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A Simple Analysis of Average Queueing Delay
in Tree Networks

Eytan Modiano, Member IEEE, Jeffrey E. Wieselthier,
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Abstract—We develop an approach to the analysis of average queueing
delay in a tree network of discrete-time queues with constant service
time. The analysis of such systems is pertinént to packet-switched data
networks with fixed-length packets. Our solution is based on considering
an equivalent network, in which at each node packets in transit are given
priority over exogenous arrivals. The solution to the equivalent model is
easily computed, and, hence, the solution to the original model can be
obtained.

Index Terms— Queucing networks, tandem queue, queueing delay,
equivalent model, priority disciplines.

I. INTRODUCTION

In this correspondence we consider a network of discrete-time
queues in which the service time is deterministic and is the same at
each queue. Such a network of queues arises in a data communication
network model, where data is formatted into fixed-length packets. An
important performance index in such networks is average queueing
delay. The model generally used for the analysis of average delay in a
large network is Kleinrock’s Independence Assumption, under which
the queues at each link behave as independent queues regardless of the
interaction of traffic between the different links [1], [2]. This model is
reasonably good for systems involving exponential arrivals, a densely
connected network, and uniform loading among source—destination
pairs. Otherwise, the model may be very inaccurate in predicting
delay. There have also been numerous other approximations proposed
that have had varying degrees of success.

The exact computation of average delay in a network of queues
with constant service time is complicated by the fact that the outputs
of intermediate queues in the network (which serve as inputs to
other queues) are correlated. This correlation, in an N-node network,
renders the N-dimensional embedded infinite Markov chain that
models the system intractable. There has been some effort in the
literature to develop a delay model for a packet-switched network
with fixed-length packets. It is clear that in a discrete-time network
with fixed-length packets of one-slot duration, only one packet can
depart from a link during any slot. In [3] an attempt is made to
take advantage of this regular nature of departures by modeling the
departures from a link in the network as an independent Bernoulli
process with rate equal to the utilization of that Iink. In [4] an
approximate model for average delay is developed which assumes
the departures from intermediate links to be second-order Markov;
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Fig. 1. Two discrete-time queues in tandem.

with proper choice of parameters, it is then possible .to obtain a
fairly good approximation for the average delay in a linked-cluster
architecture network. Perhaps the most promising approach is that of
[5], where two discrete-time queues are considered in tandem with
identical service time; by the use of direct calculations the moment
generating function for the steady-state queue sizes can be obtained.
This is the only exact solution, that we know of, to the problem of two
quenes in tandem with exogenous arrivals at both queues: However,
the direct nature of this approach makes it difficult to extend to more
than a simple tandem because of the rapidly increasirg complexity of
the calculations. There are also models for delay analysis of ‘'simple
queue tandems [6], [7], where exogenous arrivals are not allowed -at
the second queue. In [8], a simple formula is defived for mean delays
in multiplexers, which perhaps may be applicable to extensions: of
this problem, and in [9] a solution is developed for a fluid analog
of the tandem queue model where the inputs are independent Levy
processes. :

In this correspondence we offer an exact solution to tree networks
of discrete-time queues with identical service times. Although the
topology of such networks is restricted, our method iltustrates how
the bottleneck of interdependencies among interconnected queues can
be broken and may inspire a solution to the case of completely. general
topology. Our solution is based on considering an equivalent network,
where priority is given to customers in fransit (over exogenous
customers entering the system). The solution to the equivalent model
is easily computed; from this the solution to the original model
(without priorities) can be obtained. The priority scheme is only
devised as a means to simplify the analysis of the system, and
is mot proposed for actual use in a network. For the purpose of
demonstrating our approach, we begin by deriving the results for
a tandem, and then we show how this approach can be extended to a
tree network. Our hope is that this new approach using hypothetical
priority disciplines will lead to the solution of more general systems
of queues with wider applicability. .

