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SUMMARY

This paper considers the link capacity requirement for an LEO satellite constellation. We model the
constellation as an N � N mesh-torus topology under a uniform all-to-all traffic model. Both primary
capacity and spare capacity for recovering from a link or node failure are examined. In both cases, we use a
method of ‘cuts on a graph’ to obtain lower bounds on capacity requirements and subsequently find
algorithms for routing and failure recovery that meet these bounds. Finally, we quantify the benefits of
path-based restoration over that of link-based restoration; specifically, we find that the spare capacity
requirement for a link-based restoration scheme is nearly N times that for a path-based scheme. Copyright
# 2003 John Wiley & Sons, Ltd.

1. INTRODUCTION

The total capacity required by a satellite network to satisfy the demand and protect it from
failures contributes significantly to its cost. To maximize the utilization of such a network, we
explore the minimum amount of spare capacity needed on each satellite link, so as to sustain the
original traffic flow during the time of a link or a node failure. In general, for a link failure,
restoration schemes can be classified as link-based restoration, or path-based restoration. In the
former case, affected traffic (i.e. traffic that is supposed to go through the failed link) is rerouted
over a set of replacement paths through the spare capacity of a network between the two nodes
terminating the failed link. Path restoration reroutes the affected traffic over a set of replacement
paths between their source and destination nodes [1–5]. The obvious advantages of using the
link restoration strategy are simplicity and ability to rapidly recover from failure events.
However, as we will show later, the amount of spare capacity needed for the link-based scheme
is significantly greater than that of path-based restoration since the latter has the freedom to
reroute the complete source–destination using the most efficient backup path. On the other
hand, the path restoration scheme is less flexible in handling failures [1–3].
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We investigate the optimal spare capacity placement problem based on mesh-torus topology
which is essential for the multisatellite systems. An n� n mesh torus is a two-dimensional (2D)
n-ary hypercube and differs from a binary hypercube in that each node has a constant number of
neighbours (4), regardless of n: For the remainder of the paper, we will refer to this topology
simply as a mesh. In particular, we are interested in the scenario where every node in the
network is sending one unit of traffic to every other node (also known as complete exchange or
all-to-all communication) [6]. This type of communication model is considered because the exact
traffic pattern is often unknown and an all-to-all model is frequently used as the basis for
network design. Even in the case of a predictable traffic pattern, links of a particular satellite will
experience different traffic demand as the satellite flies over different location on earth. Thus,
each link of that satellite must satisfy the maximum demand. Again, all-to-all traffic model helps
capturing this effect. Hence, we also assume that each satellite link has an equal capacity. Our
results, while motivated by satellite networks [7–9], are equally applicable to other networks
with a mesh topology such as multi-processor interconnect networks [10–12] and optical WDM
mesh networks [2, 3]. Furthermore, while our results are discussed in the context of an n� n
mesh for simplicity, they can be trivially extended to a more general n� m topology.

When using the path restoration schemes, the restoration can be performed at the global level
by rerouting all the traffic (both those affected or unaffected by the link failure) in a network.
However, this level of restoration requires recomputing a new path for each source–destination
(S–D) pair, thus it is impractical if a restoration time limit is imposed or when disruption of
existing calls is unacceptable. We can also perform path restoration at the local level by
rerouting only the traffic which is affected by the link failure. Obviously, the local level
reconfiguration will require at least as much spare capacity as the global level reconfiguration
since the former is a subset of the latter. Nevertheless, as we show in Section 4, the lower bound
on the spare capacity needed, using global level reconfiguration, can be achieved by using local
level reconfiguration.

To obtain the necessary minimum spare capacity, our approach is to first find the minimum
capacity, say C1; that each link must have in order to support the all-to-all traffic. We then
obtain a lower bound, C2; for the capacity needed on each link to satisfy the all-to-all traffic
when one of the links or nodes fails. Consequently, the minimum spare capacity needed, Cspare;
should be greater than the difference of C2 and C1: Since we do not restrict the reconfiguration
(global level or local level) used to calculate C2; C2 � C1 is a lower bound on Cspare; both at
global level and local level. For a single link failure, we will show that this lower bound on Cspare

is achievable by using a path based restoration algorithm at a local level. Thus, the minimum
spare capacity needed using path restoration strategy is Cspare: Table I summarizes capacity
requirements under link based and path based restoration for link failure.

Communication on a mesh network has been studied in References [9, 12, 13]. In Reference
[13], the authors consider processors communicating over a mesh network with the objective of
broadcasting information. The work in Reference [9] presents routing algorithm generating
minimum propagation delay for satellite mesh networks. In Reference [12], the authors propose
new algorithms for all-to-all personalized communication in mesh-connected multiprocessors.
These papers mentioned so far did not look into capacity provisioning and spare capacity
requirement of the mesh network.

Path-based and link-based restoration schemes have been extensively researched [1–4]. In
Reference [1], the authors study and compare spare capacity needed by using link-based and
path-based schemes. The work of Reference [4] provides a method for capacity optimization of
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path restorable networks and quantifies the capacity benefits of path over link restoration. In
References [2, 3], the authors examine different approaches to restore mesh-based WDM optical
networks from single link failures. In all the aforementioned papers, the spare capacity problem
is formulated as an integer linear programming problem which is solved by standard methods.
Our paper addresses the mesh structure for which we can get a closed form results for the spare
capacity.

The structure of this paper is as follows: Section 2 gives necessary definitions and statement of
the problem. In Section 3, a lower bound on C1 is given along with a routing algorithm
achieving this lower bound. The lower bound C2 for link failure is presented also. We then show
in Section 4 that the lower bound on Cspare; C2 � C1; can be achieved by a path-based restoration
algorithm under a single link failure. In Section 5, we derive a lower bound on Cspare for the
node failure case and present a restoration scheme. Section 6 concludes this paper.

2. PRELIMINARIES

We start out with a description of the network topology and traffic model, and follow it with a
sequence of formal definitions and terminology that will be used in subsequent sections.

Definition 1
The two-dimensional N -mesh is an undirected graph G ¼ ðV ;EÞ; with vertex set

V ¼ fa j a ¼ ða1; a2Þ and a1; a2 2 ZNg

where ZN denotes the integers modulo N ; and edge set

E ¼ fða; bÞ j 9j such that aj � ðbj � 1Þmod N and ai ¼ bi for i=j; i; j 2 f1; 2gg:

The above definition is from Reference [6]. A two-dimensional N -mesh has a total of N2

nodes. Each node has two neighbours in the vertical and horizontal dimension, for a total of
four neighbours. We associate each satellite with a fixed node, ða1; a2Þ; in the mesh. Undirected
edges of the mesh are also referred to as links. Figure 1 shows a two-dimensional 5-mesh. The
notion two-dimensional 1-mesh is used to denote the case where N is arbitrarily large, and it is
the same as an infinity grid.

Table I. Capacity requirements under link-based and path-based restoration for a link failure.

Link-based Path-based
No restoration restoration restoration

Total capacity (N odd) N3�N
4

N3�N
3

N2ðN 2�1Þ
2ð2N�1Þ

Total capacity (N even) N 3

4
N3

3
N 4

2ð2N�1Þ

Spare capacity (N odd) 0 N3�N
12

N3�N
4ð2N�1Þ

Spare capacity (N even) 0 N3

12
N 3

4ð2N�1Þ
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Definition 2
A cut ðS; V � SÞ in a graph G ¼ ðV ;EÞ is partition of the node set V into two non-empty subsets,
a set S and its complement V � S:

Here the notation Cut-SetðS; V � SÞ ¼ fða; bÞ 2 E j a 2 S; b 2 V � Sg denotes the set of edges of
the cut (i.e. the set of edges with one end node in one side of the cut and the other on the other
side of the cut).

