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Abstract—We address the issue of optimal energy allocation
and admission control for communications satellites in earth orbit.
Such satellites receive requests for transmission as they orbit
the earth, but may not be able to serve them all, due to energy
limitations. The objective is to choose which requests to serve so
that the expected total reward is maximized. The special case
of a single energy-constrained satellite is considered. Rewards
and demands from users for transmission (energy) are random
and known only at request time. Using a dynamic programming
approach, an optimal policy is derived and is characterized in
terms of thresholds. Furthermore, in the special case where
demand for energy is unlimited, an optimal policy is obtained in
closed form. Although motivated by satellite communications, our
approach is general and can be used to solve a variety of resource
allocation problems in wireless communications.

Index Terms—Communication, dynamic programming, re-
source allocation, satellite.

I. INTRODUCTION

FOR MOST satellites, energy management is a critical
issue, for the simple reason that energy efficiency directly

translates into cost savings. A satellite with lower energy
requirements requires a smaller energy source (solar panel,
reactor, etc.) and a lighter battery pack, both of which translate
into weight savings. The weight savings generally provide an
economic benefit—a smaller launch vehicle might be selected,
thus decreasing cost, or more maneuvering fuel could be
carried, which would result in longer system life.

It is thus important to accurately anticipate energy input and
storage requirements for satellites. To do so, one must model the
operation of the satellite and its energy consumption. If appro-
priate, it may be necessary to determine a strategy for energy
consumption.

For instance, a television broadcast satellite in geosyn-
chronous orbit will enjoy continuous sunshine for its solar
cells except for brief periods of eclipse, while demand for
energy is relatively steady and unchanging [7]. With both input
and output of energy relatively static, such a satellite may
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not require a sophisticated energy consumption strategy. On
the other hand, a data communications satellite in medium or
low earth orbit will experience prolonged periods of darkness
and lack of energy input. At the same time, if the satellite
is providing packet data services, demand for such services
will often be bursty, and the satellite must choose amongst
users to be served. In such a situation, the need for an energy
consumption strategy is obvious.

Energy input for a data communications satellite in earth orbit
generally consists of power from solar cells [12]. The quantity
and timing of the input are known and can be determined well
in advance. As for energy outflow, a major source of energy ex-
penditure is often the power needed to transmit on the downlink
connection back to earth. Receiving signals sent up from earth
requires relatively little power in comparison, and sending sig-
nals to neighboring satellites (if the satellite is part of a constel-
lation with satellite crosslinks) is generally not energy intensive.
In the presence of multiple competing demands for downlink
service, the optimization of energy consumption consists of de-
ciding which users to serve.

The amount of service demanded by users is often a widely
varying quantity. For instance, a satellite providing wireless
phone service will likely experience much more demand when
it is over New York than when it is over the North Pole.
Furthermore, the energy required for servicing different users
is usually not the same. Thunderstorms, for example, can
severely attenuate satellite signals. Users may differ in distance
to the satellite, overhead atmospheric conditions, or even
antenna size, all of which imply that the satellite must expend a
different amount of energy to service each user. To complicate
matters even further, different users or user classes may provide
differing payments and rewards for service by a satellite.

There is little prior research on the topic of optimal alloca-
tion of satellite energy under limited power and finite energy
storage conditions. In the 1970s, a study by Aein and Kosovych
[1] investigated capacity allocation for satellites serving both
circuit-switched and packet-based networks, while Shaft [14]
looked at unconstrained allocation of power and gain to ser-
vice communication satellite traffic. Recently, many researchers
have examined the use of satellites to supplement terrestrial data
networks [13], [15]. This work primarily focused on design and
performance evaluation of such space networks, but little atten-
tion was paid to energy allocation issues. Perhaps the closest
study to our current work is one by Weenet al. [16], who in-
vestigated resource allocation for low-earth-orbit satellites pro-
viding GSM cellular services. Resource allocation for satellite
beams and path selection has been studied in [11], and the allo-
cation of bandwidth was examined in [2].
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Much work has been done on design and analysis of power
systems for satellites. For instance, Kraus and Hendricks have
developed a model for estimating satellite power system perfor-
mance [10]. A study in 1986 examined operational scheduling
for the (then) proposed manned space station [3], and centered
on appropriately matching the many power sources to power
sinks on the space station.

In general, current satellite operators follow heuristic rules
about energy allocation. For example, a simple rule would be
to serve all requests as long as sufficient energy is available.
Such a “greedy” approach is clearly suboptimal if different users
require different amounts of energy or provide different rewards
for the same service.

