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Dynamic Power Allocation and Routing for
Time-Varying Wireless Networks

Michael J. Neely, Eytan Modiano, Senior Member, IEEE, and Charles E. Rohrs

Abstract—We consider dynamic routing and power allocation
for a wireless network with time-varying channels. The network
consists of power constrained nodes that transmit over wireless
links with adaptive transmission rates. Packets randomly enter the
system at each node and wait in output queues to be transmitted
through the network to their destinations. We establish the ca-
pacity region of all rate matrices ( ) that the system can stably
support—where represents the rate of traffic originating at
node and destined for node . A joint routing and power allo-
cation policy is developed that stabilizes the system and provides
bounded average delay guarantees whenever the input rates are
within this capacity region. Such performance holds for general
arrival and channel state processes, even if these processes are un-
known to the network controller. We then apply this control algo-
rithm to an ad hoc wireless network, where channel variations are
due to user mobility. Centralized and decentralized implementa-
tions are compared, and the stability region of the decentralized
algorithm is shown to contain that of the mobile relay strategy de-
veloped by Grossglauser and Tse (2002).

Index Terms—Capacity, control, optimization, queueing.

I. INTRODUCTION

WIRELESS systems have emerged as a ubiquitous part
of modern data communication networks. Demand for

these systems continues to grow as applications involving both
voice and data expand beyond their traditional wireline service
requirements. In order to meet the increasing demand in data
rates that are currently being supported by high-speed wired net-
works composed of electrical cables and optical links, it is im-
portant to fully utilize the capacity available in wireless systems,
as well as to develop robust strategies for integrating these sys-
tems into a large scale, heterogeneous data network. Emerging
microprocessor technologies are enabling wireless units to be
equipped with the processing power needed to implement adap-
tive coding techniques and to make intelligent decisions about
packet routing and resource management. It is expedient to take
full advantage of these capabilities by designing efficient net-
work control algorithms.

In this paper, we develop algorithms for dynamic routing
and power allocation in a wireless network consisting of
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Fig. 1. (a) Wireless network with multiple input streams. (b) Close-up of one
node, illustrating the internal queues.

power constrained nodes. Time is slotted, and in every time
slot, the channel conditions of each link randomly change (due
to external effects such as fading, user mobility, and/or time-
varying weather conditions). Multiple data streams ran-
domly enter the system, where represents an exogenous
process of packets arriving to node destined for node . Packets
are dynamically routed from node to node over multihop paths
using wireless data links.

Nodes can transmit data over multiple links simultaneously
by assigning power to the link for each node pair ac-
cording to a power matrix , subject to a total
power constraint at each node. Transmission rates over all links
are determined by the power allocation matrix and the cur-
rent channel state according to a rate-power curve .
Each node contains internal queues for storing data ac-
cording to its destination (Fig. 1). A controller allocates power
and schedules the data to be routed over the links in reaction to
channel state and queue backlog information. The goal of the
controller is to stabilize the system and thereby achieve max-
imum throughput and maintain acceptably low network delay.

We establish the network capacity region: The set of all input
rate matrices that the system can stably support (where

represents the rate of data entering node destined for node
). This region is determined by considering all possible routing

and power allocation strategies, and can be expressed in terms
of the steady-state channel probabilities, the node power con-
straints, and the rate-power function . We emphasize
that this is a network layer notion of capacity, where is
a general function representing the rate achievable on the wire-
less links under a given physical layer modulation and coding
strategy. This is distinct from the information theoretic capacity
of the wireless network, which includes optimization over all
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possible modulation and coding schemes, and involves many of
the unsolved problems of network information theory. We do
not address the information theoretic capacity in this work, and
use the term capacity to represent network layer capacity.

We present a joint routing and power allocation policy that
stabilizes the system and provides bounded average delay guar-
antees whenever the input rates are strictly inside the network
capacity region. Such performance holds for general ergodic ar-
rival and channel state processes, even if the specific channel
probabilities and packet arrival rates are unknown to the net-
work controller. The strategy involves maximizing a stochastic
drift metric every time slot. We implement centralized and de-
centralized versions of the algorithm for an ad hoc wireless net-
work, where channel variations are due to user mobility. Further,
we show that this dynamic control strategy can be viewed as a
generalization of a corresponding static optimization procedure,
establishing a fundamental relationship between network opti-
mization and stochastic control.

Previous work on capacity, optimization, and control of wire-
less networks is found in [1]–[27]. Connectivity and asymptotic
capacity analysis for large static networks is presented in [4] and
[5], and for mobile networks in [6]. The exact capacity of a wire-
less uplink and downlink with multiple users is developed in
[7]–[9], where it is assumed that all users have infinite backlog.

Optimization approaches to network resource allocation are
developed in [10]–[14] and [29]–[32]. In [10], static routing and
power allocation is treated using convex optimization. In [11],
various cost metrics are formulated as geometric programs to
address resource allocation and quality-of-service. Game theo-
retic approaches for wireless downlinks are developed in [12]
and [13], and for flow networks in [29]–[31], where pricing
schemes are considered for achieving a static equilibrium with
respect to some utility metric. The equilibrium computed in
[31] is shown to be within a constant factor of the maximum
utility. Similar constant factor bounds are developed in [32] for
shortest-path routing in static networks with simplified models
of network delay. Optimal power allocation for minimizing en-
ergy expenditure in a network with given rate requirements is
considered in [14] under the assumption that transmission rates
are linear functions of the signal to interference ratio on each
link. In this case, although the network channels and rate re-
quirements are constant, the optimal solution is not static but
requires the computation of a periodic transmission schedule
to achieve optimality. Simple approximations to optimal sched-
uling are developed in [15], and schedules for one-dimensional
networks are developed in [16].

