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Invited Paper

the Design of WDM-Based Networks
layer by rerouting traffic along a redundant path. With wave-
traverse the same physical links and would fail simultaneously in
disconnect the network. We call such a routingsurvivableand de- (4,5
then prove necessary and sufficient conditions for a routing to be Fig. 1. Survivable routing of a logical topology on a physical topology. (a)
the ILP, we develop simple and effective relaxations for the ILP
topologies over a number of different physical topologies and show onto the physical topology. This leads to a static version of
a greedy routing algorithm. Finally, we consider the special case of logical topology, is known in advance. In this context various

Eytan Modiang Senior Member, IEEBnd Aradhana Narula-Tam
length-division multiplexing (WDM) as the underlying physical @
the event of a link failure. It is, therefore, critical that lightpaths (1,3)
velop algorithms for survivable routing of a logical topology. First, @)
survivable and use these conditions to formulate the problem as Physical topology. (b) Logical topology.
that significantly reduces the time required for finding survivable them. Given the logical and physical topologies of the networks,
that this new approach offers a much greater degree of protection the routing and wavelength assignment (RWA) problem. In this
ring logical topologies for which we are able to find a significantly

Survivable Lightpath Routing: A New Approach to
Abstract—Network restoration is often done at the electronic 2,1) e e
layer, it is possible that both the primary and backup paths (3.4) o 0
are routed in such a way that a single link failure would not ) e e e
we show that the survivable routing problem is NP-complete. We (®)
an integer linear program (ILP). Due to the excessive run-times of
routings. We use our new formulation to route various logical ©ne important question is how to embed the logical topology
than alternative routing schemes such as shortest path routing and y,arsion of the problem, the set of lightpaths, defined by the
simplified formulation. We establish conditions on the physical reésearchers have developed RWA algorithms with the goal of

topology for routing logical rings in a survivable manner. minimizing network costs, including number of wavelengths
Index Terms—Ltightpaths, network design, network surviv- re_quired_, number of Wavelen_gth converters, fiber use, etc. [1].
ability, routing, wavelength-division multiplexing. Since with WDM each physical fiber link can support many

lightpaths (as many as there are wavelengths on the fiber), once
the lightpaths are routed on the physical topology, it is possible
(or in fact, likely) that two or more lightpaths would share the
HIS PAPER DEALS with the problem of routing logicalsame physical link. Hence, the failure of a single physical link,
links (lightpaths) on a physical network topology in suclean lead to the failure of multiple links in the logical topology.
a way that the logical topology remains connected in the eve®ince protected logical topologies are often designed to with-
of single physical link failures (e.g., fiber cut). This is a relstand only a single link failure, it is possible that a single phys-
atively new view on the routing and wavelength assignmeiaal link failure could leave the logical topology disconnected.
(RWA) problem, that we believe to be critical to the design As a simple illustrative example, consider the logical and
of wavelength-division-multiplexing (WDM)-based networksphysical topologies shown in Fig. 1. The logical topology is
We call this version of the RWA problesurvivable RWAIn a ring with nodes ordered 1-3-4-5-2-1. Clearly, such a ring
a WDM network, the logical topology is defined by a set ofopology is 2-connected, and would remain connected if one of
nodes and lightpaths connecting the nodes while the physittallinks failed. The five logical links of this ring can be routed
topology is defined by the set of nodes and the fiber connecting the physical topology as shown in Fig. 1(a), where each
physical link is labeled with the logical link that traverses it.
Manuscript received March 8, 2001; revised December 20, 2001. This wdn@! €xample logical link (1,3) traverses physical links (1,5) and
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under the Next Generation Internet (NGI) initiative. The work of E. Modiangnore than one Iogical link. Hence. the Iogical ring would
was supported by the National Science Foundation (NSF) under Grant ANI- :

|I. INTRODUCTION

0073730, remain protected even in the event of a physical link failure.
E. Modiano is with the Massachusetts Institute of Technology, Laboratory for Alternatively, had we routed logical link (1,3) on physical
Information and Decision Systems, Cambridge, MA 02139 USA. _links (1,2) and (2,3) the routing would no longer be survivable
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topology disconnected. Furthermore, for many logical topolghysical link failure. The algorithm in [7] uses tabu search pro-
gies, no survivable routings can be found. For example, if tlwedures to find disjoint alternate paths for all of the lightpaths.
logical topology was a ring with nodes ordered 1-4-2-3-5-1 thenIn this paper, we present a new approach for investigating
it can be easily seen that no routing exists that can withstantha problem of routing lightpaths of a logical topology on a
physical link failure. Hence, it is clear that although the logicajiven physical topology so that the logical topology can with-
topology of the network may be connected, once itis embeddsdnd a physical link failure. In Section Il, we formulate the
on top of a WDM physical network, it may no longer withstangroblem and establish a necessary and sufficient condition to
a physical link failure (e.g., fiber cut). ensure survivable routing. This condition, leads to some inter-
In the context of virtual private networks, the customer mighsting insights into the survivable routing problem and prove
request from the network provider that their lightpaths be routgght the survivable lightpath routing problem is NP-complete. In
in such a way that no single physical link failure would leaveection 111, we give an integer linear program (ILP) formulation
their VPN disconnected. One simple way to achieve this gagk the survivable routing problem. We also present low com-
is to route the lightpaths so that no two lightpaths share a phygaxity heuristics for the survivable routing problem and com-
ical link. This seemingly simple solution by itself is difficult to hare the performance of these heuristics to that of the full ILP
obtain. In fact, it was shown in [15] that the related problergy tion. In Section IV, we focus our attention on establishing
of finding disjoint paths for a collection df source-destination pjgirectional logical rings on the physical topology. The logical
pairs is NP-completeFurthermore, this simplified solution canyj case leads to a simplified ILP formulation that more easily
be wasteful of resources. For many Ioglc_al topglog_lgs, SOME Al ders a solution. We also develop necessary conditions on the
the lightpaths can be routed together while maintaining surv%—hysical topology for enabling survivable routings for logical

ability. . . . .
S . rings. Finally, we use our ILP formulation to solve the surviv-
Of course, there has been a significant body of work in th g y

area of optical network protection [2]-[7], [14], [16]. Most pre_aeole routing problem for some example networks and compare

