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Abstract—In a wavelength-division multiplexed (WDM)-based
network, a single physical link failure may correspond to multiple
logical link failures. As a result, two-connected logical topologies,
such as rings routed on a WDM physical topology, may become
disconnected after a single physical link failure. We consider
the design of physical topologies that ensure logical rings can be
embedded in a survivable manner. This is of particular interest in
metropolitan area networks, where logical rings are in practice
almost exclusively employed for providing protection against link
failures. First, we develop necessary conditions for the physical
topology to be able to embed all logical rings in a survivable
manner. We then use these conditions to provide tight bounds on
the number of physical links that an -node physical topology
must have in order to support all logical rings for different sizes

. We show that when 4 the physical topology must have
at least 4 3 links, and that when 6 the physical topology
must have at least 3 2 links. Subsequently, we generalize this
bound for all 4. When 2, we show that the
physical topology must have at least 2 4 links. Finally, we
design physical topologies that meet the above bounds for both

= 4 and = 2. Specifically, our physical topology for
embedding ( 2)-node rings has a dual hub structure and is
able to embed all rings of size less than 1 in a survivable
manner. We also provide a simple extension to this topology that
addresses rings of size = 1 and rings of size =
for odd. We observe that designing the physical topology for
supporting all logical rings in a survivable manner does not use
significantly more physical links than a design that only supports
a small number of logical rings. Hence, our approach of designing
physical topologies that can be used to embed all possible ring
logical topologies does not lead to a significant overdesign of the
physical topology.

Index Terms—Network design, network survivability, routing,
topology design, wavelength-division multiplexing (WDM).

I. INTRODUCTION

OPTICAL wavelength-division multiplexing (WDM) net-
works are a powerful architecture for making efficient use

of the high bandwidth offered by optical fiber networks, through
the ability to support along each fiber link the simultaneous
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transmission of data along independent wavelength channels. A
WDM network consists of a set of nodes, physically intercon-
nected by optical fiber (the physical topology), upon which a
logical topology is overlaid by establishing lightpath intercon-
nections between the nodes. Since multiple connections may
rely on a particular physical fiber link, there is potential for a
significant loss of bandwidth upon the failure of a physical link.

In order to mitigate the effect of this and other types of net-
work failure, the topic of optical layer protection has sprung
up as an important research field [1]–[8]. Much of the work
in WDM network protection is focused on restoration mecha-
nisms that restore all lightpaths in the event of a physical link
failure. There are two notable restoration methods, link-based
restoration and path-based restoration. Link-based restoration
recovers the failed physical link, consequently recovering the
associated failed lightpaths. A common approach for link-based
restoration is optical loop-back protection [2], [3], [5], [6]. Path-
based restoration recovers each failed lightpath by finding an al-
ternative end-to-end path for each lightpath [2], [3], [8].

Often, however, physical layer restoration mechanisms may
be unnecessary in the event of a physical link failure, due to the
existence of alternate paths for transmitting data at the electronic
layer. Of concern in this case is that the failure of a single phys-
ical link may lead to the failure of multiple logical links, leaving
the logical topology disconnected. Thus, under a general phys-
ical topology the goal is to route the lightpaths in such a way
that no single physical link failure leaves the logical topology
disconnected. In this paper, we focus on logical ring topolo-
gies, where this design goal implies that no two logical links
of the ring can traverse the same physical link. Clearly, if one
logical link fails, loop-back protection at the electronic layer en-
sures that data may continue to transmit between any two nodes.
We refer to this problem as the survivable routing problem for
logical rings. Logical ring topologies enjoy widespread accep-
tance and are commonly the protected topologies of choice in
metropolitan area networks.

The problem of finding survivable routings of logical ring
topologies on a given physical topology was treated in [9]–[12].
The authors in [9]–[11] consider the necessary conditions for
supporting survivable rings; additionally, [11] and [12] show
that the problem of determining a survivable ring on a physical
topology is NP-complete. A similar problem was considered
in [7], where heuristic algorithms were developed in order to
minimize the number of source-destination pairs that become
disconnected upon a physical link failure. The algorithm in [7]
uses tabu search procedures to find disjoint alternate paths for
all of the lightpaths.
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Fig. 1. New Jersey LATA.

The work in [7] and [10]–[12] considers the problem of
finding a routing of the logical topology on a given physical
topology, so that the ring remains connected in the event of
a physical link failure. In contrast, this paper considers the
problem of physical topology design. In particular, an im-
portant observation of [10] is that many physical topologies
do not admit particular logical rings in a way that guarantees
survivability. One example of this fact is that almost 44% of all
nine-node rings cannot be embedded in a survivable manner
in the 11-node NJLATA network shown in Fig. 1. Hence, in
this paper, we seek to develop physical topology configura-
tions that are amenable to supporting survivable logical rings.
This approach is particularly applicable to greenfield network
scenarios, where the flexibility exists to design the physical
topology without the constraint of an existing infrastructure.

Such a design is particularly useful for service providers that
design their network infrastructure in order to serve customer
requests for lightpath connections. Alternatively, the service
provider can provide restoration at the physical layer. However,
such restoration may duplicate functionality provided at higher
layers and be wasteful of resources. Also, the physical layer
restoration must be fast enough to be compatible with the
requirements of the higher layer (e.g., must restore the fiber
cut before Synchronous Optical Network (SONET) initiates
loop-back protection). Our approach to the physical topology
design allows a service provider to route the lightpaths that
constitute the logical ring along completely disjoint paths,
thereby preserving the connectivity properties of the ring.

We consider the design of -node physical topologies that
can support survivable routings of logical ring topologies of size

. Clearly, rings of size 3 can be trivially embedded sur-
vivably in any two-connected physical topology, and as such our
focus is on the problem of embedding rings of size . We
begin in Section II with an analytical development of necessary
conditions on the physical topology for ensuring all -node
ring permutations can be embedded in a survivable manner, for
various values of . These conditions take the form of lower
bound requirements on the number of physical links in the net-

work. Subsequently, in Section III, we formulate the problem as
an integer linear program (ILP) to design the physical topology
using the minimum number of physical links, while allowing a
set of arbitrarily chosen logical topologies to be embedded in
a survivable manner. In Section IV, we use the insights gained
from Sections II and III to design physical topologies that can
support all ring permutations in a survivable manner using the
minimum number of physical links. Finally, Section V provides
a preliminary investigation of symmetric physical topologies for
supporting logical rings.

