
706 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 2, FEBRUARY 2005

reproduces the statistical properties of (utk; u
�
k), from which one

obtains

qt+1;�+1 =
1

�1

1

�1

1

�1

f Bt + Ct;�z + Ct;t � Ct;�u

�f B� + Ct;�z + C�;� � Ct;�v DzDuDv: (31)

The bit-error probability can also be evaluated in the same way as
above, resulting in

P
t+1
b = Q

Bt

Ct;t

: (32)

ACKNOWLEDGMENT

The authors would like to thank Akira Mizutani at Tokyo
Metropolitan University, Tokyo, Japan, and Dr. Yoshiyuki Kabashima
at Tokyo Institute of Technology, Yokohama, Japan, for their helpful
discussion.

REFERENCES

[1] T. Tanaka, “A statistical-mechanics approach to large-system analysis of
CDMA multiuser detectors,” IEEE Trans. Inf. Theory, vol. 48, no. 11,
pp. 2888–2910, Nov. 2002.

[2] H. Nishimori, “Comment on ‘Statistical mechanics of CDMAmultiuser
demodulation’,” Europhys. Lett., vol. 57, no. 2, pp. 302–303, Jan. 2002.

[3] D. Guo and S. Verdú, “Minimum probability of error of many-user
CDMA without power control,” in Proc. IEEE Int. Symp. Information
Theory, Lausanne, Switzerland, Jun./Jul. 2002, p. 188.

[4] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Francisco, CA: Morgan Kaufmann, 1988.

[5] S. Verdú, “Computational complexity of optimum multiuser detection,”
Algorithmica, vol. 4, pp. 303–312, 1989.

[6] M. K. Varanasi and B. Aazhang, “Multistage detection in asynchronous
code-divisionmultiple-access communications,” IEEETrans. Commun.,
vol. 38, no. 4, pp. 509–519, Apr. 1990.

[7] , “Near-optimum detection in synchronous code-division multiple-
access systems,” IEEE Trans. Commun., vol. 39, no. 5, pp. 725–736,
May 1991.

[8] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,” IEEE Trans. Inf. Theory,
vol. 47, no. 2, pp. 599–618, Feb. 2001.

[9] S. Amari and K. Maginu, “Statistical neurodynamics of associative
memory,” Neural Netw., vol. 1, no. 1, pp. 63–73, 1988.

[10] M. Okada, “A hierarchy of macrodynamical equations for associative
memory,” Neural Netw., vol. 8, no. 6, pp. 833–838, 1995.

[11] H. Nishimori, Statistical Physics of Spin Glasses and Information Pro-
cessing: An Introduction. Oxford, U.K.: Oxford Univ. Press, 2001, ch.
7.

[12] K. H. Fischer and J. A. Hertz, Spin Glasses. New York: Cambridge
Univ. Press, 1991.

[13] Y. Kabashima, “A CDMA multiuser detection algorithm on the basis
of belief propagation,” J. Phys. A: Math. Gen., vol. 26, no. 43, pp.
11111–11121, Oct. 2003.

[14] D. Divsalar, M. K. Simon, and D. Raphaeli, “Improved parallel interfer-
ence cancellation for CDMA,” IEEE Trans. Commun., vol. 46, no. 2, pp.
258–268, Feb. 1998.

[15] R. M. Buehrer and S. P. Nicoloso, “Comments on ‘Partial parallel inter-
ference cancellation for CDMA’,” IEEE Trans. Commun., vol. 47, no. 5,
pp. 658–661, May 1999.

Convexity in Queues With General Inputs

Michael J. Neely, Member, IEEE, and
Eytan Modiano, Senior Member, IEEE

Abstract—In this correspondence, we develop fundamental convexity
properties of unfinished work and packet waiting time in a queue serving
general stochastic traffic. The queue input consists of an uncontrollable
background process and a rate-controllable input stream. We show that
any moment of unfinished work is a convex function of the controllable
input rate. The convexity properties are then extended to address the
problem of optimally routing arbitrary input streams over a collection
of queues in parallel with different (possibly time-varying) server
rates (() . . . ()). Our convexity results hold for stream-based
routing (where individual packet streams must be routed to the same
queue) as well as for packet-based routing where each packet is routed
to a queue by probabilistic splitting. Our analysis uses a novel technique
that combines sample path observations with stochastic equivalence
relationships.

Index Terms—G/G/1 queue, stochastic coupling.

I. INTRODUCTION

In this correspondence, we examine a work-conserving queue with
general stochastic inputs. We develop fundamental monotonicity and
convexity properties of unfinished work and packet waiting time in the
queue as a function of the packet arrival rate �. The arrival process con-
sists of two sets of input streams: an arbitrary and uncontrollable back-
ground stream �(t), and a rate-controllable input streamX(t) (Fig. 1).
The rate-controllable streamX(t) is composed of substreams fXi(t)g,
and its rate is varied in discrete steps by adding or removing one ormore
of these substreams as inputs to the queue.We show that anymoment of
unfinished work is a convex function of this discrete input rate. Under
the special case of first-in first-out (FIFO) service, we show that waiting
timemoments are also convex. This convexity result is extended to treat
continuous rate parameters �, where the rate is determined by proba-
bilistically splitting packets from an arbitrary stochastic input stream
according to a splitting probability p 2 [0; 1].

We then apply these convexity results to address the problem of op-
timally routing input streams over a parallel collection of K queues
with different server rates (�1; . . . ; �K), with the goal of minimizing a
cost function. In the symmetric case, where theK queues are weighted
equally in the cost function and have identical background processes,
this convexity result implies that the uniform rate allocation minimizes
cost. In the case of an asymmetric collection ofK parallel queues, we
present a sequentially greedy routing algorithm that is optimal.

Convexity of queue backlog and waiting time moments is an impor-
tant structural property. For example, convexity is essential for estab-
lishing optimality of classical gradient-based routing algorithms [2],
[13], and is also needed to prove optimality of threshold-based ad-
mission control strategies [3]. While it is intuitive that queue backlog
increases convexly as input rates are increased, a precise formulation
and proof of this result for general queueing systems has been a long-

Manuscript received January 18, 2002; revised September 22, 2004. The ma-
terial in this correspondence was presented at IEEE INFOCOM, Anchorage,
AK, April 2001.

M. J. Neely is with the Department of Electrical Engineering, University of
Southern California, Los Angeles, CA 90089 USA (e-mail: mjneely@usc.edu).

E. Modiano is with the Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail:
modiano@mit.edu).

Coommunicated by L. Tassiulas, Associate Editor for Communication Net-
works.