Definition 3
The size of a Cut-SetðS; V � SÞ is defined as CðS; V � SÞ ¼ jCut-SetðS; V � SÞj:

For G ¼ ðV ;EÞ and PðV Þ denote the power set of the set V (i.e. the set of all subsets of V ). Let
PnðV Þ denote the set of all n-elements subsets of V :

Definition 4
Let G ¼ ðV ;EÞ be a two-dimensional N -mesh, the function eN : Zþ ! Zþ is defined as

eN ðnÞ ¼ min
S2PnðV Þ

CðS; V � SÞ

The function eN ðnÞ returns the minimum number of edges that must be removed in order to
split the two-dimensional N -mesh into two parts, one with n nodes and the other with N 2 � n
nodes. Similarly, e1ðnÞ is defined to be the minimum number of edges that must be removed in
order to split the 1-mesh into two disjoint parts, one of which containing n nodes.

To achieve the minimum spare capacity, we consider the shortest path algorithm. Shortest
paths on two-dimensional N -mesh are associated with the notion of cyclic distance which we will
define next [14].
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Figure 1. A two-dimensional 5-mesh.
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Definition 5
Given three integers, i; j; N ; the cyclic distance between i and j modulo N is given by

DN ði; jÞ ¼ minfði� jÞmod N Þ; ðj� iÞmod N Þg

3. CAPACITY REQUIREMENT WITHOUT LINK OR NODE FAILURES

To obtain the necessary capacity, C1; that each link must have in order to support the all-to-all
traffic without link failure, we first provide a lower bound on C1: An algorithm achieving the
lower bound will also be presented. For the proof of the lower bound on C1; we are aware of the
existance of a simpler proof (using Proposition 1 in Reference [13]) than the one we described
below. However, the cut method we used here will help us find the lower bound, C2; on the
minimum capacity needed on each link in the event of a link failure. Therefore, we decide to use
the same cut method consistently in proving the lower bound on C1 and the lower bound C2:

3.1. A lower bound on the primary capacity

To find a lower bound on C1; we state the following lemmas which will prove to be useful tools
in the subsequent sections. First, we give a brief explanation of the terminology and notation
used in the lemmas and their proofs. For G ¼ ðV ;EÞ defined as an infinite mesh, an inner edge
ði; jÞ of a set W � V is ði; jÞ 2 E such that i 2 W and j 2 W : A corner node x of the set W is defined
to be a node x 2 W such that two of its four neighbouring nodes are also in the set W while the
other two are in %WW : And of those two neighbouring nodes in W ; they form a 908 angle with
respect to node x (as shown in Figure 2). Similarly, a leaf node x of set W is defined to be a node
x 2 W such that three of its four neighbouring nodes are in %WW ; and the last one is in W . When all
nodes in W are connected, we use the term shape of the set W to refer to the collective shape of
nodes in W : For example, we say that the shape of the set shown in Figure 3(a) is square and the
shape of the set in Figure 3(b) is rectangular. Lastly, we use the term minimum set Wn to refer any
set such that CðWn;WnÞ ¼ e1ðnÞ:

Lemma 1
Let G ¼ ðV ;EÞ be an infinite mesh. An arbitrary set Wn 2 V such that e1ðnÞ ¼ CðWn;WnÞ must
satisfy the following properties:

1. 8x 2 Wn; 9y 2 Wn such that ðx; yÞ 2 E: In other words, nodes in Wn should be connected.
2. Nodes in Wn should be clustered together to form a rectangular shape (including square) if

possible.
3. e1ðnÞ is an even number for all n 2 Zþ:
4. e1ðnÞ is a monotonically non-decreasing function of n:

Proof
Property (1) is easy to show. If there exists a node s 2 Wn such that s is not connected to any
other nodes in Wn; simply discarding s and adding a new node which is connected to nodes of Wn

will result in a smaller CðWn;WnÞ; a contradiction to the definition of e1ðnÞ:
To show (2), suppose the set Wn is not clustered together to form a rectangular shape, then by

grouping nodes into rectangle will decrease CðWn;WnÞ: Again, we have a contradiction.
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Property (3) is true because we have CðWn;WnÞ ¼ 4n� 2(number of inner edge in Wn), for any
set of Wn: Therefore, e1ðnÞ will always be an even number.

To show that e1ðnÞ is a non-decreasing function, suppose there exists k 2 Zþ such that
m1 ¼ e1ðk þ 1Þ5e1ðkÞ ¼ m2 where e1ðk þ 1Þ ¼ CðWkþ1;Wkþ1Þ: The set Wkþ1 must contain a
corner node, say a; or a leaf node, say b: If nodes a or b are removed from Wkþ1; the resulting set,
say W 0

k ; will have k nodes remaining. We get CðW 0
k ;W

0
k Þ4m1 which contradicts the fact that

e1ðkÞ ¼ m2 > m1: Thus property (4) is true. &

Lemma 2
Let G ¼ ðV ;EÞ be an infinite mesh, then

e1ðn2Þ ¼ 4n

and

e1ðn2 þ kÞ ¼
4nþ 2 for 14k4n

4nþ 4 for nþ 14k42nþ 1

(

for n; k 2 Zþ where Zþ denotes the set of positive integer.

The above lemma gives the minimum number of edges that must be removed from E in order
to split a specified number of nodes from the mesh. Intuitively, the set of n nodes to be removed
from the mesh must be clustered together.

Corner Node

Wn

Wn

Wn

Wn

Leaf Node

Figure 2. Representation of corner node and leaf node.

(a) (b)

Figure 3. An illustration of the square shape and the rectangular shape.
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Proof
We will show e1ðn2Þ ¼ 4n; 8n 2 Zþ; and the set of n2 nodes must be arranged in a square shape
in order to achieve the minimum size of the cut. From the properties of the minimum set in the
previous lemma, we know the minimum set has to be clustered in a rectangular shape. Suppose
we have a set of n2 nodes arranged in the rectangular form shown in Figure 4. We know that
ab ¼ n2 for some a; b 2 Z and size of the cut is 2ðaþ bÞ: Minimizing the size of the cut results in
a ¼ b ¼ n: The uniqueness of a square configuration can be shown by inspection. To show that
e1ðn2 þ kÞ ¼ 4nþ 2 for 14k4n; we prove that e1ðn2 þ kÞ54nþ 2 for 14k4n: Then, by
construction, e1ðn2 þ kÞ ¼ 4nþ 2 for 14k4n: From property (4) and the uniqueness of the
square configuration, we see that e1ðn2 þ 1Þ > e1ðn2Þ ¼ 4n: From property (3), e1ðn2 þ 1Þ=4n
þ1: Therefore e1ðn2 þ 1Þ54nþ 2: By the monotonicity of e1ð�Þ; e1ðn2 þ kÞ54nþ 2 for 14k
4n: To show achievability, we first arrange the n2 nodes in square. Then, connecting the extra k
nodes around the square will yield e1ðn2 þ kÞ ¼ 4nþ 2 for 14k4n:

Showing that e1ðn2 þ kÞ ¼ 4nþ 4 for nþ 14k42nþ 1 can be done similarly. &

Corollary 1
For e1ðnÞ defined in above lemma, e1ðnÞ54

ffiffiffi
n

p
for n 2 Zþ:

Proof
The statement is obviously true for n such that n ¼ k2 for some k 2 Zþ: Now consider the case
where n=k2 for 8k 2 Zþ: Let m be the largest integer such that m25n: From Lemma 1, we then
have

n� m2 > m ) e1ðnÞ ¼ 4mþ 4

n� m25m ) e1ðnÞ ¼ 4mþ 2

So for n such that ðmþ 1Þ2 > n > m2 þ m; we have 4mþ 4 ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ 1Þ2

q
> 4

ffiffiffi
n

p
: Similarly, for n

such that m2 þ m > n > m2; we have 4mþ 2 ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ 1

2
Þ2

q
> 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ m

p
> 4

ffiffiffi
n

p
: Thus,

e1ðnÞ54
ffiffiffi
n

p
for n 2 Zþ: &

Corollary 2
Let G ¼ ðV ;EÞ be an infinite mesh with an arbitrary link failure, then

e1ðn2Þ ¼ 4n� 1

a

b

Figure 4. An arrangement of n2 nodes in rectangular shape.
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and

e1ðn2 þ kÞ ¼
4nþ 1 for 14k4n

4nþ 3 for nþ 14k42nþ 1

(

for n; k 2 Zþ where Zþ denotes the set of positive integer.