These optimization approaches do not consider the practical
issues of network control, where queue management, sched-
uling, and resource allocation decisions must be made in the
presence of stochastic packet arrivals and time-varying channel
conditions. Control problems are addressed in [3] and [18]–[27].
In [18], a stabilizing power allocation and routing strategy is
developed for a multibeam satellite downlink with random in-
puts and time-varying channels. Related problems of scheduling
users over a single server downlink are considered in [19]–[23].
In [24], a delay optimal strategy is developed for a multiaccess
uplink in systems with symmetric user parameters. Asymptoti-
cally optimal strategies using heavy traffic limits are developed

Fig. 2. (a) Set of rate-power curves for improving channel conditions
S ; S ; S . (b) Curve restricted to a finite set of operating points corresponding
to full packet transmissions. Curves illustrate behavior on link (a; b) when the
single power parameter P is increased, in which case the concave increasing
profiles are typical.

in [25] and [28] for scheduling multiple users over a shared re-
source. Transmitter scheduling and power control for one-hop
static networks are considered in [26], and one-hop networks
with time-varying topology are considered in [27]. Our work is
inspired by the approach of Tassiulas in [3], where a Lyapunov
drift technique is used to develop a throughput optimal link
scheduling policy for a multihop packet radio network. Further
work on Lyapunov analysis is found in the switching and sched-
uling literature [35]–[37] and in [38], [39].

The main contributions in this paper are the formulation of
a general power control problem for time-varying wireless net-
works, the characterization of the network layer capacity region,
and the development of capacity achieving routing and power
allocation algorithms that offer delay guarantees and consider
the full effects of queueing. These algorithms hold for systems
with general arrival and channel processes, including ad hoc net-
works with mobility. This work unifies notions of network ca-
pacity, network optimization, and network control.

In the next section, we introduce the power allocation
problem for wireless networks. In Section III, we define net-
work stability and establish the capacity region for wireless
networks. In Sections IV and V, a dynamic control strategy
is developed and shown to stabilize the network and provide
average delay guarantees. Distributed implementations are
considered in Section VI, where optimal distributed control
is established for networks with independent channels, and a
distributed approximation algorithm is developed for networks
with interference. We implement the distributed approximation
for an ad hoc mobile network and show through analysis
and simulation that the algorithm offers higher data rates and
lower delay than the Grossglauser–Tse relay algorithm of [6].
Finally, in Section VII, a perspective on dynamic optimization
is provided by relating the optimal network control algorithms
developed here to a classic iterative solution of a static convex
program.

II. SYSTEM MODEL

Consider an node network with time-varying channels,
as in Fig. 1. Let denote the matrix process
of channel states, where represents the current state of
channel (representing, for example, attenuation values
and/or noise levels). Time is slotted with slots normalized
to integral units . We assume that channels
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hold their state for the duration of a time slot, and are known
to the network controller at the beginning of each slot. Such
information can be obtained either through direct measurement
(where time slots are assumed to be long in comparison to
the required measurement time) or through a combination of
measurement and channel prediction. The channel process
takes values on a finite-state space, and is ergodic with time
average probabilities for each state .

Every time slot, a controller determines transmission rates
on each link by allocating a power matrix
subject to a total power constraint for all
nodes . Additional power constraints can be introduced, such as
constraints on the number of outgoing links that can be allocated
power when a node is transmitting or receiving. It is, therefore,
useful to represent the power constraint in the form ,
where is a compact set of acceptable power allocations that
includes the power limits for each node.

Link rates are determined by a corresponding rate-power
curve (see Fig. 2). It is assumed that
data can be split continuously, so that each time slot the trans-
mission rate determines the number of bits that can be
transferred over the wireless link . Such an assumption is
valid if variable length packets can be split and repackaged with
new headers for resequencing at the destination (we neglect
the extra bits due to such headers in this analysis). Alternately,
splitting and relabeling can be avoided altogether if all packets
have fixed lengths and the transmission rates are restricted to
integral multiples of the packet-length/time slot quotient [see
Fig. 2(b)].

Note that, in general, the transmission rate over a link
of the network depends on the full matrix of power allocation
decisions. This is because communication rates over the link
may be influenced by interference from other channels. For ex-
ample, achievable data rates could be approximated by using the
signal-to-interference ratio (SIR) in the capacity formula for a
white Gaussian noise channel, where the SIR over link is
defined as the attenuated signal power divided by the total inter-
ference at node .

Example: Rate-Power Curve:

(1)

where and represent noise and fading coefficients asso-
ciated with the particular channel state .

Alternatively, the curves could represent rates for a
specific set of coding schemes designed to achieve a sufficiently
low probability of error. Note that practical systems rely on a fi-
nite databank of codes and, hence, may be restricted to a finite
set of feasible operating points. In this case, rate-power curves
are piecewise constant [see Fig. 2(b)]. In general, we assume
only that is upper semicontinuous1 in the power matrix

for all states , and hence at points of discontinuity the func-
tion takes its largest limiting value [40].

1That is, lim sup � (P ; S) � � (P ; S) for all (a; b); P ; S, and
any sequence fP g such that P ! P .

A. Control Decision Variables and the Queueing Equation

Each network node maintains a set of output queues for
storing data according to its destination. For convenience, we
classify all data flowing through the network as belonging to a
particular commodity , representing the desti-
nation node for the data. A network control algorithm makes
decisions about power allocation, routing, and scheduling. As a
general algorithm might schedule multiple commodities to flow
over the same link on a given slot, we define as the rate
offered to commodity traffic along link during time slot
. The controller, thus, makes the following decisions.

Power Allocation: Choose such that .
Routing/Scheduling: Choose such that

(2)

Note that in the special case where there is no power alloca-
tion, the process is purely determined by the dynamic
channel states of the network, and any network control algo-
rithm reduces to pure routing and scheduling.