Digital Object Identifier 10.1109/TIT.2004.840859

0018-9448/$20.00 © 2005 IEEE

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 2, FEBRUARY 2005 707

Fig. 1. A work-conserving queue with server rate �, a general background
input �(t), and rate-controllable inputsX(t) = fX1(t); . . . ; XM(t)g.

standing open problem. This correspondence solves the problem using
a novel combination of sample path properties and stochastic equiva-
lence relationships. Our analysis also reveals situations when the con-
vexity property does not hold. Indeed, we show that the convexity prop-
erty for unfinished work extends to systems with time-varying server
rates �(t), but that waiting time moments are not necessarily convex in
this context.

As amotivating example, belowwe present a simple andwell-known
result concerning convexity of unfinished work as a function of the
server rate �. Let X(t) be an input process to a queue that is initially
empty, where X(t) represents the number of bits that arrived to the
queue up to time t. LetU(t) represent the “unfinishedwork,” or number
of unprocessed bits, in the queue at time t. It is well known that U(t)
can be expressed using a supremum operator

U(t) = sup
��0

fX(t)�X(t� �)� ��g :

By convexity of this supremum operator, it immediately follows that
the value of U(t) at any time t is convex in the � parameter. This is
a sample path result that holds for any input X(t), and it follows that
averages and higher moments of unfinished work are also convex in �.
This observation is extended to finite buffer systems in [4] and [5].

However, now consider the example problem of sequentially ap-
plying input streams X1(t);X2(t); . . . ; Xn(t), and showing that av-
erage unfinished work at a particular time t grows convexly with the
number of streams added. Specifically, assume that X1(t) is any sto-
chastic arrival process with arbitrarily correlated interarrival and ser-
vice times, and that all streams fXi(t)g are independent but distributed
identically to X1(t). The unfinished work can again be expressed in
terms of the supremum operator

U(t) = sup
��0

n

i=1

[Xi(t)�Xi(t� �)]� �� :

However, in this case, the supremum operator is not helpful, as par-
ticular sample paths may not be convex in n (consider the example
where the next stream added happens to have no arrivals during the
interval [0; t]). In this correspondence, we use an alternate and novel
technique to establish convexity when input streams fXi(t)g are ex-
changeable (which includes the case described above where all streams
are independent). We first introduce a new function of the superposi-
tion of two streams that we call the blocking function. Analysis is per-
formed by combining sample path properties of the blocking function
with simple stochastic equivalence relationships, and all results follow
directly from first principles of queueing systems.

Previous work on stochastic monotonicity and convexity in queues
considers traffic with independence assumptions on packet inter-arrival
times, service times, or both [6]–[12]. Convexity properties of parallel
“GI/GI/1” queues with packet-based probabilistic routing are devel-
oped in [10]–[12], where it is shown under various independence as-
sumptions that backlog moments in each queue are convex functions of

Fig. 2. A work-conserving queue and typical sample paths of accumulated and
unfinished work.

the splitting probability, and hence uniform probabilistic splitting min-
imizes expected backlog in homogeneous systems among the class of
all probabilistic splittings. A related result for homogeneous systems in
[14] shows that uniform splitting is optimal for arbitrary arrivals in a
system of parallel queues with independent and identically distributed
(i.i.d.) exponential servers. These results are largely based on a theory
of majorization and Schur-convex functions. Our approach is quite dif-
ferent and enables general analysis of both stream-based routing and
packet-based probabilistic splitting. Independence assumptions are not
required for the analysis, and our convexity result is the first of its kind
to treat general stochastic inputs.

In the next section, we define the blocking function. In Section III,
we establish convexity properties of unfinished work and packet
waiting time in terms of a discrete set of input streams. Probabilistic
splitting and continuous input rates are treated in Section IV, and in
Section V, we consider applications to routing over parallel queues.
Time-varying server rates are treated in Section VI.

II. THE BLOCKING FUNCTION

Consider a work-conserving queue with a single server that can
process packets at a constant rate of � bits per second. The queue is
assumed to be initially empty at time t = 0. Variable-length packets
from input stream X flow into the queue and are processed at the
single server according to any work-conserving service discipline
(such as first-in first-out (FIFO), last-in first-out, shortest packet first,
generalized processor sharing, etc.). The input stream is characterized
by two random processes: i) the sequence fakg of inter-arrival times,
and ii) the sequence flkg of packet lengths.

The processes fakg and flkg are assumed to be ergodic with ar-
rival rate � and average packet length fLg, respectively. In general,
inter-arrival times may be correlated with each other as well as jointly
correlated with the packet length process. We maintain this generality
by describing the input to the queue by the single random processX(t),
which represents the amount of bits brought into the queue as a function
of time. As shown in Fig. 2, a particular inputX(t) is a nondecreasing
staircase function. Jumps in the X(t) function occur at packet arrival
epochs, and the amount of increase at these times is equal to the length
of the entering packet.

For a given queue with input processX(t), we define the unfinished
work process UX(t) as the total amount of unprocessed bits in the
queueing system (buffer plus server) as a function of time. Note that
for a system with a processor of rate � and an amount of unfinished
workUX(t), the quantityUX(t)=� represents the time required for the
system to empty if no other packets were to arrive. It is clear thatUX(t)
is the same for all work-conserving service disciplines. It is completely
determined byX(t) as well as the server rate�. An example unfinished

708 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 2, FEBRUARY 2005

Fig. 3. An example sample path of the unfinished work function UX +X (t)
in a system whereX1 packets have preemptive priority.

work function UX(t) is shown in Fig. 2. Notice the triangular structure
and the fact that each new triangle emerges at packet arrival times and
has a downward slope of ��.

We define the superposition of two input streams X1(t); X2(t) as
the sum processX1(t)+X2(t). The following sample path observation
holds for any arbitrary sample paths for processes X1(t);X2(t):

Observation 1: For all times t, we have

UX +X (t) � UX (t) + UX (t): (1)

Thus, for any two inputsX1 andX2, the amount of unfinished work
in a work-conserving queueing system with the superposition process
X1+X2 is always greater than or equal to the sum of the work in two
identical queues with these same processes X1 and X2 entering them
individually. Note that a simple special case of this observation is the
fact that busy periods in a queuewith inputX1(t) alone are subintervals
of busy periods in a queue with the superposition inputX1(t)+X2(t).

Proof: (Observation 1) We compare a queue with input X1(t)
alone to a queue withX1(t)+X2(t). SinceUX +X (t) is the same for
all work-conserving service disciplines, we can imagine that packets
from the X1 stream have preemptive priority over X2 packets. The
queueing dynamics of the X1 packets are therefore unaffected by any
low-priority packets from the X2 stream. Thus, the UX +X (t) func-
tion can be written as UX (t) plus an extra amount extraX (t) due
to the X2 packets, as shown in Fig. 3. This extra amount (represented
as the striped region in Fig. 3) can be viewed as the amount of un-
finished work remaining in a queue with the X2 input stream alone,
where the server goes on idle “vacations” exactly at times whenUX (t)
is nonzero. Clearly, this unfinished work is greater than or equal to
the unfinished work there would be if the server did not go on vaca-
tions—which is UX (t). Thus,

UX +X (t) = UX (t) + extraX (t) � UX (t) + UX (t):

This simple observation motivates the following definition.