Proof
The proof of this corollary follows similar steps to those used in the proof of the lemma. By
including the failed link in the cut set, the number of edges needed to be removed for this new
topology is one less than that of regular infinite mesh (without link failure). &

So far the function e1ðnÞ has been the focus of our discussion. Since the satellite network that
we model is a two-dimensional N -mesh, it is essential to know eN ðnÞ: In a two-dimensional N -
mesh, a horizontal row of nodes (a vertical column of nodes) forms a horizontal (vertical) ring.
When n is very small compared to N ; splitting a set of n nodes from the N -mesh is similar to
cutting the set of n nodes from 1-mesh; more precisely, e1ðnÞ ¼ eN ðnÞ: The ring structure of the
two-dimensional N -mesh does not affect the minimum size of a cut when n is relatively small.
Nevertheless, when n is large, taking advantage of the ring structure of the two-dimensional N -
mesh will result in eN ðnÞ5e1ðnÞ:

Now, let us define the following sets:

A1 � 1; 2; . . . ;
N2

4

� �

A2 � x j x 2
N 2

4
þ 1; . . . ;

N2

2

� �
and ðxmod N Þ=0

� �

A3 � x j x 2
N2

4
þ 1; . . . ;

N2

2

� �
and ðxmod N Þ ¼ 0

� �

O1 � 1; 2; . . . ;
N2 � 1

4

� �

O2 � x j x 2
N 2 � 1

4
þ 1; . . . ;

N 2 þ 1

2

� �
and ðxmodN Þ=0

� �
; and

O3 � x j x 2
N2 � 1

4
þ 1; . . . ;

N2 þ 1

2

� �
and ðxmod N Þ ¼ 0

� �

Lemma 3
Let G ¼ ðV ;EÞ be a two-dimensional N -mesh, for N even,

eN ðnÞ ¼

e1ðnÞ for n 2 A1

2N þ 2 for n 2 A2

2N for n 2 A3

8>><
>>:
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for N odd,

eN ðnÞ ¼

e1ðnÞ for n 2 O1

2N þ 2 for n 2 O2

2N for n 2 O3

8>><
>>:

Proof
From Figure 5, we see that eN ðnÞ42N 8n such that ðnmod N Þ ¼ 0 and eN ðnÞ42N þ 2 if
ðnmod N Þ=0: For n small, eN ðnÞ ¼ e1ðnÞ: When n ¼ N2=4þ k for k51; we have e1ðN2=4
þkÞ52N þ 2: Therefore, we can use the splitting method in Figure 5, which will result in a cut
size of 2N þ 2; to separate the two sets. For N odd, e1ððN 2 � 1Þ=4þ 1Þ ¼ e1ðððN � 1Þ=2Þ2 þ
ðN � 1Þ=2þ 1Þ ¼ 4ððN � 1Þ=2Þ þ 4 ¼ 2N þ 2: Again, we can use the method in Figure 5 to
separate the sets. &

Theorem 1
On a two-dimensional N -mesh, the minimum capacity, C1; that each link must have in order to
support all-to-all traffic is at least N3=4 for N even, and ðN3 � N Þ=4 for N odd.

Proof
Consider a fixed n between 1 and N2 � 1: The idea is to use a cut to separate the network (N -
mesh) into two disjoint parts, with one part containing n nodes and the other containing N 2 � n

Figure 5. Ways of splitting the N -mesh into two disjoint parts.
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nodes. Based on the all-to-all traffic model, we know the exact amount of traffic, Ccross ¼
2nðN2 � nÞ; that must go through the cut. Therefore, from max-flow min-cut theorem [15]
we know that simply dividing Ccross by the minimum size of cutset eN ðnÞ will give us
a lower bound on C1; and let us call this bound Bn: It implies that each link in the network must
have capacity of at least Bn in order to satisfy the all-to-all traffic demand. This prompts
us to find BC1

max which is the maximum of Bn over all n 2 f1; . . . ;N2 � 1g: We say that BC1
max is the

best lower bound for C1 in the sense that it is greater or equal to any other lower bound
for C1:

For N even, let

BC1
max ¼ max

n2f1;...;N2�1g

2ðN 2 � nÞn
eN ðnÞ

� �
ð1Þ

¼max max
n2A1

2ðN2 � nÞn
e1ðnÞ

� �
;max
n2A2

2ðN2 � nÞn
2N þ 2

� ��
;

max
n2A3

2ðN2 � nÞn
2N

� ��
ð2Þ

The case for N odd is the same except that A1;A2; and A3 in (2) are replaced by O1;O2 and O3:
Solving the maximization problem, we get

BC1
max ¼

maxfae; N4

2ð2Nþ1Þ;
N3

4
g for N even

maxfao; N4�1
2ð2Nþ1Þ;

N3�N
4 g for N odd

8<
:

where ae ðaoÞ in the above equation is the result of the first term of Equation (2) for N even
(odd). Here, explicit evaluation of ae and ao is unnecessary. Instead, by using Corollary 1, an
upper bound on ae and ao will be sufficient for us to solve the maximization problem. Since
e1ðnÞ54

ffiffiffi
n

p
for n 2 Zþ; the following equation holds:

ae ¼ max
n2A1

2ðN 2 � nÞn
e1ðnÞ

� �
4max

n2Zþ

2ðN 2 � nÞn
e1ðnÞ

� �

4 max
n2Zþ

2ðN 2 � nÞn

4
ffiffiffi
n

p
" #

¼
3N3

16
5

N 3

4

ao5ðN3 � N Þ=4 can be shown similarly. Thus, we have

BC1
max ¼

N3

4
for N even

N3�N
4

for N odd

8<
: &

Corollary 3
On a two-dimensional N -mesh with an arbitrary link failure, the lower bound, C2; on the
minimum capacity that each link must have in order to support all-to-all traffic is N 4=2ð2N � 1Þ
for N even, and N2ðN 2 � 1Þ=2ð2N � 1Þ for N odd.
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Proof
The proof of this corollary is similar to the proof of Theorem 1. We still use the max-flow min-
cut theorem to compute the best lower bound C2: In this case, we have

BC2
max ¼ max

n2f1;...;N2�1g

2ðN 2 � nÞn
eN ðnÞ � 1

� �
ð3Þ

¼max max
n2A1

2ðN2 � nÞn
e1ðnÞ � 1

� �
;max
n2A2

2ðN2 � nÞn
2N þ 2� 1

� ��
;

max
n2A3

2ðN2 � nÞn
2N � 1

� ��
ð4Þ

Notice the difference between the above equations and Equations (1) and (2) in the proof of
Theorem 1. Because of the failed link, the denominator of (3) is changed to eN ðnÞ � 1 by
Corollary 2.