This paper develops a method that allocates energy for a
single satellite. As the satellite moves in its orbit, it encounters
different users with different overhead atmospheric conditions,
financial rewards, demand levels, and so forth. For each unit
of energy expended, the satellite receives a certain amount of
reward, which depends on distances, atmospheric conditions,
and financial considerations. The reward changes with each
time step, and is assumed to be random and unknown until the
actual time of service, although its probability distribution is
known. The satellite may also face a limit on the amount of
energy it can expend: there may be a physical power limit for
its transmitter, or there may simply not be enough customer
demand. The demand is again assumed to be random and
not known until the time of service. At the same time, the
parameters that affect the available energy are largely known:
the satellite has a battery whose size is known and finite,
and receives energy from its solar cells according to a known
schedule. The objective is to expend the energy (service the
users) in a way that maximizes reward.

We present a method for optimizing energy consumption to
maximize reward. In addition, we provide useful suboptimal
heuristics for the general case based on certainty equivalent
control and a closed-form optimal solution for the special case
where demand is unlimited. Finally, although originally moti-
vated by a satellite energy allocation problem, our approach has
a natural application to wireless networking, which we discuss
in Section V.

II. SYSTEM MODEL

We consider a satellite system with slotted time, stochastic
reward, stochastic demand, and a finite time horizon. The satel-
lite receives energy in each time slot according to a fixed and
known schedule and can store it in a battery of finite size. At
the same time, it serves customers by expending energy. The re-
ward obtained per unit energy changes randomly in each time
step. The demand for energy during each time step is random as
well. The objective is to find an optimal policy that maximizes
expected reward by choosing how much (if any) of the demand
to service at each time.

Denote the energy available for the satellite to spend at time
slot with the variable . It is assumed that during any time
slot, the satellite can spend the energy in its battery plus any
incoming energy from the solar panels. Thus,consists of

Fig. 1. Energy flow.

the energy in the battery plus the energy input for time slot,
denoted .

The inputs represent incoming energy from the solar
panels or reactor. Because orbits and reactor performance are
predictable, the energy inputs are assumed to be known in
advance. In this model, the satellite starts with energyand
at each time receives energy input according to a
predetermined and known schedule.

At each time slot , the satellite operator may elect to con-
sume an amount of energy (up to ) in servicing users. Any
unused energy must be stored in the battery, which
has a capacity of . Unused energy that cannot be stored is
lost. Therefore, for any time slot, the energy in the satellite’s bat-
tery consists of available energy from the previous stage minus
consumption from the previous stage, subject to a battery ca-
pacity limit. The energy stored in the battery at timefor use in
the next stage, which we define as, is then given by the term

As can be seen in Fig. 1, the energy available for use by the
satellite at time is expressed as

(1)

Alternatively, can be written in terms of unused energy
or stored energy as

Each unit of energy consumed provides the satellite operator
with a reward . The reward is a nonnegative random vari-
able with a probability distribution that varies with time.
Although is knowna priori, the actual value of is not
known until time . Similarly, the user’s demand for energy,

, is also a nonnegative random variable witha priori known
probability distribution , but the actual value of demand
at time is not known until time . The random variables
and are assumed independent.

The objective is to choose a consumption policy that maxi-
mizes the total expected reward

(2)

over a time horizon of time steps, subject to demand and en-
ergy constraints.
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Notice that implicit in (1) is the assumption that any incoming
energy during a time slot can be consumed during that slot
without being stored in the battery. This amounts to assuming
that energy input and consumption rates are constant for the du-
ration of a time slot, a realistic assumption for sufficiently small
slot durations.

Furthermore, there is an inevitable energy loss associated
with charging and discharging a battery, and the energy of a
battery varies with its discharge rate. Although not currently
captured, these battery effects can be incorporated into the
model by proper adjustment of the reward structure. It is also
known that the pulsed discharge of a battery yields significantly
more average power and energy than steady discharge, and
Chiasserini and Rao [5], [6] have developed algorithms to
exploit this property for data transmission. This property could
be included in our formulation by the use of a model where
reward probabilities are dependent on previous consumption
and energy state. However, due to the short duration of battery
pulses, incorporating this effect would require the use of very
short time slots (e.g., one second or less).

In the following sections, we formulate the energy allocation
problem within the framework of dynamic programming [4].
Generating an optimal policy and a value function from the dy-
namic programming recursion can be computationally difficult.
We prove concavity of the value function and thereby obtain
some properties of an optimal policy. The concavity property is
also the basis for two separate methods of calculating the value
function and generating an optimal policy, both of which pro-
vide scalability and a significant decrease in computation time.
We also analyze the certainty equivalent heuristic and show that
it has a simple structure in the special case where the expected
reward per energy unit is the same at each period. In addition,
we derive an optimal policy for the special and limiting case
where demand is unlimited. Finally, we present a numerical ex-
ample contrasting the performance of the three algorithms with
a greedy algorithm and examine an alternative application in
wireless networking.

