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~ Abstract—Through the use of configurable wavelength-divi- electronics only at the source and destination nodes [1]. In mul-
sion-multiplexing (WDM) technology including tunable optical  tihop networks, most of the traffic is electronically processed

transceivers and frequency selective switches, next-generation ot intermediate node routers between the source and destination
WDM networks will allow multiple virtual topologies to be dy-

namically established on a given physical topology. FolN node P [2]- . . .

port networks, we determine the number of wavelengths required 1N both single-hop and reconfigurable multihop networks,

to support all possiblevirtual topologies (PN lightpaths) on a nodes are typically equipped with a small number of tunable
bidirectional ring physical topology. We show that if shortest path  transmitters and receivers. A lightpath between two nodes is
routing is used, approximately V- wavelengths are needed to map ¢qmeq py tuning the transmitter of one node and the receiver of

N lightpaths. We then present novel adaptive lightpath routing .
and wavelength assignment strategies that reduce the wavelengthanOther node to the same wavelength, and configuring the ADM

requirements to I'(N/z)'l Working Wave|ength5 per port for Oor cross-connect switches appropriately. Thus a |Ightpath is
protected networks and [(IN/3)] wavelengths in each direction unidirectional. Thehysical topologyf the network consists of

per port for unprotected networks. We show that this reduced optical nodes and their fiber connections. Togical topology
wavelength requirement is optimal in the sense that it is the yagcribes the lightpaths between the nodes and is determined

minimum required to support the worst case logical topology. Fur- ) - . . .
thermore, we prove that a significant number of logical topologies by the configuration of the transmitters, receivers, and switches

require this minimum number of wavelengths. We also develop On €ach node. In single-hop networks, extremely rapidly
joint routing and wavelength assignment strategies that not only tunable transceivers are required to efficiently time-share the
minimize the number of wavelengths required to implement the network transceiver ports. Multihop networks may not need
worst case logical topologies but also reduce average wavelengthy, pe reconfigured as rapidly since in a connected logical
requirements. Finally, methods for extending these routing and .

qtopology, each node can transmit packets to every other node

wavelength assignment results to general two-connected and™ e " ]
three-connected physical topologies are presented. via store and forward or similar mechanisms. Logical topology

. . . reconfiguration in multihop networks may be used to reduce

Index Terms—Joint routing and wavelength assignment (RWA), . . .
logical topology reconfiguration, wavelength division multiplexing, network delay and electronic processing loads, as proposed in
wavelength requirements. [3B]-{7].

An important characteristic of both single-hop and multihop
WDM networks is the independence between the logical and
physical topologies. Any logical topology may be implemented

N wavelength-division-multiplexing (WDM) systems, mul-on a given connected physical topology if enough wavelengths
tiple signals, separated by wavelength, are carried concurreréfg available. A network witlv nodes and” transceiver ports
on an optical fiber. Each wavelength (channel) operates at pge node can have up X lightpaths. If each lightpath must
electronic speeds of 1-10 Gb/s per channel. Configurable &y routed on a different wavelengtt? N wavelengths are
tical add/drop multiplexers (ADMs) and cross-connects may Iequired. Building networks withP/N' wavelengths may not
used to allow individual wavelength signals either talbgpped be feasible, since the number of wavelengths available is tech-
to the electronic routers at each node or to pass through the nod®gy-limited. Furthermore, implementingN' wavelengths
optically. There are two general classes of WDM network archiray be an expensive and inefficient use of resources. In a ring
tectures: single-hop and multihop. A single-hop WDM networRhysical topology, for example, it may be possible to route mul-
is an all-optical network in which network traffic is converted tdiple lightpaths on the same wavelength by intelligent routing

and wavelength assignment. Through wavelength reuse, the
network wavelength requirements can be significantly reduced.
In this paper, our primary objectives are to determine the
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nonblocking network. A similar problem has been addressed
by Gerstelet al. in [8], where minimum wavelength require-
ments are determined for dynamic lightpath requests (lightpaths
are assigned and released on demand) with a maximuin of
lightpaths per link. In [8], the worst case wavelength require-
ments are calculated to ensure a wide-sense nonblocking net-
work. Gerstelet al. assume fixed routing schemes, whereas in
our work, we determine optimgbint routing and wavelength
assignment strategies. These routing and wavelength assign-
ment strategies are optimal in the sense that they minimize the
network wavelength requirements for networks that must sup-
port all logical topologies. Although the wavelength require-
ments are not minimized for each logical topology instance, we
show that a significant number of logical topologies require thidg. 1. A bidirectional ring physical topology with a single fiber propagating
minimum number of wavelengths; thus the wavelength requir'@-each direction.

ment is not overengineered to support a small number of patho- . _
logical topologies. We also develop heuristic joint routing angPth minimize the worst case wavelength requirements and

wavelength assignment algorithms that reduce the number 8fuce the average wavelength requirements over fixed routing.
wavelengths required to map logical topologiesawerage,n Finally, in Section VI, extension of the proposed joint routing

addition to minimizing the number of wavelengths required f@"d wavelength assignment principles to two-connected and
theworst casdogical topology. three-connected physical topologies is discussed.

There has been a considerable amount of work in the area
of efficient routing and wavelength assignment (RWA). Most
prior work decouples the two problems of assigning routes andWe consider networks witfv nodes, each equipped wifh
assigning wavelengths. For example, [9]-[15] assume fixé@nsceiver ports; thus each logical topology Fa$ lightpaths.
routing schemes. Given a routing that results in a maximum ibthe physical topology is a unidirectional ring, there is only one
L lightpaths on any link, [9] shows that a maximum df-21 possible route between every source and destination pair. Thus,
wavelengths are needed to establish all lightpaths. In [10], ttieere exist worst case logical topologies that reqéiré wave-
static wavelength assignment problem alone is shown to leagths. Consider, for example, a logical topology consisting of
NP-complete. Wavelength assignment for fixed alternate pakhrings, where the nodes in each logical ring are ordered in di-
routing, where each lightpath route may be selected fromrection opposite to the physical topology. In this case, each light-
subset of all possible routes, is investigated in [11], [16], armhth requires a separate wavelength and a totdt &f wave-

[13]. In [16], the routing and wavelength assignment probletengths are needed. We therefore focus on wavelength provi-
is formulated as an integer linear program (ILP), where givesioning for bidirectional ring physical topologies where route
a fixed number of available wavelengths, the goal is to maxgelection can impact the number of required wavelengths.
mize the number of lightpaths supported. The computationalWe consider a bidirectional ring physical topology, shown in
complexity of the ILP is somewhat reduced when considerirkjg. 1, consisting of a minimum of two fibers where half the
bidirectional ring physical topologies, where the number dibers have wavelengths propagating in the clockwise direction
alternate paths is two [13]. The ILP is generalized to the caard half the fibers propagate wavelengths in the counterclock-
of unconstrained routing (consider all paths between lightpatlise direction. We assume throughout that the nodes are la-
source and destination) in [17]. Heuristics for unconstraindxled in increasing order in the clockwise direction. In deter-
routing and wavelength assignment are also evaluated in [17ining wavelength provisioning requirements, we employ the
In [18] and [13], an initial routing and wavelength assignmerfibllowing accounting method: a set of lightpaths requires one
based on shortest path routing is subsequently modified wavelength if the set of lightpaths can be routed on a single
reduce wavelength utilization. In this paper, we propose nemavelength on the same fiber. If a set of lightpaths uses the same
schemes for joint routing and wavelength assignment that tad@or wavelength on both the clockwise and the counterclock-
advantage of the characteristics a logical topology Withorts  wise fibers, we say that the set of lightpaths utilibes wave-

per node to reduckoth average and worst case wavelengtkengths.