II. NECESSARY CONDITIONS FOR SURVIVABLE ROUTING

OF LOGICAL RINGS

We consider a bidirectional physical topology with node set
and edge set (we define as the number of nodes

in the physical topology). Similarly, each bidirectional logical
topology consists of a set of nodes and edges . A cut is
a partition of the set into subsets and .1 The cut-set
corresponds to the set of edges in that have one endpoint in
and the other in , and is denoted by .

In [10] and [11], necessary conditions on the physical
topology were introduced to ensure survivable routing of ring
logical topologies. We summarize the result in the following
discussion and in Theorem 2.1, which is a crucial result
upon which the remainder of the paper builds. Consider an
arbitrary ring logical topology. For any cut of
the physical topology, let be the number
of physical links along this cut and be the
number of logical links traversing the same cut. Clearly, in
order to be able to route the logical links along disjoint physical
paths, must be greater than or equal to

for each cut. This condition is necessary,
but not sufficient to ensure that a survivable routing exists for
a particular ring logical topology. For embedding all possible

-node ring logical topologies in a survivable manner, the fol-
lowing necessary condition on the physical topology appeared
in [10] and [11].

Theorem 2.1: For a physical topology to support any pos-
sible -node ring logical topology in a survivable manner the
following must hold. For any cut of the physical
topology

The proof of Theorem 2.1 is by construction: a logical ring
topology can be created that alternates between nodes of the
two sets and such that
physical links are in the cut-set (details may be found in [10],
[11]). The theorem says that for all cuts of the physical topology,
the number of physical links in the cut set must be greater than
or equal to twice the minimum of the number of nodes on the
smaller side of the cut and , where corresponds
to the maximum number of nodes in a -node ring logical
topology that can be on both sides of the cut. Note that The-
orem 2.1 provides a necessary but not sufficient condition for a

1For sets A and B, the set A n B is defined as A \ B , where B is the
complement of the set B.
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TABLE I
LOWER BOUNDS ON THE NUMBER OF PHYSICAL LINKS REQUIRED TO

EMBED LOGICAL TOPOLOGIES OF SIZE K

Fig. 2. Two-node cut-set consisting of a degree 2 node connected to a degree
4 node.

physical topology to support the survivable routing of all pos-
sible -node ring logical topologies.

Using Theorem 2.1, we develop lower bounds on the number
of physical links needed to embed rings of size for even-
valued . We also show in Theorem 2.5, that to embed
rings of size , a minimum of physical links
are needed. A summary of several of the lower bound results
derived in this section is given in Table I.

In order to establish the lower bound for the case ,
we take advantage of the following lemma, which makes use
of Theorem 2.1 to show that a node of degree 2 cannot have a
physical link to a node of degree 2 or 3, and a node of degree 3
cannot have a physical link to a node of degree 2.

Lemma 2.1: Any node of degree must have physical links
to nodes having degree at least

for
for

when and .
Proof: We consider the two cases separately by looking

at cuts of node pairs from the physical topology. Assume that
and . To prove the lemma, we consider two-node

cuts, where one of the two nodes has degree .
Consider first the case . Theorem 2.1 requires that there

are at least four edges crossing the cut (this follows since
implies ). Since , the

other node in the cut must have degree at least 4 to satisfy this
requirement. This is illustrated in Fig. 2: Note that if the node
of degree 2 were connected instead to a node of degree 2 or 3,
then an insufficient number of links would cross the cut.

Next, consider the case where . The same requirement
of four edges crossing the cut holds here, which implies that the
second node must have degree at least 3.

Note that Lemma 2.1 provides no restriction on nodes of de-
gree 4 or higher. Having established the supporting lemma, we
begin our analysis of physical link requirements for embedding

logical rings of size , by considering first the case . Our
first result is summarized in the following theorem.

Theorem 2.2: To support all logical rings of size , an
-node physical topology must have at least links.

Proof: Let be the number of nodes with degree in the
physical topology. Then, the number of links in the physical
topology is

(1)

Recall from Lemma 2.1 that any node of degree 2 must have
physical links to nodes of degree 4 or higher. Therefore, an upper
bound on is

(2)

Combining (1) with the inequality from (2), we obtain

(3)

Since , (1) may be used to obtain the bound

(4)

Combining (3) and (4), we require that the number of physical
links must satisfy

(5)

We can determine the values of and that min-
imize the number of physical links required under the bound of
(5). This minimum value occurs when there is equality between
the two terms in (5). Equating these terms, we obtain

Substituting this value of into (3) yields

(6)

as desired.
Next, we develop a lower bound on the number of physical

links required to support rings of size .
Theorem 2.3: To support all logical rings of size , and
-node physical topology must have at least links.

Proof: Let be the number of nodes with degree in the
physical topology. Then, the number of links in the physical
topology is

(7)

Recall from Lemma 2.1 that any node of degree 2 must have
physical links to nodes of degree 4 or higher. Also, applying
the result of Lemma A.1 (found in Appendix A) that at most
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one node of degree 2 can have a physical link to each node of
degree 4 or degree 5, an upper bound on is

(8)

Combining (7) with the inequality from (8), we obtain

(9)

Since , (7) may be used to obtain the bound

(10)

(11)

Combining (9) and (11), we require that the number of phys-
ical links must satisfy

(12)

We can determine the values of , , ,
and that minimize the number of physical links required
under the bound of (12). This minimum value occurs when the
two terms of (12) equate. Thus, we obtain

Substituting this value of into (9) yields

(13)

as desired.
Using an approach similar to the proofs for Theorems 2.2 and

2.3, we generalize the lower bound on , the number of links
in the physical topology, for arbitrary even values of . This
leads to the bounds for and 10 listed in Table I, and to
lower bounds for that hold for all even , as long as
is sufficiently large. The following theorem helps us to achieve
this result.

Theorem 2.4: Suppose is even. Let be the number
of nodes with degree in the physical topology. To support all
logical rings of size , the number of physical links must
satisfy (14), shown at the bottom of the page, for .

