inputs
A1(t); . . . ; AM (t) by simply using the parallel queue picture of
Fig. 6(d). However, there is a subtlety in the above iteration procedure:
While it is true that

N5 � N
[it=1]
5 +N

[it=1]
3 +N

[it=1]
4

when the network is changed from Fig. 6(a) and (b), and it is true that

N
[it=1]
5 �

st:

~N
[it=1]
5

N
[it=1]
3 �

st:

~N
[it=1]
3

N
[it=1]
4 �

st:

~N
[it=1]
4

when the network is changed from Fig. 6(b) and (c), it is not necessarily
the case that

N5 �
st:

~N
[it=1]
5 + ~N

[it=1]
3 + ~N

[it=1]
4 :

This issue is formally treated by using stochastic coupling to intro-
duce the auxiliary variables N̂ ( )

i of Theorem 7. We first require two
lemmas.

Lemma 6: IfN ,A, andB are random variables such thatN�
st:

A+B;

then there exist variables Â and B̂ such thatN � Â+ B̂, and Â=
st:

A,

B̂ =
st:

B. Furthermore, if A and B are independent, then Â and B̂ can
be chosen to be independent.

Proof: By definition of stochastic inequality, there exists a
random variable Z such that N � Z and Z =

st:
A + B. Given

this Z variable, form the pair of random variables (Â; B̂) by
choosing them according to the joint conditional distribution
pA;BjZ(a; b j A + B = Z). Thus, the vector (Â; B̂) is coupled
to the Z variable through the joint distribution function for the pair
(A;B). It follows that Â + B̂ = Z � N , and that Â=

st:
A, B̂ =

st:
B. If

A and B are independent, then Â and B̂ will also be independent.

Lemma 7: IfN ,A, andB are random variables such thatN�
st:
A+B;

and if there exist variables ~A, ~B such thatA�
st:

~A and B �
st:

~B then there

exist variables Â, B̂ such that N � Â + B̂, and Â=
st:

~A, B̂ =
st:

~B.

Proof: By definition of stochastic inequality, becauseA�
st:

~A and

B �
st:

~B, there must exist variables A0 and B0 such that A � A0, B �

B0, andA0 =
st:

~A,B0 =
st:

~B. It follows thatN �
st:

A0+B0 . By the previous

lemma, there must be variables Â and B̂ such that N � Â + B̂ and
Â=

st:
A0, B̂ =

st:
B0. By transitivity, we have Â=

st:

~A and B̂ =
st:

~B, proving

the lemma.

We can now prove Theorem 7.

Proof of Theorem 7: We proceed by induction on the iterative
procedure outlined above. At the beginning of iteration k, assume we
have a set of subnodes Ik with steady-state occupancies ~N

[it=k]
i (i 2

Ik) and corresponding variables N̂ [it=k]
i such that

NM �
i2I

N̂
[it=k]
i

and N̂
[it=k]
i =

st:

~N
[it=k]
i for all i 2 Ik . After splitting each node with

occupancy ~N
[it=k]
i into a set of S(i) parallel subnodes with new occu-

pancies N [it=k+1]
j (j 2 S(i)) such that

~N
[it=k]
i �

j2S(i)

N
[it=k+1]
j

it follows that

N̂
[it=k]
i �

st:
j2S(i)

N
[it=k+1]
j ; 8 i 2 Ik: (12)

Next, the inputs to the parallel subnodes are “un-smoothed” by
removing any preliminary queues, and new variables ~N

[it=k+1]
j are

formed that are stochastically greater than N [it=k+1]
j , that is, for each

i 2 Ik and each j 2 S(i)

N
[it=k+1]
j �

st:

~N
[it=k+1]
j : (13)

Applying Lemma 7 to (12) and (13), for all i we can find auxiliary
variables N̂ [it=k+1]

j for each j 2 S(i) such that

N̂
[it=k]
i �

j2S(i)

N̂
[it=k+1]
j

and N̂ [it=k+1]
j =

st:

~N
[it=k+1]
j for all j 2 S(i). Defining the set Ik+1

[i2I S(i) establishes the induction hypothesis for the next iteration,
proving the theorem.