Definition 1: The Blocking Function �X ;X (t) between two
streams X1 and X2 is the function

�X ;X (t) UX +X (t)� UX (t)� UX (t): (2)

Thus, the blocking function is a random process that represents the
extra amount of unfinished work in the system due to the blocking in-
curred by packets from theX1 stream mixing with the X2 stream.

Lemma 1: The blocking function has the following properties for
all times t:

�X ;X (t) � 0 (Nonnegativity)

�X ;X (t) =�X ;X (t) (Symmetry)

�X +X ;X (t) ��X ;X (t) (Monotonicity):

The nonnegativity lemma is just a restatement of (1), while the sym-
metry property is obvious from the blocking function definition. The
monotonicity property is the most interesting. Intuitively interpreted,

Fig. 4. A queueing illustration of the monotonicity property of the blocking
function.

the monotonicity property means that the amount of blocking incurred
by the (X1 + X2) process intermixing with the X3 process is larger
than the amount incurred by theX1 process alone mixing with theX3

process.
Proof: (Monotonicity) From the definition of the blocking func-

tion in (2), we find that the monotonicity statement is equivalent to the
following inequality at every time t:

UX +X +X (t)� UX +X (t)� UX (t)

� UX +X (t)� UX (t)� UX (t):

Canceling and shifting terms, it follows that we must prove

UX +X +X (t) + UX (t) � UX +X (t) + UX +X (t): (3)

We have illustrated (3) in Fig. 4. We thus prove that the sum of the
unfinished work in Systems A and B of Fig. 4 is greater than or equal
to the sum in A0 and B0 .

In a manner similar to the proof of Observation 1, we give packets
from both theX1 andX2 streams preemptive priority overX3 packets.
The queues of Fig. 4 can thus be treated as having servers that take
“vacations” from serving X3 packets during busy periods caused by
the other streams. Comparing the A and A0 Systems, as well as the B
and B0 Systems, we have

UX +X +X (t)=UX +X (t) + extra in System A(t) (4)

UX +X (t) =UX (t) + extra in System B
0(t) (5)

where extra in System A(t) represents the amount of unfinished
work from X3 packets in a queue whose server takes vacations
during busy periods caused by the X1 and X2 streams. Likewise,
extra in System B0(t) represents the amount of unfinished work from
X3 packets when vacations are only during X1 busy periods. Since
busy periods caused by theX1 stream are subintervals of busy periods
caused by the combined X1 + X2 stream, the X3 packets in System
A experience longer server vacations, and we have:

extra in System A(t) � extra in System B
0(t): (6)

Using (4)–(6) verifies (3) and concludes the proof.

The three properties of Lemma 1 are sufficient to develop some very
general convexity results for stochastic queues.

III. EXCHANGEABLE INPUTS AND CONVEXITY

In this section, we use the blocking function to show that anymoment
of unfinished work in a queue is a convex function of the input rate �.
To do this, we must first specify how an arbitrary input process can be
parameterized by a single rate value. The parameterization should be
such that an input stream of rate 2� can be viewed as being composed
of two similar streams of rate �. Otherwise, it is clear that the convexity
result may not hold. Indeed, consider an input streamX1(t) delivering
bursty data at rate �, and another stream X2(t) also delivering data at

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 2, FEBRUARY 2005 709

rate � according to some other, less bursty process. IfX1(t) andX2(t)
are sequentially added as inputs to a queue, the expected increment in
unfinishedwork due to the additionalX2(t) inputmay not be as large as
the initial increment due to theX1(t) input. This happens if theX2(t)
process is much smoother than X1(t), or if it is constructed to have
packet arrivals precisely at idle periods of the queue with the X1(t)
input alone.

Here, we consider the input rate � as a discrete quantity that is varied
by adding or removing substreams of the same “type” from the overall
input process. We begin by developing the notion of exchangeable
random variables [7].

Definition 2: A collection ofM random variables are exchangeable
if

pX ;X ;...;X (x1; . . . ; xM) = p ~X ; ~X ;...;~X (x1; . . . ; xM) (7)

for every (~X1; . . . ; ~XM) permutation of (X1; . . . ; XM), where
pX ;X ;...;X (x1; . . . ; xM) is the joint density function.

Thus, exchangeable random variables exhibit a simple form of sym-
metry in their joint distribution functions. Definitions for random vari-
ables to be conditionally exchangeable given some event ! can be sim-
ilarly defined: The distributions in (7) are simply replaced by condi-
tional distributions. It is clear that any set of i.i.d. random variables are
exchangeable. Thus, exchangeable variables form a wider class than
i.i.d. variables, and hence statements that apply to exchangeable vari-
ables are more general. Unlike i.i.d. variables, however, it can be seen
that if random variables (X1; . . . ; XM) are conditionally exchange-
able given some other random variable �, then they are exchangeable.

We can extend this notion of exchangeability to include random
processes that represent packet-arrival streams. The following def-
inition captures the idea that for any sample path realization of
exchangeable processes (X1(t); . . . ; XM(t)), the permuted sample
path (~X1(t); . . . ; ~XM(t)) is “equally likely.”

Definition 3: Random processes (X1(t); . . . ; XM(t)) are ex-
changeable if for any permutation (~X1(t); . . . ; ~XM(t)), we have

f�(X1; . . . ; XM)g = �(~X1; . . . ; ~XM)

for every measurable operator �(�) that maps the processes to a single
real number.

Definition 4: Random processes (X1(t); . . . ; XM(t)) are con-
ditionally exchangeable given process �(t) if for every permutation
(~X1(t); . . . ; ~XM(t)), we have

f�(X1; . . . ; XM ; �)g = �(~X1; . . . ; ~XM ; �)

for every real valued operator �(�) that acts on the processes.

Hence, random processes are exchangeable if their joint statistics are
invariant under every permutation. Note that the �(�) operator maps
a set of sample paths to a real number. For example, it could corre-
spond to the mapping of the input processX(t) to its unfinished work
at a particular time t�. Exchangeable processes have the same prop-
erties as their random variable counterparts. In particular, if processes
(X1; . . . ; XM) are exchangeable given a process �, then

• processes (X1; . . . ; XM) are exchangeable;
• processes (Xn; . . . ; XM) are exchangeable given processes
X1; . . . ; Xn�1; �;

• if	(�) is an operator that maps processesX1(t);X2(t) and �(t)
to another process Z(t) = 	(X1;X2; �), then 	(X1;X2; �)
and 	(X2;X1; �) are exchangeable processes given �(t).