requirements. We consider two types of networks: protected and unpro-

We present our network model and assumptions in Sectiontécted. For the protected network case, we assume loop-back
Wavelength requirements are calculated in Section Ill, whepeotection [19] so that half of the total capacity is reserved
Section IlI-A focuses on networks using deterministic shortefdr protection. If a lightpath is routed on a wavelength in the
path routing to route lightpaths and Section 1lI-B developslockwise direction fiber, a wavelength on the counterclock-
adaptivejoint routing and wavelength assignment strategiesise direction fiber is reserved for protection and vice versa.
that minimize network wavelength requirements. In Section I'Qn each fiber, the number of wavelengths used for working
we show that a significant number of logical topologies requiteaffic changes with different logical topologies. However,
the maximum number of wavelengths. In Section V, routintpe total number of working traffic wavelengths is always
and wavelength assignment algorithms are developed tegual to the total number of protection wavelengths. When

II. NETWORK MODEL
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assessing wavelength requirements, we determine the number TABLE |

of wavelengths needed for working traffic. In the protected WAVELENGTH REQUIREMENTS UNDER SHORTESTPATH ROUTING FOR
. . . SINGLE PORT PER NODE NETWORKS REQUIREMENTSARE FORWORKING

network, the working traffic wavelength requirements are WAVELENGTHS IN A PROTECTEDNETWORK

not restricted by direction, since one always allocates an

opposite direction wavelength for protection. In an unprotected N odd N even

network, wavelengths on the bidirectional ring network should Neven| Yodd | ¥ odd

be allocated in counterpropagating pairs since there is no

benefit in reducing the wavelength requirements in only one (DOES) | (DCRS)

direction. If a logical topology requires only wavelengths Connected | Wig | N-2 | N-2 | N-3 | N-2
in the clockW|_se dl_rectl_on but: + A Waveleng'_[hs in the_ Wes | N—2 | N—-1| N-1 | N-1
counterclockwise direction, then there also exists a logical

topology that requires: counterclockwise wavelengths and General | Wip | N -1 | N-2 N N-2
z + A clockwise wavelengths. To see this, simply reverse the Wes | N-1| N-1 N N-1

lightpath directions of the first logical topology. Thus, in order
to accommodate both topologies, the network must provide
z + A wavelengths in both directions. These differences shortest path (DCRS) routing. Note that DOES and DCRS only
the protected and unprotected network cases lead to differiiffer when NV is even and N/2) is odd.
routing and wavelength assignment strategies as well as difTable | shows upper and lower bounds on the number of
ferent wavelength requirements for the two types of networksvavelengths required to implement all possible logical topolo-
We consider both connected and general logical topologigges (connected and general) on a network vitinodes and
where a general logical topology can be either connected e port per node. A lower bound &f; g indicates that there
unconnected. Connectivity in a multihop network ensures thatists a logical topology that requires at leé&ts wavelengths.
traffic between every source and destination pair can be cgfm upper bound o#¥y;5 implies that no logical topology re-
tinually supported. There may, however, be scenarios wherequires more thaWv;z wavelengths. An upper bound of is
instance of the logical topology is not necessarily connected, foivial since IV lightpaths can require at mosf wavelengths.

example, in rapidly tunable single-hop networks. The tighter upper bounds in Table | are obtained by showing
that for every logical topology, there exist some lightpaths that
1. W AVELENGTH REQUIREMENTS are able to share a wavelength. Proofs for the lower bounds are
o . by construction. We derive the lower bound for tNeodd con-
A. Deterministic Shortest Path Routing nected logical topology case below. The proofs for the other

Deterministic shortest path routing (DSPR) is a routingases are similar.
method that assignsfixed shortest path route for each source For NV odd, there exists a connected logical topology that re-
to destination pair, i.e., if there are multiple shortest path routggires N —2 wavelengths when the lightpaths are routed using
between a source and destination node, one of these routeshigrtest path routing. We construct such a connected logical
selected and used exclusively. DSPR schemes are often usgdlogy as follows. Create lightpaths to connect notenode
because they are simple and because they minimize theire{(N/2)| for0 < ¢ < [(/N/2)] and connect noder | (IV/2)]
sources required to route each lightpath. However, in networtkenodei+1 for 0 < ¢ < | (N/2)] —1. Each of thes&/ —2 light-
without wavelength converters, the number of wavelengtpsiths requires a separate wavelength since each lightpath uses
required to implement a logical topology can be substantiallypk ([(N/2)]| — 1, |(N/2)]). The final two lightpaths connect
larger than optimal. In this section, we determine wavelengtiodeN—2 to nodeN —1 and nodeV—1 to node 0. These two
requirements for a network utilizing DSPR. We require théghtpaths can share a wavelength with the lightpath from node
network to be capable of implementing all possible logicdl to node|(N/2)]. SinceN—2 of the lightpaths use physical
topologies. We present two DSPR schemes and then calculitk ([ (N/2)| —1, [(N/2)]), a minimum ofN —2 wavelengths
lower and upper bounds on corresponding network wavelengtte required to implement this logical topology. An example for
requirements. These bounds will be used to compare the= 7isshownin Fig. 2. This example illustrates that if routing
benefits of our adaptive routing and wavelength assignmesatdeterministic, there will always be logical topologies that re-
algorithms to shortest path routing. quire close taV wavelengths.

When the number of nod€¥ is even, there are two shortest In calculating the bounds in Table I, no restriction was placed
paths from nodé to nodei + (/N/2). In the deterministic odd on the directions of the wavelength channels; thus these results
even shortest path (DOES) [14] routing scheme, a shortest patiirespond to the working traffic wavelength requirements
between nodesandi: + (/V/2) is routed clockwise if is odd in protected networks. Restricting the wavelength directions
and counterclockwise ifis even. DOES routing was shown tocan only increase wavelength requirements. Wavelength re-
require fewer wavelengths than routing all lengffi/2) paths quirements are shown for both connected and general logical
in the same direction. An alternative routing schemeXNothat topologies. Trivial upper bounds fdr port per node networks
is even preferable to DOES in some cases routes lightpaths froam be obtained by multiplying the upper bounds in Table | by
node: to nodei + (N/2) and from node + (N/2) to node: P.
in the clockwise (counterclockwise) directioriifs odd (even)  Since the lower and upper bounds in Table | are similar and
for 0 < i < (N/2). We call this deterministic continuous ringnearN, approximatelyN wavelengths per port are required to
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Clockwise Counter-clockwise

Fig. 3. Two adjacent lightpaths [example (0,3) and (3,2)] can share a
wavelength in either the clockwise or counterclockwise direction.

from nodei;, to nodei(k+1) mod n for0 < k < N. Note that
when written in ring order, consecutive lightpaths, i) and

Fig. 2. An example of a connected logical topology that requires a minimu(i1, ¢x+2) are adjacent.This fact will be used to develop the

of Wi = N — 2 wavelengths when shortest path routing is used. RWA algorithms below.

In protected networks, half the wavelengths are used for

ensure thagll possiblelogical topologies can be establishedvorking traffic and half are used for protection. Each working
using deterministic shortest path routing. Routing each lightpdtiffic wavelength can be assigned in either direction since
ona Separate Wave|ength also requﬂgéwavmengths for each each clockwise (COUI’]teI’C'OCkWiSG) Working traffic Wavelength
set of NV lightpaths. Thus DSPR-based routing and wavelengh protected by a counterclockwise (clockwise) protection
assignment schemes require nearly the maximum numbem&ivelength. In unprotected networks, wavelengths should be
wavelengths. In the next section, we devedmfaptiverouting assigned in clockwise/counterclockwise pairs to minimize
and wavelength assignment schemes that significantly redi¢avelength requirements.

network wavelength requirements. a) Protected Network& = 1): The following theorems
show that[(N/2)] working traffic wavelengths are necessary
B. Adaptive Routing and Wavelength Assignment and sufficient to implement any connected logical topology. The

first theorem relies on the following lemma, which outlines an

| By _apptrloachmg thecrjoutlrlgr;] and wzvelefngt? assklgnmelnt pr?é%ficient routing and wavelength assignment strategy.
ems jointly, we can reduce the number o network wave'engins, o,y 1 1n a bidirectional ring physical topology, every

required toisgpport all possible logical topolqg|es. Uét, de- air of adjacent lightpaths can share a wavelength in one of the
note the minimum network wavelength requirement. We det{{’l\-lo directions
A .

