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Abstract—Through the use of configurable wavelength-divi-
sion-multiplexing (WDM) technology including tunable optical
transceivers and frequency selective switches, next-generation
WDM networks will allow multiple virtual topologies to be dy-
namically established on a given physical topology. For node
port networks, we determine the number of wavelengths required
to support all possiblevirtual topologies ( lightpaths) on a
bidirectional ring physical topology. We show that if shortest path
routing is used, approximately wavelengths are needed to map

lightpaths. We then present novel adaptive lightpath routing
and wavelength assignment strategies that reduce the wavelength
requirements to ( 2) working wavelengths per port for
protected networks and ( 3) wavelengths in each direction
per port for unprotected networks. We show that this reduced
wavelength requirement is optimal in the sense that it is the
minimum required to support the worst case logical topology. Fur-
thermore, we prove that a significant number of logical topologies
require this minimum number of wavelengths. We also develop
joint routing and wavelength assignment strategies that not only
minimize the number of wavelengths required to implement the
worst case logical topologies but also reduce average wavelength
requirements. Finally, methods for extending these routing and
wavelength assignment results to general two-connected and
three-connected physical topologies are presented.

Index Terms—Joint routing and wavelength assignment (RWA),
logical topology reconfiguration, wavelength division multiplexing,
wavelength requirements.

I. INTRODUCTION

N wavelength-division-multiplexing (WDM) systems, mul-
tiple signals, separated by wavelength, are carried concurrently
on an optical fiber. Each wavelength (channel) operates at peak
electronic speeds of 1–10 Gb/s per channel. Configurable op-
tical add/drop multiplexers (ADMs) and cross-connects may be
used to allow individual wavelength signals either to bedropped
to the electronic routers at each node or to pass through the node
optically. There are two general classes of WDM network archi-
tectures: single-hop and multihop. A single-hop WDM network
is an all-optical network in which network traffic is converted to
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electronics only at the source and destination nodes [1]. In mul-
tihop networks, most of the traffic is electronically processed
at intermediate node routers between the source and destination
[2].

In both single-hop and reconfigurable multihop networks,
nodes are typically equipped with a small number of tunable
transmitters and receivers. A lightpath between two nodes is
formed by tuning the transmitter of one node and the receiver of
another node to the same wavelength, and configuring the ADM
or cross-connect switches appropriately. Thus a lightpath is
unidirectional. Thephysical topologyof the network consists of
optical nodes and their fiber connections. Thelogical topology
describes the lightpaths between the nodes and is determined
by the configuration of the transmitters, receivers, and switches
on each node. In single-hop networks, extremely rapidly
tunable transceivers are required to efficiently time-share the
network transceiver ports. Multihop networks may not need
to be reconfigured as rapidly since in a connected logical
topology, each node can transmit packets to every other node
via store and forward or similar mechanisms. Logical topology
reconfiguration in multihop networks may be used to reduce
network delay and electronic processing loads, as proposed in
[3]–[7].

An important characteristic of both single-hop and multihop
WDM networks is the independence between the logical and
physical topologies. Any logical topology may be implemented
on a given connected physical topology if enough wavelengths
are available. A network with nodes and transceiver ports
per node can have up to lightpaths. If each lightpath must
be routed on a different wavelength, wavelengths are
required. Building networks with wavelengths may not
be feasible, since the number of wavelengths available is tech-
nology-limited. Furthermore, implementing wavelengths
may be an expensive and inefficient use of resources. In a ring
physical topology, for example, it may be possible to route mul-
tiple lightpaths on the same wavelength by intelligent routing
and wavelength assignment. Through wavelength reuse, the
network wavelength requirements can be significantly reduced.

In this paper, our primary objectives are to determine the
minimum number of wavelengths required to allowall possible
logical topologies to be embedded on a ring physical topology
and to obtain routing and wavelength assignment strategies that
achieve this minimum wavelength requirement. Supporting all
logical topologies provides maximal flexibility in the network
design and is preferable since traffic demands are unknowna
priori . We consider the static or off-line problem for node

transceiver networks where all lightpath requests are re-
ceived simultaneously; equivalently we design a rearrangeably
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nonblocking network. A similar problem has been addressed
by Gerstelet al. in [8], where minimum wavelength require-
ments are determined for dynamic lightpath requests (lightpaths
are assigned and released on demand) with a maximum of
lightpaths per link. In [8], the worst case wavelength require-
ments are calculated to ensure a wide-sense nonblocking net-
work. Gerstelet al. assume fixed routing schemes, whereas in
our work, we determine optimaljoint routing and wavelength
assignment strategies. These routing and wavelength assign-
ment strategies are optimal in the sense that they minimize the
network wavelength requirements for networks that must sup-
port all logical topologies. Although the wavelength require-
ments are not minimized for each logical topology instance, we
show that a significant number of logical topologies require this
minimum number of wavelengths; thus the wavelength require-
ment is not overengineered to support a small number of patho-
logical topologies. We also develop heuristic joint routing and
wavelength assignment algorithms that reduce the number of
wavelengths required to map logical topologies onaverage,in
addition to minimizing the number of wavelengths required for
theworst caselogical topology.

There has been a considerable amount of work in the area
of efficient routing and wavelength assignment (RWA). Most
prior work decouples the two problems of assigning routes and
assigning wavelengths. For example, [9]–[15] assume fixed
routing schemes. Given a routing that results in a maximum of

lightpaths on any link, [9] shows that a maximum of 21
wavelengths are needed to establish all lightpaths. In [10], the
static wavelength assignment problem alone is shown to be
NP-complete. Wavelength assignment for fixed alternate path
routing, where each lightpath route may be selected from a
subset of all possible routes, is investigated in [11], [16], and
[13]. In [16], the routing and wavelength assignment problem
is formulated as an integer linear program (ILP), where given
a fixed number of available wavelengths, the goal is to maxi-
mize the number of lightpaths supported. The computational
complexity of the ILP is somewhat reduced when considering
bidirectional ring physical topologies, where the number of
alternate paths is two [13]. The ILP is generalized to the case
of unconstrained routing (consider all paths between lightpath
source and destination) in [17]. Heuristics for unconstrained
routing and wavelength assignment are also evaluated in [17].
In [18] and [13], an initial routing and wavelength assignment
based on shortest path routing is subsequently modified to
reduce wavelength utilization. In this paper, we propose new
schemes for joint routing and wavelength assignment that take
advantage of the characteristics a logical topology withports
per node to reduceboth average and worst case wavelength
requirements.

We present our network model and assumptions in Section II.
Wavelength requirements are calculated in Section III, where
Section III-A focuses on networks using deterministic shortest
path routing to route lightpaths and Section III-B develops
adaptive joint routing and wavelength assignment strategies
that minimize network wavelength requirements. In Section IV,
we show that a significant number of logical topologies require
the maximum number of wavelengths. In Section V, routing
and wavelength assignment algorithms are developed that

Fig. 1. A bidirectional ring physical topology with a single fiber propagating
in each direction.

both minimize the worst case wavelength requirements and
reduce the average wavelength requirements over fixed routing.
Finally, in Section VI, extension of the proposed joint routing
and wavelength assignment principles to two-connected and
three-connected physical topologies is discussed.