Proof: The proof may be found in Appendix A.
It is clear that the property of supporting all logical rings ex-

hibits a monotonicity property, in that a physical topology that
supports the survivable routing of all logical rings of size also

TABLE II
LOWER BOUNDS IMPLIED BY THEOREMS 2.2, 2.3, AND 2.4 ON THE NUMBER OF

PHYSICAL LINKS REQUIRED TO EMBED LOGICAL TOPOLOGIES OF SIZEK

supports all logical rings of size less than survivably. Then,
it is immediate that the lower bound for a particular value of

also applies to all values greater than . In particular, this
means that our bounds may be extended to apply to odd values
of . For example, the bound for also may be applied
as a bound for or greater.

Having established the lower bound on in Theorem 2.4,
we may use (14) to find physical link requirements for partic-
ular values of . Equation (14) becomes increasingly complex
as increases. As such, a linear program may be employed to
minimize over (14) and establish lower bounds for any .
Table II summarizes the lower bounds on implied by Theo-
rems 2.2, 2.3, and 2.4 for up to . Of note is that the
bound does not change when is increased above 10.

Though the bound established in Theorem 2.4 appears to satu-
rate for , we have not established that this bound is tight.
In Section IV, we demonstrate a class of physical topologies that
achieves the bound of for . However, no such
topologyhasbeenfoundforhighervaluesof ,when isofcon-
stantorder relative to .Thesimulation resultsofSection III sug-
gest that higher values of are suited naturally by hub architec-
tures that require on the order of physical links.

Having considered survivable routings of rings of size
when is some constant, it becomes desirable to determine
bounds on the case when is on the order of . In particular,
we consider the case of .

Theorem 2.5: The minimum number of physical links nec-
essary to support all logical rings of size greater than or equal
to in a survivable manner is .

Proof: To prove Theorem 2.5, we show that for any phys-
ical topology with fewer than links, we can find an

-node ring logical topology where each logical link re-
quires two physical links (for a total of links). Hence,
a physical topology with fewer than links cannot sup-
port all -node logical topologies. The proof of Theorem
2.5 may be found in Appendix B.

In Section IV, we will provide a physical topology that
achieves the bound of Theorem 2.5 for and another
physical topology that is within one physical link of the same
bound for and .

(14)
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The results of this section provide us with lower bounds on
the number of physical links that the physical topology requires.
They also give us some insights regarding the structure of the
topology (for example, low degree nodes tend to be connected
to high degree nodes). However, they do not directly provide us
with a physical topology design. In order to obtain additional in-
sight, we next apply integer linear programming techniques to
design physical topologies. In Section IV, we will use these in-
sights to design physical topologies that meet the above bounds.

III. INTEGER LINEAR PROGRAMMING FORMULATION

In this section, we develop an integer linear program (ILP)
formulation for designing physical topologies that can support
large numbers of logical rings in a survivable manner. We con-
sider the problem of finding a physical topology with a min-
imum number of physical links and the associated survivable
routings for a batch of ring logical topologies with nodes
each. We use [11, Th. 1] to determine a survivable routing for
each of the rings, which ensures that each logical topology
remains connected even in the event of a physical link failure.
In order to route a logical link on the physical topology,
a corresponding path on the physical topology must be found
between nodes and . Such a path consists of a set of physical
links connecting nodes and , as well as wavelengths along
those links. Let if logical link is routed on phys-
ical link , and 0, otherwise.

Our linear programming algorithm starts with a fully con-
nected physical topology and assigns a cost of 1 to each physical
link that is used. The batch of rings is embedded simultane-
ously, and we assign if any lightpath uses physical
link . We can now formulate the physical topology design
problem as the following ILP (ILP 1), with the objective of min-
imizing the total number of physical links used.

ILP 1: Linear program to find a physical topology for
embedding survivable rings.

Minimize subject to

1) Connectivity constraints: For each pair in each logical
ring

if
if
otherwise

for all .
2) Survivability constraints: For each logical ring

for all .
3) Physical link use constraints

for all , all , and all .
4) Integer flow constraints

Fig. 3. Physical topology generated by ILP 1 forK = 6 and R = 20.

A. Exact Solution for ILP 1

We implemented ILP 1 using the CPLEX software package.
CPLEX uses branch and bound techniques for solving ILPs and
is capable of solving ILPs consisting of up to one million vari-
ables and constraints. We have found that the solution of the
ILP can only be determined for small problem instances. For ex-
ample, with , , and , a physical topology
solution is found within 24 hours on a SPARC Ultra 10. The
resulting physical topology is shown in Fig. 3. Due to the com-
plexity of the linear programming solution, this approach cannot
be used for general design. However, attributes of the resulting
topologies found through experiments provide insights to the
physical topology design problem. For example, we find that

1) physical topology does not contain a Hamiltonian cycle;
2) physical topology has a multihub structure.

In Section IV, we use these insights to design physical topolo-
gies that are capable of embedding all rings in a survivable
manner. Our designs are consistent with the above observations
and, in particular, we use an architecture based on two hubs.

B. Heuristics for Solving ILP 1

We examined a number of approaches for solving ILP 1 with
very little success. This included attempting to bundle the phys-
ical link constraints (item 3 in ILP 1) and attempting to relax the
integer constraints. Another approach for obtaining a feasible
(but not optimal) solution is to embed the rings sequentially
rather than as a batch. Expectedly, designing physical topolo-
gies by sequentially embedding rings is not nearly as efficient
as embedding the rings as a batch. For example, if we embed

-node rings on an -node topology sequentially, the first set
of links will be a Hamiltonian cycle that corresponds to the first
logical ring. As mentioned above, the most efficient physical
topologies may not contain a Hamiltonian cycle.

One approach that did prove rather successful was to embed
a small batch of about 20 rings for which the above ILP can be
solved and then use the resulting physical topology to sequen-
tially embed additional rings, adding physical links when nec-
essary. The intuition behind this approach is that by embedding
the small batch, we avoid the negative effect that results from
the sequential embedding of the first few rings. Moreover, it is
reasonable to expect that the physical topology that results from
embedding even a small batch is relatively close to the optimal
topology for larger batches. For , embedding a batch of
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Fig. 4. New Jersey LATA with additional links added using our heuristic.

ten nine-node logical rings led to the modified dual hub architec-
ture, described in Section IV and illustrated in Fig. 7. This archi-
tecture uses 15 links and can be shown to support all nine-node
rings.