Let represent the amount of commodity bits that
arrive exogenously to the network at node during slot . Let

represent the current backlog of bits in node destined
for node . The processes evolve according to the fol-
lowing queueing dynamics:

(3)

The expression above is an inequality instead of an equality be-
cause endogenous arrivals may be less than if neigh-
boring nodes have little or no commodity data to transmit. The
goal of the controller is to maintain low backlog and thereby sta-
bilize the system. For the first part of this paper, we assume that
centralized control is possible, so that the network controller has
access to the full backlog and channel state matrices and

every time slot. Distributed implementations where each
node makes independent control decisions using only local in-
formation are considered in Sections VI and VII.

III. STABILITY AND THE NETWORK CAPACITY REGION

Here, we develop the capacity region of all data rates stabiliz-
able by a wireless network. We begin with a precise definition
of stability.

A. Stability of Queueing Systems

Consider a single queue in isolation, with an input process
and a time-varying server process . Let the unfinished

work function represent the amount of unprocessed bits
remaining in the queue at time , which is determined by the
stochastics of the input and server processes. As a measure of
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the fraction of time the unfinished work is above a certain value
, we define the following “overflow” function :

The above limit2 always exists, so that .
Definition 1: A single server queueing system is stable if

as . A network of queues is stable if all
individual queues are stable.

B. Network Capacity

Assume input processes are stationary and ergodic
with rates , so that with
probability 1. Let represent the corresponding
rate matrix, having all diagonal entries equal to zero. As-
sume the channel process is stationary and ergodic with
steady-state channel probabilities .

Definition 2: The network capacity region is the closure
of the set of all rate matrices that can be stably supported
over the network, considering all possible algorithms (possibly
those with full knowledge of future events).

Remarkably, we show that stabilizing policies do not require
knowledge of future events and, hence, such knowledge does not
expand the region of stabilizable rates. To build intuition about
the set , we first consider the capacity region of a traditional
wireline network with no time variation, defined on a weighted
graph with nodes, edges, and edge capacities given by a
link matrix . The link matrix describes the rate at which
node can deliver data to node , so that if there is
no directed edge from node to node , and is equal to the
positive transmission rate for that link, otherwise. The network
capacity region is described implicitly as the set of all arrival
rate matrices for which there exist multicommodity flow
variables (for ) that satisfy a set of flow
conservation equations, and which additionally satisfy the link
constraint for all links . This constraint
ensures that the total flow over any link does not exceed the link
capacity.

The capacity region of a wireless network differs from that of
a wireline network only in the description of the link constraint.
Indeed, first note that the time-varying channel conditions of a
wireless network require link capacities to be defined in a time
average sense, where the resulting transmission rate over a given
link is averaged over all possible channel states. Second,
the resulting time average link rates are not fixed, but depend
on the (potentially nonergodic) power allocation policy. Thus,
instead of describing the network as a single weighted graph

of link rates, the network is described by a collection of
graphs, or a graph family . We define the graph family as the
following set of node-to-node transmission rate matrices:

Convex Hull (4)

2Where the lim sup of a function f(t) always exists, and is defined:
lim sup f(t) = lim [sup f(�)].

where addition and scalar multiplication of sets is used,3 and
the convex hull of a set is defined as the set of all convex
combinations of elements
(where are probabilities summing to 1).

Thus, a transmission rate matrix is in graph
family if and only if can be represented as
for some set of matrices , each one being inside the convex
hull of the set of node-to-node transmission rates achievable by
power allocation under channel state . In the following the-
orem, it is shown that graph family can be viewed as the set
of all long-term transmission rates that the network can
be configured to support on the single-hop wireless links con-
necting node pairs .

Theorem 1: Capacity Region for a Wireless Network—The
capacity region is the set of all input rate matrices
for which there exist multicommodity flow variables
satisfying

(5)

where (6)

and for some (7)

Thus, a rate matrix is in the capacity region if there
exists a matrix that defines link capacities in a tra-
ditional graph network, such that there exist multicommodity
flow variables , which support the rates with respect
to this graph. Note that inequalities (5) constrain flow variables
to be nonnegative and to be “efficient,” in that no node routes
data to itself, and no node reinjects delivered data back into the
network. Inequality (6) is a conservation constraint that ensures
the total flow of commodity data into a given node is less than
or equal to the total flow out of that node, provided that node
is not the destination.

The proof of Theorem 1 involves showing that is
necessary for stability, and that interior to is sufficient.
The necessary condition is proven in Appendix A, where it is
shown that no control algorithm can achieve stability beyond
the set , even if the entire set of future events is known in ad-
vance. Sufficiency is shown in the next section, where a stabi-
lizing control policy is constructed.

IV. DYNAMIC CONTROL POLICY

Here, we develop a control policy that stabilizes the network
whenever the input rate matrix is interior to the capacity re-
gion . The policy is inspired by the maximum differential
backlog algorithms developed by Tassiulas and Ephremides in
[3] for stable server scheduling in a multihop radio network,
and generalizes the Tassiulas–Ephremides algorithm by consid-
ering power allocation and addressing networks with general in-
terference properties and time-varying channel characteristics.
We then develop a bound on end-to-end delay by relating per-
formance to that of a stationary policy based on the multicom-
modity flow variables of Theorem 1.

3For sets A;B and scalars �; �, the set �A + �B is defined as f j  =
�a + �b for some a 2 A; b 2 Bg.
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Every time slot the network controller observes the channel
state and the matrix of queue backlogs
and performs routing and power control as follows.