III. D YNAMIC PROGRAMMING FORMULATION

In this section, we present a dynamic programming approach
to the problem formulated in the previous section. As usual
in dynamic programming, we introduce the value function

. This function provides a measure of the desir-
ability of the satellite having available energy level at time

, given that current demand is and current reward is .
The optimal value functions for each stage are
related by the following dynamic programming recursion:

(3)

where

The maximization is taken over consumed energyand the
two terms in the maximization represent the tradeoff in reward
between consuming and saving energy. The

term represents the reward for consumption; the satellite
receives units of reward per unit of energy consumed, up
to a maximum consumption of . The expected value term
represents the value of saving energy. As discussed earlier,
the satellite’s available energy in the next stage is given by

. The expected reward
for having this much energy available is given by the expec-
tation , which is taken over the
distribution of and .

In order to maximize expected reward, the satellite should
choose the consumption that maximizes the right-hand side
in (3). Notice that any consumption beyond the demandis
wasted, as is any energy saved beyond .

An alternative expression for the value function can
be obtained by maximizing over the stored energy term

. Hence, for stage

(4)

Maximizing over the unused energy term gives
rise to yet another useful formulation:

(5)

where the term is defined as

(6)

For every formulation, the value function at the final stage,
stage , is given by

This, of course, represents the reward for consuming the re-
maining energy in the satellite.

A. Concavity of the Value Function

The value function can be evaluated numerically; however,
execution time can be slow. The major difficulty is computing
the expectation for every , and ,
and all . In addition, it is necessary to optimize over for
each combination of , and . Fortunately, the execution
time can be considerably improved by taking advantage of some
properties of the value function.

Theorem 1: is concave in for any fixed
and .

Proof: Given in Appendix A.
Corollary: The expected value function is concave in
as well, since it is a linear combination of concave functions.
Note that the value function can be shown to be concave in
and as well.

The concavity properties of the expected value function
dictate the nature of an optimizing consumption

policy. In the dynamic programming recursion, the expected
value function for time represents the expected reward
for saving energy at time. Since this function is concave, it
translates into a decreasing marginal reward for saving energy.
The marginal reward for consuming energy, on the other hand,
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is and then zero after the demand limit is reached. Properly
balancing these two functions results in an optimal policy.

We now derive the form of an optimal policy. Let be
a value of that maximizes the expression

(7)

over all . In other words

(8)

Theorem 2: The choice of

if
if

attains the maximum in the right-hand side of (5).
In effect, is a threshold beyond which the reward for

consuming exceeds the reward for saving. It does not depend on
the available energy or the demand , and is hence easy to
compute.

The proof of Theorem 2 uses the following well-known
lemma, which we state without proof.

Lemma 1: If and are concave in , and is
increasing, then is concave in .

Proof of Theorem 2:It is an immediate consequence of
Lemma 1 and Theorem 1 that is concave in . Also,
(7) is concave in since it is a sum of concave functions. We
also notice that the range contains the range

.
As a result, an optimizing value of in the right-hand side

of (5) is simply projected on the interval
. The theorem follows.

Concavity is also critical in proving the following important
property of the value function.

Theorem 3: If , and are integer for all , the value
function for fixed and will be piecewise
linear in , with corner points only at integer values of.
Furthermore, can be chosen integer for everyand .

Proof: Given in Appendix B.
Corollary: If, in addition, the initial energy is also integer,

then there exists an optimal policy under whichand are
integer for all .

Proof: We use induction. By Theorem 3, can be
assumed to be integer. Then whenis integer, the choice of
given by Theorem 2 will be integer as well. As a result, is
also integer.

We have seen that the slope of the value function changes only
at integer values of when , and are integer. As a
consequence, a numerical method need only consider integer
values of . Therefore, let us assume from now on, throughout
the rest of the paper, that the variables , and

are all integer.

B. Computation of the Value Function

The concavity of not only dictates the form of an op-
timal policy, but also can be exploited to quickly calculate the
value function itself. Two different methods have been devel-
oped to do so. The first method is based on the fact that knowing

eliminates the need to maximize over consumption in

(3). Moreover, is independent of the demand and avail-
able energy. Because of this, the expectation of the value func-
tion over becomes similar to a convolution when is held
fixed. It is then only necessary to weigh and sum overto get
the expectation over and complete the calculation for .