. : L our results to alternative approaches.
vious work in WDM network protection is focused on restora-
tion mechanisms that restore all lightpaths in the event of a phys-
ical link failure. Link based restoration recovers from a link
failure by restoring the failed physical link, hence, simultane- The physical topology of the network consists of a set of
ously restoring all of the associated lightpaths [2], [3], [6]. ThisodesN = {1... N} and a set of edgeB where(, j) is in
is often done using optical loop-back protection [2], [3], [5]. IE if a link exists between nodesand j. We assume a bidi-
contrast, path based protection restores each of the lightpathséttional physical topology, where (i, j) is in E so is(j, ).
dependently, by finding an alternative end-to-end path for eagbrthermore, we assume that a failure (cutf@fi) will also
lightpath [2], [3], [14]. In many cases, it is indeed necessary tesult in a failure in(j,¢). This assumption stems from the fact
restore all failed lightpaths. However, in other cases some levieht the physical fiber carrying the link frointo ;5 is typically
of protection is provided in the electronic layer and restoratidsundled together with that from to i. Furthermore, in some
at the physical layer may not be necessary. For example, whgRtems the same fiber is used for communicating in both di-
the electronic layer consists of SONET rings, single link failuragctions. Finally, we assume that WDM is employed and each
can be recovered through loopback protection at the electroplgysical link (fiber) is capable of supportin§f wavelengths in
layer. In this case, providing protection at both the optical arghch direction.
electronic layers is somewhat redundant. Another less obviousThe logical topology of the network can be described by a
example is that of packet traffic in the internet where multiplset of logical nodesVy, and logical edges;, whereN;, is a
electronic layer paths exist between the source and destinataibset ofV and an edgés, t) is in E, if both s andt are inNp,
and the Internet protocol (IP) automatically recovers from linknd there exists a logical link between them. Given a logical
failures by rerouting packets. topology, we wish to find a way to route the logical topology

In such cases, aless stringent requirement may be impose@anhe physical topology such that the logical topology remains
the network—for example that the network remain connecteddannected even in the event of a physical link failure.
the event of a physical link failure. This approach, of course, is In order to route a logical links, #) on the physical topology
not suitable for all situations. For example, when a network éhe must find a corresponding lightpath on the physical
carrying high priority traffic with quality-of-service (QoS) andtopology between nodes and ¢t. Such a lightpath consists
protection guarantees, it may still be necessary to provide foll a set of physical links connecting nodesand ¢ as well
restoration. However, when a network is used to support bestg§ wavelengths along those links. If wavelength changers
fort internet traffic, guaranteeing connectivity may suffice. Thisre available then any wavelength can be used on any link.
approach, on which we first reported in [17] and [18], is relaHowever, without wavelength changers, the same wavelength
tively new in the field of WDM network protection. A similar must be used along the route. In this paper we assume that
design goal was considered in [7], where heuristic algorithresther wavelength changers are available or that the number of
were developed in order to minimize the number of source degavelengths exceeds the number of lightpaths. This assumption
tination pairs that would become disconnected in the event olows us to ignore the wavelength continuity constraints and

L , o o focus only on s_urviv_able_design. _ _ _

In [15] it was shown that the problem of finding node disjoint paths is Let f:j = 1if logical link (s, ¢) is routed on physical link

NP-complete. This result can be easily extended to link disjoint paths in — . . ) .
directed graphs. (,4) and zero, otherwise. Now in order to find a routing for the