II. NETWORK MODEL

We consider networks with nodes, each equipped with
transceiver ports; thus each logical topology has lightpaths.
If the physical topology is a unidirectional ring, there is only one
possible route between every source and destination pair. Thus,
there exist worst case logical topologies that require wave-
lengths. Consider, for example, a logical topology consisting of

rings, where the nodes in each logical ring are ordered in di-
rection opposite to the physical topology. In this case, each light-
path requires a separate wavelength and a total ofwave-
lengths are needed. We therefore focus on wavelength provi-
sioning for bidirectional ring physical topologies where route
selection can impact the number of required wavelengths.

We consider a bidirectional ring physical topology, shown in
Fig. 1, consisting of a minimum of two fibers where half the
fibers have wavelengths propagating in the clockwise direction
and half the fibers propagate wavelengths in the counterclock-
wise direction. We assume throughout that the nodes are la-
beled in increasing order in the clockwise direction. In deter-
mining wavelength provisioning requirements, we employ the
following accounting method: a set of lightpaths requires one
wavelength if the set of lightpaths can be routed on a single
wavelength on the same fiber. If a set of lightpaths uses the same
color wavelength on both the clockwise and the counterclock-
wise fibers, we say that the set of lightpaths utilizestwo wave-
lengths.

We consider two types of networks: protected and unpro-
tected. For the protected network case, we assume loop-back
protection [19] so that half of the total capacity is reserved
for protection. If a lightpath is routed on a wavelength in the
clockwise direction fiber, a wavelength on the counterclock-
wise direction fiber is reserved for protection and vice versa.
On each fiber, the number of wavelengths used for working
traffic changes with different logical topologies. However,
the total number of working traffic wavelengths is always
equal to the total number of protection wavelengths. When
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assessing wavelength requirements, we determine the number
of wavelengths needed for working traffic. In the protected
network, the working traffic wavelength requirements are
not restricted by direction, since one always allocates an
opposite direction wavelength for protection. In an unprotected
network, wavelengths on the bidirectional ring network should
be allocated in counterpropagating pairs since there is no
benefit in reducing the wavelength requirements in only one
direction. If a logical topology requires only wavelengths
in the clockwise direction but wavelengths in the
counterclockwise direction, then there also exists a logical
topology that requires counterclockwise wavelengths and

clockwise wavelengths. To see this, simply reverse the
lightpath directions of the first logical topology. Thus, in order
to accommodate both topologies, the network must provide

wavelengths in both directions. These differences in
the protected and unprotected network cases lead to differing
routing and wavelength assignment strategies as well as dif-
ferent wavelength requirements for the two types of networks.

We consider both connected and general logical topologies,
where a general logical topology can be either connected or
unconnected. Connectivity in a multihop network ensures that
traffic between every source and destination pair can be con-
tinually supported. There may, however, be scenarios where an
instance of the logical topology is not necessarily connected, for
example, in rapidly tunable single-hop networks.

III. W AVELENGTH REQUIREMENTS

A. Deterministic Shortest Path Routing

Deterministic shortest path routing (DSPR) is a routing
method that assigns afixedshortest path route for each source
to destination pair, i.e., if there are multiple shortest path routes
between a source and destination node, one of these routes is
selected and used exclusively. DSPR schemes are often used
because they are simple and because they minimize the re-
sources required to route each lightpath. However, in networks
without wavelength converters, the number of wavelengths
required to implement a logical topology can be substantially
larger than optimal. In this section, we determine wavelength
requirements for a network utilizing DSPR. We require the
network to be capable of implementing all possible logical
topologies. We present two DSPR schemes and then calculate
lower and upper bounds on corresponding network wavelength
requirements. These bounds will be used to compare the
benefits of our adaptive routing and wavelength assignment
algorithms to shortest path routing.

When the number of nodes is even, there are two shortest
paths from node to node . In the deterministic odd
even shortest path (DOES) [14] routing scheme, a shortest path
between nodesand is routed clockwise if is odd
and counterclockwise if is even. DOES routing was shown to
require fewer wavelengths than routing all length paths
in the same direction. An alternative routing scheme forthat
is even preferable to DOES in some cases routes lightpaths from
node to node and from node to node
in the clockwise (counterclockwise) direction ifis odd (even)
for . We call this deterministic continuous ring

TABLE I
WAVELENGTH REQUIREMENTSUNDER SHORTESTPATH ROUTING FOR

SINGLE PORT PER NODE NETWORKS. REQUIREMENTSARE FORWORKING

WAVELENGTHS IN A PROTECTEDNETWORK

shortest path (DCRS) routing. Note that DOES and DCRS only
differ when is even and is odd.

Table I shows upper and lower bounds on the number of
wavelengths required to implement all possible logical topolo-
gies (connected and general) on a network withnodes and
one port per node. A lower bound of indicates that there
exists a logical topology that requires at least wavelengths.
An upper bound of implies that no logical topology re-
quires more than wavelengths. An upper bound of is
trivial since lightpaths can require at most wavelengths.
The tighter upper bounds in Table I are obtained by showing
that for every logical topology, there exist some lightpaths that
are able to share a wavelength. Proofs for the lower bounds are
by construction. We derive the lower bound for theodd con-
nected logical topology case below. The proofs for the other
cases are similar.

For odd, there exists a connected logical topology that re-
quires 2 wavelengths when the lightpaths are routed using
shortest path routing. We construct such a connected logical
topology as follows. Create lightpaths to connect nodeto node

for and connect node
to node for . Each of these 2 light-
paths requires a separate wavelength since each lightpath uses
link . The final two lightpaths connect
node 2 to node 1 and node 1 to node 0. These two
lightpaths can share a wavelength with the lightpath from node
0 to node . Since 2 of the lightpaths use physical
link , a minimum of 2 wavelengths
are required to implement this logical topology. An example for

is shown in Fig. 2. This example illustrates that if routing
is deterministic, there will always be logical topologies that re-
quire close to wavelengths.

In calculating the bounds in Table I, no restriction was placed
on the directions of the wavelength channels; thus these results
correspond to the working traffic wavelength requirements
in protected networks. Restricting the wavelength directions
can only increase wavelength requirements. Wavelength re-
quirements are shown for both connected and general logical
topologies. Trivial upper bounds for port per node networks
can be obtained by multiplying the upper bounds in Table I by

.
Since the lower and upper bounds in Table I are similar and

near , approximately wavelengths per port are required to
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Fig. 2. An example of a connected logical topology that requires a minimum
ofW = N � 2 wavelengths when shortest path routing is used.

ensure thatall possiblelogical topologies can be established
using deterministic shortest path routing. Routing each lightpath
on a separate wavelength also requireswavelengths for each
set of lightpaths. Thus DSPR-based routing and wavelength
assignment schemes require nearly the maximum number of
wavelengths. In the next section, we developadaptiverouting
and wavelength assignment schemes that significantly reduce
network wavelength requirements.