Dynamic Routing and Power Control (DRPC) Policy:

1) For all links , find commodity such that

and define

(8)

2) Power Allocation: Choose a matrix such that

(9)

3) Routing: Define transmission rates as follows:

if and
otherwise

(10)

For each link , transmit commodity data according
to the rate offered by the power allocation. If any node does
not have enough bits of a particular commodity to send over
all its outgoing links requesting that commodity, null bits are
delivered.
Note that the values represent the maximum differential

backlog between nodes and (maximized over all commodi-
ties ). The policy thus uses backpressure in an effort to equalize
differential backlog. This strategy is most effective when power
is allocated to maximize the rate-backlog product in (9). We
emphasize that this scheme does not require knowledge of the
arrival rates or channel statistics, and does not use any pre-
specified set of routes. The route for each unit of data is found
dynamically.

A. Network Parameters

In order to analyze the stability and delay properties of the
DRPC algorithm, we first specify the following network param-
eters. Define and as the maximum transmission rate
out of any node and into any node, respectively, under the best
channel condtions

Further assume that the second moment of exogenous arrivals
to any node is bounded every time slot by some finite max-
imum value , regardless of past history. Specifically, de-
fine . Then, for all nodes and all ,
we have

Note that for any random variable , so
that we also have .

Define as the set of time slots at which
during the interval , and define
as the total number of such slots. For a given value , we
define the convergence interval to be the smallest number of
time slots such that for any , any , and regardless of past
history, we have

(11)

(12)

Such a value must exist for any stationary and ergodic
channel and arrival processes with arrival rates and
channel probabilities , respectively. This convergence in-
terval represents the time period over which the network is
expected to reach steady-state, regardless of past history. More
generally, we assume a finite interval size exists for any
given , and define arrival processes and channel processes
for which this assumption holds to be rate convergent and
channel convergent, respectively. We note that for systems with
independent identically distributed (i.i.d.) arrivals and channel
states, steady-state is exactly achieved every time slot, so that

even when . Below, we develop a bound on the
end-to-end delay of the DRPC policy in terms of the parameters

, and .

B. Stability and Delay Performance

Theorem 2: Stability of DRPC—Suppose an -node wire-
less network has capacity region and rate matrix such
that for some . Then, jointly routing and allo-
cating power according to the above DRPC policy stabilizes the
system and guarantees bounded average congestion satisfying

(13)

for corresponding to in (11) and (12), and where

(14)

(15)

and the overbar notation of (13) is defined

The theorem is proven in Section V. Note that the average
congestion bound grows asymptotically like as the data rates
are increased, where can be viewed as the “distance” mea-
sure of the rate matrix to the boundary of the capacity region.
Consider now an input matrix , where each user sends at
total rate , so that . Suppose the matrix satisfies



94 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 1, JANUARY 2005

, and define as the row sum of the
matrix. Let represent an effective loading on

each user (assumed independent of ). Note that , and
. From Little’s Theorem, the average bit delay

satisfies and, hence

If (as in static Gupta–Kumar networks [4], [5]),
then . If (as in mobile
Grossglauser–Tse networks [6]), then .

Note that when the network is lightly loaded, there is very
little information contained in the differential backlog values.
Hence, packets might take many false turns, which could lead
to significant delay for large networks (consider the above delay
bound for small). Performance can often be improved by using
the DRPC algorithm with a restricted set of desirable routes for
each commodity. However, restricting the routes may reduce
network capacity, and may be harmful in time-varying situa-
tions, where networks change and links fail. Alternatively, we
can keep the full set of routes, but program a bias into the DRPC
algorithm so that in low loading situations, nodes are inclined
to route packets in the direction of their destinations. We use
this idea in the following enhanced DRPC algorithm, defined in
terms of constants and .

Enhanced DRPC Algorithm: For all links , and all com-
modities , define

, and define as the maximizer of over all
. Power allocation and routing is done as before,

solving the optimization (9) with respect to .
The parameters can be chosen as scaled hop count esti-

mates between nodes and , so that, in the absence of backlog
information, data is routed to reduce the remaining distance to
the destination. The values are any weights for prioritizing
commodity service in node . This enhanced DRPC algorithm
can be shown to stabilize the network for any constants
and . We note that the weight can be used
in the same manner as a routing table, and the unfinished work
quantities can be updated each time slot by having neighboring
nodes transmit their backlog changes over a low bandwidth con-
trol channel. As each wireless link transmits only a single com-
modity every time slot, the number of such backlog increments
required to be transmitted over the control channel by any user
is on the order of the number of neighboring nodes.

V. PERFORMANCE ANALYSIS

We analyze the performance of the DRPC algorithm by com-
paring it to a stationary algorithm that makes scheduling deci-
sions according to the multicommodity flow variables
of Theorem 1. Indeed, suppose the rate matrix and the
channel probabilities were known in advance, and suppose
there is a value such that . Then, a set
of multicommodity flow variables and a link rate matrix

must exist that satisfy the constraints (5)–(7) with
respect to the rate matrix . In particular

for (16)

(17)

Let represent the transmission rate
offered over link on slot . We first show that it is possible
to allocate power in reaction to the current channel state so that
the time average of converges to .

Lemma 1: Graph Family Achievability—A stationary ran-
domized power allocation policy can be implemented
so that the resulting process satisfies

with probability 1 for all . The structure of the policy is as
follows: Every time slot in which the channel state is
observed, the power matrix is chosen randomly from
a finite set of allocations according to a set of
probabilities .

Proof: Note that . The proof follows
by expressing each matrix as a convex combination of
matrices in according to Caratheodory’s
Theorem [40], and defining the probabilities of the stationary
randomized scheme according to the weights of each convex
combination. A full proof is given in [1].

Note that the above lemma is an existential result and is not
offered as a practical means of allocating power. We now de-
fine a stationary algorithm STAT that uses the above power al-
location result to stabilize the network. While this policy cannot
be implemented without complete knowledge of the input rates

, channel probabilities , and flow variables , it yields
a simple delay bound.