Another approach for solving the ILP is to express the objec-
tive function as a constraint. In other words, the objective func-
tion is removed and the constraint

MAXLINKS

is added. By varying the number of maximum physical links
available, MAXLINKS, we can determine the minimum
number of physical links required to embed the batch of logical
rings. While this approach indeed reduced the running time
of the ILP, we still only found it useful for relatively small
problems. Hence, we combined the two approaches above,
using the ILP to embed a small batch of rings with a maximum
of MAXLINKS physical links to obtain an initial physical
topology and then using this physical topology to embed more
logical rings sequentially, adding physical links as required. Of
course designing a physical topology in this manner to prov-
ably support all rings of size requires embedding
rings, which is impractical for large , even if the design is
done offline. However, if we sequentially embed randomly
selected rings, we find that the physical topology converges
after embedding a relatively small number of rings. Thus, we
can design physical topologies in this manner to have a high
probability of being able to support all ring permutations.

This heuristic can also be used to improve existing physical
topologies. For example, consider the NJLATA, which is ca-
pable of supporting only 56% of all nine-node rings. We em-
bedded 100 000 randomly selected nine-node rings sequentially,
adding physical links when necessary. After embedding fewer
than 1000 rings, the physical topology had converged and no
additional links were needed to embed the remaining topolo-
gies. A total of four physical links were appended to the phys-
ical topology, as illustrated in Fig. 4.

We can also use this heuristic approach to create physical
topologies with maximum nodal degree. This is useful in cases

Fig. 5. Eleven-node topology with maximum nodal degree of 5 generated by
the heuristic.

Fig. 6. Dual hub architecture.

where hub physical topologies are impractical. Other physical
constraints could similarly be added. For example, a cost may
be associated with each potential physical link, representing
the relative cost of creating the physical connection. We em-
bedded a batch of 20 nine-node rings on an 11-node physical
topology using a maximum of 20 physical links and restricting
the nodal degree to 5. We then embedded 100 000 randomly se-
lected nine-node rings. After less than 1000 ring embeddings,
the physical topology had converged and is illustrated in Fig. 5,
with the links that were added from sequentially embedding
100 000 randomly selected nine-node rings marked as dashed
lines. The resulting design requires 25 links rather than the 18
needed for the dual hub architecture, described in Section IV
and illustrated in Fig. 6.

IV. PHYSICAL TOPOLOGIES THAT ENSURE

SURVIVABLE RING ROUTING

The analytical and simulation (ILP) results provide valuable
insights in designing physical topologies that can support ring
permutations of various sizes. From Lemma 2.1, we know that
all degree 2 nodes must have neighbors of degree 4 or higher.
The physical topologies designed through the ILP simulations
all have hub structures, i.e., a small number of nodes having
high degrees and the remaining nodes with low degrees. We
introduce several physical topologies that exhibit some of the
key observations and results of the previous sections.

A. Hub Architectures

Dual Hub Architecture: Consider a physical topology with
nodes, two of which are hub nodes. Each nonhub node has de-
gree 2 and is connected to both hub nodes. The hub nodes each
have degree . Fig. 6 depicts the physical topology for a
dual hub architecture having nodes. This physical topology
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has links, which is the lower bound established in The-
orem 2.5 for routing all logical rings of size .
The following theorem establishes that when is even, any

-node ring logical topology may be routed using the dual
hub architecture. It also demonstrates that for any , the dual
hub architecture supports all logical rings of size .

Theorem 4.1: The dual hub architecture can support surviv-
able routings of all logical rings of size for even
and for odd.

Proof: The proof divides the possible logical ring config-
urations into three cases, depending on how many hubs are in-
cluded in the logical ring. We defer the proof to Appendix C and
provide three representative examples of the routing of

-node rings on the dual hub architecture.
For the case of odd, it can be shown that the dual hub

architecture is not sufficient for supporting all logical rings of
size . We now present some examples of routings of

-node logical rings. Assume for each example that is even.
Example 4.1: Suppose we wish to route the logical ring de-

fined by . That is, all nonhub nodes appear
in order on the ring with no hub nodes included. Then, starting
at node 1, the logical ring may be routed as follows: node 1
connects to node 2 through hub , and node 2 connects to
node 3 through hub . We continue alternating between hub
nodes in reaching the remaining nodes. Since is even, when
we reach node , we have reached it from hub , which
means we may complete the ring by traversing to node 1 through
hub .

Example 4.2: Suppose we wish to route the logical ring de-
fined by . Here, only hub appears on the
ring, followed by nodes 1 through in order. Starting at hub

, the logical ring may be routed as follows: hub connects
to node 1 directly, and node 1 connects to node 2 through hub

. Continuing to alternate between hub nodes in reaching the
remaining nodes as before, we reach node from . Since
the direct link back to has been used, we route the last logical
link from node through nodes and to hub .

Example 4.3: Suppose we wish to route the logical ring de-
fined by . Here, the hubs are adjacent
in the logical topology, followed by nodes 1 through in
order. Starting at hub , the logical ring may be routed as fol-
lows: hub connects to hub by traversing node . Then,
node 1 is reached directly from hub and the remaining nodes
are reached in the alternating manner described in Examples 4.1
and 4.2. This implies that node is reached from hub .
Thus, the last logical link is routed from node through
nodes and to hub .

Having addressed the embedding of logical rings of size
using the minimum number of links possible when is even,
we now consider the case of for odd, as well as
the cases of and .

Modified Dual Hub Architecture: The addition of a single link
directly joining the two hub nodes provides an architecture well
suited to the cases of , , and .
We call this architecture the modified dual hub architecture and
depict it in Fig. 7.

Theorem 4.2: The modified dual hub architecture with
nodes supports all -node logical rings in a survivable
manner.

Fig. 7. Modified dual hub architecture.

Proof: The logical topology may have either one or two
hub nodes. All possible logical ring topologies are fully de-
scribed by the -node analogues of configurations (37)
and (38), which may be found in the proof of Theorem 4.1 in
Appendix C. The routings for both configurations proceed sim-
ilarly to the one- and two-hub node cases detailed in the proof
of Theorem 4.1, and are omitted for brevity.

Theorem 4.3: The modified dual hub architecture with
nodes supports all -node logical rings in a survivable manner
when is odd.