0. TwO QUEUESIN TANDEM

Here we consider two discrete-time queues in tandem as shown in
Fig. 1. The input to the first queue is 4 Poisson process of rate 1, and
its output is fed into the second queue. Additionally, the second queue
has an independent exogenous Poisson artival stream of rate Ag.
Both queues have the same, constant, service time. Such a situation
may arise in a packet-switched network where the packets are of
a fixed size and take a constant amount of time to be transmitted.
For simplicity we assume the service time to be one time unit, and.
that arrivals take place at the end of these unit time intervals. This
assumption is necessary in order to maintain synchronization within
the system. Without this assumption packets arriving to the system
earlier in the unit interval would have to wait to the end of the interval
before entering the system. On average this would result in additional
delay of one half of a timé unit [11]. Thus the arrival process can be
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Fig. 2. An equivalent system with priority.

viewed as offering i.i.d. Poisson arrivals at each integer time instant.
This simplification is nonessential but facilitates the analysis.
The first queue can then be viewed as a simple discrete-time M/D/1

queue with arrival rate A;. The average queue size for such a sysiem .

is well known and is equal to A3 /2(1 — A;) [11]. This result, which
applies to continuous systems, is valid for discrete-time systems as
well if all arrivals occur at the end of the time intervals, as we have
assumed. By Little’s formula the average queueing delay can then be
expressed as AZ/2X;1(1 — A;). Since the service time at either queue
is constant and equal to one time unit, the total wait (service time
plus queueing delay) at the first queue is equal to A1 /2(1 — A1) + 1.

The analysis of average delay at the second queue is complicated
by the fact that the inputs to that queue are a mixture of the outputs
of the first queue and an exogenous Poisson stream. Clearly, the
second queue is not M/D/1. The direct solution to the average delay
at the second queue is complicated because it amounts to analyzing
a two-dimensional infinite Markov chain of general structure. In 5],
a direct approach is used to solve for the average delay at the second
queue using a moment-generating function approach. Here we offer a
much simpler solution, which we easily extend to more complicated
systems, ‘

Let us assume that in-route traffic has priority over exogenous
traffic. That is, customers departing from the first queue are imme-
diately served at the second queue without' experiencing any delay.
This assumption is not required of the actual system, and is only a
hypothetical one made for the purpose of simplifying the analysis.
In fact, we note that the overall average delay at the second queue
is the same for either the system with priority or the actual system
without priority. It is known that assigning priority to any type of
traffic does not alter the average delay in the overall system, so long
as the priority is not assigned on the basis of the required service
time [2]. In this system, where all customers require the same service
time, the priority assumption does not alter the overall gueue size;
therefore, the average delay for the system without priority is the
same as for the system with priority. .

Now considering the tandem with priority, we observe that cus-
tomers departing from the first queue will experience no deldy at the
second queue. This is easily seen as a consequence of the discrete-
time nature of the system. Departures from the first queue (which all
have high priority) will be available for transmission only at time-unit
boundaries, and hence will not have to wait for the completion of a
customer whose service is currently in progress in the second queue.
Exogenous traffic arriving at the second queue will only be served
when there are no customers departing from the first queue. Since a
customer departs the first queue exactly one time unit after it begins
receiving service, the entire two-stage tandem system can be thought
of as a single-server system with two exogenous Poisson streams
where one stream receives priority over the other. The equivalent
system is shown in Fig. 2. Equivalence is in the sense of total average
queueing delay (i.e., waiting time). Clearly, in Fig. 1 the traffic of
the A; stream incurs service time of one extra unit since it traverses

two stages, while that of the Ao stream encounters a single-service
stage. However, the queueing time (and queue size) is the same as
the system of Fig. 2 because of the service synchronism. Of course,
the delay in this equivalent system accounts for the queueing delay
at both queues. For the tandem with priority, in-route customers will
experience all of the queueing delay at the first queue and no queueing
delay at the second queue. The delay experienced by exogenous traffic
at the second queue is the same as the delay experienced by the low
priority traffic in the equivalent system of Fig. 2. It is solved as
follows:

First, we define the following quantities relating to the equivalent

system. '

* QA the average overall queue size (the sum of the low and
high priority queues).

* @, A the average queue size at the high-priority queue.

» (,A the average queue size at the low-priority queue. (This
quantity is equal to the average queue size for the exogenous
traffic in the tandem network with priority).