Stationary Randomized Policy (STAT)—Power Allocation:
Every time slot, observe the channel state and allocate power
according to the stationary algorithm of Lemma 1.

Scheduling/Routing: For every link such that
, transmit the single commodity , where

is chosen randomly among with probability
. However, use only a fraction of

the instantaneous link rate, so that

if
otherwise

If a node does not have enough (or any) bits of a certain com-
modity to send over its output links, null bits are delivered.

Note that

(18)

and, hence, the processes are rate convergent with
time average rates . In order to analyze delay, we consider
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the rates and the input processes averaged over
slot intervals. In particular, for any time , we define

From (16), we have that

(19)

It follows that for a suitably large value of , the expectations
of and satisfy a similar inequality, as specified
by the next lemma.

Lemma 2: Fix , which defines the convergence in-
terval according to (11) and (12). Then, for any time and
regardless of the past history , we have

(20)

Proof: Note that for any variables
satisfying and for ,
then . The proof follows by applying this
fact to inequality (19), and is given in [1].

A. Lyapunov Drift Analysis

Our stability and delay analysis relies on the following lemma
that specifies a sufficient condition for queueing network sta-
bility. Define as a Lyapunov function
of unfinished work, representing a scalar measure of network
congestion. For a given control policy and a given unfin-
ished work at time , define the K-step Lypapunov drift

, as follows:

Theorem 3: Lyapunov Stability—If there exists a positive in-
teger such that for all time slots , the -step Lyapunov drift
satisfies

(21)

for some positive constants , and if
for , then the network is stable and

(22)

Proof: The proof is given in Appendix B.

The intuition behind Theorem 3 is that drift is negative when-
ever backlog is sufficiently large, leading to stability. The fact
that Lyapunov drift is compared after slots (rather than after
a single slot) is required for systems with non i.i.d. dynamics.
Similar -slot analysis of Lyapunov drift has been used in [27]
to address stability, and similar drift statements for i.i.d. systems
where are found in [35]–[38].

Lemma 3: For any control policy resulting in decision
variables , the -step Lyapunov drift at any slot
satisfies

(23)

where is defined in (14) and

(24)

Proof: Note that . For , the -step
dynamics of unfinished work satisfies

where the above expression is an inequality instead of an
equality because the total bits arriving to node from other
nodes of the network may be less than
if these other nodes have little or no data to send, and because
some arrivals during the slot interval may also depart in the
same interval. Neglecting the time subscripts and using the
simplified notation , we have

[where the variables are defined after (18)]. By squaring
both sides and noting that , we have
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The expression for Lyapunov drift is obtained from the above
inequality by summing over all nodes and commodities and
taking conditional expectations

where we have used the , and bounds by
noting that the sum of squares of positive numbers is less than
or equal to the square of the sum (see details in [1]).

B. Comparing Performance of DRPC and STAT

Using the definitions of and given in
(24) together with inequality (20), we have

(25)

Plugging this inequality directly into the Lyapunov drift expres-
sion (23) and using the drift theorem (Theorem 3) yields the
following bound on network congestion under STAT:

We now consider another algorithm FRAME, which is a
frame-based modification of the DRPC policy: Scheduling,
power allocation, and routing under FRAME are done every
time slot exactly as in the DRPC algorithm, with the ex-
ception that backlog updates are performed only every
slots. Specifically, for any time slot within a slot frame

, power is allocated to maximize
subject to . Thus, current

channel state information but out of date backlog information
is used every slot.

Lemma 4: .
Lemma 5: Comparing FRAME and DRPC, we have

Lemma 4 is proven at the end of this section, and Lemma 5 is
proven in Appendix C. Using these lemmas with (25), it follows
that:

Using this bound in the Lyapunov drift expression (23) yields

Applying the drift theorem (Theorem 3) proves that DRPC is
stable with the congestion bound as given in Theorem 2.

To complete the analysis, we prove Lemma 4.
Proof of Lemma 4: We have the following identity:

(26)

Taking conditional expectations above and summing over
yields an alternative way to express

For every , the FRAME algorithm
is designed to maximize
over all possible algorithms, including algorithm STAT. To
see this, note that:

, where
the first inequality follows by definition of , and the second
inequality follows from (2). By definition, the final expression
is maximized under the FRAME strategy.

VI. DISTRIBUTED IMPLEMENTATION

The DRPC algorithm of the previous section involves solving
a constrained optimization problem every time slot, where cur-
rent channel state and queue backlogs appear as parameters in
the optimization. Here, we consider decentralized implemen-
tations, where users attempt to maximize the weighted sum of
data rates in (9) by exchanging information with their neighbors.
The current neighbors of a node is defined as the set ,
representing the nodes to which node can currently transmit
and receive. Theoretically, all nodes could be neighbors, as the
power transmitted from one node may be detected everywhere.
However, to limit implementation complexity, it is practical to
restrict neighbors to a fixed set of nearby nodes with the best
channel conditions. We assume the neighbor sets are de-
fined according to some such rule, and that nodes have knowl-
edge of the link conditions between themselves and their neigh-
bors and are informed of the queue backlogs of their neighbors
via a low bandwidth control channel.

A. Networks With Independent Channels

Consider a network with independent channels, so that the
transmission rate on any given link depends only on the
local link parameters: . Assume
that the rate functions are concave in the single
power variable for every channel state (representing
diminishing returns in data rate for each incremental increase
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in power). These assumptions are valid when all links use or-
thogonal coding schemes, beamforming, and/or when links are
spacially separated such that channel interference is negligible.

In this case, the optimization problem (9) has a simple decou-
pling property, where the weighted sum is maximized by sepa-
rately maximizing each term. This corresponds to nodes making
independent power control and routing decisions based only on
their local information. Indeed, each node max-
imizes subject to its power con-
straint . This optimization is a standard
problem of concave maximization subject to a simplex con-
straint, and can be solved easily in real-time with any degree
of accuracy [41].