Proof: The logical topology includes all nodes in the
physical topology, and may be described by the -node ana-
logue of configuration (38). Since we are assuming to be
odd, then we are assured that an even number of nodes separate

and in one direction (clockwise or counterclockwise)
and, consequently, an odd number of nodes separate and

in the opposite direction. With this fact, a similar routing to
that described in the proof of Theorem 4.1 (see Appendix C)
for configuration (38) guarantees the routing of -node logical
rings. We omit further details of the proof for brevity.

Of note is that in the case of an even number of nodes, if
an odd number of nodes separate and in the clockwise
direction and in the counterclockwise direction, then the dual
hub architecture is sufficient to route any such logical ring of
size . In general, however, when is even, the modified
dual hub architecture is not sufficient to route all rings of size

. It can be shown that adding a second physical link joining
the hub nodes solves the problem of routing all logical rings of
size , for any .

We have shown using hubbed architectures that the lower
bounds established in Section II are tight for the cases of

, , and .

B. Embedding Four-Node Rings

We now introduce the design of a physical topology for em-
bedding rings of size . The physical topology only has
nodes of degree 2 and degree 4: each node of degree 2 is con-
nected to two nodes of degree 4 and each node of degree 4 is
connected to four nodes of degree 2. Thus, there are twice as
many degree 2 nodes as degree 4 nodes. This design adheres to
Lemma 2.1, which restricts degree 2 nodes to connect to nodes
of degree 4 or higher. An example physical topology with 12
nodes is shown in Fig. 8. The -node generalization of this
topology is completely described as follows.

1) Node 1 has links to nodes 2, 3, , and .
2) Node has links to nodes , , ,

, for .
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Fig. 8. Physical topology that can embed all rings of size 4.

Clearly, the only allowed values of for which this topology
may be constructed are given by , for .
We show below that the resulting physical topology can support
all logical rings of size . We then show that the physical
topology consists of physical links which is the minimum
required to embed all four-node rings, as shown in Theorem 2.2.

Theorem 4.4: Consider an -node physical topology con-
sisting of only degree 2 and degree 4 nodes, interconnected as
described above. This physical topology can support all rings of
size .

Proof: We consider a physical topology having nodes,
numbered in a similar way to the topology shown in Fig. 8.
Consider embedding an arbitrary logical ring consisting of four
nodes in order, . We will show that the
physical topology can be divided into two connected circuits,2

one that contains nodes and and another that contains
and . Furthermore, the two circuits are connected at

a degree 4 node, which we denote as . Since any set of three
nodes can be traversed in order on a circuit, the four lightpaths
for the logical ring can be formed by traversing a path from
to to to in the first circuit and then traversing a path
from to to to in the second circuit.

Next, we address the existence of the circuits. The first circuit
containing nodes and is formed by starting at node

and traversing the graph to reach node and, subse-
quently, node . The constraint on this traversal is twofold:
The circuit never traverses a physical link where the source
node is numbered larger than the destination node, except when
moving from either of nodes or to node 1, and the
circuit does not include the links adjacent to node only if

has degree 2 [the same applies for node ]. Note that
any circuit satisfying these constraints is acceptable. Denote the
set of edges traversed in this circuit by . Then, the graph de-
scribed by the original set of nodes and the reduced set of
edges must contain physical links that form a ring. Fur-
thermore, nodes and must be on this ring, since the
remaining links must travel through all degree 4 nodes, and we
have purposely avoided traversing degree 2 nodes from the set

.
Finally, we must prove the existence of node . We have es-

tablished that both circuits must traverse every node of degree 4

2A circuit is an alternating sequence of nodes and edges (physical links), such
that the edges are distinct and the end vertices coincide.

Fig. 9. Ten-node four-connected symmetric physical topology that supports
all rings of size K � 9.

on the physical topology. Thus, without loss of generality, we
take .

Since the above topology contains twice as many degree 2
nodes as degree 4 nodes, clearly, it contains physical
links. Recall from Theorem 2.2 that this is the also the lower
bound on the number of physical links required to support all
rings of size 4.

V. SYMMETRIC PHYSICAL TOPOLOGIES

Designing physical topologies to embed survivable logical
rings, while minimizing the number of physical links required
led to the creation of physical topologies with multiple hubs.
An additional property of these multiple hub topologies is that
the physical topology is now also survivable to node failures.
The physical network will always remain connected as long as
one of the hub nodes is functioning. Hub physical topologies are
generally easier to implement in local and metro area network
environments. However, as the physical area of the network in-
creases and due to other physical restrictions (such as right of
ways, etc.) it may be impractical to deploy to multiple hubs.
In this section, we present preliminary results on the design of
physical topologies that are more symmetric, i.e., where the de-
gree of each node is similar. This topic remains as an important
area of future research.

A. Rotationally Symmetric Topologies

In [10], a ten-node four-connected symmetric physical
topology (illustrated in Fig. 9) was shown that is capable of
carrying all rings of size in a survivable manner. This
physical topology contains 20 physical links and each node
has degree 4. For comparison, the dual hub architecture would
require 16 physical links in order to carry all logical rings of
size on a ten-node physical topology. Unfortunately, it
is not possible to generalize this symmetric physical topology
to all values of such that all rings of size can be
routed survivably. The following theorem shows that this is so
by addressing the survivable routing problem for a certain class
of physical topologies. We begin by introducing the concept
of a rotationally symmetric topology as a class of physical
topologies containing the topology of Fig. 9.

Definition 5.1: A rotationally symmetric graph is a graph for
which there exists a labeling of the vertices of the graph,
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Fig. 10. Nodes in the cut S of Theorem 5.1.

denoted by vector , such that the incidence matrix3

of the graph is preserved if the vertices are relabeled with any of
the circularly shifted versions of vector .

We refer to any physical topology that can be represented
by a rotationally symmetric graph as a rotationally symmetric
topology. Note that Fig. 9 depicts a rotationally symmetric
topology, where each node has degree 4.