Solving the maximization problem, we get

BC2
max ¼

max ae;
N 4

2ð2N þ 1Þ
;

N 4

2ð2N � 1Þ

� �
for N even

max ao;
N4 � 1

2ð2N þ 1Þ
;
N2ðN 2 � 1Þ
2ð2N � 1Þ

� �
for N odd

8>>><
>>>:

where ae (ao) in the above equation is the result of the first term of Equation (4) for N even
(odd). Again, explicit evaluation of ae and ao is unnecessary. Instead, by using 4

ffiffiffi
n

p
� 153:5

�
ffiffiffi
n

p
8n55; an upbound on ae and ao will provide us the essential information to solve the

maximization problem. Since e1ðnÞ54
ffiffiffi
n

p
for n 2 Zþ; the following equation holds:

ae ¼ max
n2A1

2ðN2 � nÞn
e1ðnÞ � 1

� �
4max

n2Zþ

2ðN2 � nÞn
e1ðnÞ � 1

� �

4max max
n2f1;...;4g

2ðN2 � nÞn
e1ðnÞ � 1

;max
n55

2ðN 2 � nÞn

3:5
ffiffiffi
n

p
" #

5
N4

2ð2N � 1Þ

ao5N2ðN 2 � 1Þ=2ð2N � 1Þ can be shown similarly. Thus, we have

BC2
max ¼

N4

2ð2N�1Þ for N even

N2ðN2�1Þ
2ð2N�1Þ for N odd

8<
:

&

3.2. Algorithm achieving the lower bound on C1

In this section, we show that the lower bound on C1 can be achieved by using a simple routing
algorithm called the dimensional routing algorithm. As we have mentioned earlier, the routing
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algorithm will use the shortest path between source and destination nodes. Below is a
description of the dimensional routing algorithm:

1. From the source node p ¼ ðp1;p2Þ; move horizontally in the direction of shortest cyclic
distance to the destination node q ¼ ðq1; q2Þ; if there is more than one way to route the
traffic, pick the one that moves in the (+) direction (mod N ), i.e. ðp1;p2Þ ! ððp1 þ 1Þ
mod N ;p2Þ ! ððp1 þ 2Þmod N ;p2Þ ! � � � ! ðq1;p2Þ: Route the traffic for DN ðp1; q1Þ hops
where DN ðp1; q1Þ denotes the shortest cyclic distance (hops) between p and q in horizontal
direction.

2. Move vertically in the direction of shortest cyclic distance to the destination node; if there
is more than one way to route the traffic, pick the one that moves in the (+) direction
ðmod N Þ: Route the traffic for DN ðp2; q2Þ hops where DN ðp2; q2Þ denotes the shortest cyclic
distance (hops) between p and q in vertical direction.

That is, the routing path will include the following nodes, p ¼ ðp1;p2Þ ! ðq1;p2Þ ! ðq1; q2Þ ¼ q:
The above algorithm ensures the existence of a unique shortest path between every node
p and q regardless of whether N is even or odd, and consequently, facilitates the analysis of link
load.

Theorem 2
Let G ¼ ðV ;EÞ be a two-dimensional N -mesh, by using the dimensional routing algorithm above,
to satisfy the all-to-all traffic, the maximum load on each link is N 3=4 for N even and ðN 3 � N Þ=4
for N odd.

Proof
The dimensional routing algorithm ensures one unique path between a source and destination
pair. Thus, in order to compute the maximum load on a link, we need only count the
(maximum) number of pairs of nodes that communicate through a specific link. Without loss of
generality, consider the link lbc in Figure 6. We see that ten units of traffic heading for node c

must go through lbc: By the symmetry of the mesh topology and dimensional routing algorithm,
five units of traffic heading for node d must go through lbc since five units of traffic heading for

e

d

c

b

a

Figure 6. An illustration of traffic flow into node c by using dimensional routing algorithm.
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node c go through lab: Extending this argument, we see from Figure 6 that an additional ten
units of traffic destined for node b and five units of traffic headed to node a must communicate
through lbc: Again, by symmetry, the total load on any link of the graph (denoted by Tl), in the
case of N ¼ 5; is Tl ¼ 5þ 10þ 10þ 5 ¼ 30: In general, for N odd, we have the following
formula:

Tl ¼ 2N
XðN�1Þ=2

i¼1

i ¼
N3 � N

4

For N even, using the same routing algorithm, we get Tl ¼ N3=4: &

Clearly, using the dimensional routing algorithm, we see that the lower bound of link capacity
in Theorem 1 is achieved. Now, with the minimum link capacity needed ðC1Þ and the lower
bound of link capacity for mesh with a failed link ðC2Þ computed, we are able to derive the
minimum spare capacity that each link must have in order to sustain the all-to-all traffic during
the time of a link failure.

4. CAPACITY REQUIREMENT FOR RECOVERING FROM A LINK FAILURE

Under the condition of an arbitrary link failure, we investigate the spare capacity needed to fully
restore the original traffic, using the link-based restoration method and path-based restoration
method.

4.1. Link based restoration strategy

Consider that an arbitrary link, luv (connecting nodes u and v), failed in the two-dimensional N -
mesh. We know from the previous section that there are ðN3 � N Þ=4 unit of traffic on luv have to
be rerouted for N odd and N 3=4 for N even. Since the link-based restoration strategy is used
here, these ðN 3 � N Þ=4 units of traffic in and out of node u have to be rerouted through the
remaining three links connecting to node u (luv is already broken). We then have the following
theorem:

Theorem 3
Using link-based restoration strategy in the event of a link failure, the minimum spare capacity
that each link must have in order to support the all-to-all traffic is ðN3 � N Þ=12 for N odd and
N3=12 for N even.

Proof
By using link-based restoration scheme, a lower bound on spare capacity is ðN3 � N Þ=12 for N
odd and N3=12 for N even from the argument stated in the previous paragraph. To show
achievability, we refer to Figure 7. Since the restoration paths are disjoint, we can reroute 1

3
of

the affected traffic through each of the three disjoint paths. Hence, the lower bound is
achieved. &
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4.2. Path-based restoration strategy

4.2.1. Lower bound on the minimum spare capacity.

Theorem 4
On a two-dimensional N -mesh with an arbitrary failed link, the minimum spare capacity, Cspare;
that each link must have in order to support all-to-all traffic is at least N3=4ð2N � 1Þ for N even,
and ðN3 � N Þ=4ð2N � 1Þ for N odd.

Proof
From Theorem 2, for a regular two-dimensional N -mesh, we know that the capacity that each
link must have in order to satisfy all-to-all traffic is N3=4 for N even, and ðN 3 � N Þ=4 for N odd.
In case of an arbitrary link failure, from Corollary 3, at least a capacity of N 4=2ð2N � 1Þ
ðN2ðN 2 � 1Þ=2ð2N � 1ÞÞ is needed on each link to sustain the original traffic flow for N even
(odd). We need to have an extra capacity of Cspare5C2 � C1 on each link. Thus, we have

Cspare5

N4

2ð2N�1Þ �
N3

4
¼ N3

4ð2N�1Þ for N even

N2ðN2�1Þ
2ð2N�1Þ �

N3�N
4

¼ N3�N
4ð2N�1Þ for N odd

8<
: &

4.2.2. Algorithm using minimum spare capacity. In this section, we will show that the minimum
spare capacity needed on each link is N 3=4 ð2N � 1Þ for N even and ðN 3 � N Þ=4ð2N � 1Þ for N
odd. In other words, the lower bound in Theorem 4 is tight. We show the achievability by
presenting a primary routing algorithm, and subsequently, a path-based recovery algorithm
which fully restores the original traffic by using the minimum spare capacity in case of a link
failure. We focus on the case of N odd for simplicity. To show the achievability for N even, a
different set of primary routing algorithm and recovery algorithm is needed (not presented in
this paper).