B. Distributed Approximation for Networks With Interference

Consider a network with rate-power curves described by the
function given in (1). This network has dependent,

interfering channels, and the associated optimization problem
(9) is nonlinear, nonconvex, and difficult to solve even in a cen-
tralized manner. Here, we provide a simple decentralized ap-
proximation, where nodes use a portion of each time slot to ex-
change control information with neighbors

1) At the beginning of each slot, nodes randomly decide to
transmit with probability . All transmitting nodes send a
control signal of power , where is some globally
known scaling factor designed to limit power expended
by the control signal.

2) Define as the set of all transmitting nodes. Each
node measures its total resulting interference

, and sends this scalar quan-
tity over a control channel to all neighbors.

3) Using knowledge of the interference, attenuation values,
and queue backlogs associated with all neighboring
nodes, each transmitting user decides to transmit using
full power to the single neighbor who maximizes the
function

Note that this allows nodes to receive from multiple trans-
mitters simultaneously, with rates that correspond to the effec-
tive SIR of each transmission. The constraint that a transmitting
node cannot simultaneously receive can easily be incorporated
by setting (or, equivalently, ), for all trans-
mitting nodes .

By convexity of the function, it
can be shown that the power allocation that maximizes

[for SIR as defined in (1)] has the
form where each transmitting user sends to the single neighbor
as in step 3 above. However, note that there are possible
subsets of transmitting users. The above distributed algorithm
is not optimal over all possible power allocation strategies, as
it chooses transmitters randomly. However, we note that the
algorithm is optimal over the class of all algorithms that use
either zero power or full power, and that choose transmitters
randomly with probability . This holds because the

restriction can be viewed as another constraint describing the
set of acceptable power allocations, and because the random
transmitter selection can be viewed as a random channel
outage. Thus, the above distributed algorithm achieves network
capacity over this modified channel model (see [1] for details,
including bounds on capacity and delay).

The idea of randomly choosing users to transmit is similar to
the technique used in the Grossglauser–Tse relay algorithm of
[6], designed to achieve throughput for networks with an
arbitarily large number of users . However, rather than trans-
mitting to the nearest receiver (as in [6]), our algorithm chooses
the receiver with the largest backlog-rate metric. As it is optimal
over all random selection algorithms, it supports a set
of data rates that contains the set of rates supportable by the
Grossglauser–Tse algorithm. In particular, it also achieves
throughput independent of .

C. Simulation of Centralized and Distributed DRPC

Here, we apply the distributed DRPC policy of the previous
subsection to an ad hoc network with mobility and inter-channel
interference. Consider a square network with 10 mobile users,
with user locations discretized to a 5 5 grid. The stochastic
channel process is characterized by the following model
of user mobility: Every time slot, users keep their locations
with probability , and with probability they move
one step in either the North, South, West, or East directions
(uniformly distributed over all feasible directions). Each user
is power constrained to , is restricted to transmitting to
only one other user in a given time slot, and cannot transmit
if it is receiving. Power radiates omnidirectionally, and signal
attenuation between two nodes and is determined by the
fourth power of the distance between them (as in [15]), so that

coefficients are

if
if

where represent user locations within the net-
work. Note that the extra “ ” term in the denominator is in-
serted to model the reality that attenuation factors are kept
below 1 (so that signal power at the receiver is never more
than the corresponding power used at the transmitter). The
values are set to infinity as a simple way to enforce the constraint
that transmitting nodes cannot receive.

Multiuser interference is modeled similarly to the rate-power
curve given in (1). However, rather than use the
function, we use a rate curve determined by four different
quadrature amplitude modulation (QAM) schemes designed
for error probabilities less than 10 . The rate function is thus

where is a piecewise constant function of SIR, and is de-
fined by the QAM coding schemes given in Fig. 3.

We consider the enhanced DRPC algorithm with
for all , and , and assume the

power/noise coefficient is normalized to ,
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Fig. 3. Piecewise constant rate curve for the four modulation schemes
described in the table. Scaled power requirements are shown, where �
represents the minimum distance between signal points.

where is the minimum distance between signal points in
the QAM modulation scheme. The algorithm is approximated
using the distributed implementation described in the previous
subsection, where each node transmits using full power with
probability . As the network is small, we simply define
the neighbor set for each user to be the set of all other
nodes in the network. A centralized implementation is also
considered, where the optimization problem (9) is implemented
using a steepest ascent search on the piecewise linear relaxation
of the curve (see Fig. 3). The resulting data rates are
then “floored” according the threshold levels of the piecewise
constant curve . Note that the relaxed problem remains
nonlinear and nonconvex [because SIR is nonconvex in the
power variables, see (1)] and, hence, the result of the steepest
ascent search may be suboptimal.

We simulate the centralized and decentralized implemen-
tations of DRPC and compare to the performance offered
by the two-hop relay algorithm presented in [6]. The relay
algorithm restricts routes to two-hop paths, and hence relies on
user mobility for delivering data. Note that the relay algorithm
was developed to demonstrate nonvanishing capacity for large
networks, and was not designed to maximize throughput or
achieve low delay. Thus, it is not completely fair to compare
performance with the DRPC algorithms. However, the compar-
ison illustrates that significant capacity and delay improvements
are possible even among the class of algorithms that choose
transmitters randomly.