We will now consider any rotationally symmetric physical
topology having nodes, each of degree 4. In particular, since
the topology is symmetric, we may pick an arbitrary node and
give it the label . By Definition 5.1, the topology may be ar-
ranged in the shape of a ring with nodes appearing in the order

. Since node has degree 4, it connects to a node
nodes away around the ring in the clockwise direction and to

a second node nodes away around the ring, also, in the clock-
wise direction (label these nodes and , respectively). Note
that without loss of generality, and . By
the symmetry of the topology, node must connect to a node

nodes away in the counterclockwise direction, as well as a
node nodes away in the counterclockwise direction (label
these nodes and , respectively). From Fig. 9, if we
label node 1 with , then , , , and

.
Theorem 5.1: For , any rotationally symmetric

topology where each node has degree 4 cannot support all
logical rings of size .

Proof: Assume that and . Labeling an
arbitrary node as as described above, consider a cut con-
taining the nodes , , , , , a node nodes
in the clockwise direction from (label this node as ),
and a node nodes in the counterclockwise direction from

(label this node as ). Note that this cut can possibly
have size less than seven, since the node may overlap
with either , , or . We depict the nodes in the
cut along with the edges that must interconnect these nodes in
Fig. 10 when no overlap occurs between any of the nodes.

Since each node has degree 4, when no overlap occurs be-
tween any of the nodes, there are only 12 links in the cut-set.
However, since , Theorem 2.1 requires that

, which is impossible.
The remainder of the proof deals with cases where overlap

occurs between the nodes of the cut. Suppose the node labeled

3The incidence matrix corresponding to a graph is an N �N matrix where
the (i; j)th element of the matrix is 1 if there exists an edge joining nodes i and
j in the graph and 0, otherwise.

Fig. 11. Two interconnected Hamiltonian cycles can support all logical rings
of size 5 in a survivable manner.

is also labeled (and consequently, the node labeled
is also labeled ). Then, the cut , with ,

has four edges crossing the cut, but Theorem 2.1 requires that
, which is impossible. The same analysis applies

to the case where the node labeled is also labeled
(and consequently, the node labeled is also labeled

).
Finally, consider the case where the node labeled is

also labeled (this occurs in Fig. 9). Then, the cut ,
with , has eight edges crossing the cut, but Theorem 2.1
requires that , which is impossible.

Note that Theorem 5.1 shows that we cannot form a rota-
tionally symmetric topology with edges that is capable of
routing all logical rings of size . In contrast, the hub
topologies in Section IV require only edges to route all
logical rings of size less than or equal to , for all .

B. Interconnected Hamiltonian Cycles

One method of generating physical topologies that are
provably capable of supporting survivable rings is to select the
physical links to form interconnected Hamiltonian cycles. For
example, if the physical topology contains two interconnected
Hamiltonian cycles, all rings of size can be supported.
One of the Hamiltonian cycles is used to connect the first three
nodes and the second Hamiltonian cycle is used to connect the
remaining two nodes in the logical topology. This is shown in
Fig. 11, with only the nodes included in a five-node logical
topology shown. The solid lines represent logical links mapped
on the first Hamiltonian cycle, and the dashed lines represent
logical links mapped on the second Hamiltonian cycle. This
results in a four-connected physical topology which uses
physical links. Comparing this design to our lower bounds on
physical links required, we have shown using Theorem 2.3 that
to embed all rings of size , a minimum of physical
links are required. Thus, the interconnected pair of Hamiltonian
cycles may not be a very efficient design.

In general, designing a physical topology by interconnecting
Hamiltonian cycles results in a -connected physical

topology that is capable of supporting rings of size in
a survivable manner.

VI. CONCLUSION

We have considered the problem of physical topology de-
sign for embedding logical rings in a survivable manner. This
problem is particularly important for service providers that de-
sign their fiber infrastructure in order to support future customer
requests for lightpath connections. Since rings are a very com-
monly used logical topology (due to their ability to recover from
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failures), we focused in this paper on design for ring logical
topologies. Of course, a natural extension of this work is general
design for arbitrary (two-connected) logical topologies.

We obtained some basic necessary conditions on the physical
topology in order to be able to route logical rings in a surviv-
able manner. We also developed lower bounds on the number of
links that the physical topology must contain in order to be able
to support all possible logical links of size (for various values
of ). We explored a linear programming approach to the de-
sign of physical topologies. This approach pointed to hub archi-
tectures as being particularly well suited to the design problem.
We designed a number of basic physical topologies to suit these
bounds: for the cases of and , the lower
bounds are met exactly by the physical topologies introduced
(the topology for embedding four-node rings and the dual hub
architecture, respectively), while for the cases of
and , we have shown that the bound is tight using the
physical topology introduced (the modified dual hub architec-
ture). Since hub architectures may be impractical, we provided
preliminary results relating to topologies where each node has
equal degree. An important area of future research lies in ex-
ploring further designs that do not make use of hub nodes.

Finally, one may question our desire to support all -node
logical rings in a survivable manner. The question arises of
whether we are overprovisioning the physical network in
our quest to support all logical rings. Notice however, that
our designs use fewer than physical links to support all
logical rings of size or smaller (and in a large class
of cases, of size as well). An arbitrary -node log-
ical topology requires a minimum of physical links
in order to be two-connected. Furthermore, our experiments
show that attempting to embed just a small number of logical
rings already requires very close to physical links; hence,
requiring the design to support all possible logical rings in fact
does not result in a significant number of additional physical
links. Moreover, the ability to support all logical rings is useful
because it allows the logical ring topology to be reconfigured.
Such reconfiguration has been shown to reduce network traffic
loads [13], [14].

APPENDIX A
PROOF OF THEOREM 2.4

The proof of Theorem 2.4 will proceed by proving that each
individual term from (14) serves as a lower bound on . The
first and last terms of (14) are obtained very similarly to the two
terms that define the lower bound when and
(see the proofs of Theorems 2.2 and 2.3). In order to obtain the
first and second terms in (14), we introduce a new lemma that
restricts the interconnections allowed between groups of nodes.
Following the lemma, we provide three clarifying examples.

Definition A.1: Define a grouping as a set of nodes,
of which have degree 2 and of which have degree 3. Further,
these nodes may be interconnected, but each node must have
at least one single link free to connect to nodes outside of the
grouping. For consistency in naming, we define the degree of
this object by the pair .