Using this strategy, the expected value function can be ex-
pressed as

where , and are taken as discrete and integer for the
purposes of computation.

Whenever , the optimal consumption is zero (see
Theorem 2) and

where is defined in (6).
When , it is proven in [8] that

In our experience, this method often leads to a dramatic
improvement in computation speed over the standard dynamic
programming algorithm, in some cases over two orders of
magnitude.

The second method of calculating the optimal value function
is frequently even faster than the one detailed above. The algo-
rithm relies on the concavity of the value function and essen-
tially chooses the maximum of either the expected marginal re-
ward from saving or from consuming for each incremental unit
of energy it is able to use. The dynamic programming recursion
is written in the form

It can be shown (see [8]) that

(9)

where is the first difference of

Note that the term

is omitted if .
Equation (9) is a significant simplification of the earlier dy-

namic programming formulations from a numerical standpoint.
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It replaces the maximization over with the summation of a
simple maximum of two quantities. Rather than optimize over
all available energy, each incremental unit of energy is allocated
by comparing and .

To compute the expected value function, it is necessary to
average (9) over and :

After applying a change in the order of summation, we have

This change in the summation order eliminates a minimiza-
tion in the earlier expressions and eliminates the need to av-
erage over . The remaining maximization can be eliminated
by noticing that

where is the ceiling operator. Thus

(10)

An efficient computational method readily follows from this
representation of . Furthermore, note that if the distribu-
tion of or do not change with time, then quantities such as

and

only need to be computed once, resulting in further reduction in
computation time.

C. Certainty Equivalent Policy

A certainty equivalent (CEQ) policy is a heuristic policy that
at each stage applies a decision that would have been optimal
if the future rewards and demands were all deterministic
and equal to their expectations and , respectively.

As seen above, dynamic programming requires taking expec-
tations over random variables. This process is computationally
intensive and can be extremely slow. With a certainty equivalent
heuristic, the decision at each stage is found by solving a much
easier deterministic problem.

The dynamic programming recursion for the deterministic
problem underlying the CEQ policy is given by

(11)

and

Once the value functions are available, a decision at time
is obtained by maximizing in the expression

(12)

The decision at time is set to .
In the special case where rewards in each time step have the

same expected value ( for all ), the certainty
equivalent value function and the resulting policy take on a par-
ticularly simple form.

Theorem 4: Assume that for all . Then, the
value function for the underlying deterministic problem
is of the form

(13)

where

and

Proof: Given in Appendix C.
Although the formal proof of the theorem is given in the

Appendix, a more intuitive justification can be obtained by con-
sidering the underlying deterministic problem. Since the (ex-
pected) reward is the same at all times, an optimal policy is a
greedy policy that consumes as much as possible at all times.
Then is equal to times the total consumption (in
the deterministic problem) over the entire horizon.

Given this fact, it is possible to infer the structure of the value
function. Let . As increases from 0, as long as
each additional unit of available energy can be consumed, now
or in the future, the total reward increases linearly. However,
once reaches a certain threshold value, any additional
available energy will have to be wasted and will not result in
any additional reward. This happens when the current expected
demand has been exceeded, and saving the energy for fu-
ture use is not possible because either the battery capacity or the
future expected demand has been exceeded.

As seen by the preceding argument, the quantitiesand
have an intuitive interpretation that results in recursive formulas
for computing these constants. The total expected reward given
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that the current available energy is zero is given by. The max-
imum available energy at timethat can be consumed immedi-
ately, or saved and consumed later, is given by. If the satellite
has more available energy, the excess is wasted.

At stage , it is clear that and . The
formula for may be obtained using the fact that

To determine , we need to determine the maximum possible
available energy that will not be wasted. The first units
are not wasted because they can be consumed immediately. Any
further useful available energy cannot exceed , since this
the most that can be conserved for future use. At the next time,
the maximum useful available energy is . Since there will
be a fresh supply of units, any useful transfer from time
is limited to . Putting everything together,
we obtain

The consumption policy for the special case where is
the same for all is also relatively straightforward to describe.
Expression (12) becomes

If , the CEQ policy will consume as much as possible
(up to ) and then save any remaining energy. If , the
policy will save as much as possible, up to units
of energy, and try to consume the rest. This policy appears to
be a reasonable one, and in tests where reward was uniformly
distributed (see Section IV) the CEQ policy regularly obtained
80%–90% of the optimal reward.