First, we describe the primary routing algorithm that we call rotational symmetric routing
algorithm, or RS routing algorithm, used to route the all-to-all traffic. We use the RS routing
algorithm instead of the dimensional routing algorithm as our primary routing algorithm because

u

v

3 disjoint restoration paths

Figure 7. Restoration paths using link-based recovery scheme.
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the former simplifies the construction and analysis of the restoration algorithm. Specifically,
with the dimensional routing algorithm, the traffic routes on horizontal and vertical links are not
symmetric; hence, a different restoration algorithm would be required for vertical and
horizontal link failure. In contrast, the RS routing algorithm is symmetric and vertical or
horizontal link failure can be treated using the same recovery algorithm. The case of a
horizontal link failure is the same as the vertical link failure if we rotate the topology by 908
(shown in Figure 8).

RS routing algorithm: Each node a in a two-dimensional N -mesh has a pair of integers ða1; a2Þ
associated with it. To route one unit of traffic from the source node p to the destination node q;
do the following:

1. Change co-ordinate and compute the relative position of the destination node with respect
to the source node. Specifically, shift the source node to ð0; 0Þ by applying the
transformation Tp: Here, the transformation Tp : ZN �ZN ! ZN �ZN is defined as
Tpðq1; q2Þ ¼ ðd1; d2Þ; where for i ¼ 1; 2

di ¼

qi � pi if � N�1
2
4qi � pi4N�1

2

ðqi � piÞmod N if � ðN � 1Þ4qi � pi5� N�1
2

�ð½�ðqi � piÞ�modN Þ if N�1
2
5qi � pi4N � 1

8>><
>>:

Here, ð�nÞmod p is defined as p � nmod p if 05nmod p5p: Thus, we will have
TpðpÞ ¼ ð0; 0Þ: Figure 9 illustrates this transformation.

2. Divide the nodes of the two-dimensional N -mesh into four quadrants with the source node
as the origin (shown in Figure 9). Specifically, let

Q1 ¼ ða; bÞ j a; b 2 ZN and 04a4
N � 1

2
; 05b4

N � 1

2

� �

Q2 ¼ ða; bÞ j a; b 2 ZN and �
N � 1

2
4a50; �

N � 1

2
4b40

� �

Q3 ¼ ða; bÞ j a; b 2 ZN and �
N � 1

2
4a40;�

N � 1

2
4b50

� �
; and

Q4 ¼ ða; bÞ j a; b 2 ZN and 05a4
N � 1

2
;�

N � 1

2
4b40

� �

3. If d ¼ TpðqÞ 2 ðQ1 [ Q3Þ; route the traffic vertically in the direction of shortest cyclic
distance to the destination node by DN ðp2; q2Þ hops. Then, route the traffic horizontally in
the direction of shortest cyclic distance to the destination node by DN ðp1; q1Þ hops.If
d ¼ TpðqÞ 2 ðQ2 [ Q4Þ; route the traffic horizontally in the direction of shortest cyclic
distance to the destination node by DN ðp1; q1Þ hops. Then, route the traffic vertically in the
direction of shortest cyclic distance to the destination node by DN ðp2; q2Þ hops.

Now, considering all traffic that has a particular node c as their destination, their routing
paths are rotational symmetric by the above algorithm. That is, rotating all of the routing paths
by an integer multiple of 908 will result in having the same original routing configuration. This
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90˚

Figure 8. Routing path of the rotational symmetric routing algorithm. Rotating the graph by 908
does not change the configuration.
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Figure 9. Change of co-ordinate by using transformation Tp:
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idea is best illustrated by Figure 8. RS routing algorithm also achieves the lower bound on C1:
The proof is straightforward and thus omitted here.

Our goal here is to recover the original traffic flow by adding an extra amount of capacity,
which is equal to the lower bound calculated in Theorem 4, on each link. Now, we present an
example to illustrate the key ideas of the recovery algorithm. Without loss of generality, suppose
that link lcd failed in the two-dimensional 7-mesh shown in Figure 10(a). We need to find all
possible S–D pairs that are affected by the failed link first. From the RS routing algorithm, these
S–D pairs can be determined exactly. Specifically, let the source node be s and destination node
be t: The set of failed traffic F is defined as F ¼ F1 [ F2 [ F3 [ F4 [ F5 [ F6 where

F1 ¼ ðs; tÞ j s 2 A2 and t 2 L4; DN ðs1; t1Þ4
N � 1

2
and DN ðs2; t2Þ4

N � 1

2

� �

F2 ¼ ðs; tÞ j s 2 L2 and t 2 A3; DN ðs1; t1Þ4
N � 1

2
and DN ðs2; t2Þ4

N � 1

2

� �

F3 ¼ ðs; tÞ j s 2 A4 and t 2 L2; DN ðs1; t1Þ4
N � 1

2
and DN ðs2; t2Þ4

N � 1

2

� �

F4 ¼ ðs; tÞ j s 2 L4 and t 2 A1; DN ðs1; t1Þ4
N � 1

2
and DN ðs2; t2Þ4

N � 1

2

� �

F5 ¼ ðs; tÞ j s 2 L4 and t 2 L2; DN ðs1; t1Þ4
N � 1

2
and DN ðs2; t2Þ4

N � 1

2

� �
; and

F6 ¼ ðs; tÞ j s 2 L2 and t 2 L4; DN ðs1; t1Þ4
N � 1

2
and DN ðs2; t2Þ4

N � 1

2

� �

In the two-dimensional 7-mesh with a link failure, the sets A1; A2; A3; A4; L2 and L4 are shown
in Figure 10(a). More generally, with a failed vertical link connecting nodes v ¼ ðv1; v2Þ and
u ¼ ðv1; ðv2 þ 1Þmod N Þ; after taking the transformation Tv; we can define these sets as the
following:

A1 ¼ ða; bÞ j a; b 2 ZN and 14a4
N � 1

2
; 14b4

N � 1

2

� �

A2 ¼ ða; bÞ j a; b 2 ZN and �
N � 1

2
4a4� 1; 14b4

N � 1

2

� �

A3 ¼ ða; bÞ j a; b 2 ZN and �
N � 1

2
4a4� 1;�

N � 1

2
� 1

� �
4b40

� �

A4 ¼ ða; bÞ j a; b 2 ZN and 14a5
N � 1

2
;�

N � 1

2
� 1

� �
4b40

� �

L2 ¼ ða; bÞ j a; b 2 ZN and a ¼ 0; 14b4
N � 1

2

� �
; and

L4 ¼ ða; bÞ j a; b 2 ZN and a ¼ 0;�
N � 1

2
� 1

� �
4b40

� �
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A simple way for recovering a failed traffic is to reverse its routing order. That is, if the primary
routing scheme is to route the traffic horizontally in the direction of shortest cyclic distance first,
the recovery algorithm will route the traffic vertically first (shown in Figure 10(b)). Thus, traffic
that is supposed to go through the failed link will circumvent the failed link. Consider now the
vertical links crossing line a in Figure 10(a) and the affected traffic in the set F1 [ F2 [ F3 [ F4:
Rerouting (i.e. reversing the routing order) all of the affected traffic in F1 [ F2 [ F3 [ F4 through
the vertical links crossing line a will add an additional 12 units of traffic on each of these six
vertical links. Figure 11(a) illustrates the recovering paths of the traffic (originating from nodes
~a0a0; ~b0b0 and ~c0c0) in the set F1; which are being rerouted through the link lc0d0 : Recovering paths for
the traffic in F2; although not shown here, is just a flip of Figure 11(a) with respect to the line a:
The total amount of rerouted traffic in F1 [ F2 added on link lc0d0 ; which is 12, exceeds the lower
bound of spare capacity,

C2 � C1 ¼
N3 � N

4ð2N � 1Þ

� �
¼ 7

However, utilizing the ring structure of the mesh topology, we can reroute half of the affected
traffic through links crossing line b (illustrated in Figure 11(b)). This way, we have a total of six
units traffic through the link lc0d0 (three from F1 and three from F2). For the traffic in the set

b

c

d

e

f

a

A1L2A2

A3 L4 A4

(a)

a’

b’

c’

d’

e’

f ’

α

β

a

b

c

d

e

f

Primary Routing
Path

Restoration Routing Path

(b)

 α

β

Figure 10. Routing path of the restoration algorithm.
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F5 [ F6; we can reroute half of them (six units) through the link lga: The remaining six units of
traffic can be routed evenly through the six vertical links crossing line a: Thus, we can restore the
original traffic flow by using only an additional C2 � C1 amount of capacity on each vertical
link.