mine Ws.q by 1) developing adaptive routing and waveleng Proof: Let(4;,1;) denote a lightpath from source noge
assignment schemes that can map any set of Ilghtpaths with lﬁsaestination nodé,. Consider two adjacent lightpaths , i»)
than or equal td¥.., wavelengths and 2) showing that ther%nd(iQ,ig). If (i1, i) and(iz, i) cannot share a wavelength in

:amiitnlogltcr:a: topoilfc:Cglvt\elsrtthhatW(;anrxtvb? iu?r? ortred Sjr:ldirl e clockwise direction, theils must lie betweei, andis onthe
outing strategy) if fewer thai#’..., wavelengths are availa €. counterclockwise direction fiber; hence, the two lightpaths can

Since the above-mentioned routing and wavelength assignmgit .o a wavelength in the counterclockwise direction, as shown

schemes can implement all logical topologies within the mi h Fig. 3 =

imum wavelength requirement, the RWA strategies are optima “Theorem 1: The maximum number of working wavelengths
Optimal adaptive RWA strategies and wavelength requiremer?tg

are determined for both protected and unprotected networ riji?g?' to implement any connected logical topology is equal to
Although these lightpath routing and wavelength assignme Proof: By Lemma 1, each pair of adjacent lightpaths can
algorithms do not minimize the wavelength requirements f%‘har !

hlogical topol thev do minimize th ber of e a wavelength. Since the logical topology forms a ring, the
eachogical topology, they do minimize the NUMDET of WaVeg . lightpaths can be divided intgV/2)] pairs of adjacent
lengths required to implemeatl possiblelogical topologies on

the bidirectional ri hvsical topol lightpaths plus one lightpath i% is odd. Therefore, the max-
€ bidirectional ring physical topology. imum number of wavelengths required to routerdllightpaths
We consider both connected and general (connected or %nt_l-l_(N/m -

connected) logical topologies. In each section below, we star heorem 2:For N > 3, there exists a connected logical

by c_onsidering connected Fopologies anq then generalize Egﬁology that require$(N/2)] wavelengths (regardless of the
routing and wavelength assignment algorithms and wavelen%utmg strategy)

requirement computations to cover both connected and uncon-
nected topologies.

1) Single Port Per Node Network<€Connectivity in a single
port per node network implies that the logical topology form

a ring. Each logical topology can be written asa p?rmUtatioanwo lightpaths are adjacent if the destination node of one lightpath is equal
of the N nodes(ig, 1, ...,ix—1) Where there is a lightpath to the source node of the other lightpath.

Proof: We can construct logical topologies it odd and
N even that requirg¢(N/2)] wavelengths. Example topologies
gre shown in Fig. 4.



NARULA-TAM et al.: EFFICIENT ROUTING AND WAVELENGTH ASSIGNMENT 79

Furthermore, we can show that there exist unconnected logical
topologies that requir@(N/2)] + 1 wavelengths.

Lemma 2: Given three directed circuits of odd sizk§ , Mo,
and M3 that, when routed individually, requiféZ; /2)] wave-
lengths each, there exists a lightpath from one of the three odd
size circuits that can share a wavelength with a lightpath from
one of the other two odd size circuits. Thus, the three directed
circuits require a total of (M1 + M, + M3)/2] wavelengths.

Proof: The proof of Lemma 2 is in Appendix I. [ |
N odd Neven Theorem 3: The maximum number of wavelengths needed
R=(024,173) R=(0,3,5,2,4,1) to implement any general (connected or unconnected) logical
topology is equal td(N/2)] + 1.
Fig. 4. Example light path topologies that requjieV/2)] wavelengths for Proof: For connected logical topologies, we know from

N odd andN even. ForN even, the(N/2) lightpaths (0,3), (5,2), and (4,1)

overlap; thus each overlapping lightpath requires a separate wavelength. Theorem 1 that a maximum Cff(N/Qﬂ Wavelengths are re-

quired. If the unconnected logical topology contains one odd
circuit M}, then by Theorem 1, the even circuits each require
For IV odd, consider a logical topology connecting nad® (3, /2) wavelengths and the odd circuit requifgaZ; /2)] for
node(:i + [(N/2)]) mod N. Since each lightpath traverses af total of[(/V/2)] wavelengths. If the logical topology contains
least|(/V/2)] links, at most two lightpaths can share a wavawo odd circuitsi/; andMj,, then again by Theorem 1 the even
length. Therefore, at leaft/V/2)] wavelengths are required tocircuits each requiréds; /2) wavelengths and the odd circuits
route allV lightpaths of the logical topology. require [(M,/2)] and [(M,,/2)] for a total of 3, (M;/2) +
For NV even,the preceding construction does not produce(zMj + M;)/(2) + 1, or one extra wavelength. Thus assume
connected logical topology; therefore, we use a different cogn unconnected logical topology that contains three odd size
struction. Construct a connected logical topology by connectiggcuits of sizeM;, M», and M5. Use Lemma 2 and assume
nodeio to nodei; = 4o + (NV/2). Next connect node to node without loss of generality that circuits 1 and 2 contain the pair
i2 = i1+ (IN/2) — 1. Continue creating lightpaths sequentiallyyf lightpaths that can share a wavelength. These two circuits re-
inthis manner, alternating between adding/2) and(N/2)—1  quire (M; — 1)/(2) + (Ma — 1)/(2) + 1 = (M1 + M2)/(2)
until nodes v ;. Nodei y_; is connected to nodg. In thislog- \avelengths. Thus, the three odd size circuits reqiiile +
ical topology,(V/2) ofthe lightpaths traversgV/2) links each,  a7,)/(2) + [(Ms/2)] = [(M; + M2+ Ms)/(2)] wavelengths.
regardless of the routing. Since th€s€/2) lightpaths overlap emma 2 may also be applied iteratively to logical topologies
each other, as shown in Fig. 4, each requires a separate Wayign larger numbers of odd size circuits. For example, consider
length. Therefore, atleagl/2) wavelengths are needed to supa |ogical topology with five odd size circuitsf; to M. Take
port this logical topology. B any three of these circuits, e.g., circuits 1, 2, and 3, and apply
These results indicate that by routing pairs of adjacent lightemma 2. Two of the three circuits, e.g., circuits 1 and 2, will
paths on a single wavelength, any connected logical topologyntain lightpaths that can share a wavelength. These two cir-
can be supported on a network provisioned With/2)] wave-  cyits use( M; + M,)/(2) wavelengths. There remain three odd
lengths. Furthermore, sindgN/2)] is the minimum number sjze circuits 3, 4, and 5. Applying Lemma 2 to these three cir-
of wavelengths required to support some logical topologies aggits shows that two of the three circuits, e.g., 3 and 4, con-
our objective is to support all connected logical topologies, thigin a pair of lightpaths that can share a wavelength. There-
adaptive routing strategy is optimal. fore, at most(Ms + M,)/(2) + [(Ms/2)] wavelengths are
We can now generalize the problem to consider both coReeded to establish the three circuits. Consequently, a total of
nected and unconnected logical topologies. Recall that a cqps, + M, + Ms + My + M;)/(2)] wavelengths are needed to
nected logical topology consists of a single directed circuit. staplish all five circuits. In general, any logical topology con-
a single port per node network in which all ports are utilizedains at most two odd size circuits that requitdZ; /2)] wave-
a disconnected logical topology is the union of multiple edg@sngths each and that do not allow any further sharing of wave-
disjoint directed circuits [20, Theorem 5.6]. A general 109- |engths between them. In a connected logical topology, these
ical topology will consist ofK" directed circuits of sizeM;, two circuits would requirdéM; + M,)/(2) wavelengths rather
fori = 1...K, where} , M; = N. If pairs of adjacent than[(as; /2)]+ [(M,/2)]. Therefore, at most one extra wave-
lightpaths in each circuit are routed on a single wavelenglangth, for a total off(N/2)] + 1 wavelengths, is required to
then applying Theorem 1 to each circuit shows that at masiipport unconnected as well as connected logical topolamies.
>_:[(M;/2)] wavelengths will be required. This can be sub-  pb) Unprotected Network§P = 1): In unprotected
stantially larger tha(N/2)] if the logical topology consists of networks, all wavelengths are used for working traffic. Simply
many odd size circuits. However, the following lemma can hgpplying the routing algorithms from the protected case when
used to show that at mopt/V/2)] + 1 wavelengths are requiredthere are no protection wavelengths yields a requirement of
to support all (connected or unconnected) logical topologieg.N/2)] wavelengths in each direction, since some logical
2A directed circuit in a directed grapfi is defined as a finite sequence oft(')pomgleS may reqUIré(N/2)—| clockwise wavelengths while

verticesvg, v1,. . ., vy, such tha{v;_y, v;) is an edge i, vy = v, and all others may require may requirgN/2)] Counter_CIOCkWise
other vertices are unique. wavelengths. We can do much better. The following theorems
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total number of lightpaths supported3§(V/3)] — 1), which

is always less thanV. Hence, this logical topology cannot
be implemented with less thg{ N/3)] wavelengths in each
direction.