Il. PROBLEM FORMULATION
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logical topology, we must find a route for every logical liftk ¢) ~ This condition must hold for all cut-sets of the logical topology.
in Er. In this paper, we consider bidirectional logical topoloTo prove the theorem, we must show that the above condition
gies where if(s,t) € Er, sois(t, s). Furthermore, we assumeis both necessary and sufficient. Necessity is obvious because if
that(s, ¢) and(t, s) follow the same route. That is, {§,¢) tra- there exists a physical link that carries all of the logical links be-
verses physical linKi, j) then(t, s) traverses link(j,¢). For longing to a cut-set, failure of that link would leave the network
simplicity of notation we describe the logical topology as a seisconnected. To see that the condition is also sufficient, notice
of unordered node pairs representing the bidirectional logidakt the removal of any physical link leaves at least one logical
links. Therefore, implicit in finding a route fromto ¢ is also link in each cut-set of the logical topology connected. Hence,
the route from to s. For simplicity, we present this paper in thehe network must still be connected. ]
context of bidirectional physical and logical topologies; how- Notice that it is a direct result of the above theorem that if
ever, it is straightforward to generalize our results to directele logical topology was not redundant then no routing could be
topologies. survivable. This is because if the logical topology was not redun-
In this work, we are concerned with finding routings that ardant then at least one cut-set must exist with size equal to one.
survivable. We call a routingurvivableif the failure of any The failure of the corresponding link would leave the topology
physical link leaves the (logical) network connected. Of coursdisconnected. Theorem 1 can be generalized to directed topolo-
a routing cannot possibly be survivable if the underlying loggies, by applying the directed version of Menger’s Theorem and
ical topology is not redundant. The logical topology is redureonsidering cut-sets on a directed topology.
dant (i.e., 2-connected) if the removal of any logical link does Theorem 2: The survivable routing problem is NP-complete.
not cause the topology to be disconnected. The following theo- Proof: The problem is clearly in NP because we can al-
rems, give some simple yet useful necessary and sufficient carays check that a given routing is survivable in polynomial
ditions for survivability in a network. First, we must define thdime by successively removing links and checking for connect-
following notions. edness. To show that the problem is NP-complete we provide
A cutis a partition of the set of node¥ into two partsS a simple transformation from the undirected two commodity
andS = N — S. Each cut defines a set of edges consisting aftegral flow problem ([19], p. 217) to the survivable routing
those edges ifv with one endpoint it and the otheridv —S. problem. Since the former is a known NP-complete problem,
We refer to this set of edges as the cut-set associated with theapiolynomial time solution for the survivable routing problem
(S, N —5), orsimplyCS(S, N —S). Let|CS(S, N — S)| equal would also give a polynomial time solution to the two com-
the size of the cut-s€tS, N — S); that is, the number of edgesmodity integral flow problem.
in the cut-set. The following Lemma, also known as Menger’'s The two commodity integral flow problem considers two
Theorem [12], relates the connectivity of a network to the sizwurce destination pairs;,t;) and (s2,¢2) on a graph and
of its cut-sets. an integer traffic requiremen; and R, between each of
Lemma 1: A logical topology with set of noded’;, and set the pairs, respectively. Each link in the graph has an integer
of edgesEr, is 2-connected if and only if every nontrivial cutcapacity and the problem is to find a routing for the traffic
(S5, NL — S) has a corresponding cut-set of size greater thanloetween the two node pairs without violating the capacity
equal to 2. constraint. This problem is known to be NP-complete. An
Proof: (See [12]) Necessity is due to the fact that if anynstance of this problem whetB;, = R, = 1 andC = 1
cut-set consists of only a single link, removal of that link wouldbr all links is also known to be NP-complete. This instance
leave the topology disconnected. Sufficiency is a direct resultaf the problem, in fact, corresponds to finding link disjoint
the max-flow min-cut theorem. m paths between the two node pairs. This problem can be easily
Consider a routing for a logical topology given by the assigtiransformed into an instance of the survivable routing problem
ment of values to the variablgf/ for all physical links(i, j) as follows. Consider the grapi = (V, E) for the problem
and logical links(s, ¢), which correspond to the physical linksand form a new grapi?’ by adding two nodes* and ¢*
used to route the various logical links. The following Theorerand bidirectional links {(s1, s*), (s*, s2), (t1,%*), (t*, t2)}.
gives a necessary and sufficient condition for a routing of a loget &' be the physical topology. We form the following
ical topology to be survivable. ring logical topology,y, shown in Fig. 2, consisting of 6
Theorem 1: A routing is survivabldf and only iffor every nodesNp = {s1,s2,5% 1,t2,¢"} and bidirectional links
cut-setCS(S, N, — S) of the logical topology the following E;, = {(s1,t1),(s2,%2),(s1,5%), (5%, s2), (t1,t*), (t*,t2) }.
holds. LetF (s, t) be the set of physical links used by logical linkNow, it is easy to see that finding a survivable routing for
(s,t),1.e,E(s,t) = {(i,4) € Eforwhich f7! = 1}. Then, for G on G’, would solve the link disjoint path problem. First

every cut-seC’S(S, NL — 5), notice that no two links of the logical topology can share
a physical link, because failure of that link will discon-
NE(s,t) = nect the network (see Corollary 1, Section IV). Also note

(5,£)ECS(S,N 1 —S). that logical links (s1,s*),(s*,s2), (t1,t*), (t*,£2) must be

routed using the corresponding physical links since there
Proof: The above condition requires that no single physs no way to get tos* and¢* without using physical links
ical link is shared by all logical links belonging to a cut-set ofsy, s%), (s*, s2), (t1,t"), (t*,t2). Hence, the solution to the
the logical topology. In other words, not all of the logical linksurvivable routing problem must yield disjoint paths between
belonging to a cut-set can be routed on the same physical lifik;,¢;) and(ss, t2) in the original graph=. [ |
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@ the connectivity requirement can be expressed by the following
constraint:
V(LaJ) S E st st
e (5,t)cCS(S,N,—5)
The above constraint simply states that for all proper cuts of
the logical topology, the number of cut-set links flowing on any
given physical link, in either directiénis less than the size of

@7@ the cut-set. This implies that not all logical links belonging to a
cut-set can be carried on a single physical link and immediately
satisfies Theorem 1.

If the number of wavelengths on a fiber is limited B, a
capacity constraint can be imposed as follows,

Fig. 2. Logical topology for NP-completeness proof.