The above properties are simple consequences of the definitions,
where the last property follows by defining the operator

~�(X1;X2; �) �((X1;X2; �);	(X2;X1; �); �):

Below we provide three examples of exchangeable input processes that
can act as input streams to a queueing system.

Example 1: Any general arrival processes fXi(t)g i.i.d. over M
input lines.

Example 2: Any general arrival process X(t) which is split into
M streams by independently routing each packet to stream i 2
f1; . . . ;Mg with equal probability.

Example 3: Any arbitrary collection of M processes
(X1(t); . . . ; XM(t)) which are randomly permuted (with each
permutation equally likely).

Notice that Example 1 demonstrates the fact that i.i.d. inputs are
exchangeable. However, Example 2 illustrates that exchangeable inputs
form a more general class of processes by providing an important set
of input streams which are not independent yet are still exchangeable.
Notice that this probabilistic routing can be extended to include “state-
dependent” routingwhere the probability of routing to stream i depends
on where the last packet was placed. The third example shows that an
exchangeable input assumption is a good a priorimodel to use when an
engineer is given simply a “collection of wires” from various sources,
and has no a priori way of distinguishing the process running over
“wire 1” from the process running over “wire 2.”

We now examine how the unfinished work in a queue changes when
a sequence of exchangeable inputs are added. Let �(t) be an arbitrary
background input process, and let X1(t) and X2(t) be two processes
which are exchangeable given �(t). LetUX (t) represent the unfinished
work process as a function of time in a queue with an input process
X(t) running through it. Furthermore, let f(u) represent any convex,
nondecreasing function of the real number u for u � 0. We assume
that the expected value of f(UX(t)) is well defined for all t. (Note
that expectations over functions of the form f(u) = uk represent kth
moments of unfinished work). The following theorem shows that in-
cremental values of queue cost are nondecreasing with each additional
input.

Theorem 1: For any particular time t�, we have

f (U�+X +X (t�))� f (U�+X (t�))

� f (U�+X (t�))� f (U�(t
�)) :

Proof: Define the following processes:

�1(t) U�+X (t)� U�(t) (8)

�2(t) U�+X +X (t)� U�+X (t):

By using the blocking function properties developed in the previous
section, we find that for any time t we have

�2(t) =UX (t) + ��+X ;X (t)

�UX (t) + ��;X (t) (9)

=U�+X (t)� U�(t) ~�1(t) (10)

where (9) follows by the monotonicity property of the blocking func-
tion, and where we have defined a new process

~�1(t) U�+X (t)� U�(t)

in (10). Because X2(t) and X1(t) are exchangeable given �(t), and
because the ~�1(t) and�1(t) processes are derived from the same op-
erator that maps inputs to differences in unfinished work (compare (8)
and (10)), it follows that ~�1(t) and�1(t) are exchangeable processes
given �(t). Thus, for any time t�, inequality (10) states that�2(t

�) is a
random variable that is always greater than or equal to another random
variable which has the same distribution as �1(t

�).
We now use an increasing increments property of nondecreasing,

convex functions f(u).

710 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 2, FEBRUARY 2005

Fact: For nonnegative real numbers a; b; x, where a � b, we have

f(a+ x)� f(a) � f(b+ x)� f(b): (11)

Using this fact and defining a U�+X (t�), x �2(t
�) and

b U�(t
�) we have

f(U�+X (t�) + �2(t
�))� f(U�+X (t�))

� f(U�(t
�) + �2(t

�))� f(U�(t
�)) (12)

� f(U�(t
�) + ~�1(t

�))� f(U�(t
�)): (13)

Inequality (12) follows from from (11) and the fact that U�+X (t�) �
U�(t

�) (from (1)). Inequality (13) follows because f(u) is non-
decreasing, and because �2(t

�) � ~�1(t
�) (from (10)). Taking

expectations of the inequality above, we find

f (U�+X (t�) + �2(t
�))� f (U�+X (t�))

� f U�(t
�) + ~�1(t

�) � f (U�(t
�)) : (14)

Using the fact that ~�1(t) and �1(t) are exchangeable given �(t), we

can replace the f U�(t
�) + ~�1(t

�) term on the right-hand side of

(14) with f (U�(t
�) + �1(t

�)), which yields the desired result.

The preceding theorem can be used to immediately establish a con-
vexity property of unfinished work in a work-conserving queue with a
collection of exchangeable inputs. Assume we have such a collection
of M streams (X1; . . . ; XM) which are exchangeable given another
background stream �(t). Assume that each of the streams Xi has rate
�� . The total input process to the queue can then be viewed as a func-
tion of a discrete set of rates � = n�� for n 2 f0; 1; . . . ;Mg. Let
f (U [n��]) represent the expectation of a function f(�) of the unfin-

ished work (at some particular time t�, which is suppressed for nota-
tional simplicity) when the input process consists of stream �(t) along
with a selection of n of the M exchangeable streams.

Hence,

f (U [n��]) f (U�+X +���+X (t�)) (0 � n �M): (15)

Theorem 2: At any specific time t�, the function f (U [�]) is
monotonically increasing and convex in the discrete set of rates
� (� = n�� , n 2 f0; 1; . . . ;Mg). In particular, any moment of
unfinished work is convex.

Proof: Convexity of a function on a discrete set of equidistant
points is equivalent to proving successive increments are nonde-
creasing. Hence, the statement is equivalent to

f (U [(n+ 2)��])� f (U [(n+ 1)��])

� f (U [(n+ 1)��])� f (U [n��]) : (16)

Defining the “background stream” �(t) = �(t)+X1(t)+� � �+Xn(t),
we find that inequality (16) follows immediately from Theorem 1.

A. Waiting Times

Notice that in Theorems 1 and 2, expectations were taken at any
particular time t�. It is not difficult to show that this property im-
plies steady-state unfinished work is convex, whenever such steady-
state limits exist. Moreover, we can allow t� to be a time of special in-
terest, such as the time when a packet from the X1 stream enters the
system. In FIFO queues, the unfinished work in the system at this spe-
cial time represents the amount of waiting time W that the entering
packet spends in the queue before receiving service. In this way, we
show that waiting time increments are convex after the first stream is
added. Specifically, for a system with a background input �(t) andM
inputs fX1; . . . ; XMg which are exchangeable given �(t), we define
the following steady-state moments (which are functions of the discrete
set of input rates � 2 f0; ��; 2��; . . . ;M��g).

f W
(q)
� [�] ; f (W�[�]) = Steady-state waiting time moment

corresponding to the time a packet from background stream �(t) spends
in the queue and in the system, respectively, when the controllable input
rate is �.

f W
(q)
X [�] ; f (WX [�]) = Steady-state waiting time moment

corresponding to the time a packet from a controllable input stream
spends in the queue and in the system, respectively, when the control-
lable input rate is �.

f (N [�]) = Steady-state moment of the number of packets in
the system (from both the background and controllable input streams)
when the controllable input rate is �.