We set the sender density parameter of the relay algorithm
to . The relay algorithm was designed for nodes to
transmit data at a fixed rate, attainable whenever the SIR for
a given wireless link exceeds a threshold value. However, in
order to make a fair comparison, we allow the relay algorithm to
transmit at rates given by the full curve. Following the
scenario of [6], we assume user desires communication with
only one other user (namely, user ). Unit length
packets arrive according to Poisson processes, where nine of the
users receive data at rate , and the remaining user receives
data at rate . In Fig. 4, we plot the average network delay
from simulation of the three algorithms when the rates
are linearly scaled upwards to the values . From
Fig. 4, we see that the centralized DRPC algorithm provides
stability and bounded delays at more than four times the data
rates of the two-hop relay algorithm, and more than twice the
data rate of the decentralized DRPC algorithm. This illustrates
the advantages of exploiting channel state and queue backlog

Fig. 4. Simulation results for the DRPC algorithm and the relay algorithm as
rates are increased toward (� ; � ) = (:585;2:925).

information. We further note that the two-hop relay algorithm
relies on full and homogeneous mobility of all users, while the
DRPC algorithms have no such requirement and can be used for
networks with arbitrary mobility.

VII. MULTICOMMODITY FLOWS AND CONVEX DUALITY

The DRPC algorithm stabilizes the network and offers av-
erage delay guarantees whenever the input rate matrix is inside
the capacity region of the wireless network. Here, we consider
a related problem of computing an offline multicommodity flow
given a known rate matrix . Classical multicommodity flow
problems for wired networks can be reduced to linear programs,
and fast approximation algorithms are developed in [33]. A dis-
tributed algorithm was first given in [34], and game theory ap-
proaches are developed in [29].

Here, we consider the flow problem for wireless networks,
and compare the dynamic Lyapunov drift approach to a more
traditional static optimization technique. A convex optimiza-
tion problem corresponding to a multicommodity flow in the
wireless network is formulated, and it is shown that a classical
subgradient search method for solving the problem via convex
duality theory corresponds exactly to a deterministic network
simulation of the DRPC policy. Notions of duality are also used
in [10], [13], [29], and [30] to consider static network optimiza-
tion, where dual variables play the role of prices charged by
the network to multiple users competing for shared network re-
sources in order to maximize their own utility. In our context,
the dual variables correspond to queue backlogs, rather than net-
work prices. This illustrates a relationship between static op-
timization and the dynamic DRPC policy and contributes to a
growing theory of dynamic optimization, suggesting that static
algorithms can be modified and applied in dynamic settings
while preserving analytical optimality.
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We restrict attention to time invariant systems, so that the rate-
power curve is only a function of power: . Given
a ratematrix , theproblemoffindingamulticommodityflow
corresponds to the following convex optimization problem:

Maximize:

Subject to:

such that

(27)

where is the set of all variables such that

for all

for all

for some (28)

The maximization function “1” is used as an artifice to pose
this multicommodity flow problem in the framework of an op-
timization problem. Note that the set is convex and compact
(it inherits convexity and compactness from the set consisting
of all link transmission rate matrices entrywise less than
or equal to some element of , see [1]). Moreover, the objec-
tive function “1” and all inequality constraints are linear. The
optimization problem is therefore convex [40], and has a dual
formulation, where the optimal solution of the dual problem ex-
actly corresponds to an optimal solution of the original “primal”
problem (27). To form the dual problem, we introduce nonnega-
tive Lagrange multipliers for each of the inequality con-
straints in (27), and define the dual function

(29)

The dual problem to (27) is

Minimize:

Subject to: for all

The dual problem is always convex, and the minimizing
solution can be obtained using classical subgradient search
methods (where the function is maximized).
Consider a fixed stepsize method with stepsize . The
basic subgradient search routine starts with an initial set of
values for the Lagrange multipliers, and upon each
iteration these values are updated by computing
a subgradient for one time unit, and, if necessary, projecting
the result back onto the set of nonnegative values [40]

(30)

However, it is shown in [40] that a particular subgradient of
is

(31)

where the variables are solutions to the maximization
in (29) with . Using (31) in (30) for all , we
find

(32)

From (32), it is apparent that the Lagrange multipliers
play the role of unfinished work in a multinode

queueing system with input rates , where represents
the amount of commodity bits in node . In this way, the

values can be viewed as the transmission rates allocated
to commodity traffic on link . Equation (32), thus,
states that the unfinished work at time is equal to the
unfinished work at time plus the net influx of bits into node
. Thus, the operation of projecting the Lagrangian variables

onto the positive orthant acts exactly as an implementation of
the standard queueing equation.

It is illuminating to calculate the optimal values by per-
forming the maximization in (29). To this end, we need to max-
imize subject to the con-
straints of (28). However, as in the proof of Lemma 4, we can
switch the sum to find

Remarkably, from the right-hand side above, it is apparent
that the optimal values are identical to the resulting link
rates that would be computed if the DRPC algorithm
were used to calculate routing and power allocation decisions
in a network problem with unfinished work levels . It
follows that the DRPC algorithm can be viewed as a dynamic
implementation of a subgradient search method for computing
the solution to an optimization problem using convex duality.
This suggests a deeper relationship between stochastic network
control algorithms and subgradient search methods. It would
be interesting to explore how the two interact and build upon
each other. For example, there are several known improve-
ments to classical subgradient search routines. Perhaps such
improvements could reduce the complexity of optimal and
suboptimal dynamic network controllers. Also, note that the
optimization problem (27), which maximizes the function “1,”
can be adjusted to maximize some other performance criteria,
which may offer additional quality of service guarantees in the
corresponding dynamic network control problem.