Ill. INTEGERLINEAR PROGRAMMING FORMULATION

Using Theorem 1, we are able to formulate the problem of V(i 5) € E, Z isjt =W
survivable routing of a logical topology on a given physical (st)Ebr
topology as an Integer linear program (ILP). Given a physical 1here are a number of objective functions that one can con-
topology and a corresponding logical topology, we wish to findgqer perhaps the simplest is to find a survivable routing that

way to route the logical topology on the physical topology suGhes the least capacity. That is, minimize the total number of
that the logical topology remains connected even in the eveni gl ejengths used on all links. An alternative formulation goal
a physical link failure. _ may be to minimize the total number of physical links used.
In order to route a logical links, t) on the physical topology gy,ch an approach would lend itself to solutions that maximize
one must find a corresponding path on the physical topologyysical link sharing by the lightpaths. Here, we focus on the
between nodes andt. Such a lightpath consists of a set Ofirst ghjective of minimizing total number of wavelengths used

physical links connecti?tg nodesandt as well as wavelengths 4 the optimal survivable routing problem can be expressed as
along those links. Lef;?’ = 1 if logical link (s,?) is routed o following integer linear program:

on physical link(z, 7) and 0 otherwise. Clearl f} > 0 implies

that there exists a physical link between nodasd;. When the Minimize Z st
logical links are bidirectional, implicit in finding a route from e "
to ¢ is also the route from to s. Using standard network flow SERAE

formulation finding a route from to ¢ amounts to routing a unit Subject to:
of flow from nodes to nodet [10]. This can be expressed by the '

following set of constraints on the value of the flow variables a) Connectivity constraints: for each pgig¢) in Ey.:

associated with the logical linfs, ¢): 1 T
st st _ - _
1 if s —4 Z i Z ji — 1, Ift__L
Z st Z st _ _’1 fr—i (1) jst.(i,))€E jst (ji)EE 0, otherwise
* e ’ . Vie N.
jst.(i,))€E jst.(ji)EE 0, otherwise
Vie N. b) Survivability constraints:
The set of constraints above are flow conservation constrairt§, j) € £ t t
. . : . ) , S [ < |CS(S, N, — S
for routing one unit of traffic from node to nodet. Equation V.S C Ng, Z i i <1CS( =9

(1) requires that equal amounts of flow due to lightpgth) (s,£)ECS(S,Ny, —S)

enter and leave each node that is not the source or destinatiog) Capacity constraints:

of (s,t). Furthermore, node has an exogenous input of 1 unit

of traffic that has to find its way to node There are many pos- Y(i,j) € E, Z < w

sible combinations of flow variable values that can satisfy the (s,)ERy

constraint of (1). Any feasible solution to (1) has a route from

s to t embedded in it. It is easy to see that if in addition we re- d) Integer flow constraintsf;f € {0,1}

quired that the path length be minimized (iiain Z(m)EE f} The above ILP can now be solved using a variety of techniques.
subject to (1)) , the solution would also be the unique shortésf implemented this ILP using the CPLEX software package.
path ([11], p. 73). Now in order to find a survivable routing folCPLEX uses branch and bound techniques for solving ILPs
the logical topology, we must find a route for every logical linkand is capable of solving ILPs consisting of up to one million
(s,t) in Er. Our problem formulation is such that we only needariables and constraints [13]. To illustrate the utility of this

to find the route for logical linKs, ¢) in one direction; implicit .~ L , -
Again, this is due to the fact that if logical lir(ls, ¢) occupies physical link

in th"fu rogte i$ the route fII’OF(t_, 5) t.hat will fOHOW the same (7, 7) in one direction; it also implicitly occupies physical liGk i) in the other
physical links in the opposite direction. Now, using Theorem #irection.
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TABLE I(a)
EMBEDDING RANDOM DEGREE 3 LOGICAL TOPOLOGIES ON THE
NSFNETOFFIG. 3

Logical | Unprotected solution | Ave. Ave.
Top's links | A*links
ILP 100 0 19.76 | 46.07
Short Path 100 86 1931} 45.25
Relax - 1 100 10 19.78 | 46.03
Relax - 2 100 0 19.78 | 46.07
Fig. 3. The 14-node, 21 link NSFNET.
. . TABLE I(b)
approach, we implemented the ILP for the NSFNET physical  Eveepoine RaNDOM DEGREE4 LOGICAL TOPOLOGIES ON THE
topology shown in Fig. 3. We attempted to embed random bidi- NSFNETOF FiG. 3
r_ectlonal _Ioglcal topologies of degree-3, 4 and 5, where we de- Togical | Unprotected | Ave. o
fine a logical topology of degreleto be logical topology where
every node has degrée Top's solution links A*links
For each, we generated 100 random, 2-connectedical 1ILP 100 0 20.30 60.64
topologies and used the ILP to find optimal survivable routing
. . . Short Path 100 38 20.17 47
on the NSFNET. Since we are mainly concerned with the sur- e 60
vivable routing, in our implementation we ignored the capacity =~ Relax -1 100 0 2030 | 60.64
constraint. Obviously, if needed, the capacity constraints can be "Rejax - 2 100 0 20.30 60.64
easily incorporated into the solution. We also compare our ap-
proach to the survivability provided by shortest path routing for
the same random logical topologies. In each case we checked to TABLE 1(c)
if the shortest path soluti ield ivabl ti Thi EMBEDDING RANDOM DEGREES5 LOGICAL TOPOLOGIES ON THE
see if the shortest path solution yields a survivable routing. This NSFNETOF FiG. 3
was accomplished by individually removing each physical link
and verifying that the resulting topology remained connected. Logical | Unprotected | Ave. Ave.
Our results are summarized in Table I(a)—(c). Shown in the Top's solution links | A*links
table are results for both the shortest path solution (labeled Short
Path) and the ILP solution (labeled ILP). As can be seen from ILP 100 0 20.56 75.40
the table, the ILP was able to find a protected solution for every ~ Short Path | 100 27 2048 | 7531
one of the random logical topologies. In contrast, the shortest Refax - 1 100 0 2056 | 7540
path approach resulted in 86 out of 100 of the degree-3 log- Relax 2 100 5 5056 T 7520
ical topologies being unprotected. With higher degree logical clax - ' :
topologies, shortest path was able to protect more of the topolo-
gies, still 38 and 27 of the random degree-4 and 5 topologies, TABLE I(d)
respectively, remained unprotected. However, as expected, the RUN-TIMES OF ALGORITHMS ON SUN SPARC ULTRA-10
ILP solution on average required bqth more 'physmal Imk; and ILP Relonl T Relaxd
more total wavelengths (wavelengthinks). This difference in
link requirements appears to be small and well justified by the Degree - 3 83s 1.3s 1.3s
added protection that it provides. Degree -4 | 2 min. 53 sec. 1.5s 1.5s
Due to the large number of c_:onstramts, splymg the IL.P for Degree -5 | 19 min, 17 sec. | 2.0 20s
large networks can be very difficult. Hence, it is interesting to