Formally, the steady-state waiting time moments are defined

f (W) lim
K!1

1

K

K

k=1

f (Wk)

where Wk represents the waiting time of the kth packet of the appro-
priate input stream. Likewise, the steady-state occupancy moment is
defined

f (N) lim
t!1

1

t

t

0

f (N(�))d�:

Note that we have distinguished between waiting times of packets
from the controllable input streamX and from the background input �.
This distinction is important for establishing convexity, as described by
the following corollary and the subsequent example. Assuming these
steady-state moments exist for the convex increasing function f(u) of
interest, we have the following.

Corollary 1: In FIFO queueing systems

a) f W
(q)
� [�] and f (W�[�]) are nondecreasing and

convex in the discrete set of rates � � 0 (i.e., � = n�� ,
n 2 f0; 1; . . . ;Mg);

b) f W
(q)
X [�] and f (WX [�]) are nondecreasing and convex

in the discrete set of rates � > 0;
c) fN [�]g is nondecreasing and convex in the discrete set of rates

� � 0.

Caveat: Note that in b), waiting times for packets from the control-
lable input streams are not defined when � = 0. Thus, convexity in
this case is defined only for � > 0. Further note that in c), the function
f(�) is intentionally absent from the expectation, as we can only estab-
lish convexity of the first moment of packet occupancy in this general
setting with variable length packets.

Proof: To prove a), let p be a certain packet from the � input
stream which arrives to the system at time tp. When n of the con-
trollable inputs are applied to the system, U�+X +���+X (t�p)=�
represents the amount of time packet p is buffered in the queue, and
U�+X +���+X (t+p)=� is the total system time for packet p. From
Theorem 2, f (U [�]) is a nondecreasing, convex function of � � 0
when unfinished work is evaluated at any time t�, including times
t� = t�p and t� = t+p . Hence, the expected waiting time of packet p in
the queue and in the system is a nondecreasing convex function of the
controllable input rate. Because this holds for any packet p from the �
stream, the expected waiting time averaged over all � packets is also
convex, completing the proof.

To prove b), now let packet p represent a packet from the first con-
trollable input streamX1. Considering the sum process �(t)+X1(t) as
a combined background stream with respect to inputs fX2; . . . ; Xng
(and noting that fX2; . . . ; Xng remain exchangeable given �(t) +
X1(t)), from a) we know that the expected queueing time and system

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 2, FEBRUARY 2005 711

time of packet p is a nondecreasing convex function of � � �� . Be-
cause inputs fX1; . . . ; XMg are exchangeable, the expected waiting
time of a packet from stream X1 is not different from the expected
waiting time of a packet from stream Xk (provided that stream Xk is
also applied to the system), and the result follows.

To prove c), let f(x) = x. From b) we know that fWX [�]g is
nondecreasing and convex for � > 0. It is straightforward to verify that
for any such function, the function � fWX [�]g is nondecreasing and
convex for � � 0, where � fWX [�]g is defined to be 0 at � = 0. Let
�� represent the rate of the �(t) stream. By Little’s theorem, it follows
that

fN [�]g = � fWX(�)g+ �� fW�[�]g

is nondecreasing and convex in �, as this is the sum of nondecreasing
convex functions.

One might expect the waiting timeW av averaged over packets from
both the controllable and uncontrollable input streams to be convex.
However, note that

W av[�] =
��

�+ ��
fW�[�]g +

�

�+ ��
fWX [�]g

is not necessarily convex even though both fW�[�]g and fWX [�]g
are. Indeed, the following simple example shows thatW av[�]may even
decrease as � increases.

Example: Let background input �(t) periodically produce a new
packet of service time 10 at times t = f0; 100;200; . . .g. Let input
X1(t) consist of packets of service time 2 occurring periodically at
times t = f50; 150; 250; . . .g. Hence, packets from �(t) and X1(t)
never interfere with each other. We thus have W av(0) = 10 and
W av[��] = (10 + 2)=2 = 6.

IV. CONVEXITY OVER A CONTINUOUS RATE PARAMETER

In the previous section, we dealt with streams of inputs and demon-
strated convexity of unfinished work and waiting time moments as
streams are removed or added. Here, we extend the theory to include
input processes that are parameterized by a continuous rate variable �.
The example to keep in mind in this section is packet-by-packet prob-
abilistic splitting, where individual packets from an arbitrary packet
stream are independently sent to the queue with some probability p.
However, the results apply to any general “infinitely splittable” input,
which are inputs that can be split into substreams according to some
splitting method, as described as follows.

Definition 5: A packet input processX(t) together with a splitting
method is said to be infinitely splittable if

1) there exists a method of splitting X(t) into substreams;
2) X(t) or any of its substreams can be split into disjoint sub-

streams of arbitrarily small rate. Any superposition of disjoint
substreams of X(t) is considered to be a substream;

3) any two (potentially nondisjoint) substreams that have the same
rate are conditionally exchangeable given the rest of the process.

We emphasize that the above definition incorporates both the input
process X(t) and the method of splitting. Notice that any stochastic
arrival processX(t) is infinitely splittable when using the probabilistic
splittingmethod of independently including packets in a new substream
i with some probability pi. Likewise, probabilistic splitting of the lead
packet in systems where blocks ofK sequential packets must be routed
together can be shown to satisfy the conditions of infinite splittability.

However, not all splitting methods satisfy the above definition. Con-
sider for example a “divide by 2” splitting method, where an input
stream is split into two substreams by alternately routing packets to

the first stream and then the second. Suppose the base input stream
X(t) has rate � and consists of fixed-length packets of unit size. Under
this splitting method, any substream of rate � k

2
can be formed by col-

lecting superpositions of disjoint substreams of rate �=2n (where k and
n are any integers such that k � 2n). Thus, the first two conditions
of infinite splittability are satisfied. However, it is not clear how a sub-
stream ~X(t) of rate �=2 is distributed. For example, the original stream
X(t) could be split into two substreams, one of which is randomly
chosen as ~X(t) and consists of every other packet arrival from X(t).
Alternately, the “divide by 2” splitting method might be used to form
~X(t) by iteratively splitting X(t) into eight substreams of rate �=8, a
random four of which are grouped together to form the rate �=2 sub-
stream. Clearly, the two approaches to building a rate �=2 substream
do not generally lead to identically distributed processes, as the first ap-
proach leads to a rate �=2 substream that never contains two successive
packets from the original stream, while the second approach leads to
a �=2 substream that might contain two successive packets. Thus, the
divide-by-2 splitting method satisfies the first two conditions of Defi-
nition 5 but not the third.