Lemma A.1: Suppose a node of degree connects to
groupings, each of degree , in the sense that the node of
degree has a physical link to every node in each grouping.
For and sufficiently large, an upper bound on is given
by

(15)

Proof: The total number of nodes in a cut including
groupings and the node of degree is .
Assume achieves the minimum value in the set

. Then, Theorem 2.1 requires that

(16)

(17)

Here, the right-hand side of (17) is obtained by considering the
maximum number of edges crossing the cut. This value occurs
when all edges, excluding the edges connecting the node of de-
gree to the nodes of the groupings, cross the cut. Thus, the
node of degree contributes edges that cross
the cut [this is the first term in (17)]. The groupings contribute
an additional edges that cross the cut, since nodes
of degree 2 contribute one edge each, and nodes of degree 3
contribute 2 edges each [this is the second term in (17)]. Simple
algebraic manipulation of (17) yields

Since is an integer, the bound in (15) is established.
The bounds on and that must be satisfied for this lemma

to hold are as follows:

for even

for odd

(18)

(19)

We omit the details of the proofs of these bounds, only men-
tioning that they are based on the requirement that and
are sufficiently large to test for and to find the upper bound on

, while maintaining as the minimizing element of the set
.

We will now provide three examples that demonstrate the use-
fulness and flexibility of Lemma A.1. The first two examples
consider the very important cases of groupings of degree (1, 0)
and (0, 1). [Lemma A.1 applied to a grouping of degree (1, 0) for
the cases of , 5 was used in the proof of Theorem 2.3.]
The third example serves to clarify the notion of a grouping.
The examples all assume that and are sufficiently large for
Lemma A.1 to apply.

Example A.1: Consider a grouping of degree (1, 0). For a
node of degree , we will use Lemma A.1 to determine
how many of these groupings the degree 6 node may connect
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Fig. 12. Node of degree 6 connecting to different numbers of nodes of
degree 2.

Fig. 13. Node of degree 6 connecting to different numbers of nodes of
degree 3.

to without violating Theorem 2.1. In other words, we will deter-
mine the maximum number of nodes of degree 2 a degree 6 node
may connect to. By Lemma A.1, this value is . We
demonstrate this bound in Fig. 12: Fig. 12(a) shows that when
the degree 6 node connects to two nodes of degree 2, the min-
imum requirement of six edges may cross the cut. Fig. 12(b)
adds an additional node of degree 2, which leaves a maximum
of six edges crossing the cut (as shown). However, Theorem 2.1
requires a minimum of eight edges crossing a cut of four nodes.
Thus, we have shown that a degree 6 node may connect to at
most two nodes of degree 2.

Example A.2: Consider a grouping of degree (0, 1). In this
case, Lemma A.1 sets a limit of nodes of degree 3
that a node of degree may connect to. This is illustrated in
Fig. 13: Fig. 13(a) shows that when the degree 6 node connects
to four nodes of degree 3, the minimum requirement of ten edges
may cross the cut. Fig. 13(b) adds a fifth node of degree 3 to the
cut, which leaves a maximum of 11 edges crossing the cut (as
shown). However, Theorem 2.1 requires a minimum of 12 edges
crossing a cut of six nodes. Thus, we have shown that a node of
degree 6 may connect to at most four nodes of degree 3.

Example A.3: The last example clarifies the notion of a
grouping. Consider a grouping of degree (1, 1). In this case,
Lemma A.1 sets a limit of grouping of degree (1, 1)
that a node of degree may connect to. This is illustrated
in Fig. 14, where each grouping is shaded by a box: Fig. 14(a)
shows that when the degree 6 node connects to one grouping
of degree (1, 1), as many as seven edges may cross the cut.
Fig. 14(b) shows that when the degree 6 node connects to two

Fig. 14. Node of degree 6 connecting to different numbers of groupings of
degree (1,1).

groupings of degree (1, 1), a maximum of eight edges cross the
cut. However, Theorem 2.1 requires a minimum of ten edges
crossing a cut of five nodes.

Proof of Theorem 2.4: We begin by rewriting the expres-
sion for number of links in the physical topology as

(20)

Combining the fact (from Lemma 2.1) that nodes of degree 2
must have physical links to nodes of degree 4 or higher, with
the bound of Lemma A.1 for groupings of degree (1, 0), which
restricts the number of connections a node of degree can have
to degree 2 nodes, we obtain the following restriction on the
number of nodes of degree 2:

(21)

Equation (20) may be used to eliminate the final term of (21),
which provides the first restriction on

(22)

To achieve this bound, we applied Lemma 2.1, which requires
, and Lemma A.1 for . Using (18)

and (19) for a grouping of degree (1, 0) and even, we find that
(22) holds when .

Next, we establish an upper bound on the value of .
From Lemma A.1, we have that a degree node connects to at
most

(23)

nodes, when these nodes necessarily belong to groupings of
degree . Note that maximizes (23)
over all possible groupings. To prove this, suppose that
achieves the maximum in (23). If , then note that



1536 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 8, OCTOBER 2004

achieves a higher value by decreasing the denominator term,
while having no effect on the numerator terms of (23). Next,
suppose and . Then, we have immediately

Of course, this inequality is satisfied with equality when .
Then, the maximum number of nodes of degree 2 or 3 that a node
of degree can reach is given by . This implies that the
following bound holds:

(24)

Applying (24) to (20), we obtain the second bound on

(25)

for . To achieve the bound of (25), we employed Lemma
A.1. Since (24) is derived based on a grouping of degree (0, 1)
and the assumption that is even, the bounds on and
require that .

Finally, the third bound on is obtained as follows. We lower
bound the second term of (20) as

(26)

Using (20) and combining the fact that with (26)
provides the lower bound

(27)

(28)

The bounds of (22), (25), and (28) in combination correspond
to the desired bound (14), which holds for all , as
desired.

APPENDIX B
PROOF OF THEOREM 2.5

The proof of Theorem 2.5 requires two supporting lemmas.
Lemma B.1: Given a graph with nodes with degrees

, if for , the graph contains
a Hamiltonian cycle.

Proof: The proof may be found in [15, p. 350].
Lemma B.2: Consider an -node physical topology with

physical links. Let be the degree of the th
largest degree node in the -node topology and assume each
node has a minimum degree of two. Then

(29)

Proof: Since there are at most physical links in the
physical topology, the sum of the degrees of all the nodes must
be less than or equal to . Equivalently

(30)

Since the degree of each node is at least two, we clearly have
that

(31)

Combining (30) and (31), we obtain an upper bound on

(32)

Since is defined as the degree of the th largest degree
node, its degree must be less than the average of the of the larger
degree nodes

(33)

Together, (32) and (33) provide

as desired.
Proof of Theorem 2.5: The proof is by construction of an

-node logical topology that requires at least phys-
ical links. The proof is divided into four cases corresponding to
physical topology size. In the first case, we show that the the-
orem holds for all rings of size greater than or equal to 12. The
other three cases establish the proof for rings of size less than
12.