Thus @2 =@ - Q,. Now, Q for the equivalent system with priority
is the same as that of a system without priority. It is simply the
average queue size for an M/D/1 queue with arrival rate A; + Ao,
which is equal to (A1 +X2)%/2(1— A1 — A2). Also, @, in the system -
with priority is the same as the average queue size for the first queue
in the original system and is equal to A3 /2(1 — ;). So now we can
express the average queue size in the second queue as follows:

A _ (a4 A

@ = 21-21 =) 2(1-X1)’

Returning to our tandem, in which priority is given to in-route traffic,
the second queue will consist only of exogenous customers. However,
the average queue size at the second queue is the same for both the
system with and without priority, and therefore the average queueing
delay W (for both in-route and exogenous traffic) at the second
queue of the tandem can now be expressed using Little’s formula as
wo_ @
W2 = AL+ A2

Thus the total wait Dy (which includes the service time) is equal to

@

AL+ A2
This result is consistent with that obtained in [5] when the arrival
processes are independent Poisson processes.

It is also interesting to compare this result to that obtained using an
independence approximation in which the average queue size at the
second queue would be given by the formula for an M/D/1 queue with
arrival rate A; -+ A2 and would equal (A + A2)%/2(1 ~ A1 — X2).
Comparing this to the exact result obtained above it is clear that
when the “in-route” traffic rate is substantially greater than that of
the exogenous traffic, the independence approximation is inaccurate
in predicting delays.

D, +1.

III. EXTENSION TO LARGER SYSTEMS

In the previous section we looked at an equivalent system with
priority, which simplified our analysis by eliminating the delay
experienced by “in-route” traffic in the second stage of the tandem.
That delay is the major source of difficulty in analyses of this type
because it depends on the joint behavior at both service stages. In
this section we use a similar technique to arrive at an average delay
formula for a tree of queues of general structure such as the one
shown in Fig. 3. Once again, we arrive at our solution gradually; as
a first step we consider the two-level tree of queues shown in Fig. 4.
In this system only the external queues have exogenous arrivals. The
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Fig. 3. A concentrating tree of discrete time queues.
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Fig. 4. A two-level tree.

“root” queue has the superposition of the outputs of all the other
queues as its input.
The analysis of average delay in this system is fairly simple. We
begin by defining the following quantities:
* Q:(t)A the total number of customers present in (J; during slot
t (here we include all customers, whether waiting in queue or
being served), 1 = 1,2.
s (Q3(¢)A the number of customers waiting in ()3 during slot ¢
(here we do not include customers being served).
Now let

Q) = Q1(t) + Q2(t) + Qs(?)

which denotes the number of customers in the entire system, except
those in service at the head queue.
Next we write the transition equations for each of the queues, that is

Qut) =it -1+ Ai(t = 1) - I(Q:(t - 1)) M
Q2(t) =Q2(t— 1)+ A2t — 1) — I(Q2(t — 1)) 2
and - »

Qs()=Qs(t ~ 1)+ I(Q:1(t = 1)) + [(Q2(t - 1))
Q=1+ Q:t =D+t -1) G
where A;(t) is equal to the number of new arrivals to queue ¢ during
slot ¢ and I(z) is equal to 1 if z is greater than 0, and O otherwise.
The first two equations are the standard transition equations for an

M/D/1 queue. The last equation requires explanation. Here we recall
that @s(t) does pot include those customers currently being served

A —
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An extension.to the two-level tree.

Fig. 5.

by queue 3. Therefore, if a customer arrives (from either queue 1-or
queue 2) to an empty queue 3, it immediately enters the server and
Qs remains empty. However, if Q3 is not empty, the first customer
in Qs enters the server; (Js is decremented by 1 and incremented by
the number of new arrivals from quene 1 and queue 2.

Now, by adding (1)-(3) and by definition of )(t) we obtain,

QO =Qt-1)+A(t-1)-IQEt-1) @

where A(t) = A;1(t) + A2(t). Now we notice that (4) is identical
to (1) with @ replacing @1 and. A replacing A;; that is, (4) is
the transition equation for an M/D/1-system. Hence, since A(t) =
A1 + Az, we obtain .