With the above definition, it can be seen that an infinitely splittable
input process X(t) can be written as the sum of a large number of
exchangeable substreams. Specifically, it has the property that for any
� > 0, there exists a large integer M such that

X(t) =

M

i=1

xi(t) + ~x(t)

where (x1(t); . . . ; xM (t)) are exchangeable substreams, each with
rate �� , ~x(t) has rate ~�� , and ~�� < �� < �.

We now use the blocking function to establish continuity of expected
moments of unfinished work as a function of the continuous rate pa-
rameter �. As before, these results also apply to waiting times in FIFO
systems.

Again we assume that f(u) is a nondecreasing convex function over
u � 0. SupposeX(t) is an infinitely splittable input process with total
rate �tot. Suppose also that all exchangeable component processes of
X(t) are also exchangeable given the background input process �(t).
Let f (U [�tot]) represent the expectation of a function of unfinished
work at a particular time t� in a queue with this input and background
process. We assume here that f (U [�tot]) is finite.

Theorem 3: f (U [�]) can be written as a pure function of the con-
tinuous rate parameter �, where � 2 [0; �tot] is a rate achieved by
some substream of the infinitely splittable X(t) input. Furthermore,
f (U [�]) is a monotonically increasing and continuous function of �.
Proof: The proof uses the machinery of the blocking function,

and is given in the Appendix.

The continuity property of Theorem 3 allows us to easily establish
the convexity of any moment of unfinished work (and packet waiting
time) in a general queue as a function of the continuous input rate �. Let
X(t) be an infinitely splittable input process, and suppose that every
collection of exchangeable components ofX(t) are also exchangeable
given the background process �(t). Then we have the following.

Theorem 4: At any particular time t�, the function f (U [�]) is
convex over the continuous variable � 2 [0; �tot]. Likewise, if service
is FIFO, then f (W [�]) is also convex.

Proof: We wish to show that the function f (U [�]) always lies
below its chords. Thus, for any three rates �1 < �2 < �3, we must
verify that

f (U [�2])� f (U [�1])+(�2��1)
(f (U [�3])� f (U [�1]))

(�3��1)
:

(17)

712 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 2, FEBRUARY 2005

Fig. 5. Multiple queues in parallel with different background processes �i(t)
and server rates �i.

We know from Theorem 2 in Section III that the unfinished work func-
tion is convex over a discrete set of rates when the input process is char-
acterized by a finite set ofM exchangeable streams (x1; . . . ; xM). We
therefore consider a discretization of the rate axis by considering the
subprocesses (x1; . . . ; xM) of the infinitely splittable process X(t),
where each xi has a small rate �. In this discretization, we have rates

~�1 = k1�; ~�2 = k2�; ~�3 = k3� (18)

where the rates (~�1; ~�2; ~�3) can be made arbitrarily close to their coun-
terparts (�1; �2; �3) by choosing an appropriately small value of �.
Now, from the discrete convexity result, we know

f U [~�2] � f U [~�1] +(~�2�~�1)
f U [~�1] � f U [~�1]

(~�3�~�1)
:

(19)

By continuity of the f (U [�]) function, we can choose the discretiza-
tion unit � to be small enough so that the right-hand side of (19) is
arbitrarily close to the right-hand side of the (currently unproven) in-
equality (17). Simultaneously, we can ensure that the left-hand sides
of the two inequalities are arbitrarily close. Thus, the known inequality
(19) for the discretized inputs implies inequality (17) for the infinitely
splittable input. We thus have convexity of unfinished work at any point
in time, which also implies convexity of waiting time in FIFO systems.

V. MULTIPLE QUEUES IN PARALLEL

We now consider the system of K queues in parallel as shown in
Fig. 5. The server for each queue k has rate �k and arbitrary back-
ground packet input processes �k(t). An arbitrary input process X(t)
also enters the system, andX(t) is rate controllable in that a router can
split X(t) into substreams of smaller rate. These substreams can be
distributed according to a K-tuple rate vector (�1; . . . ; �K) over the
multiple queues.

We consider both the case when X(t) is an infinitely splittable
process (as in packet-based probabilistic splitting), and the case when
X(t) is composed of a finite collection of M exchangeable streams.
The problem in both cases is to route the substreams by forming
an optimal rate vector that minimizes some network cost function.
We assume the cost function is a weighted summation of unfinished
work and/or waiting time moments in the queues. Specifically, we
let ffk(u)g be a collection of convex, nondecreasing functions on
u � 0. Suppose that the queues reach a steady-state behavior, and let
f (Uk[�k]) represent the steady-state moment of unfinished work in

queue k when an input stream of rate �k is applied. Let f (Wk[�k])
represent the steady-state moment of waiting time for queue k.

Theorem 5: If queues are work conserving and X(t) is either a
finitely1 or infinitely rate splittable process given f�k(t)g, then we have
the following.

a) Cost functions of the form

C(�1; . . . ; �K) =

K

k=1

fk(Uk[�k]) (20)

are convex in the multivariable rate vector (�1; . . . ; �K).
b) If service is FIFO, then cost functions of the form

C(�1; . . . ; �K) =

K

k=1

�k fk(Wk[�k]) (21)

are convex (where theWk[�k] values represent waiting times of
packets from the controllable inputs).

c) If service is FIFO and Nk(�k) represents the number of packets
in queue k in steady state, then cost functions of the following
form are convex:

C(�1; . . . ; �K) =

K

k=1

ck fNk[�k]g (fckg � 0): (22)

Proof: Since fk(Wk[�k]) is convex and nondecreasing for
�k > 0, the function �k fk(Wk[�k]) is convex on �k � 0. Thus,
the cost functions in a) and b) are summations of convex functions, so
they are convex. Part c) follows from b) by noting that, from Little’s
theorem, fNg = � fWg.

Convexity of the cost function C(�1; . . . ; �K) can be used to de-
velop optimal rate distributions (��1; . . . ; �

�

K) over the simplex con-
straint �1 + � � � + �K = �tot. For symmetric cost functions, which
arise when the background processes f�k(t)g and the server rates f�kg
are the same for all queues k 2 f1; . . . ; Kg, the optimal solution is
particularly simple. Indeed, for the case of packet-based routing with
continuous splitting rates, the uniform splitting (�=M; . . . ; �=M) is
optimal for symmetric systems. In the case of routing a discrete set of
M streams over the queues, the optimal routing is the load balanced
assignment of dM=Ke streams to (M)mod(K) of the queues, and
bM=Kc streams to the remaining queues.

In the nonsymmetric case with continuous splitting, convexity im-
plies that optimal routing splits can be determined by a simple Lagrange
multiplier calculation [2], [15]. In the case of stream-based routing, the
optimal assignment is given by the following greedy algorithm. Let
C(M1; . . . ;MK) represent the cost function for the routing assign-
ment (M1; . . . ;MK). Assume C(�) is either fully known, or that it
can be estimated.