It is possible, however, to construct examples where the per-
formance of the CEQ policy is arbitrarily bad. For instance,
consider the extreme case where demand and battery capacity
are unlimited. Suppose there are four possible rewards that ap-
pear with equal probability and that are chosen from the set

, where . Clearly, the optimal
policy is to wait until best reward appears to consume energy.
The CEQ policy, on the other hand, will consume all available
energy whenever the reward is above. The difference between
the reward obtained by the CEQ policy and an optimal policy
can be made arbitrarily large simply by adjusting probabilities
and rewards.

D. Unlimited Demand Policy

When demand is unlimited, one can obtain a closed-form
expression for an optimal consumption policy, described by a
simple threshold scheme. This formulation also applies to the
case where demand is finite but is guaranteed to always exceed
the available energy. This policy can be used as a heuristic to
solve the general demand-limited case.

As before, the objective is to choose a consumption policy
that maximizes total expected reward overtime steps. Since

demand is unlimited, the dynamic programming recursion
becomes

(14)

For , define the constants

Theorem 5: An optimal consumption policy, for ,
is given by the following.

If , then

(15)

Otherwise

(16)

where is the smallest in the range such that
.

Furthermore, the value function is given by

...

(17)

where is a constant (the actual value of which does not affect
the policy).

The physical intuition behind the constants above is as fol-
lows. represents the optimal expected reward in an optimal
stopping problem in which there is a unit of energy that can be
consumed at any time between stagesand .
(The reward for any given time step is not known until the
time step is reached, but the probability distribution for the re-
ward is known for each time.) Notice that for a given is
nondecreasing with.

The constant represents less the incoming energy
between time and time , as long as

it does not become negative. Notice that is nonincreasing
with . It is interpreted as the amount of energy at timethat can
be saved until time, without overflowing the battery, in view
of the future energy inputs .

The policy can be interpreted as follows. If the current re-
ward is greater than the expected reward for consuming at
an optimally chosen time between time and time , then
the policy consumes all available energy immediately. In other
words, if the expected reward for saving is less than the reward
for consuming, the policy consumes.
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Fig. 2. Battery FIFO queue.

If not, the policy finds the smallest timesuch that current
reward is less than the expected reward given that the user must
consume between time and time . The policy then con-
sumes available energy less (subject to the constraint that
consumption cannot go below zero). Note that so
that in all instances the policy consumes any energy that cannot
be saved in the battery.

This closed-form solution can be computed in time propor-
tional to the number of stages and the number of possible
values for the rewards .

Proof of Theorem 5:The theorem can be verified through
tedious algebraic manipulation of (14) [8]. However, there is
another approach that is more intuitive. Notice that it is never
optimal to save more energy than the battery capacity. Any
amount of saved energy greater than the battery capacity is
wasted, whereas one can always obtain some reward (however
minimal) by consuming, since demand is unlimited.

With this observation in mind, let us consider the battery as a
queue for energy packets with a capacity of (see Fig. 2).
Assume without loss of generality that each energy packet is of
size one. At each time energy packets arrive, and the satel-
lite can consume any number of energy packets in the queue to
obtain units of reward per unit energy. The task is to find the
consumption policy that generates the greatest expected reward.

Now consider the class of first-in-first-out (FIFO) policies for
managing this queue. First, notice that any energy packet in the
queue must be either consumed or discarded by the time
additional energy packets arrive after it. If the energy packet is
not consumed, queue capacity is exceeded and the energy packet
will be wasted.

Since the schedule for energy packet arrivals is known, each
energy packet in this queue has an effective expiration time. The
expiration time for each energy packet is the time at which a
total of additional energy packets arrive after it. Under
any optimal policy, the energy packet must be consumed by this
time. Note that as one moves from the head of the queue to the
end of the queue, the time until expiration for each energy packet
is nondecreasing.

Given these expiration times, an optimal FIFO policy simply
picks the best time between the current time and the expiration
time of the energy packet to consume it. This involves solving
an optimal stopping problem for each energy packet.

The solution to the optimal stopping problem is well known:
For an energy packet with expiration time, an optimal strategy
is to compare the current reward with . If
the satellite should save the energy packet; if not, it consumes
the energy packet. If the satellite consumes an energy packet
with expiration time , it also will want to consume all energy
packets with expiration times before. At time , the number
of energy packets with expiration time or less is given by

. This leads us to the optimal policy described
above.

Since the time until expiration is shorter as one moves to-
ward the head of the queue, the satellite will always consume
energy packets according to FIFO ordering. We have thus ob-
tained an optimal FIFO policy for consuming energy packets.
Finally, note that because the energy packets are indistinguish-
able, an optimal FIFO policy is also an optimal policy in general.