B. Adaptive Routing and Wavelength Assignment

By approaching the routing and wavelength assignment prob-
lems jointly, we can reduce the number of network wavelengths
required to support all possible logical topologies. Let de-
note the minimum network wavelength requirement. We deter-
mine by 1) developing adaptive routing and wavelength
assignment schemes that can map any set of lightpaths with less
than or equal to wavelengths and 2) showing that there
exist logical topologies that cannot be supported (under any
routing strategy) if fewer than wavelengths are available.
Since the above-mentioned routing and wavelength assignment
schemes can implement all logical topologies within the min-
imum wavelength requirement, the RWA strategies are optimal.
Optimal adaptive RWA strategies and wavelength requirements
are determined for both protected and unprotected networks.
Although these lightpath routing and wavelength assignment
algorithms do not minimize the wavelength requirements for
eachlogical topology, they do minimize the number of wave-
lengths required to implementall possiblelogical topologies on
the bidirectional ring physical topology.

We consider both connected and general (connected or un-
connected) logical topologies. In each section below, we start
by considering connected topologies and then generalize the
routing and wavelength assignment algorithms and wavelength
requirement computations to cover both connected and uncon-
nected topologies.

1) Single Port Per Node Networks:Connectivity in a single
port per node network implies that the logical topology forms
a ring. Each logical topology can be written as a permutation
of the nodes where there is a lightpath

Fig. 3. Two adjacent lightpaths [example (0,3) and (3,2)] can share a
wavelength in either the clockwise or counterclockwise direction.

from node to node mod , for . Note that
when written in ring order, consecutive lightpaths and

are adjacent.1 This fact will be used to develop the
RWA algorithms below.

In protected networks, half the wavelengths are used for
working traffic and half are used for protection. Each working
traffic wavelength can be assigned in either direction since
each clockwise (counterclockwise) working traffic wavelength
is protected by a counterclockwise (clockwise) protection
wavelength. In unprotected networks, wavelengths should be
assigned in clockwise/counterclockwise pairs to minimize
wavelength requirements.

a) Protected Networks : The following theorems
show that working traffic wavelengths are necessary
and sufficient to implement any connected logical topology. The
first theorem relies on the following lemma, which outlines an
efficient routing and wavelength assignment strategy.

Lemma 1: In a bidirectional ring physical topology, every
pair of adjacent lightpaths can share a wavelength in one of the
two directions.

Proof: Let denote a lightpath from source node
to destination node . Consider two adjacent lightpaths
and . If and cannot share a wavelength in
the clockwise direction, then must lie between and on the
counterclockwise direction fiber; hence, the two lightpaths can
share a wavelength in the counterclockwise direction, as shown
in Fig. 3.

Theorem 1: The maximum number of working wavelengths
needed to implement any connected logical topology is equal to

.
Proof: By Lemma 1, each pair of adjacent lightpaths can

share a wavelength. Since the logical topology forms a ring, the
set of lightpaths can be divided into pairs of adjacent
lightpaths plus one lightpath if is odd. Therefore, the max-
imum number of wavelengths required to route alllightpaths
is .

Theorem 2: For , there exists a connected logical
topology that requires wavelengths (regardless of the
routing strategy).

Proof: We can construct logical topologies forodd and
even that require wavelengths. Example topologies

are shown in Fig. 4.

1Two lightpaths are adjacent if the destination node of one lightpath is equal
to the source node of the other lightpath.
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Fig. 4. Example light path topologies that required(N=2)e wavelengths for
N odd andN even. ForN even, the(N=2) lightpaths (0,3), (5,2), and (4,1)
overlap; thus each overlapping lightpath requires a separate wavelength.

For odd,consider a logical topology connecting nodeto
node . Since each lightpath traverses at
least links, at most two lightpaths can share a wave-
length. Therefore, at least wavelengths are required to
route all lightpaths of the logical topology.

For even,the preceding construction does not produce a
connected logical topology; therefore, we use a different con-
struction. Construct a connected logical topology by connecting
node to node . Next connect node to node

. Continue creating lightpaths sequentially
in this manner, alternating between adding and
until node . Node is connected to node. In this log-
ical topology, of the lightpaths traverse links each,
regardless of the routing. Since these lightpaths overlap
each other, as shown in Fig. 4, each requires a separate wave-
length. Therefore, at least wavelengths are needed to sup-
port this logical topology.

These results indicate that by routing pairs of adjacent light-
paths on a single wavelength, any connected logical topology
can be supported on a network provisioned with wave-
lengths. Furthermore, since is the minimum number
of wavelengths required to support some logical topologies and
our objective is to support all connected logical topologies, this
adaptive routing strategy is optimal.

We can now generalize the problem to consider both con-
nected and unconnected logical topologies. Recall that a con-
nected logical topology consists of a single directed circuit. In
a single port per node network in which all ports are utilized,
a disconnected logical topology is the union of multiple edge-
disjoint directed circuits2 [20, Theorem 5.6]. A general log-
ical topology will consist of directed circuits of size ,
for , where . If pairs of adjacent
lightpaths in each circuit are routed on a single wavelength,
then applying Theorem 1 to each circuit shows that at most

wavelengths will be required. This can be sub-
stantially larger than if the logical topology consists of
many odd size circuits. However, the following lemma can be
used to show that at most wavelengths are required
to support all (connected or unconnected) logical topologies.

2A directed circuit in a directed graphG is defined as a finite sequence of
verticesv ; v ; . . . ; v such that(v ; v ) is an edge inG; v = v , and all
other vertices are unique.

Furthermore, we can show that there exist unconnected logical
topologies that require wavelengths.

Lemma 2: Given three directed circuits of odd sizes ,
and that, when routed individually, require wave-
lengths each, there exists a lightpath from one of the three odd
size circuits that can share a wavelength with a lightpath from
one of the other two odd size circuits. Thus, the three directed
circuits require a total of wavelengths.

Proof: The proof of Lemma 2 is in Appendix I.
Theorem 3: The maximum number of wavelengths needed

to implement any general (connected or unconnected) logical
topology is equal to .