Lemma 2: Given a convex cost function C(M1; . . . ;MK) of the
form specified in Theorem 5, the optimal allocation vector can be ob-
tained by sequentially adding streams, greedily choosing at each iter-
ation the queue that increases the total cost C(�) the least. This yields
a cost-minimizing vector (M�

1 ; . . . ;M
�

K) after M + K � 1 evalua-
tions/estimations of the cost function.

Proof: This lemma follows as a special case of a theory of integer
optimization over separable convex functions (see [15]). A simplified
and independent proof is given in [16].

VI. TIME-VARYING SERVER RATES

Here we consider the system of Fig. 1 when the constant server of
rate � is replaced by a time-varying server of rate �(t). Sample path
characteristics of the unfinished work UX(t) for time-varying servers
are similar to those illustrated in Fig. 2 for constant server systems, with

1We note that convexity on a discrete set of points is equivalent to convexity
of the piecewise-linear interpolation.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 2, FEBRUARY 2005 713

the exception that the UX(t) function decreases with a time-varying
slope ��(t).

Convexity analysis of UX (t) in this context is similar to the anal-
ysis for constant server rate systems. Indeed, defining the unfinished
work blocking function �X ;X (t) as before and literally repeating the
same arguments of Section II, we can establish that the nonnegativity,
symmetry, and monotonicity properties still hold for �X ;X (t) in this
time-varying context.

Likewise, we can define NX(t) as the (integer) number of packets
in the system at time t, and define the occupancy blocking function
�X ;X (t) as follows:

�X ;X (t) NX +X (t)�NX (t)�NX (t):

While the occupancy blocking function may not satisfy the mono-
tonicity property for general variable-length packets, it can be shown to
satisfy nonnegativity, symmetry, and monotonicity in the special case
when all packets have fixed lengths ofL bits and service is nonpreemp-
tive (see [16]).

Consequently, given a collection ofK queues with background input
processes f�k(t)g and server rate processes f�k(t)g, together with a
(finitely or infinitely distributable) input X(t), we can establish the
following.

Theorem 6: If the exchangeable components ofX(t) are exchange-
able given f�k(t)g and f�k(t)g, then fk(Uk[�i]) is convex in the
rate vector (�1; . . . ; �K). If all packets have a fixed length of L bits
and service is nonpreemptive, then fk(Nk[�k]) is convex in the
rate vector.

Recall from Little’s theorem that if the expected waiting time
fW (�)g is convex in �, then so is the expected packet occupancy
fN(�)g. However, the converse implication does not follow. Indeed,

below we provide a (counter) example which illustrates that—even
for fixed-length packets under FIFO service—waiting times are not
necessarily convex for time-varying servers.

(Counter) Example: Consider identical input processesX1; X2; X3

which produce a single packet of length L = 1 periodically at times
f0; 3; 6; 9; . . .g. Let the server rate be periodic of period 3 with
�(t) = 1 for t 2 [0; 2] and �(t) = 100 for t 2 (2; 3). Then
fWX g = 1, fWX +X g = 1:5, and fWX +X +X g = 1:67.

Clearly, the increment in average waiting time when stream X2 is
added is larger than the successive increment when stream X3 is
added. Hence, waiting time is not convex in this time-varying server
setting.

Although waiting times are not necessarily convex, notice that
minimizing W tot in a parallel queue configuration (Fig. 5) is ac-
complished by minimizing N tot (since N tot = �totW tot). For
fixed-length packets, Theorem 6 ensures this is a convex optimization
even for time-varying servers. Indeed, notice that expected occupan-
cies fNX g, fNX +X g, and fNX +X +X g for the above
example can be obtained by multiplying fWX g, fWX +X g,
and fWX +X +X g by � = 1=3; 2=3; and 3=3, respectively,
and the resulting values are convex. Indeed, the nonconvex values
1; 1:5; and 1:67 become 1

3
; 1; and 1:67, which have increasing incre-

ments.

VII. CONCLUSION

We have developed general convexity results for queues with ar-
bitrary stochastic inputs. These convexity results establish important
structural properties of queueing systems and lead to simple algorithms
for optimal routing over parallel queues. Analysis was performed by in-
troducing a new function of two input streams that we call the blocking
function. Nonnegativity, symmetry, and monotonicity properties of the

blocking function were established. These properties are valuable tools
for proving convexity of unfinished work and waiting time moments in
queues with both discrete and continuous input rates �, and can likely
be used to establish convexity in other contexts.

APPENDIX

CONTINUITY OF UNFINISHED WORK

Here we show that for any particular time t�, f (U [�]) is a con-
tinuous, monotonically increasing function of � (Theorem 3 of Sec-
tion IV). We utilize the following facts about convex, nondecreasing
functions.
Fact 1: If f(u) is nondecreasing and convex, then for any fixed

a � 0 there is a function g(a; x) such that f(a+x) = f(a)+g(a; x),
where g(a; x) is a convex, nondecreasing function of x for x � 0.
Fact 2: Any convex, nondecreasing function g(x) with g(0) = 0

has the property that g(x1+x2) � g(x1)+ g(x2) for any x1; x2 � 0.
Let X(t) represent the base input of the controllable stream, which

is infinitely splittable and has total rate �max. Note that

f (U [�]) f (U�+X (t�))

where �(t) is a background input andX�(t) is any substream ofX(t)
with rate �. This is a well-defined function of � because, by the prop-
erties of infinitely splittable inputs, all substreams with the same rate
are identically distributed. The fact that f (U [�]) is monotonically
increasing in � follows as a simple consequence of the nonnegativity
property of the blocking function. Indeed, consider a substreamX�(t)
of rate �. We have

f (U [� + �]) f (U�+X +X (t�))

� f (U�+X (t�)) f (U [�])

proving monotonicity. In what follows, we prove the continuity prop-
erty.

Proof: (Continuity) Here we prove that the function f (U [�])
is continuous from the right with respect to the � parameter. Left con-
tinuity can be proven in a similar manner.