The value function given in (17) can be better un-
derstood by using the terminology developed in the proof and
by looking at each individual line of the expression. Each line
represents the total reward that can be obtained from all the en-
ergy with a certain expiration time. With the exception of the
top and bottom lines, each line has the form

The term represents the expected reward
for energy expiring at time , and the

term represents the amount of energy expiring
at time . The top and bottom lines can be similarly approached.
For instance, the bottom line of the equation gives the total
reward that can be obtained from energy expiring at time.
The reward per unit energy is given by, and the amount of
energy expiring at time is the amount of available energy
that exceeds battery capacity . This amount of energy is
given by

or equivalently

Hence, the total reward from this energy is

which is precisely the last line in (17).

IV. EXAMPLE: A LOW EARTH ORBIT SATELLITE

Three procedures for allocating energy have been introduced:
the optimal policy for the general case, the certainty equivalent
policy, and the optimal policy for the unlimited demand case,
which can be used as a heuristic for the general case. We now
apply these three procedures to a hypothetical satellite in low
earth orbit and compare their performance to a simple greedy
policy that expends as much energy as it can— units
of energy—during each time step.

The objective is to maximize total reward obtained over a
24-h time period, which is divided into 15-min time slots. Al-
though we do not do so in this example, it is possible to use much
shorter time slots. In fact, it is possible to use our methodology
to decide whether to accept or reject individual packets.

The hypothetical satellite has a 90-min orbital period, half of
which is spent in sunlight, half in darkness. Accordingly, the
satellite sees a pattern of three time slots with incoming energy,
followed by three time slots without. The satellite starts with 20
units of energy and receives 10 units of energy from its solar
cells during each time slot it is in sunlight.
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Fig. 3. Reward, consumption, and demand,� = 15.

Fig. 4. Energy levels and consumption,� = 15.

At each time slot , the satellite can expend up to units of
energy for units of reward per unit energy. The demandis
Poisson distributed with parameter, and the reward has a
discrete uniform distribution between 1 and 50.

Fig. 3 shows the reward and demand parameters for a single
randomly generated scenario, along with the energy consump-
tion as determined by the optimal policy. Demand was Poisson
distributed with , and the battery capacity was 50 energy
units. The first plot shows the relationship between consumption
and demand, and the second the relationship between reward
and consumption. As might be expected, the optimal policy
elected to consume only when reward was relatively high. Also,
consumption at peak points was often equal to demand—in this
particular scenario, the demand was generally lower than avail-
able energy. Thus if the policy elected to consume, it was usually
constrained by demand, not available energy.

Fig. 4 shows the energy levels of the satellite in the same sce-
nario. The first subplot shows the energy in the battery and the
energy input from the solar panels. The oscillations in battery

Fig. 5. Reward, consumption, and demand,� = 50.

Fig. 6. Energy levels and consumption,� = 50.

levels that result from periods of light and darkness are readily
apparent. The second subplot shows the available energy (bat-
tery plus input energy) and consumption. In general, there is
much more available energy than demand when the policy elects
to consume. In such a situation, we would expect the unlimited
demand policy to yield considerably poorer results than the op-
timal policy.

Fig. 5 shows the reward, demand, and energy consumption
for another randomly generated scenario where demand was
Poisson distributed with . Fig. 6 shows the energy levels
of the satellite in this scenario. Unlike the situation where

, the satellite seldom serves all of the available demand. In this
case the satellite is energy constrained, not demand constrained.
Under this circumstance, it is to be expected that the unlimited
demand heuristic would perform well.

The value function (under an optimal policy) and the value
functions underlying the unlimited demand and CEQ heuristics
for time step 54 are shown in Fig. 7. This particular time step was
chosen because the nature of the value functions is more visible
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Fig. 7. Underlying value functions.

Fig. 8. First difference of underlying value functions.

than at other time steps. Recall that the two heuristics generate
an approximate value function and then generate a policy based
on them. These are the “underlying” value functions that are
plotted in the figures. As can be seen from the figures, all of
these functions are concave in energy. Notice that the unlimited
demand policy tends to overestimate the value of saving energy
while the CEQ policy significantly underestimates the value of
saving energy.

The first differences of the value functions are plotted in
Fig. 8. The first difference gives the expected marginal reward
for every extra energy unit as calculated by each policy.

The first difference of the underlying value function for the
unlimited demand heuristic is always a staircase function. This
structure results from the expiration times (explained earlier)
that are imposed on incoming energy. If there is not much en-
ergy in the battery, incoming energy does not have to be spent
for a long time. The policy can then wait for a time slot with high
reward and accordingly, the expected value for an extra unit of
energy is high. However, with a full battery, an extra unit of en-
ergy must be spent immediately, and hence the expected value is

Fig. 9. Performance of policies as a function of battery capacity,� = 15.