So far we have only discussed the load on a vertical link. Now, we will address the question of
whether the additional traffic on each horizontal link will exceed C2 � C1: For example, on the
link ld0d in Figure 10(a), one may find that the amount of rerouted traffic from the set F1 [ F2;
nine, exceeds C2 � C1 ¼ 7 after reversing the routing order of the affected traffic. However, as
we reroute the affected traffic circumventing the failed link, we not only put an additional nine
units of traffic (s 2 A2; t ¼ d) on link ld0d but also take nine units of traffic (s 2 L2; t 2 L3) away
from link ld0d: Overall, we have zero additional rerouted traffic from the set F1 [ F2 go through
link ld0d: Nevertheless, traffic in the set F5 [ F6 does add extra units of traffic on the link ld0d: By
rerouting half of the traffic in F5 [ F6 (six) through the link lga (without using any horizontal
link), we can then distribute the rest of the traffic in F5 [ F6 (six) evenly, so as to satisfy the spare
capacity constraint.

As we have mentioned earlier, only the traffic in the set
S6

i¼1 Fi are being rerouted in our path-
based recovery algorithm. Traffic which is unaffected by the failed link remains intact in the
recovery algorithm.

Lastly, we include the full details of the path-based restoration algorithm in Appendix A. We
also state the following theorem which shows that the lower bound on the spare capacity
(C2 � C1) is indeed achievable.

Theorem 5
On a two-dimensional N -mesh, to restore the original all-to-all traffic in the event of a
link failure, we need a spare capacity of ðN 3 � N Þ=4ð2N � 1Þ on each link for N odd and
N3=4ð2N � 1Þ for N even by using the restoration algorithm (proof in Appendix).
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Figure 11. Restoration path for the two-dimensional 7-mesh.
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5. CAPACITY REQUIREMENT FOR RECOVERING FROM A NODE FAILURE

In this section, we investigate the spare capacity needed to fully restore the original traffic in the
case of an arbitrary node failure. When a node failed in the network, all of the traffic destined
for or generated from that node are terminated. And all of the traffic that passed through the
failed node need to be rerouted. Next, we present the following theorem which gives us a lower
bound on the spare capacity needed to restore the original traffic.

Theorem 6
On a two-dimensional N -mesh with an arbitrary node failure, the minimum spare capacity,
Cspare; that each link must have in order to support all-to-all traffic is at least N 2ðN � 4Þ=
4ð2N � 1Þ for N even and N ðN 2 � 4N þ 3Þ=4ð2N � 1Þ for N odd.

The proof of this theorem follows the similar steps in the proofs of Theorems 1 and 4.
Specifically, under an arbitrary node failure, the lower bound on the minimum capacity each
link must have in order to support the all-to-all traffic is ½1=2ðN2 � 1ÞN 2 � N ðN � 1Þ�=ð2N � 1Þ:
Here, the numerator represents the total traffic across the cut, and the denominator is the size of
the cut. The lower bound on the spare capacity follows from ½ð1=2ðN 2 � 1ÞN2 � N ðN � 1ÞÞ=
2N � 1� � C1 where C1 ¼ 1

4
ðN 3 � N Þ:

Again, we use RS routing algorithm as the primary routing algorithm.
Restoration algorithm: For traffic that goes through the failed node, reverse the routing order.

Specifically, if the original traffic goes vertically first in the direction of shortest cyclic distance to
the destination node and then moves horizontally to the destination node, we reroute the traffic
horizontally in the direction of shortest cyclic distance first and then reroute the traffic vertically.

To calculate the spare capacity required by using the above restoration scheme, we consider
the spare capacity needed on the set of links surrounding the failed node. By examining the
rerouted traffic, we can see that those links are the ones that require the most spare capacity.
First, we calculate the relinquished capacity on each of these links to be ðN � 1Þ2=4: After
rerouting the affected traffic, the newly added traffic on each link is at most

1

8
N 2 �

9

8
þ

ðN � 1Þ2

4

� �

Therefore, a total of d1
8
N2 � 9

8
e spare capacity is needed to fully restore the original traffic. A more

rigorous proof of these statements will follow the line of proof shown in Appendix A. We can
see that the spare capacity required by our restoration algorithm is asymptotically equal to the
lower bound on spare capacity in Theorem 6.

6. CONCLUSION

This paper examines the capacity requirements for mesh networks with all-to-all traffic. This
study is particularly useful for the purpose of design and capacity provisioning in satellite
networks. The technique of cuts on a graph is used to obtain a tight lower bound on the capacity
requirements. This cut technique provides an efficient and simple way of obtaining lower bounds
on spare capacity requirements for more general failure scenarios such as node failures or
multiple link failures.
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Another contribution of this work is in the efficient restoration algorithm that meets the lower
bound on capacity requirement. Our restoration algorithm is relatively fast in that only those
traffic streams affected by the link failure must be rerouted. Yet, our algorithm utilizes much less
spare capacity than link-based restoration (factor of N improvement). Furthermore, in order to
achieve high capacity utilization, our algorithm makes use of capacity that is relinquished by
traffic that is rerouted due to the link failure (i.e. stub release [4]).

Interesting extensions include the consideration of multiple link failures, for which finding an
efficient restoration algorithm is challenging. Finally, for the application to satellite networks, it
would also be interesting to examine the impact of different cross-link architectures.

APPENDIX A: PATH-BASED RESTORATION ALGORITHM

Again, we focus on the case of N odd for simplicity. From the source node p to the destination
node q; we consider the case that its routing path includes the failed link. Without loss of
generality, we assume an arbitrary vertical link failed (the case of a horizontal link failure is the
same because of symmetry provided by the primary routing algorithm). The two nodes
connected by the failed link are referred to as node u and v with node u on the top of v; i.e.
ðv2 þ 1Þmod N ¼ u2: When we route a unit of traffic vertically along the column of the
destination node, there are two disjoint paths leading to the destination node. One path is in the
direction of the shortest cyclic distance to the destination node which will be called the vs
direction. The opposite of vs direction will be called the vl direction. Below are the steps of the
recovering algorithm:

1. Shift co-ordinate by applying transformation Tv so that node v will be moved to the origin.
Let s ¼ ðs1; s2Þ ¼ TvðpÞ and t ¼ ðt1; t2Þ ¼ TvðqÞ:

2. Reverse the routing order of the primary routing path.
3. When route the traffic vertically, the direction (vs or vl) is determined by the following

criteria:
Let gðwÞ ¼

Pw
i¼1 i; g ¼

1
2

PðN�1Þ=2
i¼1 i; a ¼

Pw
i¼1 i�

1
2

PðN�1Þ=2
i¼1 i

j k
; and b ¼

Pw
i¼1 i�

1
2

PðN�1Þ=2
i¼1 i

l m
where w is defined below:

(a) For s 2 A2 and t 2 L4; let w ¼ ðN þ 1Þ=2� js2j:
Case 1: gðwÞ4g; choose vl direction.
Case 2: gðwÞ > g; gðw� 1Þ4g; and jt2j 2 f0; . . . ; ða� 1Þg; choose vs direction.
Case 3: gðwÞ > g; gðw� 1Þ4g; and jt2j 2 fa; . . . ; ðN � 1Þ=2� 1g; choose vl direction.
Case 4: gðwÞ > g and gðw� 1Þ > g; choose vs direction.
(b) For s 2 L2 and t 2 A3; let w ¼ ðN þ 1Þ=2� jt2j � 1:
Case 1: gðwÞ4g; choose vl direction.
Case 2: gðwÞ > g; gðw� 1Þ4g; and js2j 2 f1; . . . ; bg; choose vs direction.
Case 3: gðwÞ > g; gðw� 1Þ4g; and js2j 2 fbþ 1; . . . ; ðN � 1Þ=2g; choose vl direction.
Case 4: gðwÞ > g and gðw� 1Þ > g; choose vs direction.
(c) For s 2 L4 and t 2 A1; let w ¼ ðN þ 1Þ=2� jt2j:
Case 1: gðwÞ4g; choose vl direction.
Case 2: gðwÞ > g; gðw� 1Þ4g; and js2j 2 f0; . . . ; ða� 1Þg; choose vs direction.
Case 3: gðwÞ > g; gðw� 1Þ4g; and js2j 2 fa; . . . ; ðN � 1Þ=2� 1g; choose vl direction.
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Case 4: gðwÞ > g and gðw� 1Þ > g; choose vs direction.
(d) For s 2 A4 and t 2 L2; let w ¼ ðN þ 1Þ=2� js2j � 1:
Case 1: gðwÞ4g; choose vl direction.
Case 2: gðwÞ > g; gðw� 1Þ4g; and jt2j 2 f1; . . . ; bg; choose vs direction.
Case 3: gðwÞ > g; gðw� 1Þ4g; and jt2j 2 fbþ 1; . . . ; ðN � 1Þ=2g; choose vl direction.
Case 4: gðwÞ > g and gðw� 1Þ > g; choose vs direction.
(e) For s 2 L2 and t 2 L4; route the traffic in the ring which contains the source s and destination t:
(f) For s 2 L4 and t 2 L2; route the traffic in a way such that the traffic cross-line a and b are

evenly distributed.

With the restoration algorithm presented, we now investigate the additional amount of traffic
added on each vertical link after rerouting the affected traffic. For a particular vertical link, the
newly added traffic comes from rerouting the affected traffic in the set F1 [ F2 [ F3 [ F4 (traffic
such that its source and destination nodes are not in the same vertical ring) and the affected
traffic in the set F5 [ F6 (traffic such that its source and destination nodes are in the same vertical
ring). We first consider the amount of traffic added on an arbitrary vertical link by rerouting the
traffic in the set F1 [ F2 [ F3 [ F4: To facilitate the calculation of the additional traffic added on
the vertical link, we associate each node in the vertical ring which node v0 belongs to with an
integer number (shown in Figure 12) and consider N such that 1

2
ð
PðN�1Þ=2

i¼1 iÞ is an integer. In

u

v

u’

v’

z

w

N-1
   2

N-1
   2

m

n

N-3
   2

2

1

1

0

d1 hops

α

β

D1

D2

D3
D4

Figure 12. Numbering of nodes used in path-based restoration algorithm.
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Figure 12, node z (associated with the number 1) will send one unit of traffic to nodes in D4:
Similarly, node u0 (associated with the number ðN � 1Þ=2) will have ðN � 1Þ=2 units of traffic
destined to nodes in D4 by the primary routing algorithm. Also, before the link failure,
traffic with source node in D2 and destination node in D4 will go through link luv: After the link
failure, these traffic will be routed in vertical direction first, and they have to go through either
lu0v0 or lwz:

Without loss of generality, we consider the increment of the amount of traffic on an
arbitrary vertical link lmn: The distance (hops) between node m and v0 is denoted by d1
(shown in Figure 12). Since the link lmn is on the right side of the link luv; only the traffic
in the set F1 [ F2 contributes to the traffic increment on lmn: Now, after rerouting the affected
traffic in F1 (traffic goes from D2 to D4), let us calculate the exact amount of traffic added on the
link lmn:

First, we divide the nodes in D2 into three subsets–B1 ¼ fs j s 2 D2 and s2 2 f1; . . . ;s� 1gg;
B2 ¼ fs j s 2 D2 and s2 2 fsgg; and B3 ¼ fs j s 2 D2 and s2 2 fsþ 1; . . . ; ðN � 1Þ=2gg; where

s ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

p
2

$ %
and a ¼

1

8
ðN 2 � 1Þ

s is the largest integer such that
Ps�1

i¼1 4 1
16 ðN

2 � 1Þ: The reason that we introduce s here is that
we need to split the traffic in F1 into two equal parts, with one part go through link lu0v0 and the
other part go through lwz:

The following equations give us the amount of traffic in F1 added on the link lmn: Let
sup ¼ 1

2

PðN�1Þ=2
i¼1 i�

Ps�1
i¼1 i and sdown ¼ s� sup:

1. Traffic added on lmn with source node in B3; denoted as TB3
; is

TB3
¼

PðN�1Þ=2
i¼sþ1 i� ðN�1

2
� sÞðd1 þ 1Þ

for 04d14N�1
2

0 otherwise

8>><
>>:

2. Traffic added on lmn with source node in B1; denoted as TB1
; is

TB1
¼

Ps�1
i¼s�1�d1 i if d1 þ 15sPs�1
i¼1 i otherwise

8<
:

3. Traffic added on lmn with source node in B2 through the link lwz; denoted as TB2a ; is

TB2a ¼

0 if d1 þ 14sdown

d1 þ 1� sdown if d1 þ 14s and d1 þ 1 > sdown

sup if d1 þ 1 > s

8>><
>>:

4. Traffic added on lmn with source node in B2 through the link lu0v0 ; denoted as TB2b ; is
TB2b ¼ maxð0;sdown � d1 � 1Þ:
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Similarly, the following equations give us the amount of traffic in F2 (traffic goes from D4 to
D2) added on the link lmn:

TD4
¼

sup if d1 ¼ N�1
2

� s

sdown if d1 ¼ N�1
2

� s� 1

sup þ
Pd1�½ðN�1Þ=2�s�

i¼1 ðs� iÞ if d1 > N�1
2

� s

sdown þ
PððN�1Þ=2�sÞ�ðd1þ1Þ

i¼1 ðsþ iÞ if d1 þ 15N�1
2

� s

8>>>>>><
>>>>>>:

Proof of Theorem 5

Proof
Again, we assume that an arbitrary vertical link connecting nodes u and v failed. Then, by
showing separately that the rerouted traffic added on each horizontal link and on each vertical
link are less or equal to ðN 3 � N Þ=4ð2N � 1Þ; we prove the minimum spare capacity needed on
each link is ðN 3 � N Þ=4ð2N � 1Þ for N odd. The amount of rerouted traffic added on a
horizontal link will be investigated first. Pick an arbitrary horizontal link in the mesh and call it
lmn (the two nodes connecting this link are called m and n). From the primary routing algorithm,
we know exactly what the affected traffic is and their routing paths. Let nmn denotes the number
of failed traffic in the set F1 [ F2 [ F3 [ F4 that go through the link lmn: After applying the
restoration algorithm, nmn units of failed traffic are removed from link lmn and nmn units of
rerouted traffic are added on link lmn: Overall, traffic in the set F1 [ F2 [ F3 [ F4 does not affect
the amount of traffic flow through link lmn (i.e. no spare capacity needed on lmn to restore the
affected traffic in the set F1 [ F2 [ F3 [ F4). However, traffic in the set F5 [ F6 does add extra
units of traffic on link lmn: But its amount is small, and it is less than ðN3 � N Þ=4ð2N � 1Þ: Thus,
we have shown that a spare capacity of ðN 3 � N Þ=4ð2N � 1Þ on each horizontal link is enough to
restore the original traffic by using the restoration algorithm.