Proof: For connected logical topologies, we know from
Theorem 1 that a maximum of wavelengths are re-
quired. If the unconnected logical topology contains one odd
circuit , then by Theorem 1, the even circuits each require

wavelengths and the odd circuit requires for
a total of wavelengths. If the logical topology contains
two odd circuits and , then again by Theorem 1 the even
circuits each require wavelengths and the odd circuits
require and for a total of

, or one extra wavelength. Thus assume
an unconnected logical topology that contains three odd size
circuits of size and . Use Lemma 2 and assume
without loss of generality that circuits 1 and 2 contain the pair
of lightpaths that can share a wavelength. These two circuits re-
quire
wavelengths. Thus, the three odd size circuits require

wavelengths.
Lemma 2 may also be applied iteratively to logical topologies
with larger numbers of odd size circuits. For example, consider
a logical topology with five odd size circuits to . Take
any three of these circuits, e.g., circuits 1, 2, and 3, and apply
Lemma 2. Two of the three circuits, e.g., circuits 1 and 2, will
contain lightpaths that can share a wavelength. These two cir-
cuits use wavelengths. There remain three odd
size circuits 3, 4, and 5. Applying Lemma 2 to these three cir-
cuits shows that two of the three circuits, e.g., 3 and 4, con-
tain a pair of lightpaths that can share a wavelength. There-
fore, at most wavelengths are
needed to establish the three circuits. Consequently, a total of

wavelengths are needed to
establish all five circuits. In general, any logical topology con-
tains at most two odd size circuits that require wave-
lengths each and that do not allow any further sharing of wave-
lengths between them. In a connected logical topology, these
two circuits would require wavelengths rather
than . Therefore, at most one extra wave-
length, for a total of wavelengths, is required to
support unconnected as well as connected logical topologies.

b) Unprotected Networks : In unprotected
networks, all wavelengths are used for working traffic. Simply
applying the routing algorithms from the protected case when
there are no protection wavelengths yields a requirement of

wavelengths in each direction, since some logical
topologies may require clockwise wavelengths while
others may require may require counterclockwise
wavelengths. We can do much better. The following theorems



80 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 1, JANUARY 2002

Fig. 5. Any three adjacent lightpaths [example: (0,5), (5,1), and (1,6)] can be
routed using one wavelength in each direction.

show that wavelengths in each direction are neces-
sary and sufficient to implement any connected logical topology.
These reduced wavelength requirements are achieved by allo-
cating wavelengths in counterpropagating pairs, as suggested in
Section II.

Theorem 4: Any connected logical topology can be imple-
mented with wavelengths in each direction.

Proof: For any given logical topology, use the following
routing and wavelength assignment algorithm.

1) Divide the lightpaths into sets of three adjacent lightpaths.
If is not perfectly divisible by three, then there will be
one set of lightpaths that has either one or two lightpaths
in it.

2) Using Lemma 1, route the first two lightpaths in each set
on a single wavelength. Route the third lightpath in each
set on a wavelength in the opposite direction.

Since there are sets, at most wavelengths are
required in each direction.

The proof illustrates a method of routing lightpaths to ensure
that no more than wavelengths are needed in each di-
rection. Fig. 5 illustrates the lightpath routing strategy. The next
theorem illustrates that at least wavelengths must be
provisioned in each direction, and hence, the optimality of the
above routing and wavelength assignment algorithm.

Theorem 5: For networks with nodes, a minimum of
wavelengths in each direction are required to support

all possible logical topologies.
Proof: Suppose that only wavelengths are

available in each direction. We can construct logical topologies
thatcannotbe supported for the cases ofodd and even.

For odd,construct a logical topology by connecting node
to node mod . Since each lightpath traverses

a minimum of links, at most two lightpaths can share
a wavelength. Furthermore, since each lightpath traverses

links in the counterclockwise direction, lightpaths
can only share wavelengths in the clockwise direction. Using
the clockwise wavelengths, we can support

lightpaths. Each of the counter-
clockwise wavelengths supports only one lightpath. Thus the

total number of lightpaths supported is , which
is always less than . Hence, this logical topology cannot
be implemented with less than wavelengths in each
direction.

For even,construct a connected logical topology as fol-
lows. Sequentially, starting with node and ending at node

, establish a lightpath between nodeand node
mod if node mod is not

yet included in the logical ring topology. If it is already included,
connect node to node mod . Finally,
connect node to node . When is even, each light-
path traverses at least physical links. When is
odd, the connection from to traverses links in
the clockwise direction and links in the counterclock-
wise direction. All other lightpaths traverse at least
physical links. We consider the two cases of and
separately. When , three of the lightpaths can share a
wavelength in the clockwise direction. However, only one light-
path can be established on each counterclockwise wavelength.
Therefore, one clockwise and one counterclockwise wavelength
can carry at most four of the six lightpaths. For , the
lightpaths can only share wavelengths in the clockwise direc-
tion since each lightpath traverses more than links in the
counterclockwise direction. Furthermore, at most two lightpaths
can share each clockwise wavelength since any three lightpaths
require a minimum of physical
links. The clockwise wavelengths can support at
most two lightpaths per wavelength for a total of
lightpaths. The counterclockwise wavelengths can
each support at most one lightpath. Thus the total number of
lightpaths supported is , which is always less
than . Hence, this logical topology cannot be supported with
less than wavelengths in each direction.

We have shown that by routing sets of three adjacent light-
paths on a single pair of wavelengths, all connected logical
topologies can be supported on a network with
wavelengths in each direction. It can also be shown that all
unconnected logical topologies can also be supported with

wavelengths in each direction. The proof, which has
been omitted for brevity, uses arguments similar to those used
in the proof of Theorem 3 to generalize the protected network
results to include unconnected logical topologies.

2) Multiple Ports Per Node:A logical topology with ports
per node is a directed graph with nodes of in-degree and out-de-
gree equal to . If the logical topology is connected, then the
directed graph contains a directed Euler trail ([20, Theorem
5.6]), where an Euler trail is a closed directed trail,3 which
contains all the edges of the graph. Therefore, the light-
path logical topology ( edges of the graph) can be divided
into pairs of adjacent lightpaths plus one lightpath
if is odd. For the unprotected network case, the light-
path topology can be divided into sets of three ad-
jacent lightpaths plus one set of mod 3 lightpaths. The
routing strategies described in Section III-B1 for single port
per node networks can thus be directly applied to multiple port

3A closed directed trail in a directed graphG is a finite sequence of vertices
v ; v ; . . . ; v , such that(v ; v ) is an edge inG, all edges are distinct, and
v = v . Note that a trail can repeatedly visit the same node.
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TABLE II
LOWER BOUND ON WAVELENGTH REQUIREMENTS

per node networks. The following two theorems summarize the
wavelength requirements for connected logical topologies in
networks with nodes and ports.

Theorem 6: In a protected network, every connected log-
ical topology can be implemented if working traffic
wavelengths are available.

Proof: Since the logical topology is connected, it contains
an Euler trail. Find the Euler trail and divide the set of lightpaths
into sets of adjacent lightpath pairs plus one lightpath
if is odd. Use Lemma 1 to route the lightpath pairs. Thus

wavelengths are sufficient.
Theorem 7: In an unprotected network, every connected log-

ical topology can be established if wavelengths in
each direction are available.

Proof: Since the logical topology is connected, it contains
an Euler trail. Find the Euler trail and divide the set of lightpaths
into sets of three adjacent lightpaths plus one set of
zero, one, or two lightpaths. Use Lemma 1 to route a pair of
lightpaths from each set on one wavelength. Use the wavelength
in the opposite direction to route the third lightpath in each set.
Thus pairs of wavelengths are sufficient to map the
logical topology.