explore possible relaxations of the ILP formulation that yield

survivable routings with reduced complexity. The most obvious \we examined the performance of this rather naive algorithm
relaxation is the linear programming (LP) relaxation where thg,q found it to be surprisingly effective. The results of this
integer constraints are removed. Unfortunately, however, the H?nple relaxation are shown in Table | (labeled Relax-1). As can
relaxation leads to many noninteger solutions. Alternatively W seen from the table, this simple relaxation found a survivable
can explore relaxations that enforce only some of the SUVV%uting for all but ten of the degree-3 logical topologies and all
ability constraints. For example, a simple relaxation that appliggine degree-4 and 5 topologies. In addition, due to the reduced
the survivability constraints only to cuts that include a singlgomplexity of this relaxation we were able to run this relaxation
node, would prevent a single node from getting disconnectgg 1000 randomly generated logical topologies of degrees 3,
in the event of a fiber cut. With this relaxation, om surviv- 4 and 5. Again, the relaxation found survivable routings for all
ability constraints are needed and the ILP can be solved easyt 794 of the degree-3 topologies, and for all 1000 of the de-

3After generating a random logical topology we first verified that it is at Ieaﬂree"l_ and 5 logical topologies. This result can be explained
2-connected before attempting to find a survivable routing for it. by noting that for densely connected networks, the “weakest”
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cuts are the single node cuts. Enforcing the survivability cofecus on protected topologies, here we only consider bidirec-
straints for those cuts has a high likelihood of resulting in a sufenal rings. Hence, for simplicity, we assume that all links are
vivable routing. This also helps explain the fact that for the déidirectional and refer to the pair of links connecting nodes
gree-3 logical topologies some of the routings found by the rendn; 1 as(n;,n;4+1). Implied in this notation is that the pair
laxation were not survivable, since the degree-3 topology is raftlinks between two nodes are treated as a single bidirectional
as densely connected as degree-4 and 5. Hence, we conclinde Again, as in the previous section we assume that both di-
that this relaxation is effective when the node degrees are largetions of the logical links utilize the same physical links, butin
but would probably not be effective for routing degree-2 logicalpposite directions. Recall that a routing of the logical topology
topologies (i.e., ring logical topologies). is survivableif the failure of any physical link leaves the (log-

A simple extension of this approach enforces the surviical) network connected. The following corollary to Theorem 1
ability constrains for small cut-sets only. The intuition igives a necessary and sufficient condition for a routing of a bidi-
that the smallest cut-sets are the most vulnerable and, hemeetional logical ring to be survivable.
protecting them will result in a survivable routing with high Corollary 1: A bidirectional logical ring is survivable if and
likelihood. For example, we implemented a relaxation whemnly if no two logical links share the same physical link.
the survivability constraints were enforced only for cut-sets Proof: It can be easily seen that every cut-set of the ring
of size less than or equal to degree of the logical topolodggical topology contains exactly two links and every pair of
plus one. This set of constraints clearly includes all those cutgical links share a cut-set, hence, by Theorem 1 no two logical
included in the previous relaxation, since all the single nodieks can share a physical link. [ |
cuts are of size equal to the degree. With this new relaxationCorollary 1 leads to a significant simplification of the sur-
survivable routings were found for all 100 degree-3, 4, andvivability constraints. In the general logical topology case the
logical topologies; a noticeable improvement over the previogsarvivability constraints were expressed in terms of constraints
relaxation where survivable routings were not found for teon all of the cut-sets (notice that there can be as many'as
of the degree-3 logical topologies. Furthermore, when vgich cut-sets). For the ring topology the survivability constraint
examined 1000 randomly generated degree-3, 4, and 5 logicah be simply replaced by a capacity constraint on the physical
topology, the new relaxation found survivable routings fdinks. Specifically, we require
all but three degree-3 logical topologies. The results for this

st st
relaxation are labeled Relax-2 on Table I. Z it Z ji <1
In Table I(d), we compare the run-times of the different re- (S:f)éEL (s;1)eEr
laxations when run on a Sun Sparc Ultra-10 computer. Shown v(i,j) € E.