VIII. CONCLUSION

We have formulated a general power allocation problem for
a multinode wireless network with time-varying channels and
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adaptive transmission rates. The problem was formulated at the
network layer assuming a given (but arbitrary) set of rate-power
functions corresponding to the particular modulation and coding
strategy being used at the physical layer. These rate-power func-
tions provide a simple separation between physical layer and
network layer concepts while enabling network control algo-
rithms to be adapted to the unique channel characteristics of
the wireless links. The network capacity region was established,
and a DRPC algorithm was developed and shown to stabilize
the network whenever the arrival rate matrix is within the ca-
pacity region. Such stability holds for arbitrary ergodic arrival
and channel processes, even if these processes are unknown to
the network controller. Delay bounds were derived and shown
to grow asymptotically in , where represents the size of
the network and represents a measure of distance between the
arrival rates and the capacity region boundary. Distributed im-
plementations of DRPC were considered for ad hoc mobile net-
works, and the use of rate and backlog information was shown
to offer considerable performance gains.

The dynamic operation of the DRPC policy was shown to
be fundamentally related to a classical iterative technique for
solving a static convex program, where unification of the two
problems is achieved through the theory of convex duality. We
believe that such dynamic optimization contributes to bridging
the gap between theoretical optimization techniques and imple-
mentable control algorithms.

APPENDIX A
NETWORK CAPACITY REGION

Here, we establish that is a necessary condition
for stability in a wireless network. The proof uses the following
preliminary lemma from [1, Ch. 2 ].

Lemma 6: Necessary Condition for Queue Stability—Let
represent the unfinished work values in a slotted time

queueing network. If the network is stable, then for any ,
there exists a finite value for which arbitrarily large times

can be found so that . In
particular, for the case , there exists a value such that
the probability that work in all queues simultaneously drops
below is greater than 1/2 infinitely often.

Theorem 1a: Necessary Condition for Stability—The condi-
tion is necessary for network stability.

Proof: Consider a system with rate convergent inputs
with rates , and let process represent the amount
of commodity bits that exogenously enter the network at node

during the interval . Suppose the system is stabilizable
by some routing and power control policy, perhaps one that
bases decisions upon complete knowledge of future arrivals
and channel states. We show that multicommodity flow vari-
ables must exist that satisfy (5)–(7). Let represent the
resulting unfinished work function for commodity in node
under this stabilizing policy. Further, let represent the
total number of bits from commodity transmitted over the

link during the first slots. We have for all time

(33)

(34)

(35)

where (34) follows because the unfinished work in any node is
equal to the difference between the total bits that have arrived
and departed. Inequality (35) holds because the total bits trans-
ferred over any link is less than or equal to the offered
transmission rate summed up to time .

By the necessary condition for network stability specified in
Lemma 6, there must exist some finite value such that at arbi-
trarily large times , the unfinished work in all queues is simul-
taneously less than with probability at least . Let
represent the slots of during which the channel is in
state . Let denote the total number of these slots, and
note that with probability 1 for each . Fix an
arbitrarily small value . We seek to find a time
such that all of the following inequalities are satisfied:

(36)

for all (37)

for all channel states (38)

Define as the event that (36) is satisfied, and note that
arbitrarily large values of exist such that . Define

as the event that both (37) and (38) are satisfied. Because
there are a finite number of input processes and channel states,
we have that as . It follows there is a time

such that and . Hence,

. That is, with nonzero probability, all inequalities (36)–(38)
are simultaneously satisfied.

Now, define variables . It is clear from (33)
that these flow variables satisfy the constraints (5). Using (36)
and (37) in (34), it follows that for all :

(39)

and, hence, the flow conservation constraint (6) is arbitrarily
close to being satisfied. Applying inequality (35) at time and
considering entrywise matrix inequalities, we have

(40)
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where the matrices in (40) are elements of
Convex Hull . Using (38) in (40), we find

Card (41)

where Card represents the number of channel states , and
represents the maximum possible transmission rate of the
link. Hence, the right-hand side of inequality (41) is arbi-

trarily close to a point in (compare with (7)).
Hence, with nonzero probability, the multicommodity flows

(defined in terms of the processes) satisfy (39) and
(41). It follows that there must exist flow values that sat-
isfy (39) and (41) (otherwise, the inequalities would occur with
probability 0). As the multicommodity flow constraints (5)–(7)
are arbitrarily close to being satisfied, it follows that they can
be satisfied if each nonzero entry of the rate matrix is re-
duced by an arbitrarily small amount. This proves that the input
rate matrix is a limit point of the capacity region . In [1]
it is shown that the capacity region is compact. Hence, it con-
tains its limit points, so that .

APPENDIX B
LYAPUNOV DRIFT THEOREM

Here, we prove Theorem 3, establishing a sufficient condition
for network stability. The proof uses a simple telescoping series
argument similar to [35], [38], and [39], together with the ma-
chinery of the overflow function.

Proof of Theorem 3 : Consider (21) at times
, where . Taking expectations of this

inequality over the distribution of and summing
over from to creates a telescoping series,
yielding

Dividing by and using nonnegativity of the Lyapunov func-
tion, we have

The above inequality holds for all . Summing over
yields

Dividing by and taking the lim sup of the above inequality as
yields the performance bound (22).

To prove stability, note the performance bound implies that
for any queue

Now, considering the overflow function , we have

where we have used the fact that for
any nonnegative random variable . Taking limits as
shows that and proves stability.

APPENDIX C
COMPARING DRPC AND FRAME

Proof of Lemma 5: Consider an implementation of the
DRPC algorithm, and let represent the unfinished work
matrix at the start of a frame. Let represent the unfinished
work at some time during the frame . At
any such time , the DRPC algorithm selects transmission rates

that maximize over
all other possible control decisions. Hence

where the values represent the control decisions
that would be made by the FRAME algorithm at time if the
backlog matrix at time were . Using (26) to switch the
summation, we have

Defining and noting that
, it follows that:

(42)
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where we used the fact that:

Summing (42) over and taking condi-
tional expectations yields [using the definition of in
(24)]

The expected magnitude of change in unfinished work from time
to time is at most at any

node, which leads to

Changing variables to and using the fact that
, we have

This proves the lemma [note definition of in (15)].
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