Next consider unconnected logical topologies fornode
port networks. A disconnected logical topology can be

divided into a set of connected components where each
component consists of nodes and lightpaths, where

and . The set of lightpaths in the
th connected component forms an Euler trail on. Thus each

set of lightpaths can be routed on wavelengths in
the protected case and wavelengths in each direction
in the unprotected case. Directly applying the arguments used
in the case (Theorem 3) to the connected components
above yields the following theorems specifying the wavelength
requirements for general (connected or unconnected) logical
topologies. The proof details are omitted in the interest of
brevity.

Theorem 8: In a protected network, every logical topology
(connected or unconnected) can be implemented if

working traffic wavelengths are available.
Theorem 9: In an unprotected network, every logical

topology (connected or unconnected) can be established if
wavelengths in each direction are available.

IV. L IMITED LOGICAL TOPOLOGYNETWORKS

Thus far, we have considered networks that support all virtual
topologies. However, by limiting the number of topologies that
can be established, it may be possible to reduce network wave-
length requirements.

To investigate the tradeoff between the fraction of topologies
supported and the number of wavelengths required, we com-
pute a lower bound on the wavelength requirements for each
logical topology. Since the physical topology is a ring, any bi-
section of the physical topology corresponds to two physical
links. Let be the maximum number of lightpaths that cross
any bisection of the physical topology graph. Each of these
“crossing lightpaths,” i.e., lightpaths that cross the bisection,
must be mapped on one of the two physical links. Thus at most
two crossing lightpaths can share a wavelength. Consequently, a
minimum of wavelengths are required to imple-
ment the logical topology, independent of the RWA strategy. We
use this lower bound to calculate the minimum wavelength re-
quirements for all connected single port per node logical topolo-
gies of size . For logical topologies of size to , the
minimum wavelength requirements (calculated using the lower
bound above) and the number of topologies that require this
minimum number of wavelengths are shown in Table II. These
results show that many of the logical topologies require near
the maximum number of wavelengths. Furthermore, a
majority of the logical topologies require at least
wavelengths.

For larger values of , we can use the following analytical
result to show that as increases, a significant number of log-
ical topologies continue to require wavelengths.

Theorem 10:For even, a minimum of wavelengths
are required by at least connected logical topologies
with one port per node.

Proof: We compute the number of logical topologies
for which each of the lightpaths crosses a bisection of the
physical topology. Since at most two crossing lightpaths can fit
on one wavelength, each of these logical topologies requires a
minimum of wavelengths. Consider any bisection of the
physical topology that evenly divides the nodes. Start with
any node . There are ways to choose the next node

such that lightpath crosses the bisection. There are
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ways to choose nodes and , for to
, such that all lightpaths cross the physical topology

bisection. There are also ways to bisect the physical
topology. Thus, there are logical topologies with a
maximum number of crossings.

The entries in Table II correspond to
. This shows that the wavelength require-

ment is not artificially high to support rare pathological cases,
but rather is necessary to support a significant number of the
logical topologies. We note that although thefractionof logical
topologies that require wavelengths becomes small
as becomes large, for all practical cases, a largenumberof
logical topologies continue to require the maximum number of
wavelengths.

V. REDUCING AVERAGE WAVELENGTH REQUIREMENTS

Above, we developed a routing and wavelength assignment
strategy that minimizes the number of wavelengths required to
implement the worst case logical topology. Furthermore, we
showed that this RWA strategy reduces the wavelength require-
ments approximately by one-half over shortest path routing for
protected networks and by one-third for unprotected networks.
It is also beneficial to reduce wavelength requirements on
average. In some networks, for example, extra wavelengths
may be used to provide all-optical connections and bypass the
electronics altogether. An algorithm that minimizes the average
wavelengths will provide more wavelengths for alternate
services. In this section, we utilize the routing principles devel-
oped in the previous sections to design RWA algorithms that in
addition to minimizing theworst casewavelength requirement
also reduceaveragewavelength requirements. The algorithms
are designed for node port networks. For simplicity, we
assume that all logical topologies are connected.

A. Protected Networks

We describe two heuristic algorithms for routing and wave-
length assignment. Recall that in a protected network, the direc-
tion of each working wavelength may be selected independently.
The first algorithm is a direct implementation of the routing and
wavelength assignment strategies suggested by the proofs in the
previous sections. The second algorithm is a slight modification
of the first that provides a substantial improvement.

Algorithm 1: Adjacent Routing:

1) Find an Euler trail in the desired logical topology. Order
the lightpaths according to the Euler trail. In this way,
consecutive lightpaths will be adjacent. Start with the first
two lightpaths.

2) Start a new wavelength. Choose wavelength direction
so that both lightpaths fit on one wavelength, i.e., use
Lemma 1.

3) Try to map the next lightpath on the same wavelength.
Continue routing lightpaths until you get to the first light-
path that does not fit on the current wavelength.

4) Take the current (unrouted) lightpath and the next light-
path and go to step 2).

The first algorithm, referred to asadjacent routing,fills wave-
lengths sequentially with adjacent lightpaths. When starting a

Fig. 6. Comparison of average wavelength requirements using heuristic joint
routing and wavelength assignment algorithms to DOES and DCRS shortest
path routing using first fit wavelength assignment. All logical topologies with
P = 1 port per node are routed on a protected network.

new wavelength, the direction of lightpath routing is chosen to
ensure a minimum of two lightpaths are accommodated. In the
second algorithm, termedfirst fit adjacent routing,routing of a
lightpath that does not fit on the current wavelength is attempted
on wavelengths that already carry lightpaths. A new wavelength
is begun only if the lightpath cannot be mapped on any previ-
ously used wavelengths.

Algorithm 2: First Fit Adjacent Routing:

1) Find an Euler trail in the desired logical topology. Order
the lightpaths according to the Euler trail. In this way,
consecutive lightpaths will be adjacent. Start with the first
two lightpaths.

2) Start a new wavelength. Using Lemma 1, map the two
lightpaths in the appropriate direction so that they fit on
the single wavelength.

3) Try to map the next lightpath on the same wavelength.
Continue routing lightpaths until you reach the first light-
path that does not fit on the current wavelength.

4) Try to map this lightpath on the previous wavelengths,
starting with wavelength 1. Continue routing lightpaths
on previous wavelengths until you reach the first lightpath
that does not fit on any previously used wavelengths.

5) Take the current lightpath and next lightpath and go to
step 2).