in the table are the average run-times for embedding one logic

:ppcl)l(?gy. As ca? be Sel\jn frqmthettagle,t';]he ILPtresuIt]?t?]mIrLe ven physical link. Note that since the logical links are bidi-
tvely argdeéun— mt]'esil or?hlq:]po(; antly, fet;]unl— Ime CI)t el rectional, when routés, t) uses physical linKz, 5), implicitly
increased dramatically wi € degree of the 10gIcal lopology. sas the link in both directions. Also, note that since no two
While degree-3 logical topologies required only a few secon

' : htpaths can share a physical link, the objective of minimizing
a degree-5 topology required nearly 20 minutes to solve the ”‘[ & total number of physical links and that of minimizing the

Since this is a static design problem, 20 minutes may not be P{8tal number of wavelengthlinks used are in fact the same (in

h|b|t|ve. None’thless, this dramatic increase in run-time €005 ntrast to the general case where a physical link may be used by
firms our suspicion that the ILP approach may not scale well Fﬁ

I works. | trast. both relaxati h d ultiple logical links). The optimal survivable routing problem
larger networks. In contrast, both relaxations show a dramafig logical rings can be expressed as the following integer linear
improvement in run-times and, more importantly, the run-tim

increase only minimally with the degree of the logical topology. ogram.

alI'hat is, there can be at most one logical link routed on any

This, of course, can be attributed to the fact that the relaxations, Minimize Z st
for the most part, consider only single node cuts and, hence, only e Y
depend on the number of nodes in the topology. ()P,
Subject to:
IV. RING LOGICAL TOPOLOGIES a) Connectivity constraints: for each péi;¢) in Er.:

We can gain some additional insight into the survivable 1 ifs=1
routing problem by considering special forms of the logical oo > fi={ -1 dft=i
topology. For example, the ring logical topology, which is st (G.J)<FE st (7i)ER 0  otherwise

the most widely used protected logical topology has a special vz € N.
structure that leads to a simpler problem formulation. In this ) Survivability constraints:
section, we discuss the special case of embedding ring IogicaP y '

topologies on arbitrary physical topologies. Z St Z 3t <]
A unidirectional ring logical topology is an ordered set of (s)CEr ! (s.)eEy, T
nodes(ni ...ny) where(n;,n;41) isin £y for 0 < ¢ < L V(i,j) € E

and(ny,ny) is also inEy. In a bidirectional ring, the reverse
connectiongn;1,n;) and(ni,nz) are also inEr. Since we c) Integer flow constraints f} e {0,1}.
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Again, the above ILP can now be solved using a variety of
search techniques. While general ILPs can be rather difficult to
solve, this particular ILP is relatively simple. First notice that
without the survivability constraints the ILP amounts to solving
a shortest path problem. The addition of the survivability con-
straints makes the solution more difficult to obtain. However,
the total number of constraints used is small, relative to the ex-
ponential number of constraints used in the general case, hence,
the above ILP can be solved very quickly. We were able to solve
this ILP using the CPLEX software package running on a SUN
SPARC Ultra 10 machine for 10 node rings in less than a second.

A. Necessary Conditions for Survivable Routing

In this section, we develop some necessary conditions on thg 4. A logical ring that requires the maximum number of cut-set links.
physical topology to ensure survivable routing of ring logical

topologies. Clearly, it is not always possible to route a logicghan or equal to twice the number of nodes on the smaller side
topology on a given physical topology in a manner that pref the cut. The condition of Theorem 3 is only a necessary
serves the survivability of the logical topology. For example, ifondition. To prove its necessity we must show that there exists
the case of a ring, there may be instances where we cannot finéing |ogical topology that require® + min(|S|,|N — S|)
disjoint paths for all of the links. In such cases, some of the lighgtysical links along the given cut. To show the existence of
paths will have to share a physical link and the ring would n@},ch a topology we construct the following ring. Suppose
be survivable. It is interesting to determine under what circUithout loss of generality thatS achieves the minimum
stances it will be possible (or not possible) to find survivablgf (IS|,IN — S|) and letS contain nodesr; ...n,. Now,
routings. Consider any random ring logical topology. For anypnstruct a logical ring consisting of the following links:
cut({S, N —S) of the physical topology, 16C>S (.S, N — S)| be {(n, 1), (n1,mh), (nh.na) ... (ns,nl), (0., 7))}, where
the number of physical links along this cut gt (S, N-S)[ ;. ¢ § andn, € (N — S). Since|N — S| > ||, such a
be the number of logical links traversing the same cut. Clearjgnstruction always exists. Fig. 4 shows an example where
in order to be able to route the logical links along disjoint phySs contains 2 nodes andv — 5| = 3. A ring with four links
ical paths,|CSp(S, N — .5)| must be greater than or equal tqraversing the cut-set is constructed using the above procedure.
|CSL(S, N — §)|. Hence, for a given logical topology one re-  Thegrem 3 gives necessary conditions for embedding all pos-
quirement is that for all possible cuts of the physical topologyp|e logical rings on a physical topology, including rings of size
(5,N — 5), the following must hold: N. In general, one may want to embed rings of size smaller than
N. In this case, the required number of links in the physical
[CS (5, N = S5)[ 2 [CS1(8, N = S)|. topology may be significantly reduced. The following Corol-
The above condition is necessary, but not sufficient to ifg"y generalizes Theorem 3 to account for embedding all pos-
sure that a survivable routing exists for a particular ring logic&iPle logical rings of sizél’ < NV in a survivable manner.
topology. Corollary 2: For a physical topology to support any possible
There are situations where one may want to design a physiéainode ring logical topology in a survivable manner the fol-
topology that can support all possible ring logical topologie®oWing must hold. For any cut of the physical topolo@y V —
One such example may be a service provider that regularly -
ceives requests for ring topologies. Such a service provider may
want to design the physical topology of his network so that it can
support all possible rings in a survivable manner. Another poghe | K/2| term accounts for the number of nodes of the logical
sible situation is when the logical topology can be dynamicalling that can be on either side of the cut. Proof of this corollary
reconfigured [8], [9] for the purpose of load balancing. Hergs essentially identical that of Theorem 3.
again, one may want to ensure that the resulting topology can b&hortest path boundinother simple yet useful lower bound
routed in a survivable manner. The following theorem providesh the number of links that the physical topology must contain
a necessary condition on the physical topology for supportifgobtained by observing that each link in the logical topology
all possible ring logical topologies in a survivable manner. il use at least as many physical links as would be required if it
Theorem 3:In order for a physical topology to supportwere routed along the shortest path. Since no two logical links
any possible ring logical topology in a survivable manner thgan share a physical link, the number of physical links in the
following must hold. For any cut of the physical topologyphysical topology must obey the following inequality:

(S,N — 5)
_ B> ) |SP(s,8)].
|CSp(S, N — S)| > 2min(|S|,|N = S|). (s.)CEL

|CSp(S, N —S)| > 2min(|S|,|N — S|, | K/2])-

Theorem 3 says that for all cuts of the physical topologwhere,|SP (s, t)]| is the length, in physical links, of the shortest
the number of physical links in the cut set must be greatpath froms to ¢.
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TABLE 1l
EMBEDDING RING LOGICAL TOPOLOGIES ON6 AND 10 NODE 3-CONNECTED
PHYSICAL TOPOLOGIES

Logical No protected Ave. Ave.
Top's solution links A*links

6 node-ILP 120 0 7.4 7.4

6 node --SP 120 64 (53%) 6.4 7.2

6 node - GR 120 0 8.1 8.1

10 node-ILP 362880 33760 (9%) 17.8 17.8

10 node - SP 362880 358952 (99%) 11.8 15.5

10 node - GR 362880 221312 (61%) 18.4 N/A

is useful for embedding ring logical topologies since rings re-
quire that no two logical links share a physical link. Unfortu-
nately, a similar approach cannot be used to embed arbitrary
logical topologies since the connectivity of the logical topology
cannot be easily determined by inspecting the routing of indi-
vidual lightpaths.

Our results are summarized in Table II. For the 6-node phys-
ical topology, our ILP was able to find a survivable routing
for all 120 logical ring orders. The average number of phys-
ical links used to route a logical topology was 7.4. Also, since

Fig. 6. 10 node degree-4 physical topology. each physical link supports at most one lightpath, the average
number of wavelengthlinks used was also 7.4. For the 10-node
B. Logical Ring Results physical topology, our ILP was not able to find a survivable

We implemented the ILP for embedding ring logical topolorouting for 9.3% of the 362 880 logical ring topologies. When
gies using the CPLEX software package. We know from tiferouting was found, the average number of links used to route
previous section that in order to embed randomly ordered logJogical topology was 17.8. The greedy algorithm also found
ical rings on a physical topology the physical topology must tﬁasurvivablg routing f.or all 6 nqde logical topologies, but it
densely connected. Hence, for the analysis in this section @@ld not find a survivable routing for 61% of the 10 node
consider the 6 and 10 node physical topologies of Figs. 5 and §9s- With shortest path routing, 53% of the 6-node ring logical
Both of these topologies obey the conditions of Theorem 3 afRPologies were left unprotected and 99% of the 10-node rings
every node is of degree-4. Furthermore, it can be shown ti¥gre left unprotected. As expected, the ILP was able to pro-
both topologies are 4-connected. We, therefore, believe that {§6t many more of the logical topologies. Of course, this added
should be able to find survivable routings for most logical ring@rotection comes at a price. Shortest path routing used an av-

We attempted to embed all possible 6 and 10 node logi@R9€ of 7.2 wavelengthdinks for the 6-node rings and 15.5
rings on the 6 and 10 node physical topologies. Notice thw@velengths links for the 10 node rings, only slightly less than
there are 120 (5!) 6-node logical ring topologies and 362 gépe number of links used by the ILP solution. However, shortest
(9!) 10-node logical ring topologies. We used the ring ILP tgath _routing_u;ed significantly fewer physical links thalj the ILP
determine survivable routings for all of these topologies. In agolution. This is, of course, because shortest path routing allows
dition, we also considered two simple heuristic algorithms fdi@htpaths to share a physical link, while the ILP does not. Also
routing the lightpaths. The shortest pattsolution where each Shown in the table is the number of links used by the greedy
lightpath of the logical topology is routed along the shorte§{gorithm. By definition, the greedy algorithm does not yield a
path. Of course, in the case of shortest path, some lightpatA4ting when a protected solution is not found, thus, the number
may be routed along the same physical link. In such cases, .méinks. used can only be calculated when a protected squFion
shortest path approach would result in an unprotected routifgOPtained. As expected, the greedy solution used more links
A somewhat more sophisticated approach is a greedy algoritH#an both the ILP and the shortest-path solutions. _
that routes lightpaths sequentially using the shortest availabldVext, we consider the 10-node physical topology of Fig. 6
path. In order to prevent two lightpaths from sharing a physicaid attempt to embed random logical ring topologies of var-
link, whenever a physical link is used for routing a lightpath, #US sizes. We attempted to embed 10 000 random logical rings
is removed from the physical topology so that no other Iighﬁlf each size between 5 and 10 nodes. For each ring the set of

paths can be routed through it. Note that this greedy algoritf}Rdes and their order was chosen at random. Again, we com-
pare the results of our ILP to those obtained using the shortest