Take any � in the set of achievable rates. We show that

lim
�!0

f (U [� + �]) = f (U [�]) (23)

where � is the rate of a component process of X(t) that we make
arbitrarily small. By monotonicity, if � decreases to zero, then
f (U [� + �]) � f (U [�]) decreases toward some limit �, where

� � 0. Suppose now that this inequality is strict, so that � > 0.
We reach a contradiction by showing that there is a collection of M
substreams with total rateM� such that � +M� < �max but

f (U [� +M�]) > f (U [�max]) :

Consider disjoint component streams fx1; . . . ; xMg, each xi of
rate �, for some yet-to-be-determined � and M . We assume that
these M substreams are disjoint from another substream X� of
rate �, all of which are components of the entire process X(t). Let
�(t) = �(t) +X�(t), and let U�+x +���+x represent the unfinished
work in the system at some particular time t�, with input processes
f�;X�; x1; . . . ; xMg. From the definition of the blocking function,
we have

U�+x +���+x =U�+x +���+x +Ux +��+x +���+x ;x

�U�+x +���+x + Ux + ��;x (24)

714 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 2, FEBRUARY 2005

where (24) follows by the monotonicity property of the blocking func-
tion. By recursively iterating (24), we find

U�+x +���+x � U� +

M

i=1

[Ux + ��;x] : (25)

Now applying the monotonically increasing, convex function f(u)
to both sides of (25) and writing f(U�+x) = f(U�)+g(U�; x) (from
Fact 1), we have

f(U�+x +���+x) � f(U�) + g U�;

m

i=1

[Ux + ��;x]

� f(U�)+

M

i=1

g (U�; [Ux + ��;x]) : (26)

Inequality (26) holds by application of Fact 2, as g(U; x) is a convex
function of x that is zero at x = 0. Now notice that

f (U [�+ �])� f (U [�]) f (U�+x)� f (U�)

= f (U�+Ux +��;x)� f (U�)

= fg(U�; Ux + ��;x)g

for any substream xi of rate �, where xi and � are disjoint. Hence, by
assumption

fg(U�; Ux + ��;x)g � � > 0: (27)

Taking expectations of (26) and using (27), we find

f (U�+x +���+x) � f (U�) +M�: (28)

Inequality (28) above holds wheneverX�+x1+ � � �+xM is a sub-
stream of the entire, infinitely splittable processX(t). We now choose
M large enough so thatM� is greater than the expectation of f(U�+X)
when the entire input X(t) is applied, i.e., M� > f (U�+X). How-
ever, we choose a rate � for each of the xi substreams that is small
enough to ensure X� + x1 + � � � + xM is a component process of
X(t). By monotonicity of f (U [�]), we have that

f (U�+x +���+x) � f (U�+X) < M�:

But this contradicts (28), proving the theorem.

REFERENCES

[1] M. J. Neely and E. Modiano, “Convexity and optimal load distributions
in work conserving �= � =1 queues,” in Proc. IEEE INFOCOM, An-
chorage, AK, Apr. 2001, pp. 1055–1064.

[2] D. P. Bertsekas and R. Gallager, Data Networks. Englewood Cliffs,
NJ: Prentice-Hall, 1992.

[3] S. L. Spitler and D. C. Lee, “Optimization of call admission control for
a statistical multiplexer allocating link bandwidth,” IEEE Trans. Autom.
Control, vol. 48, no. 10, pp. 1830–1836, Oct. 2003.

[4] K. Kumaran and M. Mandjes, “The buffer-bandwidth trade-off curve is
convex,” Queueing Syst., vol. 38, pp. 471–483, 2001.

[5] K. Kumaran, M. Mandjes, and A. Stolyar, “Convexity properties of loss
and overflow functions,” Oper. Res. Lett., vol. 31, pp. 95–100, 2003.

[6] D. Stoyan, Comparison Methods for Queues and Other Stochastic
Models. Chichester, U.K.: Wiley, 1983.

[7] S. Ross, Stochastic Processes. New York: Wiley, 1996.
[8] C.-S. Chang, X. L. Chao, and M. Pinedo, “Monotonicity results for

queues with doubly stochastic Poisson arrivals: Ross’s conjecture,” Adv.
Appl. Probab., vol. 23, pp. 210–228, 1991.

[9] F. Baccelli and P. Brémaud, Elements of Queueing Theory, 2nd
ed. Berlin, Germany: Springer-Verlag, 2003.

[10] L. Gün, A. Jean-Marie, A. M. Makowski, and Tedijanto, “Convexity
Results for Parallel Queues with Bernoulli Routing,” Univ. Maryland,
College Park, ISR Tech. Rep., 1990.

[11] C. S. Chang, X. Chao, andM. Pinedo, “A note on queues with Bernoulli
routing,” in Proc. IEEE 29th Conf. Decision and Control, 1990.

[12] A. Jean-Marie and L. Gün, “Parallel queues with resequencing,” J. ACM,
vol. 40, no. 5, Nov. 1993.

[13] F. Bonomi and A. Kumar, “Adaptive optimal load balancing in a non-
homogeneous multiserver system with a central job scheduler,” IEEE
Trans. Comput., vol. 39, no. 10, pp. 1232–1250, Oct. 1990.

[14] G. Koole, “On the pathwise optimal Bernoulli routing policy for homo-
geneous parallel servers,”Math. Oper. Res., vol. 21, pp. 469–476, 1996.

[15] D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar, Convex Analysis and
Optimization. Boston, MA: Athena Scientific, 2003.

[16] M. J. Neely, “Dynamic power allocation and routing for satellite and
wireless networks with time varying channels,” Ph.D. dissertation, MIT,
LIDS, Cambridge, MA, 2003.

Explicit Constructions of Algebraic-Geometric Codes

Hiren Maharaj, Member, IEEE

Abstract—We propose a simple construction of algebraic–geometric
codes which are subcodes of Goppa codes and which coincide with Goppa
codes in many cases. The codes we construct have the advantage that for
an explicitly given extension of the rational function field, one can easily
obtain explicit bases and therefore an exact formula for the dimension.
Furthermore, we show that in many cases good upper and lower bounds
for the minimum distance can be obtained.

Index Terms—Algebraic–geometric codes, explicit constructions, Goppa
codes.

I. INTRODUCTION

LetF be an algebraic function field of a single variable with the finite
field q as the full field of constants. Given n distinct rational places
P1; P2; . . . ; Pn of F and a divisor G of F with support disjoint from
fP1; P2; . . . ; Png, the Goppa code CL(P1; P2; . . . ; Pn;G) � n

q is
defined by

CL(P1; P2; . . . ; Pn;G) = f(f(P1); . . . ; f(Pn))jf 2 L(G)g:

Goppa codes have great utility because their parameters have the fol-
lowing estimates: if g(F) < degG < n then CL(P1; P2; . . . ; Pn;G)
is an [n; k; d] code where k � degG� g(F)+1 and d � n�degG.
For actual use of a Goppa code it is also desirable to have an explicit
basis for the Riemann–Roch space L(G) from which one can obtain a
basis for the code. However, in practice, obtaining such a basis is not
always easy and in many cases it is a challenging problem (see, for ex-
ample, [1], [13], [14]). There are useful algorithms for finding bases of
Riemann–Roch spaces in general [3], but for even relatively small de-
gree extensions of the rational function field, computation can be very
slow.

Manuscript received January 22, 2004.
The author is with the Department of Mathematical Sciences, Clemson Uni-

versity, Clemson, SC 29634 USA (e-mail: hmahara@clemson.edu).
Communicated by A. E. Ashikhmin, Associate Editor for Coding Theory.
Digital Object Identifier 10.1109/TIT.2004.840896

0018-9448/$20.00 © 2005 IEEE