For N even,construct a connected logical topology as fol-
lows. Sequentially, starting with nodg and ending at node
iy—1, establish a lightpath between nogeand nodei;; =
(¢;+(N/2)—1) modN if node(¢; + (IN/2) — 1) mod NV is not
yetincluded in the logical ring topology. Ifit is already included,
connect node; to nodei;;1 = (4; + (IV/2)) mod V. Finally,
connect nodéy _; to node:g. When(N/2) is even, each light-
path traverses at leasV/2) — 1 physical links. Whe{N/2) is
odd, the connection fromy _; to 4, traverse§N/2) —2 links in
the clockwise direction andV,/2)+2 links in the counterclock-
wise direction. All other lightpaths traverse at le@®%/2) — 1
Fig. 5. Any three adjacent lightpaths [example: (0,5), (5,1), and (1,6)] can B@ysmal links. We consider the two cas_esi‘bf: GandV > 8
routed using one wavelength in each direction. separately. WheV = 6, three of the lightpaths can share a

wavelength in the clockwise direction. However, only one light-

. o path can be established on each counterclockwise wavelength.
show that[(/V/3)] wavelengths in each direction are necesrperefore, one clockwise and one counterclockwise wavelength
sary and sufficientto implement any connected Iogic;al topologyan carry at most four of the six lightpaths. B8t > 8, the
These reduced wavelength requirements are achieved by aflgnipaths can only share wavelengths in the clockwise direc-
cating wavelengths in counterpropagating pairs, as suggestegd since each lightpath traverses more thai2) links in the

Section I. _ ~®  counterclockwise direction. Furthermore, at most two lightpaths
Theorem 4: Any connected logical topology can be impletan share each clockwise wavelength since any three lightpaths
mented with[(N/3)] wavelengths in each direction. _ require a minimum o2((V/2) — 1)+ (N/2) —2 > N physical
[Proof: For any given logical topology, use the followingjinys The [(V/3)] — 1 clockwise wavelengths can support at
routing and wavelength assignment algorithm. most two lightpaths per wavelength for a totalt N/3)] — 2
1) Divide the lightpaths into sets of three adjacent lightpathgghtpaths. Thef(V/3)] — 1 counterclockwise wavelengths can
If N is not perfectly divisible by three, then there will beeach support at most one lightpath. Thus the total number of
one set of lightpaths that has either one or two lightpatiightpaths supported i8([(V/3)] — 1), which is always less
In it than V. Hence, this logical topology cannot be supported with
2) Using Lemma 1, route the first two Ilghtpaths in each S%SS thar((N/3)—| Wave|ength5 in each direction. ]
on a single wavelength. Route the third lightpath in each we have shown that by routing sets of three adjacent light-
set on a wavelength in the opposite direction. paths on a single pair of wavelengths, all connected logical
Since there arg(N/3)] sets, at mosf(V/3)]| wavelengths are topologies can be supported on a network wijthv/3)]
required in each direction. m wavelengths in each direction. It can also be shown that all
The proof illustrates a method of routing lightpaths to ensutenconnected logical topologies can also be supported with
that no more tha(N/3)] wavelengths are needed in each dif(N/3)] wavelengths in each direction. The proof, which has
rection. Fig. 5 illustrates the lightpath routing strategy. The nelseen omitted for brevity, uses arguments similar to those used
theorem illustrates that at leatV/3)] wavelengths must be in the proof of Theorem 3 to generalize the protected network
provisioned in each direction, and hence, the optimality of thiesults to include unconnected logical topologies.
above routing and wavelength assignment algorithm. = 2) Multiple Ports Per Node:A logical topology withP ports
Theorem 5: For networks withV > 4 nodes, a minimum of per node is a directed graph with nodes of in-degree and out-de-
[(N/3)] wavelengths in each direction are required to suppagtee equal taP. If the logical topology is connected, then the
all possible logical topologies. directed graph contains a directed Euler trail ([20, Theorem
Proof: Suppose that only(N/3)] — 1 wavelengths are 5.6]), where an Euler trail is a closed directed tfailyhich
available in each direction. We can construct logical topologiesntains all the edges of the graph. Therefore, #t7€ light-
thatcannotbe supported for the casesfodd andV even. path logical topology PN edges of the graph) can be divided
For N odd,construct a logical topology by connecting nodénto |(PN/2)] pairs of adjacent lightpaths plus one lightpath
¢ to node(i + | (N/2)]) mod N. Since each lightpath traversesf PN is odd. For the unprotected network case, B¢ light-
a minimum of | (N/2)] links, at most two lightpaths can sharepath topology can be divided inid PN/3)| sets of three ad-
a wavelength. Furthermore, since each lightpath travergasent lightpaths plus one set GPN) mod 3 lightpaths. The
[(N/2)] links in the counterclockwise direction, lightpathgouting strategies described in Section 1lI-B1 for single port
can only share wavelengths in the clockwise direction. Usiqger node networks can thus be directly applied to multiple port
t2h|—? ]\gfé\% 3)_—| 2_|iglh t;:t(f:ll(swgzc\f:v?)\;etlﬁg(g]@%ﬂwf figuiltjgfort 3A closed directed trail in a directed graphis a finite sequence of vertices

g ! vg, U1,. .., U, sUuchthafv;_1, v;) is an edge in7, all edges are distinct, and
clockwise wavelengths supports only one lightpath. Thus thg= v,. Note that a trail can repeatedly visit the same node.
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TABLE I
LOWER BOUND ON WAVELENGTH REQUIREMENTS
Topology | Number of Logical Topologies with Lower Bound Wavelength Requirement W g
Size Wip=1|Wip=2|Wrg=3|Wrg=4|Wip=5 Total
N=4 2 4 6
N=5 2 22 24
N=6 2 82 36 120
N=7 2 240 478 720
N=8§8 2 616 3,846 576 5,040
N=9 2 1,466 24,012 14,840 40,320
N=10 2 3,334 126,570 | 218,574 14,440 362,880
per node networks. The following two theorems summarize the IV. LIMITED LOGICAL TOPOLOGY NETWORKS
wavelength requirements for connected logical topologies in
networks with/V nodes and” ports. Thus far, we have considered networks that support all virtual

Theorem 6:In a protected network, every connected logtopologies. However, by limiting the number of topologies that
ical topology can be implemented|[if PN/2)] working traffic can be established, it may be possible to reduce network wave-
wavelengths are available. length requirements.