VII. CONCLUSION

We have used sample path observations and stochastic coupling
techniques to analyze deterministic service time tree networks with
arbitrary input streams. The analysis yields quantitative probabilistic
expressions for network congestion in terms of simpler systems. For
homogeneous tree networks with multiple stages, a reduced two-stage
equivalent model was developed and shown to exactly preserve the
steady-state occupancy distribution. Exact expressions for occupancy
mean and variance in any node were obtained using this analysis, and
a smoothing result was proven, showing that packet occupancy at any
node is stochastically increased if its preliminary nodes are removed.
For tree networks with heterogeneous server rates f�ig, a simple
upper bound on the packet occupancy of any node was developed in
terms of the occupancy in a set of virtual queues that individually
serve the exogenous input streams Ai(t). The bound is independent
of the location of the node within the tree, and is tighter than previous
bounds derived for variable length packet systems with traffic envelope
constraints. This work contributes to a theory of stochastic network
calculus, and provides powerful techniques for analyzing complex
queueing systems.

APPENDIX

Here we show that the number of packets in the second node of
the two-queue tandem in Fig. 4 is greater than or equal to the number
there would be if some arrivals from any of the inputs are deleted be-
fore entering the system. To see this, first note by Theorem 1 that the
total number of packets in the tandem is unchanged if the first node
is replaced by a pure delay line of duration T . The total number of
packets in this equivalent model (delay line plus queue) cannot in-
crease if some arrivals are deleted, and hence the total number in the
two-queue tandem cannot increase with deleted arrivals. Thus, if the
first node of the two-queue tandem is empty, then the total number of
packets in node 2 is greater than or equal to the corresponding amount
if some arrivals were deleted. It is not difficult to show that this prop-
erty is preserved during times when the first stage node is busy. Indeed,
during such busy periods, the first node delivers at the maximum rate
of one packet per T seconds, and the number of packets in the second
node cannot decrease below the corresponding number in the deleted
system.
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On Distances in Uniformly Random Networks

Martin Haenggi, Senior Member, IEEE

Abstract—The distribution of Euclidean distances in Poisson point pro-
cesses is determined. The main result is the density function of the distance
to the -nearest neighbor of a homogeneous process in , which is shown
to be governed by a generalized Gamma distribution. The result has many
implications for large wireless networks of randomly distributed nodes.

Index Terms—Poisson point process, random graphs, stochastic geom-
etry, wireless networks.

I. INTRODUCTION

For the capacity and performance analysis and comparison of proto-
cols and algorithms for wireless networks with unknown location of the
terminals, in particular for ad hoc and sensor networks, it is important
that the distribution of the distances between the terminals be known.
Only few results are available in the literature: In [1], distance distri-
butions of uniformly and Gaussian distributed nodes in a rectangular
area are presented. In [2], the mean L1 distance in a square random
network of unit size is determined to be 2=3. Mean distances for Man-
hattan networks, hypercubes, and shufflenets are presented in [3]. In
this correspondence, we provide closed-form expressions for the dis-
tributions inm-dimensional homogeneous Poisson point processes (or,
equivalently, infinite networks with uniformly random distributions).

II. EUCLIDEAN DISTANCES IN INFINITE NETWORKS

In a homogeneousm-dimensional Poisson point process of intensity
�, the probability of finding k nodes in a bounded Borel A �

m is
given by

[k nodes in A] = e���(A) (��(A))k

k!
(1)

where �(A) is the standard Lebesgue measure of A. This permits the
calculation of the distance to an nth neighbor in a straightforward
manner.

Theorem 1 (Euclidean Distance to nth Neighbor): In a Poisson
point process in m with intensity �, the distance Rn between a
point and its nth neighbor is distributed according to the generalized
Gamma distribution

fR (r) = e��c r m(�cmr
m)n

r�(n)
(2)

where cmrm is the volume of them-dimensional ball of radius r.
Proof: Let Bm(r) := cmr

m be the volume of the m-dimen-
sional ball of radius r. The coefficient cm is given by

cm =

�

( )!
; for evenm

� 2 ( )!
m!

; for odd m:

(3)

Let Sk be the kth coefficient in the Poisson distribution: Sk :=
(�Bm(r))k=k!. The complementary cumulative distribution function
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