4Notice that the relaxations developed in the previous section cannot be g%nh routing algorithm and the greedy algorithm. In Fig. 7. we
plied here because a ring is not densely connected and all cuts are of size 2 ’

Hence, relaxation 1 would be ineffective and relaxation 2 would enforce Qllgt the percent of '99'03' topologies for which W? failed to ob-
cut-set constraints. tain a protected routing. As can be seen from the figure, when we
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100 el --e====" problem. The LP relaxation will either find: 1) that no solution

90 o--"" -#-""" exists; 2) a solution with integer flows; or 3) a solution with non-
F 80g-""" - integer flows. If the LP relaxation results in no solution, this is
2 70/ a simple way to determine that there is no solution to the ILP
? .0l > eithe_r. If the LP relaxation fin_ds an integer solution, t_hen this
§ c solution will also be the solution for the ILP. In the third case
§ ——Ty where the LP relaxation finds a noninteger solution, one must
T 49| | - ~e= snotest path solution solve the ILP to determine a survivable routing. We solved the
'g_ 30 ——8——Greedy solution LP relaxation for the 6-node and 10-node cases described above
S 20 to determine the effectiveness of the LP relaxation in solving

10 ./T the integer problem. In the 6-node case, 11.6% of the logical

oM - = topologies resulted in a noninteger solution. The remaining log-
5 8 7 8 9 10 ical topologies produced integer solutions. In the 10-node case,
Humbar of nodes In logical ring 97% of the logical topologies for which the ILP was unable to
Fig. 7. Fraction of logical ring topologies that cannot be protected on tfﬂand asurvivable routing were also found to be infeasible by the
10-node physical topology of Fig. 6. LP relaxation. Unfortunately, 57% of the ring logical topologies
produced noninteger solutions to the LP relaxation. As men-

20 tioned above, determining a survivable routing for these logical
18 topologies requires solving the ILP.
ﬂ 16
£ V. CONCLUSION
S 12 4
_§1o This paper considers the problem of embedding protected
5 s —— _ Iogl_cal topologies on gWDM physma_ll topology so that the re-
2 . —8—ILP: physical links = gih’links sulting network remains connected in the event of a physical
§ . "fs"°“°s‘°3‘“="“¥s‘°“' links link failure. We proved necessary and sufficient conditions for
H . == shortest path : wavelength'links the survivable routing of the logical topology and used these
. - Greedy - Physical links conditions to develop an ILP formulation for the problem. We
5 6 7 s 9 10 used the new ILP formulation to find survivable routings for a
Number of nodes In logical ring variety of network topologies. Our results show that this new

Fa s A ber o fink dt bed ring lodical tobolodi tformulation is able to offer a much greater degree of protection
1g. o. verage numper ot links usea to embped ring logical topologies on - : : _
10-node physical topology of Fig. 6. Q_’\?‘hen compared with shortest path routing. T_h_|s added protec

tion, of course, comes at the expense of additional network re-

' _ urces. However, it appears from our examples that the addi-
used the ILP we were able to find a protected routing for 100§ PP P

. . ) idnal number of links and wavelengths needed is rather small.
of the logical rings of size 5 to 9, and fewer than 10% of the 10 Since solving the ILP for large networks can be difficult

node rings were left unprotected. Notice that this latter numt\% examined relaxations to the ILP that find survivable rout-
is consistent with the results in Table II. However, when shortqﬁbs with reduced complexity. The basic idea behind these re-
path routing was used, the majority of the logical topologigg, ations is to enforce only a subset of the cut-set constraints.
were left unprotected. The greedy approach was able to proteg} example, enforcing the survivability constraints only for
more of the topologies, but not nearly as many as the ILP. {fiygje node cuts requires only constraints rather than the ex-
Fig. 8, we plot the average number of physical links used pggnential number of constraints required by the cut-set formu-
logical topology. As can be seen from the figure, the short@gtion. We found that this approach yields survivable routings
path approach indeed uses fewer physical links. However, af,an very high probability, especially for densely connected net-
relatively small cost in number of physical links, the ILP soyorks. Furthermore, when survivable routings are not found by
lution is able to offer a much greater level of protection. Alsapjs “single node cuts” relaxation, additional cut-set constraints
notice that the number of wavelengthiinks used with the ILP  can be added until a survivable routing is found. An important
solution is the same as the number of physical links used. ditection for future research is to explore alternative relaxations
contrast the shortest path solution uses more wavelenigtks ~ for this problem.
than physical links because some physical links were used tasince this problem is relatively new, many important exten-
support multiple lightpaths. As expected, the greedy approasibns are possible. For example, this approach can be used to de-
used the most links. Also, notice that in the case of the greesign a network to various degrees of protection. While here we
approach, the average number of links represents only théseused on single link failures, multiple failures can be captured
topologies for which a protected routing was found. Hence, fin a similar manner. Also, while we focused on minimizing the
those cases the number of physical links is the same as tb#al number of wavelengthlinks used, other objective func-
number of wavelengthslinks. tions, such as total number of physical links used, can also be
For extremely large topologies, solving the Integer Lineaninimized. Lastly, while here we focused on the survivability
Program may become difficult. Thus, it is interesting to ureonstraints only, future work could also consider wavelength
derstand what can be obtained from the LP relaxation of thmitations and enforcing the wavelength continuity constraint.
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