Proof: Since the logical topology is connected, it contains To investigate the tradeoff between the fraction of topologies
an Euler trail. Find the Euler trail and divide the set of lightpathtsupported and the number of wavelengths required, we com-
into | (PN/2)] sets of adjacent lightpath pairs plus one lightpatbute a lower bound on the wavelength requirements for each
if PN is odd. Use Lemma 1 to route the lightpath pairs. Thuegical topology. Since the physical topology is a ring, any bi-
[(PN/2)] wavelengths are sufficient. m section of the physical topology corresponds to two physical

Theorem 7: In an unprotected network, every connected lodinks. Letm be the maximum number of lightpaths that cross
ical topology can be established[ifPN/3)] wavelengths in any bisection of the physical topology graph. Each of these
each direction are available. “crossing lightpaths,” i.e., lightpaths that cross the bisection,

Proof: Since the logical topology is connected, it containsiust be mapped on one of the two physical links. Thus at most
an Euler trail. Find the Euler trail and divide the set of lightpathisvo crossing lightpaths can share a wavelength. Consequently, a
into | (PN/3)] sets of three adjacent lightpaths plus one set afinimum of Wiz = (m/2) wavelengths are required to imple-
zero, one, or two lightpaths. Use Lemma 1 to route a pair ofent the logical topology, independent of the RWA strategy. We
lightpaths from each set on one wavelength. Use the waveleng#e this lower bound to calculate the minimum wavelength re-
in the opposite direction to route the third lightpath in each sefuirements for all connected single port per node logical topolo-
Thus[(PN/3)] pairs of wavelengths are sufficient to map thegies of size/V. For logical topologies of siz& = 4 to 10, the
logical topology. ®  minimum wavelength requirements (calculated using the lower

Next consider unconnected logical topologies férnode bound above) and the number of topologies that require this
P port networks. A disconnected logical topology can be minimum number of wavelengths are shown in Table Il. These
divided into a set ofK connected components where eactesults show that many of the logical topologies require near
component; consists ofN; nodes andV/; lightpaths, where the maximum number df{/V/2)] wavelengths. Furthermore, a
0<i< K-1and) , M; = PN. The set of lightpaths in the majority of the logical topologies require at led$tv/2)| — 1
ith connected component forms an Euler traiken Thus each wavelengths.
set of M; lightpaths can be routed diiAf; /2)] wavelengthsin  For larger values ofV, we can use the following analytical
the protected case an@Az; /3)] wavelengths in each directionresult to show that ad” increases, a significant number of log-
in the unprotected case. Directly applying the arguments usedl topologies continue to requifé N/2)| wavelengths.
inthe P = 1 case (Theorem 3) to thi€ connected components Theorem 10: For N even, a minimum of V/2) wavelengths
above yields the following theorems specifying the wavelengge required by at leagtV/2)!)? connected logical topologies
requirements for general (connected or unconnected) logigath one port per node.
topologies. The proof details are omitted in the interest of Proof: We compute the number of logical topologies
brevity. m for which each of theV lightpaths crosses a bisection of the

Theorem 8:1n a protected network, every logical topologyphysical topology. Since at most two crossing lightpaths can fit
(connected or unconnected) can be implementgdifV/2)]4+ on one wavelength, each of these logical topologies requires a
1 working traffic wavelengths are available. minimum of (V/2) wavelengths. Consider any bisection of the

Theorem 9:In an unprotected network, every logicalphysical topology that evenly divides thé nodes. Start with
topology (connected or unconnected) can be establishedaify nodeio. There are(/N/2) ways to choose the next node
[(PN/3)] wavelengths in each direction are available. 1 such that lightpath{io,¢;) crosses the bisection. There are
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(N/2) — ¢ ways to choose nodes; andisjtq, for j = 1to

T T
A I-%

(N/2) — 1, such that all lightpaths cross the physical topology il o e o
bisection. There are als@V/2) ways to bisect the physical & DOLS W EE wavelongiasst
topology. Thus, there ar N/2)!)? logical topologies with a asf O-DORSuETusieend e .
maximum number of crossings.
The Wi = (N/2) entries in Table Il correspond to \ . . e *

((N/2)1)%. This shows that thé(/N/2)] wavelength require-
ment is not artificially high to support rare pathological cases,
but rather is necessary to support a significant number of the
logical topologies. We note that although frgction of logical
topologies that requirg(/N/2)] wavelengths becomes small
as N becomes large, for all practical cases, a largmberof
logical topologies continue to require the maximum number of
wavelengths. 25

Average Number of Wavelengths

ofe oto b

. : . L L . : .
85 7 7.5 8 8.5 9 9.5 10
Nodes

V. REDUCING AVERAGE WAVELENGTH REQUIREMENTS Fig. 6. Comparison of average wavelength requirements using heuristic joint

Above, we developed a routing and wavelength assignmé?#;ing and wavelength assignment algorithms to DOES and DCRS shortest
! .. . path routing using first fit wavelength assignment. All logical topologies with
strategy that minimizes the number of wavelengths requiredt0- 1 port per node are routed on a protected network.
implement the worst case logical topology. Furthermore, we

showed that this RWA strategy reduces the wavelength requifgw wavelength, the direction of lightpath routing is chosen to

ments approximately by one-half over shortest path routing nglsure a minimum of two lightpaths are accommodated. In the

prqtected ”e“’vof".s and by one-third for unprotectgd net\’\'orlése'cond algorithm, termdist fit adjacent routingrouting of a
It is also beneficial to reduce wavelength requirements

?n htpath that does not fit on the current wavelength is attempted
average. In some networks, for example, extra waveleng

may be used to provide all-optical connections and bypass ‘ wavelengths that already carry lightpaths. A new wavelength

electronics altogether. An algorithm that minimizes the avera seebegun only if the lightpath cannot be mapped on any previ-

wavelengths will provide more wavelengths for alternateUSIy used wave_leng'Fhs. . .

; . . . . L Algorithm 2: First Fit Adjacent Routing:
services. In this section, we utilize the routing principles devel- } . _ _
oped in the previous sections to design RWA algorithms that in 1) Find an Euler trail in the desired logical topology. Order
addition to minimizing thevorst casewavelength requirement the lightpaths according to the Euler trail. In this way,
also reduceveragewavelength requirements. The algorithms consecutive lightpaths will be adjacent. Start with the first

are designed foiv node P port networks. For simplicity, we two lightpaths. ,
assume that all logical topologies are connected. 2) Start a new wavelength. Using Lemma 1, map the two
lightpaths in the appropriate direction so that they fit on

A. Protected Networks the single wavelength.
3) Try to map the next lightpath on the same wavelength.

We describe two heuristic algorithms for routing and wave- * continye routing lightpaths until you reach the first light-
length assignment. Recall that in a protected network, the direc- path that does not fit on the current wavelength.
tion of each working wavelength may be selected independently.4) Try to map this lightpath on the previous wavelengths,
The first algorithm is a directimplementation of the routing and starting with wavelength 1. Continue routing lightpaths
wavelength assignment strategies suggested by the proofsinthe previous wavelengths until you reach the first lightpath
previous sections. The second algorithm is a slight modification  hat does not fit on any previously used wavelengths.

of the first that provides a substantial improvement. 5) Take the current lightpath and next lightpath and go to

Algorithm 1: Adjacent Routing: step 2).

1) Find an Euler trail in the desired logical topology. Order We use simulations to compare the average wavelength
the lightpaths according to the Euler trail. In this wayequirements of the two heuristic algorithms to shortest path
consecutive lightpaths will be adjacent. Start with the firgbuting using first fit wavelength assignment (SPR w/FF). We
two lightpaths. consider both DOES and DCRS shortest path routing, which

2) Start a new wavelength. Choose wavelength directiefiffer only when is even and N/2) is odd. Fig.6 shows the
so that both lightpaths fit on one wavelength, i.e., usg/erage wavelength requirements }r= 6 to N = 10 single
Lemma 1. port per node logical topologies. The wavelength requirements

3) Try to map the next lightpath on the same wavelengtbf all (N — 1)! permutations for each node,P = 1 logical
Continue routing lightpaths until you get to the first lighttopology, are evaluated. Fig. 7 shows the average wavelength

path that does not fit on the current wavelength. ~ requirements for logical topologies with two ports per node.
4) Take the current (unrouted) lightpath and the next lightor P = 2, we generate 10 000 random logical topologies for
path and go to step 2). N =6to N = 10. With P = 1, both adjacent routing and first