Fig. 10. Performance of policies as a function of battery capacity,� = 50.

simply the expected value of the reward. The staircase structure
results from the fact that new energy always comes in groups
of ten units, and accordingly, the expiration time and marginal
reward for energy changes every ten energy units.

The first difference of the optimal value function can be un-
derstood in the same framework. As can be seen from Fig. 8,
this value function is always less than the one corresponding to
the unlimited demand case. This reflects the possibility that in-
sufficient demand is available and that energy cannot be spent
before expiration. Hence, an extra unit of energy is always worth
less when demand is limited.

The first difference of the underlying value function corre-
sponding to the CEQ policy is simply a constant. As shown in
Theorem 4, the value function is a piecewise linear function of
available energy. In the range shown by the plot, however, the
value function is completely linear. Since available energy is
never outside the range shown by the plot, the underlying value
function is effectively linear.

Figs. 9 and 10 show the total reward obtained by the various
policies as battery capacity changes from 5 to 150, with
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Fig. 11. Performance of policies as a function of� (average demand).

and , respectively. Fig. 11 shows the performance of the
various policies as changes from 2 to 60 and for a fixed battery
capacity of 50 energy units. In each figure, every data point is the
average performance observed in 50 simulations of a policy over
the 24-h horizon. The reward obtained by each policy is plotted
as a fraction of the reward obtained by the optimal policy.

As can be seen from the figures, the three policies we have
considered significantly outperform the greedy policy. The cer-
tainty equivalent heuristic always obtained at least 80% of the
optimal reward, while the unlimited demand heuristic was al-
ways above 70%. Figs. 10 and 11 also show that the unlimited
demand policy performed particularly well when the average
demand was relatively high. Also notice from Figs. 9 and 10
that the performance of every suboptimal policy deteriorated as
battery capacity increased. The explanation is that a larger bat-
tery leads to more choices as to when to consume energy, which
the heuristics do not handle as well as the optimal policy. In
contrast, when the battery capacity was small, all policies per-
formed similarly, as the opportunity to save energy was limited
by the battery capacity.

Note that while the plots show the relative performance of
the greedy policy deteriorating with increasing battery capacity
and increasing demand, the total rewards obtained by the greedy
policy actually remained fairly constant. It is easy to see that in-
creasing battery capacity would have little impact on the total
reward obtained by the greedy policy, which stores as little en-
ergy as possible. Similarly, the greedy policy would not be able
to take advantage of increased demand levels by saving energy
for future, higher reward opportunities. Hence, the deteriorating
relative performance of the greedy policy in the simulation was
due mainly to the increased reward obtained by the other poli-
cies, which were able to exploit higher battery capacity and de-
mand levels in making consumption decisions.

The computations were carried out on a Pentium III computer
using Matlab 5.0. Computing underlying value functions and
optimal policies for a typical data point from Fig. 11 required
roughly 0.92 s when using the second method for calculating an
optimal value function [see (10)]. The calculations for the un-
limited demand approach required 0.51 s and those for the CEQ

approach took 0.39 s. In contrast, the greedy policy required no
precomputation, while a direct calculation of the optimal value
function required about 26 min, 39 s.

V. OTHER APPLICATIONS

The policies and analysis presented above are applicable in
many situations where there is a stored resource that can be ex-
pended for a reward. For instance, the operator of a hydroelec-
tric dam with a limited supply of water could use a similar ap-
proach to maximize revenue when faced with a fluctuating price
for power.

One particularly interesting application is that of maximizing
throughput in a fading channel given finite battery capacity
[9]. Assume that a mobile transmitter seeks to transmit over
a fading channel where throughput per unit energy expended
is not known until the time of transmission. The probability
density of the throughput is independently distributed over time
and known. We also impose a power limit on the transmitter
and a deadline by which the transmission must take place.

This application gives rise to two problems that can be solved
using the approach described in this paper. First, one may seek to
maximize expected total throughput given a limited amount of
energy. Second, one may seek to minimize the energy expected
to be consumed given a fixed amount of data to send.

The equations that result for the first problem are almost iden-
tical to the satellite energy allocation problem. Throughput is
analogous to reward in the satellite problem and the power limit
is equivalent to demand. There are only two places where the
problems differ. First, energy inputs for the mobile transmitter
are zero for all time. Second, in most cases power constraints
will be static and knowna priori. These two conditions signif-
icantly simplify calculations; nevertheless, the policies detailed
above will be completely applicable.

The second problem can be solved with techniques similar to
the ones used for the first problem; however, the problem is a
minimization rather than a maximization, and some modifica-
tion of our approach will be necessary.