We use simulations to compare the average wavelength
requirements of the two heuristic algorithms to shortest path
routing using first fit wavelength assignment (SPR w/FF). We
consider both DOES and DCRS shortest path routing, which
differ only when is even and is odd. Fig.6 shows the
average wavelength requirements for to single
port per node logical topologies. The wavelength requirements
of all permutations for each node, logical
topology, are evaluated. Fig. 7 shows the average wavelength
requirements for logical topologies with two ports per node.
For , we generate 10 000 random logical topologies for

to . With , both adjacent routing and first
fit adjacent routing require fewer wavelengths on average (and
worst case) than SPR w/FF. First fit adjacent routing reduces
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Fig. 7. Comparison of average wavelength requirements for heuristic joint
routing and wavelength assignment algorithms to DOES and DCRS shortest
path routing using first fit wavelength assignment. Ten thousand random logical
topologies withP = 2 ports per node are mapped on a protected network.

average wavelength requirements between 8%–11% over SPR
w/FF. For and , the average wavelength require-
ments for adjacent routing, are slightly higher than SPR w/FF.
Adjacent routing performs slightly worse than SPR w/FF, since
adjacent routing prevents subsequent lightpaths from being
mapped on any wavelengths on which a previous lightpath did
not fit. First fit adjacent routing, which removes this restriction,
provides a significant improvement over SPR w/FF, reducing
average wavelength requirements by 6%–10%. Unlike SPR
w/FF, adjacent routing and first fit adjacent routing ensure that
a minimum of two lightpaths are routed on each wavelength.
Although it may be possible to improve these heuristics slightly,
these results illustrate that a significant improvement in both
worst case and average wavelength requirements is possible
by lightpath mapping algorithms that jointly assign routes
and wavelengths using the adjacent lightpath routing principle
outlined in the proof of Lemma 1. Also plotted in Figs. 6
and 7 are upper bounds on wavelength requirements derived
from the results in Section III. The upper bounds correspond
to the number of wavelengths required to map the worst case
logical topology using our adaptive lightpath routing strategy.
As expected, the wavelength requirements for the average
case are much less than the worst case. This demonstrates the
importance of improving the wavelength requirements for both
the worst case and average case.

The average wavelength requirements of adjacent routing for
single port per node logical topologies can also be approxi-
mated analytically. Note that adjacent lightpaths are speci-
fied by 1 nodes. Mapping lightpaths on a single wave-
length in one direction is equivalent to choosing the first node
arbitrarily and then ensuring that the remainingnodes are

in the same order as the physical topology, i.e., in either clock-
wise (CW) or counterclockwise (CCW) order. Note that for con-
nected logical topologies, if 1 lightpaths fit on one wave-
length, then all lightpaths fit on the wavelength. Let be
the number of lightpaths that fit on a wavelength in either direc-
tion. Then, given that at least lightpaths remain to be
mapped, we have (1), as shown at the bottom of the page. The
number of ways to arrange nodes in 1 positions is simply

. The number of ways to arrange
nodes in positions so that they are in order (e.g., clockwise)
is given by the following recursive expression:

(2)

(3)

Equation (2) is obtained by considering the position of the first
of the nodes. If the first node is in position, then the re-
maining 1 nodes must be placed in positions. The
sum is taken over all possible positions for the first node.
The probability that more than lightpaths fit on a wavelength
(when or more lightpaths need to mapped) is

(4)

The average number of lightpaths needed to map a single port
per node connected logical topology (ring) can also be com-
puted recursively as follows:

if
if
if

(5)
where is the number of lightpaths mapped and

. Clearly, when only one or two
lightpaths remain to be routed, they can fit on one wavelength.
When , exactly lightpaths fit on one wavelength with
probability and the remaining wavelengths
use an average of wavelengths. The recursion termi-
nates when less than three lightpaths remain to be routed. The
average wavelength requirements can be numerically computed
using (5). The computations are approximate since the port and
connectivity restrictions cause lightpaths to be correlated. For
example, if the first wavelength carries only two lightpaths, this
gives us information about the remaining lightpaths. The ana-
lytical approximations correspond well to the simulation results
in Fig. 6 for to .

It is found through numeric computation that asincreases,
the average number of lightpaths that can fit on a wavelength
approaches 2.43. Hence, the average number of wavelengths
needed to map an node ring logical topology approaches

2.43.

of ways in which nodes can be arranged in positions in CW or CCW order
of ways to arrange nodes in positions

(1)
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B. Unprotected Networks

In this section, we present two heuristic algorithms for routing
and wavelength assignment on unprotected networks. Recall
that in unprotected networks, the wavelengths must be allo-
cated in clockwise/counterclockwise pairs. Both algorithms use
Lemma 1 to map a pair of lightpaths in the appropriate direction
to fit on one wavelength. The next lightpath that does not fit on
the current wavelength is mapped on a wavelength in the oppo-
site direction. This ensures that a minimum of three lightpaths
are embedded on each pair of wavelengths. Routing of subse-
quent lightpaths is continued on the current wavelength until a
lightpath that does not fit on the current wavelength is encoun-
tered. In adjacent routing, a new wavelength pair is begun. In
first fit adjacent routing, the current lightpath and subsequent
lightpaths are mapped on previously used wavelengths until the
first lightpath that does not fit on any lightpath carrying wave-
lengths is found. At this point, a new wavelength pair is initiated.

Algorithm 1: Adjacent Routing:

1) Find an Euler trail in the desired logical topology. Order
the lightpaths according to the Euler trail. In this way,
consecutive lightpaths will be adjacent. Start with the first
two lightpaths.

2) Start a new wavelength. Choose the direction of the wave-
length so that both lightpaths fit on one wavelength.

3) Try to fit additional adjacent lightpaths on this wavelength
in the same direction as the first two lightpaths. When the
first lightpath that does not fit is encountered, route this
lightpath on a new wavelength in the opposite direction.

4) Try to map the next lightpath on the same wavelength.
Continue routing lightpaths until you get to the first light-
path that does not fit on the current wavelength.

5) Take the current (unrouted) lightpath and the next light-
path and go to step 2).

The second algorithm differs from Algorithm 1 at step 5),
where mapping of a lightpath that does not fit on the current
wavelength is attempted on previous wavelengths.

Algorithm 2: First Fit Adjacent Routing:

1) Find an Euler trail in the desired logical topology. Order
the lightpaths according to the Euler trail. In this way,
consecutive lightpaths will be adjacent. Start with the first
two lightpaths.

2) Start a new wavelength. Using Lemma 1, map the two
lightpaths in the appropriate direction so that they fit on a
single wavelength.

3) Try to map the next lightpath on the same wavelength.
Continue routing lightpaths until you reach the first light-
path that does not fit on the current wavelength.

4) Route this lightpath on a new wavelength in the opposite
direction. Continue routing lightpaths until you get to the
first lightpath that does not fit on the current wavelength.

5) Try to map this lightpath on the previous wavelengths,
starting with wavelength 1. Continue routing lightpaths
on previous wavelengths until you reach the first lightpath
that does not fit on any previously used wavelengths.

6) Take current (unrouted) lightpath and next lightpath and
go to step 2).

Fig. 8. Comparison of average wavelength requirements using heuristic joint
routing and wavelength assignment algorithms to DOES and DCRS shortest
path routing using first fit wavelength assignment. An unprotected network is
assumed. The average wavelength requirements for all logical topologies with
P = 1 port per node is determined.

Fig. 9. Comparison of average wavelength requirements for heuristic joint
routing and wavelength assignment algorithms to DOES and DCRS shortest
path routing using first fit wavelength assignment. An unprotected network
is assumed. The average wavelength requirements for 10 000 random logical
topologies withP = 2 ports per node is determined.