The first algorithm, referred to aljacent routingfills wave- fit adjacent routing require fewer wavelengths on average (and
lengths sequentially with adjacent lightpaths. When startingnarst case) than SPR w/FF. First fit adjacent routing reduces
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: . = in the same order as the physical topology, i.e., in either clock-
T Upper Bound wise (CW) or counterclockwise (CCW) order. Note that for con-
¢ Adjacent Routing . . . . .
$ st Adecan Py . nected logical topt_)logles, iv _—1 lightpaths fit on one wave-
©_DORS WFF wavelongh ssst length, then allv lightpaths fit on the wavelength. Let be

the number of lightpaths that fit on a wavelength in either direc-
ot a " tion. Then, given that at leagt < NV lightpaths remain to be
8 mapped, we have (1), as shown at the bottom of the page. The
. | number of ways to arrang€ nodes inV —1 positions is simply
(N-1)(N-2)...(N—K).The number of ways to arrandé
* nodes ink positions so that they are in order (e.g., clockwise)

1 is given by the following recursive expression:

-2
t

Average Number of Wavelengths

R
S y LIK, R =) LK -1,R-i (2)
tli sts ; 725 e‘: o5 s sfs 0 i=1

Nodes L[1,R]=R. 3)

Fig. 7. Comparison of average wavelength requirements for heuristic joiatyation (2) is obtained by considering the position of the first
routing and wavelength assignment algorithms to DOES and DCRS shorteq ( ) y 9 P

path routing using first fit wavelength assignment. Ten thousand random logi It_h? K nodes. If the first node is in .pOSitiOn th_e_n the re-
topologies with” = 2 ports per node are mapped on a protected network. maining { —1 nodes must be placed i — ¢ positions. The

sum is taken over alR possible positions for the first node.
probability that more thaR’ lightpaths fit on a wavelength

i 05—110
average wavelength requirements between 8%-11% over SwhenK or more lightpaths need to mapped) is

w/FF. ForP = 2 andN > 7, the average wavelength require-
ments for adjacent routing, are slightly higher than SPR w/FF. 2L[K,N —1]
Adjacent routing performs slightly worse than SPR w/FF, since

(N-1)(N-2)...(N-K)’
adjacent routing prevents subsequent lightpaths from bein

mapped on any wavelengths on which a previous lightpath i€ average number of lightpaths needed to map a single port
er node connected logical topology (ring) can also be com-

not fit. First fit adjacent routing, which removes this restrictiorP d vel follows:
provides a significant improvement over SPR w/FF, reducilﬁjﬂe recursively as foflows.

P(X>K)=

(4)

average wavelength requirements by 6%-10%. Unlike SPR 0, if K =0
W/FF, adjacent routing and first fit adjacent routing ensure that4[ k] = { 1, if1<K<2

a minimum of two lightpaths are routed on each wavelength. 14+ 25;2 A[K —ilP(X =1), f K >2,
Although it may be possible to improve these heuristics slightly, (5)

these results illustrate that a significant improvement in botthere K is the number of lightpaths mapped aR@X = ¢) =
worst case and average wavelength requirements is possBl&X > ¢) — P(X > ¢+ 1). Clearly, when only one or two
by lightpath mapping algorithms that jointly assign routeightpaths remain to be routed, they can fit on one wavelength.
and wavelengths using the adjacent lightpath routing principféghen K > 2, exactly: lightpaths fit on one wavelength with
outlined in the proof of Lemma 1. Also plotted in Figs. Grobability P(X = ¢) and the remainind{ — < wavelengths
and 7 are upper bounds on wavelength requirements deriva an average of[K — 4] wavelengths. The recursion termi-
from the results in Section Ill. The upper bounds correspom@tes when less than three lightpaths remain to be routed. The
to the number of wavelengths required to map the worst camgerage wavelength requirements can be numerically computed
logical topology using our adaptive lightpath routing strategusing (5). The computations are approximate since the port and
As expected, the wavelength requirements for the averagenectivity restrictions cause lightpaths to be correlated. For
case are much less than the worst case. This demonstrateseianple, if the first wavelength carries only two lightpaths, this
importance of improving the wavelength requirements for botjives us information about the remaining lightpaths. The ana-
the worst case and average case. lytical approximations correspond well to the simulation results
The average wavelength requirements of adjacent routing forFig. 6 for ¥ = 6 to N = 10.
single port per node logical topologies can also be approxi-Itis found through numeric computation that/ddncreases,
mated analytically. Note that” adjacent lightpaths are speci-the average number of lightpaths that can fit on a wavelength
fied by K+1 nodes. Mappind< lightpaths on a single wave- approaches 2.43. Hence, the average number of wavelengths
length in one direction is equivalent to choosing the first nodeeded to map av node ring logical topology approaches
arbitrarily and then ensuring that the remainiignodes are N/2.43.

# of ways in whichK nodes can be arrangedM — 1 positions in CW or CCW order

P(X > K)= . —
(X = K) # of ways to arrangé< nodes inV — 1 positions

)
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B. Unprotected Networks

A" Upper Bound
¢ Adjacent Routing

In this section, we present two heuristic algorithms forrouting ™[ | # EistEtadscontaoung
and wavelength assignment on unprotected networks. Recall 7} L2 RCRSWEF wavekngh see
that in unprotected networks, the wavelengths must be allo-
cated in clockwise/counterclockwise pairs. Both algorithms use
Lemma 1 to map a pair of lightpaths in the appropriate direction
to fit on one wavelength. The next lightpath that does not fit on
the current wavelength is mapped on a wavelength in the oppo-
site direction. This ensures that a minimum of three lightpaths
are embedded on each pair of wavelengths. Routing of subse-
guent lightpaths is continued on the current wavelength until a
lightpath that does not fit on the current wavelength is encoun-
tered. In adjacent routing, a new wavelength pair is begun. In
first fit adjacent routing, the current lightpath and subsequent
lightpaths are mapped on previously used wavelengths until the _ _ , o
st lightpath that does not ft on any lightpath carrying wavel%;. Camoaricn of average weveleng(h reauerent vong eursic font
lengths is found. At this point, a new wavelength pair is initiate@ath routing using first fit wavelength assignment. An unprotected network is

Algorithm 1: Adjacent Routing: assumed. The average wavelength requirements for all logical topologies with
P = 1 port per node is determined.

1) Find an Euler trail in the desired logical topology. Order
the lightpaths according to the Euler trail. In this way,
consecutive lightpaths will be adjacent. Start with the first [
two lightpaths.

2) Startanew wavelength. Choose the direction of the wave-
length so that both lightpaths fit on one wavelength. 2l - -

3) Trytofitadditional adjacentlightpaths on this wavelength
in the same direction as the first two lightpaths. When the
first lightpath that does not fit is encountered, route this
lightpath on a new wavelength in the opposite direction.

4) Try to map the next lightpath on the same wavelength.
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Continue routing lightpaths until you get to the first light- ola 8
path that does not fit on the current wavelength. o *
5) Take the current (unrouted) lightpath and the next light- T *
path and go to step 2). oL 2
The second algorithm differs from Algorithm 1 at step 5), N E Noées B s s 10
where mapping of a lightpath that does not fit on the current
wavelength is attempted on previous wavelengths. Fig. 9. Comparison of average wavelength requirements for heuristic joint
Algorithm 2: First Fit Adjacent Routing: routing and wavelength assignment algorithms to DOES and DCRS shortest

path routing using first fit wavelength assignment. An unprotected network
1) Find an Euler trail in the desired logical topology. Ordes assumed. The average wavelength requirements for 10000 random logical

the lightpaths according to the Euler trail. In this way©°Pologies with” = 2 ports per node is determined.

consecutive lightpaths will be adjacent. Start with the first

two lightpaths. Average wavelength requirements for logical topologies with
2) Start a new wavelength. Using Lemma 1, map the tw8 = 1 andP = 2 are shown in Figs. 8 and 9, respectively. For

lightpaths in the appropriate direction so that they fit on single port per node logical topologies, both adjacent routing

single wavelength. and first fit adjacent routing produce significant improvements
3) Try to map the next lightpath on the same wavelengthver SPR w/FF. First fit adjacent routing provides a 9%—11% re-

Continue routing lightpaths until you reach the first lightduction in average wavelength requirements. With- 2, first

path that does not fit on the current wavelength. fit adjacent routing reduces average wavelength requirements
4) Route this lightpath on a new wavelength in the opposity 5%—-8%.