VI. CONCLUSION

This paper developed a dynamic programming formulation
for optimizing satellite energy allocation and presented three
methods for efficiently obtaining a policy: the optimal one, the
unlimited demand policy, and the certainty equivalent policy.
The three methods trade off computational complexity against
performance and their behavior and properties have been ana-
lyzed. The approach developed is general and can be used for
other stored resource allocation problems, including throughput
maximization for wireless communications.

There are a number of areas for further investigation. The
policies presented thus far are valid only for a single satellite.
Additional work needs to be done on extending the results to a
constellation of satellites. It would also be interesting to explore
the use of these methods as a satellite design tool rather than
as an aid to operation. Because the computations run quickly
on a computer, the effects of a reduction in battery capacity or
an increase in average demand can be readily discerned. An-
other natural extension of our model would be to capture battery
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charge/discharge effects, as discussed earlier. Finally, it would
be interesting to study similar problems involving the accep-
tance or rejection of circuit-oriented connections, rather than of-
fered packets.

APPENDIX

A. Proof of Theorem 1: Concavity of the Value Function

The dynamic programming equations for stochastic reward
and stochastic demand energy allocation are given by

(18)

and

(19)

We now show that is concave in , for every
and .
Definition: A function is concave if for

and we have

(20)

for all .
Lemma 2: If and are concave and , then and
are concave.
Proof: Follows from definition of concavity.

Lemma 3: If and , then

(21)

Proof: For fixed , the function is a concave
function of and the result follows.

Theorem: is concave in for any fixed
and .

Proof: We use induction. First, note that the value function
is concave in and the expected value function

is concave in . Indeed, from
the problem formulation, we see that

is a piecewise linear and concave function of. Hence,
is concave in as well, and by

Lemma 2, the expectation is
also concave in since it is a weighted sum of concave
functions.

Now assume is concave
in . We show that is concave in . To complete
the induction, we also show that is
concave in .

Let us look at and . We have

Theremustbeanoptimizingvalue for.Denote thisby .Then

Similarly

where is an optimizing value for in the equation for
. Combining the two equations and weighting by

or

The terms and are piecewise
linear and concave. By the induction hypothesis, we also know
that and

are concave in . Then

Now examine the range of the maximization. Since
and , we have

(22)

and

(23)

Combining (22) and (23)

and

(24)

This shows that is concave in . A direct appli-
cation of Lemma 2 shows that is
also concave in and the induction is complete.

B. Proof of Theorem 3: Piecewise Linearity of the Value
Function

The objective is to show that the value function
is piecewise linear with corner points at the integers under the
integrality assumptions of Theorem 3. We prove this by induc-
tion. At time

Since we assume to be integer, this function is clearly piece-
wise linear in with corner points only at the integers.
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Now assume that is piecewise
linear in with corner points at the integers. We show that

has the same property, using the formula for the
value function given in (5).

It is clear that the term is also piecewise linear with
corners at the integers. To see this, note that

is a linear combination of functions with this property, and
hence itself is piecewise linear with corners at the integers.
Then, noting that

we see that has the same property since and
are assumed to be integer.

We have from (5) that

Theorem 2 provides the optimal values for in the above ex-
pression. Substituting these values for the maximization, we ob-
tain for

for

and for

It is apparent that is piecewise linear with
corner points at the integers as long as is integer. But

is a value of that maximizes (7). This expression
is concave and is also piecewise linear with corners at the
integers. Thus, an integer maximizing value can always be
found. Therefore, is piecewise linear with corner
points at the integers.

C. Proof of Theorem 4: Value Function for Certainty
Equivalent Policy Under Fixed Average Reward

The underlying value function for the certainty equivalent
policy is given by

(25)

and

We seek to show by induction that (25) takes the form

(26)

where

and

At time , the underlying value function can obviously be
written in this form, with and . Now, assume
that (26) is true at time . We show that it is true at time
as well.

First, by the CEQ assumption, future reward is the same
at all times and equal to . It is also apparent that in the
underlying value function (25), the reward for consuming at
time is also . Therefore, an optimal policy is a greedy
policy that consumes as much as possible at all times, and

. Then the underlying value function can
be written as

Using (26) and substituting for

(27)

If , then the term

is always greater than and (27) simplifies to

If , then (27) can be written as

which can be reduced to

Using the fact that and
, we may eliminate several terms from the minimization

above:

The value function is now in the desired form.
We have shown that the underlying value function at time

can be written as

where when
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and when

The definitions of the constants may be consolidated by
writing

and the induction is complete.
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