— a2t
@= 2(1 =X — X2)

Since Q3 = @ — Q1 — )2 and since ()1 and ()2 are both queue sizes
of M/D/1 systems with arrival rates A1 and A2 respectively, we have

0, = (A1 + A2)? _ A? _ A3
3T 2(1 - M=) 2(1=A1) o 2(1—2A9)’

It is now straightforward to extend the approach to an arbitrary
number of M/D/1 queues feeding into one queue with an infinite
buffer. Consider the system of Fig. S, where n M/D/ _queues with
arrival rates X; -+ A, feed into one queue. Then, Q.. +ysthe average
queue size at that queue can be written by inspection as follows:

) o
2(1—271:&-) £ 2(1~ Ai)

In order to proceed to our next building block in our development
of a solution to the tree network, we must use a lemma from Morrison
[10]. This lemma relates the output of the “root” queue in a tree of
queues to that of a single M/D/1 queue with appropriate. inputs. The
lemma essentially states that given a concentrating tree-of discrete -
time queues with identical service times and independent arrivals to
each of the queues, the output of the “root” queue is the same as
the output of a single queue with the same service time and with an
arrival pattern that results from the superposition of the individual
arrival processes that feed into the “root” queue.

Because in our case we are interested in Poisson amval streams,
this lemma implies that the single queue with identical output stream -
as the root queue will be M/D/1. Thus the output of the root of the
tree in Fig. 3 is statistically the same as the output of the M/D/1 queue
shown in Fig. 6, with arrival rate equal to the sum of the arrivals into
the tree of Fig. 3. This does rot imply that the queue at the equivalent

+ A1+ Azl

Qn+1 =

®)
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Fig. 7. A two-level tree with an exogenous input.

M/D/1 queue has the same behavior as the queue at the root of the

tree of queues in all respects. It simply agrees with respect to the

output process. Also, a direct consequence of this lemma is that the
state of the server (busy or idle) will have the same statistics as the
server of the -corresponding M/D/1 queue. :

Now consider the two-level tree in Fig. 7. This tree is the same as
the one in Fig. 5, with the addition of an exogenous Poisson source
of rate An;. The solution for the queue size at the root of this tree
is now trivial with the use of the lemma and the priority technique of
Section I. Suppose, as in Section I, that we give priority to “in-route”
traffic over the exogenous traffic. Then we know using the lemma
from [10], that queue (J; is occupied with “in-route” (high pridrity)
traffic as a single M/D/1 queue with arrival rate,

Now, the exogenous traffic will only be served when the server at Q¢
is idle. To characterize the exogenous traffic, we consider a priority
M/D/1 queue which consists of two input streams, i.e., a high-priority
stream of rate A and a low-priority (exogenous) stream of rate An41.

We know from Section I that the average queue size, (),, for the
low-priority (exogenous) traffic in this case would be

(A+ An—f-l)? _ AQ
20— N = Ang1)  200—=A)

Q.=

Finally, the total queue size at the root node, @Q,, is the sum of
the exogenous queue size and the queue of “in-route” customers.

The latter quantity is equal to' @, from (5). Summing the two
equations we have,

= _ QA+ )’
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Fig. 8. An-equivalent two-level tree to the tree of Fig. 3.

By invoking now the lemma of Morrison [10] discussed earlier, we
can solve for the average queue size at the root of any concentrating
tree of queues. As observed above, any rooted tree of queues can be
replaced by an equivalent two-level tree with one exogenous source
and an arbitrary number of internal queues representing the different
branches of the tree. Each of these internal queues will have the same
output as the tree branch that it represents; therefore, the queue size
at the root queue would be the same for both the original tree and
its equivalent two-level tree. The solution for the queue size of the
two-level tree is obtained using (6). For example, consider the rooted
tree of Fig. 3. Its equivalent two-level tree is shown in Fig. 8. The
average queue at the root node is given by

2(1_2 A) — 2(1_ A)
£ (5
S5 0 E

and the average queueing delay, using Little’s formula, is given by
Qg

i1 :

2N

i=1

Qr =

M

Wr=

- Finally, the total time, including the time spent in the server, is

Dr=Wr+1.