direction. Continue routing lightpaths until you get to the Figs. 6-9 illustrate the improvement in average wavelength

first lightpath that does not fit on the current wavelengthrequirements achieved from using our adaptive algorithms as
5) Try to map this lightpath on the previous wavelengthspmpared to fixed routing schemes. These figures also include

starting with wavelength 1. Continue routing lightpathan upper bound showing the wavelength requirements for worst

on previous wavelengths until you reach the first lightpattase logical topologies. The average wavelength requirements

that does not fit on any previously used wavelengths. are significantly lower than worst case wavelength require-
6) Take current (unrouted) lightpath and next lightpath anmdents. These results demonstrate that it is important to reduce

go to step 2). both average and worst case wavelength requirements.
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VI. EXTENSIONS TOk-CONNECTEDPHYSICAL TOPOLOGIES  can be implemented. Here instead of selecting a wavelength

b h h e . . afirection, routing the lightpaths on one wavelength corresponds
Above, we have shown for hidirectional ring physic o finding a directed trail for the lightpaths through the physical

topologies that a minimum of two I|ghtpths can Pe mappefgpology. For two-connected physical topologies, the lightpath
on any_wavelength if th_e Wavelength dlrect|on_ IS SQI‘?Ct%utes are selected to ensure that two lightpaths fit on one
appropriately. We used this observation to determine m'n'm%velength. One can easily find pairs of adjacent lightpaths
wavelength requirements for supporting worst case logicl‘h'at cannotbe mapped using shortest path routing on one
topologies and developed a routing and wavelength assignmgatejength of a two-connected physical topology. Thus it is

algorithm that achieves this minimum wavelength requiremenlis, ,ssible to generate logical topologies in which shortest
We also developed heuristic routing and wavelength assignmgaty, routing using first fit wavelength assignment would not

algorithms that illustrate how this adjacent lightpath routing, 4pje to map a minimum of two lightpaths on each wave-

principle can be used to reduce average wavelength requitgsq, of a two-connected physical topology. Similarly, for
ments. In this section, we show how the adjacent lightpaffyee connected physical topologies, the lightpath routes are
routing principle might be extended for use on two-connecteflngen 1o ensure that three lightpaths fit on one wavelength.
and three-connected physical topologies. We assume that 8¢ can easily generate sets of three adjacent lightpaths that
physical link consists of two fibers, one propagating in €ag ., ;eq using shortest path routing will require more than
of two directions. Note that a set éf adjacent lightpaths is o \yayelength on a three-connected physical topology. Thus,
specified by an ordered set bfi-1 nodes. A set ok adjacent spr \y/FF on a three-connected physical topology will not
lightpaths is said to use a single wavelength if there is an qu'%p a minimum of three lightpaths on each wavelength. As the
disjoin_t t_rail 'ghat passes through &H%l distinct nodes in order. physical topology becomes more connected, and the number
A bidirectional ring is a specific case of a two-connecteg; jighiaths (equivalently, ports) increases, we expect shortest
physical topology. However, not all two-connected graphs a8 routing to use most wavelengths fairly efficiently since
rings or even contain a cycle that traversesl@linodes. We 4 jightpaths will use a small number of physical links. How-
show that Lemma 1 can be generalized to two-connected phySa, 41g0rithms such as first fit adjacent routing can improve
ical topologies. Specifically, we show that any pair of adjaceqavelength utilization, since they ensure that a minimum of two
lightpaths can be mapped on one wavelength ofatwo-connecﬁs tpaths are routed oeverywavelength on a two-connected
physical topology by properly choosing the lightpath routes. nysica) topology and that a minimum of three lightpaths are

~ Theorem 11:0n a two-connected graph, for any pair of adsanned onevery wavelength on a three-connected physical
jacent lightpathga, b) and (b, ¢), there exists an edge d'SJO'nttopoIogy.

trail from « to b to c.

Proof: Consider two adjacent lightpatlis, b) and(b, ¢).
Add a nodet to the graph and connect it to nodeandc. The
new graph is still two-connected. Thus by Menger's theorem The minimum number of wavelengths requiréd., to im-
[20], there are two edge disjoint paths from nédghe source) plement all virtual topologies on aiY node P port network
to nodet (the sink). Furthermore, one of these two paths pasdeas been determined. For connected logical topolo#igs, =
througha and the other through Thus there exist paths from [(PN/2)] working traffic wavelengths are required on a pro-

VII. CONCLUSION

a to b and fromb to ¢ that are edge disjoint. m tected network aniV,., = [(PN/3)] wavelengths in each di-
We can also show the following result for three-connecteection are required on an unprotected network. A significant
physical topologies. fraction of logical topologies require nealy,., wavelengths,

Theorem 12:0n a three-connected graph, any three adjius reducing the wavelength requirement by designing the net-
cent lightpathga, b), (b, ¢), and(c, d) can be routed on a singlework to support only a limited number of logical topologies is
wavelength. not a worthwhile proposition. This also indicates that our focus

The proof, given in Appendix Il, is by construction; thusn supporting all possible logical topologies does not result in
it also provides a method for routing the three lightpaths. substantial overprovisioning of resources.

It is fairly straightforward to generate sets of three adjacentAdaptive lightpath routing strategies that can embed all log-
lightpaths thatannotbe mapped on a two-connected physicatal topologies within the minimunV,., wavelength require-
topology for any routing strategy. Similarly, one can generateent were developed. These adaptive routing schemes required
sets of four adjacent lightpaths thaannot be mapped on far fewer wavelengths than RWA schemes based on shortest path
a three-connected physical topology. Thus, the mappinkgiting.

described are maximal in this sense. We conjecture that thesdoint routing and wavelength assignment algorithms that
results can be generalized keconnected physical topologiesimprove average wavelength requirements were also developed.
for all k, i.e., we expect that any adjacent lightpaths can beThese algorithms reduced average wavelength requireriments
mapped on one wavelength okeconnected physical topology. additionto minimizing worst case logical topology wavelength
The result fork even has been established in [21]. Foodd, requirements. If networks are provisioned wikh.., wave-

the problem is yet unsolved [22]. lengths, embedding a topology with less thé&n., wavelengths

Theorems 11 and 12 can be used to devise heuristic routaltpws the extra wavelengths to be used for alternative services.
and wavelength assignment strategies for two-connected drig joint routing and wavelength assignment algorithms devel-
three-connected physical topologies. In fact, slight variatiolmped use fewer wavelengths than shortest path routing-based
of the adjacent routing and first fit adjacent routing algorithmRWA both for average and worst case topologies.
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Fig. 10. (a) Two parallel links. (b) Two intersecting links. Fig. 11. Scenario 1): three links from three circuits are parallel.

Although we primarily focused on the bidirectional ring
physical topology, methods for extending the adjacent lightpath
routing principles to general two-connected and three-con-
nected physical topologies were also presented. Determinatiot
of the minimum wavelength requirements férconnected
physical topologies topologies is an area for future work. The
joint routing and wavelength assignment algorithms devel-
oped for bidirectional ring physical topologies were adapted
to two-connected and three-connected physical topologies
Performance analysis of the these algorithms as well as devel
opment of new heuristic joint RWA strategies florconnected
physical topologies are areas for future work. Investigati ig. 12. Scenario 2): a link from circut is parallel to links from circuit$3
of joint routing and wavelength assignment on other physicaidcC, but the links from circuits3 andC' intersect.
topologies is another area of interest.