In Case 1, we consider physical topologies of size .
We start by removing the two largest degree nodes from the
physical topology. The resulting physical topology , has

nodes, with degrees through . We show below that
there exists a logical ring topology that traverses these
nodes and requires more than physical links.

Consider the inverse of the -node physical topology,
denoted , where link if and link

if . We will demonstrate that there exists
a Hamiltonian cycle in this inverse graph. The existence of a
Hamiltonian cycle in the inverse graph implies that there exists
a sequence of nodes with direct physical links connecting
them in the inverse topology. Hence, these nodes cannot
be connected using direct physical links in the original physical
topology, which implies that each logical link must utilize at
least two physical links in the original physical topology. Thus,
the logical ring corresponding to the Hamiltonian cycle in the
inverse graph requires a minimum of physical links in
the original topology.

We now proceed to prove our claim that a Hamiltonian cycle
exists in the inverse topology. Let be the index of the th largest
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degree node in the original topology and let denote its degree
in the inverse graph . Since has nodes, it must be
true that . If the th largest degree node in the
original topology has connections to nodes and , then
the degree of node is strictly greater than . Thus,

can be less than . However, the degree of the smallest
degree node in is always greater than or equal to
and the degree of the next smallest degree node in is always
greater than or equal to , and so on. To summarize, if

denotes the degree of the th smallest degree node in , then
.

Next, we apply Lemma B.1 to the inverse graph to conclude
that contains a Hamiltonian cycle if the degree of the nodes
in the inverse graph are such that for .
Rewriting this requirement for a Hamiltonian cycle in terms of

and yields

for (34)

Using (29) from Lemma B.2 as an upper bound on in (34),
we obtain the condition

for (35)

The roots of the left-hand side of (35) occur at and at
. It is easy to verify that (35) is true if .

Thus, (34) is satisfied if . Consequently, there
exists a Hamiltonian cycle in the inverse graph for all

. The resulting Hamiltonian cycle corresponds to a logical
topology that requires for each logical link a minimum of two
physical links in the original physical topology, i.e., this logical
topology cannot be embedded in the original physical topology
with fewer than physical links.

For Case 2, we consider physical topologies of size
and . Recall from Theorem 2.2 that a minimum of
physical links are required to support rings of size 4 or greater.
Since for , and Theorem 2.2 is valid for

, Theorem 2.5 holds for and .
Similarly, Case 3 corresponds to physical topologies of

size and . From Theorem 2.3, a minimum
of physical links are needed to support rings of size
6 or greater. Again, for , and the
result of Theorem 2.3 if valid for , which implies that
Theorem 2.5 holds for and .

Finally, Case 4 corresponds to physical topologies of size
and . From Theorem 2.4 a minimum of

physical links are required to support rings of size 8 or greater.
Since for , and the result of Theorem 2.4
for requires that , Theorem 2.5 holds.

APPENDIX C
PROOF OF THEOREM 4.1

We consider the case of even, and demonstrate the routing
of any logical ring of size . The proof for the case of

for any has a similar progression and is omitted
for brevity.

To prove that this physical topology can support all rings of
size , we need to show that each of the possible

ring configurations can be routed on the dual hub architecture.
Any logical ring configuration may be denoted by the vector

, where is the th node on the
logical ring. We divide the possible configurations into three
cases, where the logical ring contains 0, 1, or 2 of the hub nodes.
Then, the logical ring may be expressed as

for hub nodes (36)

for hub node (37)

or one of

...
(38)

for two hub nodes. Note that in the zero-hub node case, all
nonhub nodes are included in the logical ring and, thus, without
loss of generality, node 1 is taken as the first node (i.e.,

). For the one-hub node case, by the symmetry of the dual hub
architecture, we may assume without loss of generality that the
hub node included in the logical topology is (i.e., ).
Finally, note that there are possible configurations when
there are two hub nodes in the logical ring. This includes the
case where immediately precedes , which follows by the
symmetry of the physical topology. Thus, we have a complete
description of all possible ring logical topologies consisting of

nodes that must be routed on the dual hub architecture.
We now proceed to demonstrate that when is even, each

of the three configurations (36)–(38) may be routed using the
dual hub architecture. First, consider the case of zero hub nodes
in the logical topology. Starting at node 1 in the logical ring, a
path can be found to the next node via one of the hub nodes. The
path to the subsequent node will then go through the other hub
node. Thus, consecutive lightpaths in the logical ring alternate
between using each of the two hubs as intermediate nodes. Since
each hub node can be used as an intermediate node
times, we can support lightpaths between nodes in the
logical topology, as desired. Thus, the dual hub architecture is
sufficient to route any logical ring not containing the hub nodes.

Next, we consider the case of a single-hub node in the ring
logical topology. Starting with the hub , has a direct con-
nection to , which can connect to through . Again,
we reach the nodes for , by alternating be-
tween the hub nodes. Following this progression, node
is reached from hub . Thus, the last logical link connects node

to hub through nodes and .
Finally, we consider the case where the ring logical topology

contains both hub nodes. Denote the two nonhub nodes not in-
cluded in the logical ring by and . We distinguish between
two cases. First, consider the case where no nodes or an even
number of nodes separate the hubs. Then, starting with the hub

, traversing the nodes separating and on the logical
ring (or remaining at in the case of zero nodes separating
the hubs) in the same alternating manner as above implies that
we arrive at hub rather than . We then reach node
by traversing . Continuing to alternate between the hubs in
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reaching the remaining nodes, we reach the last node in the log-
ical ring by passing through hub . To complete the
logical ring, must be reached by traversing nodes and .
Next, consider the case where an odd number of nodes sepa-
rate the hubs. Then, again starting with hub , traversing the
nodes separating and on the logical ring in the same al-
ternating manner as above implies that we arrive at hub di-
rectly. Continuing to alternate between the remaining nodes, an
odd number of nodes remain which implies that there is a direct
link back to from .
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