Notice, again, that if an independence approximation were used to
obtain the queue size at the root, the resulting queue size would
be that of an M/D/1 queue with the same total arrival rate, and
would be equal to the first term in (7). Therefore, at least when
the system is lightly loaded, it is apparent that the independence
approximation is inaccurate in predicting delay. However, when the
system is heavily loaded, the first term of (7) dominates the other
terms and the independence approximation may yield results with
improved accuracy.

IV. CONCLUSION

We have obtained an exact solution for the average delay in a tree
network of discrete-time queues where the service time is constant
and ‘identical at every queue. While in general the solution for the
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average delay in a network of queues is difficult to obtain, here we
were able to use the fact that the service time is a constant to obtain
the desired result. Our approach utilized i) a simple hypothetical
priority discipline as a “shortcut” and ii) the queue-equivalence
lemma of Morrison [10]. This result is applicable, in particular,
to a packet network where data packets are of fixed duration. Of
course, most networks do not have a simple tree topology and involve
in general a more complicated structure, where some packets are
allowed to by-pass certain nodes and some packets exit the system
before reaching the root of the tree. The solution developed here
does not apply to these cases.

A useful extension of our approach would be along the lines
considered in [3], which addresses a network of discrete-time queues
where the different queues have constant, but different service times.
Such a system, again, arises in a packet radio network where the data
capacity of the network varies from link to link. The solution for the
delay in such systems would be very useful because it would permit
the exact computation of delay for more realistic network models
and would facilitate the solution to the optimal capacity allocation
problem. In fact, an approximate solution for the case of unequal
capacities was obtained in [3] by modeling the output of each link as
Bernoulli with rate equal to the utilization of that link. The results of
this approximation compared favorably with simulation, especially
for large networks.
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Hashing of Databases Based on Indirect
Observations of Hamming Distances

Vladimir B. Balakirsky

Abstract—We describe hashing of databases as a problem of informa-
tion and coding theory. It is shown that the triangle inequality for the
Hamming distances between binary vectors may essentially decrease the
computational efforts of a search for a pattern in a database. Introduction
of the Lee distance in the space, which consists of the Hamming distances,
leads to a new metric space where the triangle inequality can be effectively
used. :

Index Terms—Hashing, searching for patterns, coding, decoding.

1. “INTRODUCTION

One of important problems in computer science can be represented
as follows: we have given a collection of items, and we wish to store
these items and upon demand retrieve the items whose key values
match given key values. A particular approach to -the storage and
retrieval problem is known as hashing when we use the key value of
an item to compute an address for the storage of the iteém. Since the
mapping between keys and addresses' is not one-to-one, the events
when different keys have the same address may take place; these
events are known as collisions, and their resolution is of the main
interest for a hashing scheme [1]-[4].

Similar ideas form the basis for the procedures which are referred to
as external hashing [S]. It is known that the cost per storage increases
as the access time decreases. Main memories usually have random
access time. Since their size is limited by the cost requirements,
databases are stored in the secondary memory with a rather slow
access [6]. The hashing technique can essentially reduce the total
number of accesses required if the values of a hash function applied to
the keys of each item of the database are stored in the main memory.
To find the item with a certain key we calculate the value of the hash
function for that key and access only the items whose key values have
the same value of the hash function. In the present corresponderice,
we address the external hashing and formulate the following problem
(to simplify formalization, the item and its key value are associated):
we are given a collection of items which are binary vectors of the
same length stored on the external memory, and a part of random-
access memory (RAM) that can.be filled with the values of a hash
function corresponding to each item. For a given pattern, which is a
binary vector of the same length as the items, we must find all the
items located at the Hamming distance of less than a fixed threshold
value.

‘We develop the external hashing in two directions. First, the value
of the threshold can be positive, which puts some restrictions on the
hash functions allowed. This is because we want to- get information
about the Hamming distances between binary vectors based on the
comparison of the values of the hash function corresponding to-these
vectors. To make it possible, we use the metric properties of the
Hamming space and extend some approaches by Koshelev [7] to the
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