(@) (b)

Corollary to Theorem 13:Given three directed circuitd,
B, andC of odd size, there exists a link id denoted/ 4 that
is parallel to a link inB, denoted g, and also to a link irC,
denoted .
Denote the three directed circuits of odd si2dg, M,, and Now we can prove Lemma 2. By applying Lemma 1, we know
MsasA, B,andC. We show below that these three circuits cathat each circuit requires at mgstd/; /2)| wavelengths. Thus
be routed using a total ¢{ M + M + M3)/(2)] wavelengths. if we can show that there exist two links, one each from two odd
We begin with some preliminary definitions.liak in the di- circuits that can share a wavelength, the number of wavelengths
rected circuit corresponds to a directed logical connection beeeded will b&M; —1)/(2) +(M; —1)/(2) +1+[(M}y/2)] =
tween a source nodeand destination nodé We say that two [(M; + M, + My)/(2)] as required.
logical links (s1,d1) and(s2, d2) are parallel if nodes2 and Let a || b denote that linka is parallel to linkb. From the
d2 lie on the same side of the bisection of the physical topologyrollary, there are two possible scenarios: 1) all three links are
formed by link (s1,d1), as illustrated in Fig. 10(a). We sayparallel or 2) linkd 5 andl< intersect but are both parallel to link
that two linksintersectif they are not parallel, as shown inl,. In scenario 1), shown in Fig. 11(a), links || I, 14 || lc,
Fig. 10(b). Two parallel links are said to traverse fagne di- andip || I If no two of the three links can share a wavelength,
rectionif traversing the ring physical topology to go fraft to  this implies that the three links must go in the same direction,
s2 requires going through nodé in one direction and2 inthe for if they do not, the two opposite direction links can share
other. Note that link$s1, d1) and(s2, d2) in Fig. 10(a) traverse a wavelength. Now consider scenario 2), shown in Fig. 12(a),
the same direction. wherel, || g andl, || lc butip is not parallel tolc. As
The proof of Lemma 2 uses the following theorem and corashown in Fig. 12(b), link$z andi- must traverse the same di-
lary. rection asl4; otherwise they can share a wavelength with
Theorem 13: Given a directed circuit of odd size, any link Thus suppose thd, is in the same direction dg andl., as
[ can intersect at mogt/ —1 links in the circuit. shown in Figs. 11(b) for scenario 1) and 12(b) for scenario 2).
Proof: Any link [ that cuts a circuit of sizé/ will di- Consider the link following linkl g in circuit B, i.e., the link
vide the circuit such that of the nodes are to the left of thewith source node equal to the destination nodgsoff the des-
link and M — k of the nodes are to the right of the link. Thetination of this link is to the right of link 4, then this link can
number of links from the circuit that intersect lilkis thus at share a wavelength with links. Otherwise the destination of
most2min(k, M — k) = 2|(M/2)] = M — 1, sinceM is this link must be to the left of linkc, in which case this link
odd. B can share a wavelength with lirk.. Therefore, there always

APPENDIX |
PROOF OFLEMMA 2
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trailgp(x,y)

trailgy

Fig. 13. Definition of a trail from node to b, trail.., and its segment from
nodex to nodey, trail., (. y).

. Fig. 15. The three trails from nodkto noder will eventually touch trai., U
trallbc] trail,.., . The locations where these trails touch are denetddr ¢ = 1,2, 3.
Note that the first place the trails touch may be at nade

@ b

trailgp trailpg

trailbfé @

Fig. 14. Construction of three edge disjoint trails using Menger’s theorem and
the max-flow min-cut theorem.

exists at least two links, one each from two different circuits of
A, B, andC, that can share a wavelength.

Fig. 16. Construction of the desired trail when at least one of the three trails
APPENDIX |l from noded to nodec does not overlap with trajl, before touching trajl., U

trail,.., .
PROOF OF THEOREM 12 fallec

In this section, we prove Theorem 12, which shows that on a il
three-connected physical topology, any three lightpaths can be Overlap 1
mapped on a single wavelength. The proof is by construction;
consequently, it also illustrates a method for selecting the routes
of the three lightpaths.

We begin with some preliminary definitions. Let trgilbe a
trail from nodess to noded without repeated edges. Although
a trail may contain loops, we assume for simplicity that trails
do not contain loops. The proof can be easily extended to caSigs17. Only consider overlaps that occur before eaili = 1,2, 3, touches
where trails contain loops. Define traj(z, i), for all nodest, i trallye; U trallye, .
on trail,;, as asegmenbf trail,, that starts at node, follows
trail,4, and terminates on node An example of a trail and its trail,.,. Note that these three trails may overlap with any of the
segment is shown in Fig. 13. Note that tggfl, b) = trail,;, and three trails previously defined.
that trail,; (y, =) has the same edges as gk, y) exceptitis  Traversetrajl., (¢ = 1,2, 3) from noded toward node:. Stop
traversed in the opposite direction. Two trails digiointwhen whenever trajl., touches either trajl, or trail,., for the very
they do not share an edge. Two traidsichat nodez if node> first time. Let¢; be the point where the trails touch. Note that
belongs to both trails. Two trailsverlapat edge z, ) if (z,y) trailg.,(d, ;) is edge disjoint with trajl., Utrail,.,, as illustrated
is on both trails. Note that if two trails overlap @t, y), then in Fig. 15.
they touch atc andy. If one of the threel to ¢ trails does not overlap with trgjy,

To prove Theorem 12, given a three-connected graph, ween we have our desired trajl Assume that trajl., is the trail
must establish a trail, trai}, through any four distinct nodesthat has this property and that it first touches trailat node
{a,b,c,d}, such that the trail passes through all four nodes,. Let trail,., denote the other nodieto nodec trail. Then
terminates on nodes andd, and such that the trail segmentshe desired trail is trajl; = trailgy + traily., + trail,.; (¢, tx) +
trail,4(a, b), trail,q4 (b, ¢), and trail.4(c, d) are all edge disjoint. traily., (tz, d), as illustrated in Fig. 16.

Proof: Let nodeb be the source of a flow of capacity 3, The only case left to consider is when all thiééo ¢ trails
nodec be a sink of capacity 1, and nodde a sink of capacity overlap with trail, before they first touch trail, U trail,., .
2. Using Menger’s theorem and max-flow min-cut argumenihere may also be repeated overlaps, and the ordering of the
[20], we can find three edge disjoint trails: tegil trail,., , and overlap locations may intertwine. Nevertheless, the number of
trail,.,, where nodes andb are terminals of trajl, and nodes overlaps is finite. There is an overlap that is closest to ngde
b andc are terminals of trajl., and trail..,, as shown in Fig. 14. call this Overlapl. Label the node closest to neda Overlapl
Note that the three trails are only guaranteed tedigedisjoint. as node:. There is also an overlap that is closest to nacll

Using Menger’s theorem again, find three edge disjoint traithis Overlap2. Label the node closest to nddm Overlap2 as
from noded to nodec. Name these trails trail, , trail;.,, and nodef. This is illustrated in Fig. 17.

waily,
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trailab]

trailpg

(12]
(13]

(14]

trailge (d,) [15]

(16]
Fig. 18. Construction of the desired trail when all three nétlenodec trails

overlap with trail,;, before they touch trajl, U trail,.., . 7]
17

Let traily., be the trail that creates Overlapl and trailbe
the trail that creates Overlap2. The lds$b c trail is then trail,_ .
Note that trai}., may be the same trail as trail . Assume that
trail,., first touches traj., U trail,., at nodet..

Claim: There exists a trail from nodeto nodeb that is edge
disjoint from trail;._ (d,t.).

Proof of Claim: In the case that trail, is different from
trailg., , consider traily (a, ¢) + traily., (¢, d) +trailgc, (d, ) +
trail,.(f,b). This trail is edge disjoint with trail._ (d,¢.) be-
cause on trajk, there is no overlap before nodand after node
J»and since trajl., and trail,., are edge disjoint from trail .

In the case that trajl, is the same as trail,, consider
trailgy(a, e) +trail., (¢, f) +trailey (£, b). This trail is edge dis-
joint with trail,._(d, t.) because on traj}, there is no overlap
before node: and after nodef, and since trajl., = traily., is
edge disjoint from traj._ . n

In whichever case, the above claim is true. Label this n
nodeg to nodeb as trail,;, . Note that trail,, is also edge disjoint
with both of the nodé to nodec trails.

The proof can now be finished. The desired trail, shown in
Fig. 18, is trail,, + traily., + traily; (c,t.) + traily._(t., d),
where trai,._ firsttouches trajl., Utrail,., at nodet. of traily., .

(18]

(19]
(20]
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