Now, we calculate the amount of rerouted traffic added on a vertical link and show that it is
less than ðN3 � N Þ=4ð2N � 1Þ: Consider an arbitrary vertical link lmn which is d1 hops away from
node v0: For the case of N such that d1 þ 14sdown and d1 þ 15ðN � 1Þ=2� s; we calculate the
amount of traffic in the set F1 [ F2 added on the link lmn; which is called TF1;F2 :

TF1;F2 ¼ TB1
þ TB2a þ TB2b þ TB3

þ TD4
ðA1Þ

¼
XðN�1Þ=2

i¼sþ1

i�
N � 1

2
� s

� 	
ðd1 þ 1Þ

þ
Xs�1

i¼s�1�d1

iþ ðsdown � d1 � 1Þ þ sdown

þ
XððN�1Þ=2�sÞ�ðd1þ1Þ

i¼1

ðsþ iÞ ðA2Þ
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¼ s� N � d1 þ 2sdown þ
1

4
N2 � s2 � Nd1

þ 2sd1 �
5

4
ðA3Þ

We then show that TF1;F2 is less than or equal to 1
8
ðN2 � 1Þ: Specifically,

1

8
ðN2 � 1Þ � TF1;F2 ¼ � sþ N þ d1ð1þ N Þ � 2sdown

�
1

8
N 2 þ s2 � 2sd1 þ

9

8
ðA4Þ

¼ ðN � 2sÞðd1 þ 1Þ þ 1 ðA5Þ

From Equations (A4) to (A5), the formula 2ð
Ps�1

i¼1 iþ supÞ ¼ 1
8
ðN2 � 1Þ was used. Since s5

ðN � 1Þ=2; TF1;F2 is less than or equal to 1
8
ðN2 � 1Þ:

For the case of d1 þ 15sdown; d1 þ 1 > ðN � 1Þ=2� s; and d1 þ 15s; we calculate that

TF1;F2 ¼ TB1
þ TB2a þ TB2b þ TB3

þ TD4
ðA6Þ

¼
XðN�1Þ=2

i¼sþ1

i�
N � 1

2
� s

� 	
ðd1 þ 1Þ

þ
Xs�1

i¼s�1�d1

iþ ðd1 þ 1� sdownÞ þ sup

þ
Xd1�ððN�1Þ=2�sÞ

i¼1

ðs� iÞ ðA7Þ

¼ �s� d1 þ sup � sdown þ 2sd1 � d21 ðA8Þ

and

1

8
ðN2 � 1Þ � TF1;F2 ¼ �2sþ d1 þ 2sdown � 2sd1 þ

1

8
N2 þ d21 �

1

8
ðA9Þ

¼ ðs� d1 � 1Þðs� d1Þ ðA10Þ

Equation (A10) is positive since d1 þ 15s: The other cases of d1 (i.e. whether d1 is less than or
greater than sdown) can be shown similarly. Thus, we have proved that the rerouted traffic from
the set F1 [ F2 [ F3 [ F4 added on any arbitrary vertical link is less than or equal to 1

8
ðN2 � 1Þ:

Now, for the rerouted traffic from that set F5 [ F6 (S–D pairs in the same vertical ring), there are
total of 1

4
ðN2 � 1Þ units of them. Simply routing half of these traffic within the vertical ring, we

have now on each vertical link of the mesh an additional amount of rerouted traffic no greater
than 1

8
ðN 2 � 1Þ: The other half of the traffic in the set F5 [ F6 (1

8
ðN2 � 1Þ units of them) can be

rerouted evenly through 2N � 1 vertical links crossing line a and b: Thus, the total rerouted
traffic on each vertical link is no greater than 1

8
ðN2 � 1Þ þ ½1

8
ðN2 � 1Þ�=ð2N � 1Þ ¼ ðN 3 � N Þ=

4ð2N � 1Þ: Therefore, a spare capacity of ðN3 � N Þ=4ð2N � 1Þ on each link is enough for us to
restore the original all-to-all traffic. &

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Satell. Commun. Network. 2003; 21:259–284

CAPACITY PROVISIONING 283



ACKNOWLEDGEMENTS

This work was supported by DARPA under the Next Generation Internet initiative.

REFERENCES

1. Xiong Y, Mason L. Restoration strategies and spare capacity requirements in self-healing ATM networks. In
Proceedings of INFOCOM ’97, vol. 1, 1997; 353–360.

2. Ramamurthy S, Mukherjee B. Survivable WDM mesh networks, Part I}protection. In Proceedings of INFOCOM
’99, vol. 2, March 1999; 744–751.

3. Ramamurthy S, Mukherjee B. Survivable WDMmesh networks, Part II}restoration. In ICC ’99 Proceedings, 1999;
2023–2030.

4. Iraschko RR, MacGregor MH, Grover WD. Optimal capacity placement for path restoration in STM or ATM
mesh-survivable networks. IEEE/ACM Transactions on Networking 1998; 6:325–336.

5. Lumetta SS, Medard M. Towards a deeper understanding of link restoration algorithms for mesh networks. In
Proceedings of INFOCOM ’01, vol. 1, 2001; 367–375.

6. Azizoglu MC, Egecioglu O. Lower bounds on communication loads and optimal placements in torus networks.
IEEE Transactions on Computers 2000; 49(3):259–266.

7. Lemme PW, Glenister SM, Miller AW. Iridium aeronautical satellite communications. IEEE Aerospace and
Electronics Systems Magazine 1999; 14(11):11–16.

8. Patterson DP. Teledesic: a global broadband network. 1998 IEEE Aerospace Conference, vol. 4, 1998; 547–552.
9. Ekici E, Akyildiz IF, Bender MD. A distributed routing algorithm for datagram traffic in LEO satellite networks.

IEEE/ACM Transactions on Networking 2001; 9(2):137–147.
10. Stamoulis GD, Tsitsiklis JN. Efficient routing schemes for multiple broadcasts in hypercubes. IEEE Transactions on

Parallel and Distributed Systems 1993; 4(7):725–739.
11. Varvarigos E. Efficient routing algorithms for folded-cube networks. In Proceedings of the 1995 IEEE 14th Annual

International Phoenix Conference on Computers and Communications, 1995; 143–151.
12. Suh YJ, Shin KG. All-to-all personalized communication in multidimensional torus and mesh networks. IEEE

Transactions on Parallel and Distributed Systems 2001; 12(1):38–59.
13. Modiano E, Ephremides A. Efficient algorithms for performing packet broadcasts in a mesh network. IEEE/ACM

Transactions on Networking 1996; 4(4):639–648.
14. Bose B, Broeg R, Kwon Y, Ashir Y. Lee distance and topological properties of k-ary n-cubes. IEEE Transactions on

Computers 1995; 44(8):1021–1030.
15. Bertsekas DP. Network Optimization: Continuous and Discrete Models. Athena Scientific: Belmont, MA 1998.

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Satell. Commun. Network. 2003; 21:259–284

J. SUN AND E. MODIANO284