Average wavelength requirements for logical topologies with
and are shown in Figs. 8 and 9, respectively. For

single port per node logical topologies, both adjacent routing
and first fit adjacent routing produce significant improvements
over SPR w/FF. First fit adjacent routing provides a 9%–11% re-
duction in average wavelength requirements. With , first
fit adjacent routing reduces average wavelength requirements
by 5%–8%.

Figs. 6–9 illustrate the improvement in average wavelength
requirements achieved from using our adaptive algorithms as
compared to fixed routing schemes. These figures also include
an upper bound showing the wavelength requirements for worst
case logical topologies. The average wavelength requirements
are significantly lower than worst case wavelength require-
ments. These results demonstrate that it is important to reduce
both average and worst case wavelength requirements.
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VI. EXTENSIONS TO -CONNECTEDPHYSICAL TOPOLOGIES

Above, we have shown for bidirectional ring physical
topologies that a minimum of two lightpaths can be mapped
on any wavelength if the wavelength direction is selected
appropriately. We used this observation to determine minimum
wavelength requirements for supporting worst case logical
topologies and developed a routing and wavelength assignment
algorithm that achieves this minimum wavelength requirement.
We also developed heuristic routing and wavelength assignment
algorithms that illustrate how this adjacent lightpath routing
principle can be used to reduce average wavelength require-
ments. In this section, we show how the adjacent lightpath
routing principle might be extended for use on two-connected
and three-connected physical topologies. We assume that each
physical link consists of two fibers, one propagating in each
of two directions. Note that a set of adjacent lightpaths is
specified by an ordered set of 1 nodes. A set of adjacent
lightpaths is said to use a single wavelength if there is an edge
disjoint trail that passes through all 1 distinct nodes in order.

A bidirectional ring is a specific case of a two-connected
physical topology. However, not all two-connected graphs are
rings or even contain a cycle that traverses allnodes. We
show that Lemma 1 can be generalized to two-connected phys-
ical topologies. Specifically, we show that any pair of adjacent
lightpaths can be mapped on one wavelength of a two-connected
physical topology by properly choosing the lightpath routes.

Theorem 11:On a two-connected graph, for any pair of ad-
jacent lightpaths and , there exists an edge disjoint
trail from to to .

Proof: Consider two adjacent lightpaths and .
Add a node to the graph and connect it to nodesand . The
new graph is still two-connected. Thus by Menger’s theorem
[20], there are two edge disjoint paths from node(the source)
to node (the sink). Furthermore, one of these two paths passes
through and the other through. Thus there exist paths from

to and from to that are edge disjoint.
We can also show the following result for three-connected

physical topologies.
Theorem 12:On a three-connected graph, any three adja-

cent lightpaths and can be routed on a single
wavelength.

The proof, given in Appendix II, is by construction; thus
it also provides a method for routing the three lightpaths.
It is fairly straightforward to generate sets of three adjacent
lightpaths thatcannotbe mapped on a two-connected physical
topology for any routing strategy. Similarly, one can generate
sets of four adjacent lightpaths thatcannot be mapped on
a three-connected physical topology. Thus, the mappings
described are maximal in this sense. We conjecture that these
results can be generalized to-connected physical topologies
for all , i.e., we expect that any adjacent lightpaths can be
mapped on one wavelength of a-connected physical topology.
The result for even has been established in [21]. Forodd,
the problem is yet unsolved [22].

Theorems 11 and 12 can be used to devise heuristic routing
and wavelength assignment strategies for two-connected and
three-connected physical topologies. In fact, slight variations
of the adjacent routing and first fit adjacent routing algorithms

can be implemented. Here instead of selecting a wavelength
direction, routing the lightpaths on one wavelength corresponds
to finding a directed trail for the lightpaths through the physical
topology. For two-connected physical topologies, the lightpath
routes are selected to ensure that two lightpaths fit on one
wavelength. One can easily find pairs of adjacent lightpaths
that cannot be mapped using shortest path routing on one
wavelength of a two-connected physical topology. Thus it is
also possible to generate logical topologies in which shortest
path routing using first fit wavelength assignment would not
be able to map a minimum of two lightpaths on each wave-
length of a two-connected physical topology. Similarly, for
three-connected physical topologies, the lightpath routes are
chosen to ensure that three lightpaths fit on one wavelength.
One can easily generate sets of three adjacent lightpaths that
if routed using shortest path routing will require more than
one wavelength on a three-connected physical topology. Thus,
SPR w/FF on a three-connected physical topology will not
map a minimum of three lightpaths on each wavelength. As the
physical topology becomes more connected, and the number
of lightpaths (equivalently, ports) increases, we expect shortest
path routing to use most wavelengths fairly efficiently since
most lightpaths will use a small number of physical links. How-
ever, algorithms such as first fit adjacent routing can improve
wavelength utilization, since they ensure that a minimum of two
lightpaths are routed oneverywavelength on a two-connected
physical topology and that a minimum of three lightpaths are
mapped onevery wavelength on a three-connected physical
topology.

VII. CONCLUSION

The minimum number of wavelengths required to im-
plement all virtual topologies on an node port network
has been determined. For connected logical topologies,

working traffic wavelengths are required on a pro-
tected network and wavelengths in each di-
rection are required on an unprotected network. A significant
fraction of logical topologies require nearly wavelengths,
thus reducing the wavelength requirement by designing the net-
work to support only a limited number of logical topologies is
not a worthwhile proposition. This also indicates that our focus
on supporting all possible logical topologies does not result in
a substantial overprovisioning of resources.

Adaptive lightpath routing strategies that can embed all log-
ical topologies within the minimum wavelength require-
ment were developed. These adaptive routing schemes required
far fewer wavelengths than RWA schemes based on shortest path
routing.

Joint routing and wavelength assignment algorithms that
improve average wavelength requirements were also developed.
These algorithms reduced average wavelength requirementsin
additionto minimizing worst case logical topology wavelength
requirements. If networks are provisioned with wave-
lengths, embedding a topology with less than wavelengths
allows the extra wavelengths to be used for alternative services.
The joint routing and wavelength assignment algorithms devel-
oped use fewer wavelengths than shortest path routing-based
RWA both for average and worst case topologies.
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Fig. 10. (a) Two parallel links. (b) Two intersecting links.

Although we primarily focused on the bidirectional ring
physical topology, methods for extending the adjacent lightpath
routing principles to general two-connected and three-con-
nected physical topologies were also presented. Determination
of the minimum wavelength requirements for-connected
physical topologies topologies is an area for future work. The
joint routing and wavelength assignment algorithms devel-
oped for bidirectional ring physical topologies were adapted
to two-connected and three-connected physical topologies.
Performance analysis of the these algorithms as well as devel-
opment of new heuristic joint RWA strategies for-connected
physical topologies are areas for future work. Investigation
of joint routing and wavelength assignment on other physical
topologies is another area of interest.

APPENDIX I
PROOF OFLEMMA 2

Denote the three directed circuits of odd sizes and
as and . We show below that these three circuits can

be routed using a total of wavelengths.
We begin with some preliminary definitions. Alink in the di-

rected circuit corresponds to a directed logical connection be-
tween a source nodeand destination node. We say that two
logical links and are parallel if nodes and

lie on the same side of the bisection of the physical topology
formed by link , as illustrated in Fig. 10(a). We say
that two links intersect if they are not parallel, as shown in
Fig. 10(b). Two parallel links are said to traverse thesame di-
rectionif traversing the ring physical topology to go from to

requires going through node in one direction and in the
other. Note that links and in Fig. 10(a) traverse
the same direction.

The proof of Lemma 2 uses the following theorem and corol-
lary.

Theorem 13:Given a directed circuit of odd size , any link
can intersect at most 1 links in the circuit.

Proof: Any link that cuts a circuit of size will di-
vide the circuit such that of the nodes are to the left of the
link and of the nodes are to the right of the link. The
number of links from the circuit that intersect linkis thus at
most , since is
odd.

Fig. 11. Scenario 1): three links from three circuits are parallel.

Fig. 12. Scenario 2): a link from circuitA is parallel to links from circuitsB
andC, but the links from circuitsB andC intersect.

Corollary to Theorem 13:Given three directed circuits
and of odd size, there exists a link in denoted that

is parallel to a link in , denoted , and also to a link in ,
denoted .

Now we can prove Lemma 2. By applying Lemma 1, we know
that each circuit requires at most wavelengths. Thus
if we can show that there exist two links, one each from two odd
circuits that can share a wavelength, the number of wavelengths
needed will be

as required.
Let denote that link is parallel to link . From the

corollary, there are two possible scenarios: 1) all three links are
parallel or 2) links and intersect but are both parallel to link

. In scenario 1), shown in Fig. 11(a), links , ,
and . If no two of the three links can share a wavelength,
this implies that the three links must go in the same direction,
for if they do not, the two opposite direction links can share
a wavelength. Now consider scenario 2), shown in Fig. 12(a),
where and but is not parallel to . As
shown in Fig. 12(b), links and must traverse the same di-
rection as ; otherwise they can share a wavelength with.
Thus suppose that is in the same direction as and , as
shown in Figs. 11(b) for scenario 1) and 12(b) for scenario 2).
Consider the link following link in circuit , i.e., the link
with source node equal to the destination node of. If the des-
tination of this link is to the right of link , then this link can
share a wavelength with link . Otherwise the destination of
this link must be to the left of link , in which case this link
can share a wavelength with link . Therefore, there always
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Fig. 13. Definition of a trail from nodea to b, trail , and its segment from
nodex to nodey, trail (x; y).

Fig. 14. Construction of three edge disjoint trails using Menger’s theorem and
the max-flow min-cut theorem.

exists at least two links, one each from two different circuits of
and , that can share a wavelength.

APPENDIX II
PROOF OFTHEOREM 12

In this section, we prove Theorem 12, which shows that on a
three-connected physical topology, any three lightpaths can be
mapped on a single wavelength. The proof is by construction;
consequently, it also illustrates a method for selecting the routes
of the three lightpaths.

We begin with some preliminary definitions. Let trailbe a
trail from nodes to node without repeated edges. Although
a trail may contain loops, we assume for simplicity that trails
do not contain loops. The proof can be easily extended to cases
where trails contain loops. Define trail , for all nodes
on trail , as asegmentof trail that starts at node, follows
trail , and terminates on node. An example of a trail and its
segment is shown in Fig. 13. Note that trail trail and
that trail has the same edges as trail except it is
traversed in the opposite direction. Two trails aredisjoint when
they do not share an edge. Two trailstouchat node if node
belongs to both trails. Two trailsoverlapat edge if
is on both trails. Note that if two trails overlap at , then
they touch at and .

To prove Theorem 12, given a three-connected graph, we
must establish a trail, trail , through any four distinct nodes

, such that the trail passes through all four nodes,
terminates on nodes and , and such that the trail segments
trail , trail , and trail are all edge disjoint.

Proof: Let node be the source of a flow of capacity 3,
node be a sink of capacity 1, and nodebe a sink of capacity
2. Using Menger’s theorem and max-flow min-cut arguments
[20], we can find three edge disjoint trails: trail, trail , and
trail , where nodes and are terminals of trail and nodes

and are terminals of trail and trail , as shown in Fig. 14.
Note that the three trails are only guaranteed to beedgedisjoint.

Using Menger’s theorem again, find three edge disjoint trails
from node to node . Name these trails trail , trail , and

Fig. 15. The three trails from noded to nodec will eventually touch trail [

trail . The locations where these trails touch are denotedt for i = 1; 2; 3.
Note that the first place the trails touch may be at nodec.

Fig. 16. Construction of the desired trail when at least one of the three trails
from noded to nodec does not overlap with trail before touching trail [

trail .

Fig. 17. Only consider overlaps that occur before trail; i = 1; 2; 3; touches
trail [ trail .

trail . Note that these three trails may overlap with any of the
three trails previously defined.

Traverse trail from node toward node . Stop
whenever trail touches either trail or trail for the very
first time. Let be the point where the trails touch. Note that
trail is edge disjoint with trail trail , as illustrated
in Fig. 15.

If one of the three to trails does not overlap with trail,
then we have our desired trail. Assume that trail is the trail
that has this property and that it first touches trailat node

. Let trail denote the other node to node trail. Then
the desired trail is trail trail trail trail
trail , as illustrated in Fig. 16.

The only case left to consider is when all threeto trails
overlap with trail before they first touch trail trail .
There may also be repeated overlaps, and the ordering of the
overlap locations may intertwine. Nevertheless, the number of
overlaps is finite. There is an overlap that is closest to node;
call this Overlap1. Label the node closest to nodeon Overlap1
as node . There is also an overlap that is closest to node; call
this Overlap2. Label the node closest to nodeon Overlap2 as
node . This is illustrated in Fig. 17.
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Fig. 18. Construction of the desired trail when all three noded to nodec trails
overlap with trail before they touch trail [ trail .

Let trail be the trail that creates Overlap1 and trailbe
the trail that creates Overlap2. The lastto trail is then trail .
Note that trail may be the same trail as trail . Assume that
trail first touches trail trail at node .

Claim: There exists a trail from nodeto node that is edge
disjoint from trail .

Proof of Claim: In the case that trail is different from
trail , consider trail trail trail
trail . This trail is edge disjoint with trail be-
cause on trail , there is no overlap before nodeand after node

, and since trail and trail are edge disjoint from trail .
In the case that trail is the same as trail , consider

trail trail trail . This trail is edge dis-
joint with trail because on trail , there is no overlap
before node and after node , and since trail trail is
edge disjoint from trail .

In whichever case, the above claim is true. Label this new
node to node as trail . Note that trail is also edge disjoint
with both of the node to node trails.

The proof can now be finished. The desired trail, shown in
Fig. 18, is trail trail trail trail ,
where trail first touches trail trail at node of trail .
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